
E D I T E D B Y D E R E K R AY S I D E

S E C A P S T O N E D E S I G N
P R O J E C T H A N D B O O K

Design

C
o
n
c
e
p
ts

To
o
ls

P
ro

fe
ss

io
n
a
l

P
ra

c
ti

c
e

Id
ea

te

 Communicate

 Evaluate

U N I V E R S I T Y O F W AT E R L O O

2 edited by derek rayside

Copyright © 2024 by individual contributors.
Compiled March 31, 2024

acknowledgements:

• Prof Paul Ward initiated the se Capstone Design Project, set up the overall structure, taught the first
several offerings, and remains part of the instructional team.

• Profs Krzysztof Czarnecki, Charlie Clarke, Andrew Morton, and Patrick Lam are members of the in-
structional team.

• se2014 student and class rep Michael Chang wrote an se499 report on the se Capstone Design Project
and was involved in the creation of this handbook.

• se2014 student and class rep Ming-Ho Yee has provided much valuable feedback and suggestions.

• Many students from recent graduating classes have shared their wisdom here for the benefit of future
students.

• The chapter on Popular Project Ideas was developed in collaboration with Michael Kirkup from Velocity,
where they also often see many of the same ideas repeated.

Licensed under Creative Commons Attribution-ShareAlike (CC BY-SA) version 2.5 or greater.
http://creativecommons.org/licenses/by-sa/2.5/ca/
http://creativecommons.org/licenses/by-sa/3.0/

http://creativecommons.org/licenses/by-sa/2.5/ca/
http://creativecommons.org/licenses/by-sa/3.0/

Contents

1 Learning Objectives 11
1.1 Course Calendar Descriptions 12
1.2 CEAB Capstone Learning Objectives 13
1.3 CIPS Capstone Learning Objectives 15
1.4 SE Curriculum Committee Intended Graduate Attributes 17
1.5 Definitions of Engineering & Software Engineering . . . 22
1.6 Modes of Assessment: Formative & Summative 29
1.7 Modes of Instruction: Didactic & Dialectic 29

2 Project Selection 31
2.1 Problems and Opportunities 32
2.2 Kinds of Projects . 33
2.3 Individual Learning Objectives 34
2.4 Team Formation . 35
2.5 Activities to Assist with Project Selection 35
2.6 Changing Projects . 36
2.7 Changing Teams . 41

3 Teamwork Activities 43
3.1 Identify Individual Learning Objectives & Skills 43
3.2 Write a Team Working Agreement 44
3.3 Communicate about Communication 47
3.4 Host a Retrospective Meeting 48
3.5 Practice Backup Behaviour (Supporting Teammates) . . . 48
3.6 Practice Active Listening 49
3.7 Practice Assertive Communication: DESC 49
3.8 Apply Two Techniques to Manage Contagious Emotions 50
3.9 Apply Team Formation Strategies 51
3.10 Identify and Resolve Your Teams Dysfunctions 52
3.11 Conflict: Introduction . 53
3.12 Conflict: Difficult Behaviours 54
3.13 Conflict: Five Handling Modes 55
3.14 Conflict: Reflection Questions 56
3.15 Conflict: Situation Assessment 57

4 edited by derek rayside

3.16 Conflict: Personality-Based Coping Strategies 59
3.17 Health: Balsom’s 9 Attributes of Effective Teams 61
3.18 Health: Google . 61
3.19 Health: Team Barometer 62
3.20 Health: TeamRetro . 64
3.21 Health: Spotify . 65
3.22 Process Assessment: Joel Test 66
3.23 Process Assessment: Scrum Checklist 67
3.24 Process Assessment: CMMI 68
3.25 Process Assessment: Capability Immaturity Model . . . 68
3.26 Process Assessment: UX Maturity 69
3.27 Course: PD4 Teamwork 69
3.28 Course: INTEG210 Making Collaboration Work 69

4 Creative Activities 71
4.1 Modes of Creative Thinking: Intense and Casual 71
4.2 Apply SCAMPER . 72
4.3 Apply C-K Theory . 72
4.4 Use Comparison to Generate New Ideas 72
4.5 Design Space Exploration 75
4.6 Brainstorming . 77
4.7 6-3-5 Group Brainstorming 78
4.8 Crazy 8s (a form of group brainstorming) 78
4.9 Think / Pair / Share . 78
4.10 Six Thinking Hats . 79

5 Planning Activities 81
5.1 Exploring Early Can Be A Good Strategy 81
5.2 Select Project Success Metrics 81
5.3 Weekly Work Intensity . 82
5.4 Plan to Prototype . 83
5.5 Old Stories Told in New Ways 88
5.6 Compare to Popular Project Ideas 90

6 Conceptual Activities 95
6.1 Problem Identification and Refinement 95
6.2 Identify the Core Conceptual Data Structure 99
6.3 Position in Marketspace 99
6.4 Strategic Project Positioning 100
6.5 Understanding Project Risk 103
6.6 OLD: How to Choose a Project 108
6.7 Position in a Conceptual Framework 108
6.8 Write a Research Literature Report 109
6.9 Apply Rules of Thumb . 109
6.10 Position in Normal vs Radical Design 112 Don’t reinvent the wheel

se capstone handbook 5

6.11 Apply an Idea from the Project Domain 115
6.12 Apply Cognitive Bias Understanding 116

7 Requirements Activities 117
7.1 Domain Model . 117
7.2 Use Cases & Scenarios . 117
7.3 User Manual . 117
7.4 Lean Canvas . 117
7.5 Hypothesis Testing . 118
7.6 Identify User’s Emotional Objectives 118
7.7 Practice Decoding Analogies/Metaphors 118

8 Design Activities 121
8.1 Describe Your Architecture 121
8.2 Extract & Analyze Your Architecture 122
8.3 Apply Formal Methods 123
8.4 Apply UI Design Guidelines 123
8.5 Incorporate Privacy by Design 123
8.6 Peer Design Exploration 124
8.7 Peer Design Review . 124
8.8 Select a Database Technology 125
8.9 Apply (or Reject) the UNIX Design Philosophy 125
8.10 Read a Book on Approaches to Software Design 126

9 Testing Activities 127
9.1 Assess Testing . 127
9.2 Create More Manual Tests 127
9.3 Identify Invariants . 127
9.4 Identify Mathematical Properties 127
9.5 Use Automated Test Input Generation Tools 128
9.6 Use A Linter . 128
9.7 Test Against an Alternative Implementation 128
9.8 Set Up Continuous Integration 129
9.9 Set Up Deployment Environments 129
9.10 Statistical Cross-Validation for Machine Learning 129
9.11 Performance Profiling . 129
9.12 Scalability Assessment and Planning 129
9.13 Measure Precision and Recall 130

10 User-Centred Design (from cs449) 131
10.1 Value Proposition . 131
10.2 Persona Empathy Map . 132
10.3 Gather Data . 134
10.4 Analyze Data . 134
10.5 Crazy 8s . 135

6 edited by derek rayside

10.6 Low-Fidelity Prototyping 135
10.7 High-Fidelity Prototyping 138

11 User Activities 139
11.1 Take TCPS2 Training: Ethical Conduct with Users 139
11.2 Do a User Activity . 139
11.3 Ideate about Possible User Activities that You Might Do 139
11.4 Formative vs. Summative Evaluations 140
11.5 Rohrer Survey of 20 Different User Activities 141
11.6 Farrell’s Survey of 34 User Activity Methods 142
11.7 Moran’s Survey of 9 Quantitative User Activities 143
11.8 Nielsen’s 10 Usability Rules of Thumb 143
11.9 Why Testing With 5 Users is Usually Enough 143
11.1027 Tips for Conducting Successful User Research in the Field143
11.11Levels of ux Design Maturity 144
11.12Apply Universal Design for Accessibility 145
11.13Peer Usability Review . 145
11.14User Acquisition . 146

12 Reflective Activities 147
12.1 Watch Past Project Presentations 147
12.2 Analyze Past Project Awards 147
12.3 Index Past Projects . 147
12.4 Read Past Project Reports 147
12.5 Read Turing Award Speeches 147
12.6 Read Video Game History: The Digital Antiquarian . . . 148
12.7 Watch ACM Tech Talks . 148
12.8 Read ACM Queue Articles 148
12.9 Read Classic SE Papers . 148
12.10Watch a Documentary . 148
12.11Read a Book . 149
12.12Assess Your Choice of Learning Activities 149
12.13n + 1 Cohort Feedback (Retrospective) 149

13 Communication Activities 151
13.1 Read Edward Tufte’s Presentation Advice 152
13.2 Read Trees, Maps, and Theorems Presentation Advice . 152
13.3 Watch Patrick Henry Winston’s Presentation Advice . . 152
13.4 Learn from TED Presentation Advice 152
13.5 Learn from Nancy Duarte’s Presentation Advice 153
13.6 Conquer Your Fear of Public Speaking 153
13.7 Choose a Narrative Structure for Your Presentation . . . 154
13.8 Revise Your Writing . 155
13.9 Revise Your Abstract . 156
13.10Read Authors You Want to Emulate 158

se capstone handbook 7

13.11Write for Accessibility and ESL 159

14 Project Evaluation 161
14.1 Project Status Sheets . 162
14.2 Results (An Aspect of Validation) 171
14.3 Teamwork Assessment . 178
14.4 Communication Assessment 178
14.5 How Referee Grades Get Combined 178
14.6 Referee Selection . 180
14.7 Risk Reward (Bonus) . 182

15 Intellectual Property & Collaborators 185
15.1 What is Intellectual Property? 185
15.2 Collaborating on Free / Open Source Software 186
15.3 Collaborating with an Established Corporation 186
15.4 Collaborating with a Startup 187
15.5 The Research Licensing Approach 190
15.6 Intellectual Property & Standards Report 190

16 Bibliography 195

List of Figures

1.1 Suspension bridge concept map for se Capstone Design
Project . 11

2.1 Project inputs and outputs. 31

3.1 Phases of team development 51
3.2 Lencioni’s pyramid of the five dysfunctions of a team . . 52
3.3 Five conflict-handling modes 55
3.4 Scrum checklist by Henrik Kniberg 67

4.1 Some kinds of comparisons 73
4.2 The traditional square of opposition. 73

5.1 When to build which kind of prototype: experimental, evo-
lutionary, operational . 86

5.2 Icons for different kinds of prototypes. 87
5.3 The story of the seL4 verified microkernel 87

6.1 The space between Normal and Radical design in terms
of components and composition 114

6.2 Maslow’s hierarchy of human needs 115

10.1 Example of what a persona looks like 132
10.2 Example of what an empathy map looks like 133
10.3 Image of affinity diagram 136
10.4 Image of Crazy 8 . 137
10.5 Image of sketch . 137

11.1 Central figure from Rohrer’s user-activity survey article
for the Nielsen/Norman Group. 141

11.2 Central figure from Farrell’s user-activity survey article for
the Nielsen/Norman Group. 142

13.1 Freytag’s Pyramid . 154

14.1 Marketing plan for food ordering app 173

Learning Objectives

Back where I come from we have univer-
sities — seats of great learning — where
[people] go to become great thinkers. And
when they come out, they think deep
thoughts, and with no more brains than you
have.

— The Wizard of Oz, 1939

Capstone projects are a common component of engineering and com-
puter science undergraduate degrees. They are intended to provide
an opportunity to apply what has been learned across all (or most
of) the prior courses in a holistic way. Consequently, there are many
learning objectives.

The Canadian Engineering Accreditation Board (ceab) identifies
12 learning objectives for capstone projects. The Canadian Informa- §1.2 ceab Capstone Learning Objectives

§1.3 cips Capstone Learning Objectives

§1.4 se Capstone Learning Objectives
tion Processing Society (cips) identifies 14 learning objectives for
capstone projects. The UWaterloo se Curriculum Committee identi-
fies 111 attributes, in 19 categories, that graduates should have. The
committee has mapped those graduate attributes to every course in
the core curriculum: 94 of these 111 intended graduate attributes
(85%) are mapped to the capstone courses.

Figure 1.1 attempts to summarize these learning objectives using This kind of visual metaphor is some-
times called a concept map.the visual metaphor of a bridge — a classic engineering artifact.

‘Hard’ skills are illustrated with the compressive members of the
bridge. ‘Soft’ skills are illustrated with the tensile members of the
bridge. The road deck — design — requires both kinds of skills for
solid support.

Design

C
o
n
c
e
p
ts

To
o
ls

P
ro

fe
ss

io
n
a
l

P
ra

c
ti

c
e

Id
ea

te

 Communicate

 Evaluate

Figure 1.1: Suspension bridge concept
map for se Capstone Design Project.
Design is supported by both compres-
sive and tensile members, representing
‘hard’ skills and ‘soft’ skills, respec-
tively.

12 se capstone handbook [march 31, 2024]

The capstone project is an opportunity to explore a significant
subset of the learning objectives of the undergraduate degree in an
integrated project. In broad overview, for capstone courses we might
say the learning objectives are:

• To develop technical leadership and judgement.
• To do a project of enduring value, that has meaning to someone

(including yourself) after you graduate.
• To develop broad familiarity with a wide range of techniques, tools,

skills, concepts, and professional practices. This additional breadth
of learning, beyond the courses you have taken and your prior
experiences, will come through through the exploration of your
project, your project mentors, your peers’ feedback on your project,
your observation of your peers’ projects, and this handbook.

• To be able to select and apply appropriate techniques, tools, skills,
concepts, and professional practices for a particular project. Both
for your project, and projects of your peers that you provide feed-
back on.

• To communicate in a clear, correct, complete, and concise manner.
• To give and receive constructive feedback, both within your team and

with other teams.
• To work in a team.
• To demonstrate appropriate software engineering process maturity.

Version control, it goes without saying, is required. This handbook
describes various industry scales of process maturity.

• To understand and be able to apply a variety of definitions of
engineering and software engineering.

1.1 Course Calendar Descriptions
These courses have a few differences
from the standard course format: all
work is done in groups; there are no
written tests; there is no textbook.

se390

Students undertake a substantial customer-driven group project as
part of the se 390/490/491 design-project sequence covering all major
phases of the software-engineering lifecycle. Lectures describe expecta-
tions and project-planning fundamentals. Students form groups, decide
on a project concept, complete a project-approval process, develop
high-level requirements for the project, perform a risk assessment, de-
velop a test plan, and complete a first-iteration prototype. Social, legal,
and economic factors are considered.

se490

Continuing from se390, students undertake a substantial customer-
driven group project. Project groups establish and maintain project

learning objectives 13

control processes, delivering a series of iterations on their se390 proto-
type. Adaptive methods are encouraged and supported.

se491

Final implementation, testing, and communication of the design project
started in se390. Technical presentations by groups. Analysis of so-
cial, legal, and economic impacts. Final release of the project. Project
retrospective.

1.2 CEAB Capstone Learning Objectives

The Canadian Engineering Accreditation Board (ceab) is a stand-
ing committee of Engineers Canada1 that accredits undergraduate 1 Engineers Canada is a national or-

ganization of the 12 provincial and
territorial associations that regulate
engineering and license engineers in
Canada.

engineering programs in Canada. A number of the requirements in
ceab’s Accreditation Criteria and Procedures2 may be fulfilled by a

2 Canadian Engineering Accreditation
Board. Accreditation criteria and
procedures, 2013. URL http://www.
engineerscanada.ca/sites/default/
files/sites/default/files/accreditation_
criteria_procedures_2013.pdf. Retrieved
winter 2014

fourth-year design (capstone design) project.
Graduates of an engineering program should possess the “grad-

uate attributes” described in Section 3.1 of ceab’s Accreditation
Criteria:

3.1.1 A knowledge base for engineering: Demonstrated competence
in university level mathematics, natural sciences, engineering funda-
mentals, and specialized engineering knowledge appropriate to the
program.

3.1.2 Problem analysis: An ability to use appropriate knowledge and
skills to identify, formulate, analyze, and solve complex engineering
problems in order to reach substantiated conclusions.

3.1.3 Investigation: An ability to conduct investigations of complex
problems by methods that include appropriate experiments, analysis
and interpretation of data, and synthesis of information in order to
reach valid conclusions.

3.1.4 Design: An ability to design solutions for complex, open-ended
engineering problems and to design systems, components or pro-
cesses that meet specified needs with appropriate attention to health
and safety risks, applicable standards, and economic, environmen-
tal, cultural and societal considerations.

3.1.5 Use of engineering tools: An ability to create, select, apply,
adapt, and extend appropriate techniques, resources, and modern
engineering tools to a range of engineering activities, from simple to
complex, with an understanding of the associated limitations.

3.1.6 Individual and team work: An ability to work effectively as
a member and leader in teams, preferably in a multi-disciplinary
setting.

3.1.7 Communication skills: An ability to communicate complex en-
gineering concepts within the profession and with society at large.

http://www.engineerscanada.ca/sites/default/files/sites/default/files/accreditation_criteria_procedures_2013.pdf
http://www.engineerscanada.ca/sites/default/files/sites/default/files/accreditation_criteria_procedures_2013.pdf
http://www.engineerscanada.ca/sites/default/files/sites/default/files/accreditation_criteria_procedures_2013.pdf
http://www.engineerscanada.ca/sites/default/files/sites/default/files/accreditation_criteria_procedures_2013.pdf

14 se capstone handbook [march 31, 2024]

Such ability includes reading writing, speaking and listening, and
the ability to comprehend and write effective reports and design
documentation, and to give and effectively respond to clear instruc-
tions.

3.1.8 Professionalism: An understanding of the roles and responsibil-
ities of the professional engineer in society, especially the primary
role of protection of the public and the public interest.

3.1.9 Impact of engineering on society and the environment: An
ability to analyze social and environmental aspects of engineering
activities. Such ability includes an understanding of the interactions
that engineering has with the economic, social, health, safety, legal,
and cultural aspects of society, the uncertainties in the prediction
of such interactions; and the concepts of sustainable design and
development and environmental stewardship.

3.1.10 Ethics and equity: An ability to apply professional ethics,
accountability, and equity.

3.1.11 Economics and project management: An ability to appro-
priately incorporate economics and business practices including
project, risk, and change management into the practice of engineer-
ing and to understand their limitations.

3.1.12 Life-long learning: An ability to identify and to address their
own educational needs in a changing world in ways sufficient to
maintain their competence and to allow them to contribute to the
advancement of knowledge.

Section 3.4.4.3 of ceab’s Accreditation Criteria requires “A mini-
mum of 225 AU in engineering design”, which is “creative, iterative,
and open-ended process” that “integrates mathematics, natural sci-
ences, engineering sciences, and complementary studies in order to
develop elements, systems, and processes to meet specific needs.”
Solutions may be constrained by standards or legislation, relating to
“economic, health, safety, environmental, societal or other interdis-
ciplinary factors”. In particular, Section 7 of the ceab’s Interpretive
statement on licensure expectations and requirements requires 225
AU of engineering design be taught by faculty that are licensed to
practice engineering in Canada.

Section 3.4.4.4 of ceab’s Accreditation Criteria requires that “the
engineering curriculum must culminate in a significant design ex-
perience conducted under the professional responsibility of faculty
licensed to practise engineering in Canada, preferably in the juris-
diction in which the institution is located. The significant design
experience is based on the knowledge and skills acquired in earlier
work and it preferably gives students an involvement in team work
and project management.”

Section 3.4.4.5 of ceab’s Accreditation Criteria requires that “Ap-
propriate content requiring the application of modern engineering

learning objectives 15

tools must be included in the engineering sciences and engineering
design components of the curriculum.”

Section 3.5.5 of ceab’s Accreditation Criteria requires that “Fac-
ulty delivering curriculum content that is engineering science and/or
engineering design are expected to be licensed to practise engineer-
ing in Canada, preferably in the jurisdiction in which the institution
is located. In those jurisdictions where the teaching of engineering is
the practice of engineering, they are expected to be licensed in that
jurisdiction.” In particular, Section 4 (b.) of the ceab’s Interpretive
statement on licensure expectations and requirements notes that fac-
ulty members who have applied for professional engineering licen-
sure or engineer-in-training status are not compliant for the teaching
of engineering design with respect to Sections 3.4.4.3 and 3.5.5.

Section 4.4 of ceab’s Accreditation Criteria notes that an accredita-
tion visit provides the opportunity for activities including:

e. a review of recent examination papers, laboratory instruction sheets,
student transcripts (anonymous, if necessary), student reports and
theses, models or equipment constructed by students and other
evidence of student performance.

1.3 CIPS Capstone Learning Objectives

The Computer Science Accreditation Council (csac) is a body estab-
lished by the Canadian Information Processing Society (cips) that
accredits undergraduate programs in computer science. A number of
the requirements in csac’s Accreditation Criteria3 may be fulfilled by 3 Computer Science Accreditation

Council. Accreditation criteria for
computer science, software engineering
and interdisciplinary programs, August
2011. URL http://www.cips.ca/sites/
default/files/CSAC_Criteria_2011_v1.
pdf. Retrieved winter 2014

a fourth-year design (capstone design) project.
Section 4.1 of csac’s Accreditation Criteria define “Graduate

Attributes”, which describe what graduate of a computer science or
software engineering program should know and be able to do.

A graduate of a computer science or software engineering program
must be able to:

1. Demonstrate Knowledge: Competently apply knowledge in

a) software engineering,

b) algorithms and data structures,

c) systems software,

d) computer elements and architectures,

e) theoretical foundations of computing,

f) discrete mathematics, and,

g) probability and statistics.

2. Analyse and Solve Problems: Use appropriate knowledge and skills,
including background research and experimentation, to identify,

http://www.cips.ca/sites/default/files/CSAC_Criteria_2011_v1.pdf
http://www.cips.ca/sites/default/files/CSAC_Criteria_2011_v1.pdf
http://www.cips.ca/sites/default/files/CSAC_Criteria_2011_v1.pdf

16 se capstone handbook [march 31, 2024]

investigate, abstract, conceptualize, analyse, and solve complex
computing problems, in order to reach substantiated conclusions.

3. Design Software and Systems: Design and evaluate solutions for
complex open-ended computing problems, and design and evaluate
systems, components, or processes that meet specified needs with
appropriate consideration for public health and safety, as well as
economic, cultural, societal, and environmental considerations

4. Use Appropriate Resources: Create, select, adapt and apply appropri-
ate techniques, resources, and modern computing tools to complex
computing activities, with an understanding of their strengths and
limitations.

5. Work Individually and in a Team: Function effectively as an indi-
vidual and as a member or leader in diverse teams and in multi-
disciplinary settings

6. Communicate Effectively. Communicate with the computing commu-
nity and with society at large about complex computing activities by
being able to comprehend and write effective reports, design docu-
mentation, make effective presentations, and give and understand
clear instructions

7. Act Professionally. Act appropriately with respect to ethical, societal,
environmental, health, safety, legal, and cultural issues within
local and global contexts, and with regard to the consequential
responsibilities relevant to professional computing practice.

8. Be Prepared for Life-Long Learning: Learn new tools, computer lan-
guages, technologies, techniques, standards and practices, as well
as be able to identify and address their own educational needs in a
changing world in ways sufficient to maintain their competence and
to allow them to contribute to the advancement of knowledge.

9. Demonstrate Breadth of Knowledge. Possess knowledge in areas other
than computer science and mathematics so as to be able to commu-
nicate effectively with professionals in those fields.

Section 6.0 of csac’s Accreditation Criteria requires “good stu-
dents”, as demonstrated by (among other indicators) “prizes and
scholarships awarded”, and “student’s satisfaction with their pro-
gram and progress as assessed through questionnaires and inter-
views”.

Section 7.1 of csac’s Accreditation Criteria requires “evidence that
Graduate Attributes have been met”, including “mappings from course-
level objectives to graduate attributes” and “rubrics for assignments
and tests indicating which graduate attributes are being assessed”.

Section 7.3.6 of csac’s Accreditation Criteria requires “Significant
Design Experience”:

Students graduating from an accredited program should have had the
chance to develop a complete significant system, or make a major mod-
ification to an existing system, at some point in their studies, whether
it be in course projects, a final 4th-year project, or an internship or in

learning objectives 17

some other manner. This design experience should be open-ended in
the sense that there is “no right answer,” and should enable the stu-
dent to integrate their knowledge from most, if not all, of the areas of
computer science listed in Section 7.3.1, as well as knowledge of mathe-
matics, domain knowledge and, where appropriate, with consideration
for economics, societal issues, safety, etc.

Section 7.6 of csac’s Accreditation Criteria requires “Non-Trivial
Problem Solving in Teams”. Students are expected to identify objectives
and criteria, create and analyse alternative solutions, select, imple-
ment, test, and evaluate a solution, and document and communicate
their work.

Section 7.7 of csac’s Accreditation Criteria requires “Written and
Oral Communication Skills”. Students should be taught to “practice
collecting information through reading and listening”, “assemble the
information for various audiences”, and “present information both
verbally and in writing”.

1.4 SE Curriculum Committee Intended Graduate Attributes

The UWaterloo se Curriculum Committee has defined a range of
attributes that it hopes graduates of the program will have. The Com-
mittee has further mapped these attributes back to individual courses
that are supposed to develop those skills, and then monitors the
outcomes. This monitoring process is part of a high-level feedback-
control loop, where the committee periodically makes adjustments
to the curriculum and program to improve outcomes. The capstone
project courses cover almost all of graduate attributes identified by
the se] curriculum committee, and are listed here (including the
number of graduate attributes covered in each category).

Knowledge Base 3/7

• Understand software systems: a) operating systems, b) software security, c) networking, d) distributed
systems, e) database design and use, f) human factors.

• Apply theory and practice of software programs: a) procedural, object-oriented and functional coding,
b) translation, c) machine execution, d) exception control flow, e) concurrent control flow.

• Apply discrete mathematics to software development: a) set theory, b) combinatorics, c) graphs and
trees, d) discrete probability, e) prepositional and predicate logic, f) direct, contradiction, and inductive
proofs, g) boolean logic, h) grammars, i) finite-state automata.

Investigation 3/3

18 se capstone handbook [march 31, 2024]

• Conduct (Create) investigations of complex computing problems by methods that include: (a) problem
identification, conceptualization, and abstraction; (b) background research; (c) appropriate experiments;
(d) data analysis and interpretation; and (e) information synthesis, in order to reach substantiated and
valid conclusions.

• Analyze succinct, non-obvious task specifications to interpret goals and identify relevant research mate-
rials.

• Apply independent research to complement course materials.

Problem Analysis 10/10

• Determine (Analyze) the problem to be solved.
• Elicit (Create) or invent behavioural and non-behavioural requirements of complex problems.
• Identify and eliminate by negotiation (Evaluate) conflicts among requirements.
• Rank (Evaluate) requirements by priority.
• Evaluate risks, i.e., identify requirements for detecting, avoiding, and mitigating hazards.
• Determine (Create) appropriate algorithms and data structures to solve the problem at hand according

to the elicited or invented requirements.
• Evaluate correctness, consistency, completeness, reliability, and availability of requirements.
• Evaluate project duration and costs from requirements.
• Create test cases and test harnesses from requirements.
• Analyze and create user interfaces that adhere to sound human-computer interface principles.

Specification 3/3

• Evaluate project duration and costs from requirements specifications.
• Document (Apply) behavioural and non-behavioural requirements using formal and informal notations,

including natural language prose, to produce a requirements specification.
• Evaluate correctness, consistency, and completeness of requirements specifications.

learning objectives 19

Design 8/8

• Understand the software architecture and design process and their models.
• Apply informal and formal design representations.
• Apply design patterns, reference architectures, and design plans to design non-trivial software systems.
• Determine (Create) appropriate algorithms to solve problems.
• Create (Create) alternatives that explore the design space.
• Evaluate designs for compliance with behavioural and non-behavioural requirements such as for health,

safety, economic, environmental, ethical, legal, and social issues by applying tactics for dealing with
non-functional requirements.

• Select (Evaluate) from alternatives by evaluating multiple objectives and trade-off analysis.
• Create experimental and evolutionary prototypes.

Programming Technology 6/6

• Understand several programming languages.
• Understand several scripting languages.
• Understand several shell languages.
• Apply at least one a) scripting language, b) shell language, c) HTML.
• Apply at least one editor.
• Apply at least one debugging tool.

Implementation 4/7

• Understand programming in the large.
• Analyze code in many programming languages for understanding.
• Analyze a specification to determine what must be implemented.
• Create algorithms expressed in some programming language.

Verification & Validation 9/12

• Create test cases and test harnesses from requirements specifications.
• Evaluate the extent to which programs satisfy their specifications.
• Investigate (Create) program behaviours to generate working hypotheses about defects.
• Confirm (Evaluate) hypotheses about root causes of defects.
• Resolve (Create) defects.
• Confirm (Analyze) validity of resolutions of defects.
• Evaluate correctness, consistency, completeness, reliability, and availability of designs.
• Evaluate correctness, consistency, completeness, reliability, and availability of code.
• Evaluate correctness, consistency, completeness, reliability, and availability of test cases.

20 se capstone handbook [march 31, 2024]

Maintenance 3/4

• Apply common software maintenance processes and techniques.
• Report and correct (Analyze) defects in a system.
• Enhance (Create) functionality in a system.

Individual Work 5/6

• Know (Analyze) own productivity rates to be able to make accurate time estimates for own work.
• Manage (Apply) own time.
• Assume (Apply) responsibility for own work.
• Assimilate (Evaluate) constructive criticism.
• Function (Evaluate) effectively as an individual in a team.

Team Work 4/4

• Apply conflict resolution strategies.
• Actively listen (Evaluate) and seek expertise of others.
• Interact (Apply) with stakeholders.
• Interact (Apply) effectively with people in non-software disciplines.

Communication Skills 5/5

• Apply grammar, spelling, and style appropriate to written technical communication.
• Use (Apply) clear and logical organization in written or oral technical communication.
• Use (Apply) figures and tables effectively in written or oral technical communication.
• Use (Apply) rhetoric to inform and justify in written or oral technical communication.
• Make (Create) effective oral technical presentations.

Economics 5/6

• Understand economics of software projects: a) time-value of money, b) technical debt, c) cost–benefit
analysis, d) break-even analysis.

• Understand cost to fix defects as a function of development lifecycle stage.
• Understand when defects are introduced to systems under development.
• Understand Brooks’s law of development team size.
• Understand cost-estimation techniques, function points and Cocomo to software development projects.

Project Management 4/6

• Evaluate project duration and costs from requirements specification.
• Make decisions (Evaluate) under uncertainty, including project risks.
• Evaluate software reliability and availability.
• Create effective business plans.

learning objectives 21

Tools 5/5

• Select (Apply) appropriate tools.
• Configure (Apply) and deploy tools.
• Analyze (Analyze) and interpret tool results for correctness and completeness.
• Apply configuration management tools for non-trivial software projects.
• Apply management tools to software project schedules and deliverables.

Professionalism 7/7

• Understand the role of professional licensing and regulation to protect the public good.
• Understand the relevance of diversity and equity in engineering practice.
• Remember professional societies relevant to software engineering.
• Remember software standards organizations.
• Understand intellectual property rights with regard to software, e.g., copyright, utility patents, design

patents, trade marks, license agreements, trade secrets.
• Apply appropriate knowledge resources.
• Apply relevant software standards and best practices.

Impact of Engineering on Society and the Environment 3/5

• Evaluate cultural, economic, health, safety, and social implications of software.
• Understand privacy laws and their impact on software requirements and data collection.
• Understand software warranties and liabilities.

Ethics and Equity 3/3

• Understand the relevance of diversity and equity in engineering practice.
• Understand intellectual property rights with regard to software, e.g., copyright, utility patents, design

patents, trade marks, license agreements, trade secrets.
• Apply PEO’s Code of Ethics.

Lifelong Learning 4/4

• Remember professional and technical societies relevant to software engineering.
• Evaluate information for authority, currency, and objectivity.
• Evaluate knowledge gaps and learning needs.
• Find and apply (Apply) appropriate knowledge resources and best practice guidelines.

22 se capstone handbook [march 31, 2024]

1.5 Definitions of Engineering & Software Engineering

Definitions, by their nature, are tools of inclusion and exclusion, of
similarity and differentiation. This collection of definitions explores
the following general intellectual threads:

• differentiating software engineering from computer science, soft-
ware development, programming, solo programming, etc.

• concerns of the public interest and public safety in relation to
engineering practice and artifacts

• generalizing the concept of engineering to ways of knowing and
working, which can then be applied in various domains

• exploring the connection of software engineering with the physical
world, either through embedded systems of software for automat-
ing traditional engineering disciplines

ToDo: Consider your project or project concept in relation to the
following definitions of engineering and software engineering:

1. Does your project align with the definition? Most projects will
align with some definitions but not with others. Make two lists,
one for those that align with your project and one for those that
don’t.

2. For the definitions your project aligns with, how will you produce
evidence that your project is aligned with the definition?

1.5.1 Engineers Canada definition of Engineering

Engineers Canada is an umbrella organization that makes recom-
mendations to the provincial regulators (e.g., Professional Engineers
Ontario (PEO)), as well as setting the academic criteria for university
engineering programs. Their recommended definition for the practice
of engineering is: https://engineerscanada.ca/

public-guideline-on-the-practice-of-engineering-in-canada
The practice of engineering means any act of planning, designing, com-
posing, evaluating, advising, reporting, directing or supervising, or
managing any of the foregoing, that requires the application of engi-
neering principles, and that concerns the safeguarding of life, health,
property, economic interests, the public welfare or the environment.

The Definition extends to include certain areas that are sometimes
considered peripheral to engineering, such as teaching engineers or en-
gineering students, supervising engineers, engineering sales, or certain
computer applications to engineering works. The issue of protecting
the public interest and the question of whether the public is at risk
must be considered in the broadest terms. The component, product,
device, system, process, etc. that is the outcome of the engineering
undertaking must be viewed from its broader societal perspective - the

https://engineerscanada.ca/public-guideline-on-the-practice-of-engineering-in-canada
https://engineerscanada.ca/public-guideline-on-the-practice-of-engineering-in-canada

learning objectives 23

judgement of the engineer’s employer or client, or the engineer, are not
necessarily adequate.

1.5.2 The Professional Engineers Act of Ontario

Ontario provincial law defines the practice of professional engineer-
ing as follows. Every province and territory in Canada has provincial
law that defines the practice of professional engineering. Most of
them are similar to the Engineers Canada definition, which is the
model that Ontario follows. A consequence of these laws, for exam-
ple, is that highways need to be designed by licensed civil engineers. https://www.ontario.ca/laws/statute/

90p28
practice of professional engineering means any act of planning, designing,
composing, evaluating, advising, reporting, directing or supervising
that requires the application of engineering principles and concerns
the safeguarding of life, health, property, economic interests, the public
welfare or the environment, or the managing of any such act; (exercice
de la profession d’ingénieur)

Ontario’s Professional Engineers Act has some specific exclusions
of kinds of engineering work that may be done by groups of people
other than engineers. For example, there is a detailed section about
engineering work that is permitted to be done by architects. Simi-
larly, there are exclusions for tool-and-die work and machinists.

1.5.3 Engineering is Math/Science + Commerce

Mary Shaw is a distinguished software engineering researcher at the
Software Engineering Institute (sei) at Carnegie Mellon University
(cmu). She has studied the histories of civil and chemical engineer- She is a recipient of the us National

Medal of Technology, amongst other
honours.

ing to better understand what an engineering discipline is and how it
evolves.

Through historical study of the evolution of civil and chemical engi- https://www.encyclopedia.
com/people/literature-and-arts/
theater-biographies/mary-shaw

neering, Shaw has developed a three-stage model for the maturation
of a field into a complete engineering discipline. She has shown that
an engineering discipline begins with a craft stage, characterized by
the use of intuition and casually learned techniques by talented ama-
teurs; it then proceeds through a commercial stage, in which large-scale
manufacturing relies on skilled craftsmen using established techniques
that are refined over time. Finally, as a scientific basis for the discipline
emerges, the third stage evolves, in which educated professionals using
analysis and theory create new applications and specialties and em-
body the knowledge of the discipline in treatises and handbooks. Shaw
has concluded that contemporary software engineering lies somewhere
between the craft and commercial stages, and this conclusion has led
to an effort on her part first to promote an understanding of where
software engineering should be headed and second to develop the
scientific understanding needed to move the discipline into the third
stage.

https://www.ontario.ca/laws/statute/90p28
https://www.ontario.ca/laws/statute/90p28
https://www.encyclopedia.com/people/literature-and-arts/theater-biographies/mary-shaw
https://www.encyclopedia.com/people/literature-and-arts/theater-biographies/mary-shaw
https://www.encyclopedia.com/people/literature-and-arts/theater-biographies/mary-shaw

24 se capstone handbook [march 31, 2024]

One unique aspect of Shaw’s historical approach is the focus on
commerce. This deserves some discussion, especially in the context of
capstone projects. Capstone projects are typically non-commercial in
the sense that they are not done for hire, do not generate revenue, etc.
This notion of commerce isn’t exactly what Shaw is talking about.

Shaw’s concept of commerce is primarily about aspects such as The Romans meet Shaw’s concept of
commerce: they built roads, bridges,
aquaducts, etc., at massive scale and
quality. But they weren’t engineers as
they lacked math and science.

repeatability of the process, reliability of the results, and the skill
level of the practitioners. For example, the Apollo space program to
land on the moon would not meet her concept of commerce: it was
extremely high risk in every way, it required extraordinarily high skill
levels from all participants, and it was not really repeatable.

By contrast, the aircraft industry meets Shaw’s notion of com- The Wright Brothers’ would not meet
Shaw’s notion of engineering. They
were doing radical design, applying a
new understanding of aerodynamics
in a way nobody had done before.
The results were not (yet) reliable,
repeatable, manufacturable, etc.

merce: there are multiple companies competing in the market; they
each make multiple instances of multiple designs; all of the prod-
ucts are very reliable; the engineers need a high level of skill, but not
necessarily virtuosic. There is a process in place that ensures safe,
reliable, and manufacturable design outputs from ordinary engineers
(or from brilliant engineers on a bad day).

Walter Vincenti4 has a technical concept that aligns well with 4 Walter G. Vincenti. What Engineers
Know and How They Know It: Analytical
Studies from Aeronautical History. The
Johns Hopkins University Press, 1993

Shaw’s historical concept: normal design versus radical design. Normal
design uses normal components arranged in normal ways. There is
still innovation in normal design. Products get better, faster, smaller
(or bigger), more powerful, more efficient, lower cost, etc. But the
overall concepts are known. For example, cars have new models ev-
ery year that are typically refinements of the previous year’s model.

Radical design, by contrast, involves inventing new components
or arranging existing components in new ways. It hasn’t been tried
before. There is often less confidence in reliability.

When one focuses on the intellectual activities of engineers, as in
many of the other definitions of engineering, it can be tempting to
start to think that only radical design is truly engineering, since the
application of math and science are more romantically obvious in
radical design. When focusing on the application of math and sci-
ence as the sole criteria for engineering, one is often trying to distin-
guish engineering from the work done by technicians, machinists, etc.
Shaw’s historical studies remind us that engineering is in a middle
ground between technologists and extreme radical design.

1.5.4 Origins of ‘Software Engineering’

The term software engineering originated at some conferences spon-
sored by NATO in the late 1960s. The most common reference is:

P. Naur and B. Randell, eds., Software Engineering: Report on a Con-
ference Sponsored by the NATO Science Committee, (7–11 October

learning objectives 25

1968), Scientific Affairs Division, NATO, 1969.

The term is said to have been coined by Margaret Hamilton: https://www.theglobeandmail.
com/business/technology/
article-is-a-software-engineer-an-engineer-alberta-regulator-says-no-riling-2/U.S. developer Margaret Hamilton is widely credited with coining the

term software engineer after working on the on-board flight software
for the U.S. National Aeronautics and Space Administration’s (nasa)
Apollo program in the 1960s. She said her team’s work should be
taken as seriously as other engineering and scientific disciplines. Many
agreed.

1.5.5 Canadian national occupational classification of SE

Government of Canada National Occupational Classification says: https://noc.esdc.gc.ca/
Structure/NocProfile?objectid=s%
2B18U2GgCu7IIJq7TKb3GrKyNg8uVSExHr0Qyk7WAV4%
3D

Software engineers and designers research, design, evaluate, integrate
and maintain software applications, technical environments, operating
systems, embedded software, information warehouses and telecom-
munications software. They are employed in information technology
consulting firms, information technology research and development
firms, and information technology units throughout the private and
public sectors, or they may be self-employed.

1.5.6 IEEE: SE is the application of engineering to software

There are several definitions along the lines of software engineering
is the engineering of software, including from the IEEE and Engineers
Canada. While this sounds both tautological, the idea is that engi-
neering is an organized system of knowledge and an approach to
doing things. This approach might have originally been developed in
the traditional engineering disciplines, but it can be generalized and
applied in other areas. https://www.acm.org/binaries/

content/assets/education/se2014.pdf
The application of a systematic, disciplined, quantifiable approach to
the development, operation and maintenance of software; that is, the
application of engineering to software. [IEEE 2010]

Walter Vincenti5 contributed to a philosophical foundation for this 5 Walter G. Vincenti. What Engineers
Know and How They Know It: Analytical
Studies from Aeronautical History. The
Johns Hopkins University Press, 1993

https://en.wikipedia.org/wiki/What_
Engineers_Know_and_How_They_
Know_It

viewpoint that engineering is a way of doing things that asks certain
kinds of questions and creates certain kinds of knowledge. He argues
that there is an engineering method (variation-selection) as distinct
from the scientific method. Engineering involves the application of
science, but engineering also generates new questions for scientists
to investigate. Engineers sometimes work in areas that scientists do
not yet understand. Engineers take measurements to characterize
the behaviour of phenomena, and base predictions and designs on
those measurements — even when scientists do not yet understand
why those phenomena occur. Engineers want to make practical pre-
dictions about behaviours, but do not necessarily need to know why

https://www.theglobeandmail.com/business/technology/article-is-a-software-engineer-an-engineer-alberta-regulator-says-no-riling-2/
https://www.theglobeandmail.com/business/technology/article-is-a-software-engineer-an-engineer-alberta-regulator-says-no-riling-2/
https://www.theglobeandmail.com/business/technology/article-is-a-software-engineer-an-engineer-alberta-regulator-says-no-riling-2/
https://noc.esdc.gc.ca/Structure/NocProfile?objectid=s%2B18U2GgCu7IIJq7TKb3GrKyNg8uVSExHr0Qyk7WAV4%3D
https://noc.esdc.gc.ca/Structure/NocProfile?objectid=s%2B18U2GgCu7IIJq7TKb3GrKyNg8uVSExHr0Qyk7WAV4%3D
https://noc.esdc.gc.ca/Structure/NocProfile?objectid=s%2B18U2GgCu7IIJq7TKb3GrKyNg8uVSExHr0Qyk7WAV4%3D
https://noc.esdc.gc.ca/Structure/NocProfile?objectid=s%2B18U2GgCu7IIJq7TKb3GrKyNg8uVSExHr0Qyk7WAV4%3D
https://www.acm.org/binaries/content/assets/education/se2014.pdf
https://www.acm.org/binaries/content/assets/education/se2014.pdf
https://en.wikipedia.org/wiki/What_Engineers_Know_and_How_They_Know_It
https://en.wikipedia.org/wiki/What_Engineers_Know_and_How_They_Know_It
https://en.wikipedia.org/wiki/What_Engineers_Know_and_How_They_Know_It

26 se capstone handbook [march 31, 2024]

those behaviours occur. Scientists want to investigate why behaviours
occur, but cannot necessarily make practical predictions about be-
haviours. Scientists are sometimes focused on smaller scales and
mechanisms, whereas engineers are often concerned with behaviours
in aggregate and at scale.

1.5.7 Engineers Canada definition of Software Engineering

Engineers Canada has a position paper on professional practice in
software engineering, which is primarily concerned with the ques-
tions of when regulation and licensing are required. It builds on both
their general definition of engineering and the ieee definition of
software engineering. https://engineerscanada.ca/

engineers-canada-paper-on-professional-practice-in-software-engineering
[4] In software engineering, the term

development refers to the full product
lifecycle including design, imple-
mentation, testing and sometimes
installation and maintenance (fault
repair and feature enhancement), as
per Institute of Electrical and Electronics
Engineers, Guide to the Software Engineer-
ing Body of Knowledge (swebok), 2004.
http://www.computer.org/portal/
web/swebok/2004guide. Within this
document, development should be un-
derstood to comprise this full range of
activities.

[5] Institute of Electrical and Elec-
tronic Engineers, IEEE Standard Glossary
of Software Engineering Terminology,
IEEE Std 610.12-1990, New York, NY.
http://standards.ieee.org/findstds/
standard/610.12-1990.html

Software engineering is a discipline that has proven challenging for
the engineering profession to recognize and, therefore, regulate. For
the purposes of regulation and enforcement, the scope of software
engineering is consistent with the existing definition of engineering
provided in National guideline on the practice of engineering in Canada,
which states:

The practice of engineering means any act of planning, designing,
composing, evaluating, advising, reporting, directing or supervising,
or managing any of the foregoing, that requires the application of en-
gineering principles, and that concerns the safeguarding of life, health,
property, economic interests, the public welfare or the environment.

In the case of software engineering, a piece of software (or a soft-
ware intensive system) can therefore be considered an engineering work
if both of the following conditions are true:

• The development [4] of the software required the application of a sys-
tematic, disciplined, quantifiable approach to the development, operation,
and maintenance of software [5].

• There is a reasonable expectation that failure or inappropriate func-
tioning of the system would result in harm to life, health, property,
economic interests, the public welfare or the environment.

1.5.8 PEO’s definition of Software Engineering

PEO Council (Professional Engineers Ontario) approved the follow-
ing proposed working definition of software engineering: https://www.peo.on.

ca/public-protection/
complaints-and-illegal-practice/
report-unlicensed-individuals-or-companies-2#
software

Software engineering is deemed to fall within the practice of profes-
sional engineering:

• Where the software is used in a product that already falls within
the practice of engineering (e.g. elevator controls, nuclear reactor
controls, medical equipment such as gamma-ray cameras, etc.);

• Where the use of the software poses a risk to life, health, property
or the public welfare; and

https://engineerscanada.ca/engineers-canada-paper-on-professional-practice-in-software-engineering
https://engineerscanada.ca/engineers-canada-paper-on-professional-practice-in-software-engineering
http://www.computer.org/portal/web/swebok/2004guide
http://www.computer.org/portal/web/swebok/2004guide
http://standards.ieee.org/findstds/standard/610.12-1990.html
http://standards.ieee.org/findstds/standard/610.12-1990.html
https://www.peo.on.ca/public-protection/complaints-and-illegal-practice/report-unlicensed-individuals-or-companies-2#software
https://www.peo.on.ca/public-protection/complaints-and-illegal-practice/report-unlicensed-individuals-or-companies-2#software
https://www.peo.on.ca/public-protection/complaints-and-illegal-practice/report-unlicensed-individuals-or-companies-2#software
https://www.peo.on.ca/public-protection/complaints-and-illegal-practice/report-unlicensed-individuals-or-companies-2#software
https://www.peo.on.ca/public-protection/complaints-and-illegal-practice/report-unlicensed-individuals-or-companies-2#software

learning objectives 27

• Where the design or analysis requires the application of engineering
principles within the program (e.g. does engineering calculations),
meets a requirement of engineering practice (e.g. a fail-safe system),
or requires the application of the principles of engineering in its
development.

1.5.9 SE is Embedded Systems
PEO External Groups Task Force, Report
to PEO Council on Software Practice, 2002.
Task force chair Peter DeVita.

PEO’s External Groups Task Force – Software wrote a report in 2002 that
basically took the position that software engineering is embedded
safety-critical systems. This report was prepared in consultation
with the Canadian Information Processing Society (cips). cips has https://cips.ca/certification

an Information Systems Professional (isp) designation that has legal
recognition in six provinces including Ontario.

This PEO task force was trying to answer a regulatory question:
when does the Professional Engineers Act of Ontario require work to be
done by a licensed software engineer versus an isp? Their answer See Figure 3 on page 31 of the task

force’s report for how they segment
software work. Safety-critical embed-
ded systems are the top right segment.

is that a software engineering license should be required to work in
safety-critical embedded systems: automobiles, elevators, nuclear, etc.
The argument is that a practitioner with an isp certification might
not have appropriate background in the physical sciences, whereas a
licensed engineer would have this education.

An alternative recommendation that this task force could have
made would have been to amend the Professional Engineers Act of
Ontario to have an exclusion for isps to do some engineering work
— as is already done for architects, machinists, etc.. They could have
kept the definition of software engineering broader, and then defined
that the subset of software engineering that does not involve safety-
critical embedded systems may be done by isp practitioners.

1.5.10 SE is automation of traditional engineering

The Association of Professional Engineers and Geoscientists of Alberta
(apegga) wrote a position paper in 2006 on Guidelines for Profes-
sional Responsibility in Developing Software. This paper doesn’t go so
far as to define software engineering, but it does narrow the scope
of apegga’s regulatory concern to “engineering, geological, and
geophysical software.” That is, software to be used by engineers in
traditional disciplines. In other words, software engineering is the
automation of traditional engineering disciplines via software. https://www.apega.ca/

docs/default-source/pdfs/
standards-guidelines/software.pdfThere is a need to provide proactive means to defend public inter-

est, safety, and security as it may be affected by software failure. This
guideline sidesteps the software engineering versus computer science
debate by narrowing the focus to the professional responsibilities of
apegga members in developing and using engineering, geological, and

https://cips.ca/certification
https://www.apega.ca/docs/default-source/pdfs/standards-guidelines/software.pdf
https://www.apega.ca/docs/default-source/pdfs/standards-guidelines/software.pdf
https://www.apega.ca/docs/default-source/pdfs/standards-guidelines/software.pdf

28 se capstone handbook [march 31, 2024]

geophysical software in Alberta. This guideline reinforces our regula-
tory jurisdiction while pragmatically protecting the public interest in
this area.

1.5.11 SE is Teamwork

David Parnas and Brian Randall proposed, back around the origin
times of the term software engineering (i.e., around 1970), the follow-
ing:

Software engineering is multi-person development of multi-version
programs.

Their motivation here was to distinguish software engineering from
solo programming (their phrase). This aligns with the folk-wisdom that
anything small enough to be done by one person isn’t engineering.
Mary Shaw puts this view on a more solid historical foundation with
the concept of commerce.

Elsewhere, and in much of his work, Parnas focused on the soft-
ware engineering is the engineering of software kind of definition, with
particular emphasis on the application of math and science.

1.5.12 SE is Programming Integrated over Time

The book Software Engineering at Google (2020) introduced a new
definition: https://www.oreilly.com/library/

view/software-engineering-at/
9781492082781/
The authors of this book have also
distributed pdf copies online.

Software engineering is programming integrated over time.

They go on to elaborate as follows:

We can also say that software engineering is different from program-
ming in terms of the complexity of decisions that need to be made and
their stakes. In software engineering, we are regularly forced to evalu-
ate the trade-offs between several paths forward, sometimes with high
stakes and often with imperfect value metrics. . . . With those inputs in
mind, evaluate your trade-offs and make rational decisions.

This is another definition intended to distinguish software engineer-
ing from other forms of software development. This focuses on the
commerce aspect of engineering: the major cost centre of software is
maintenance, not initial development. The key emphasis here is on
managing the costs of system performance and of engineering labour
over time — research has consistently shown that maintenance is the
most expensive phase of the software lifecycle.

This definition implicitly builds on the concepts of the ieee def-
inition: it assumes that engineering is a systematic way of knowing
and doing (like the ieee definition), and it focuses that energy on the
most expensive part of the lifecycle.

https://www.oreilly.com/library/view/software-engineering-at/9781492082781/
https://www.oreilly.com/library/view/software-engineering-at/9781492082781/
https://www.oreilly.com/library/view/software-engineering-at/9781492082781/

learning objectives 29

1.6 Modes of Assessment: Formative & Summative In hci we also use the concepts of
formative and summative assessment of
the software. For example, a thinkaloud
is a formative technique where we learn
about the software by listening to a user
express their thoughts out loud as they
are using the software. This gives us
qualitative insights into how to improve
the software.

A summative assessment of the soft-
ware might measure the time it takes
the user to do a task, or the user’s task
error-rate while using the software.
This gives us a quantitative measure
of how well the software works, but
doesn’t give us any insights into how to
improve the software.

Formative Assessment: qualitative feedback to identify and help
resolve misconceptions, struggles, and learning gaps. Helps student
to achieve intended learning outcomes and prepare for future sum-
mative assessments.

Summative Assessment: measure the degree of success demon-
strated with the learning. Often quantitative. Tests and exams are
the classic examples. Project presentations and demonstrations are
typical summative assessments in capstone courses.

1.7 Modes of Instruction: Didactic & Dialectic

Didactic is the mode of instruction and learning for most engineer- Didactic: a teacher-centered approach
in which the teacher talks and students
learn by listening.

ing / science / math courses, and is characterized by:

• regularly scheduled lectures
• textbooks
• assignments / problem sets
• tests / exams
• most/all assessment is summative

Dialectic is the main mode of instruction and learning for cap- Dialectic: discussion and reasoning by
dialogue as a method of intellectual
investigation. Everyone takes turns
talking and listening. Students learn by
talking, by listening to their peers, and
by listening to the instructor.

stone courses. It’s about learning through discussion and dialogue:
with teammates, with peers, with instructors, with ideas and texts.

• interaction and discussion
• self/team-directed learning
• broad reference materials
• presentations + q&a
• much assessment is formative

Project Selection

Your capstone project is probably the largest project that you will
undertake during your studies. It’s important to choose wisely. There
are several factors you might consider, including:

• your interests (passion)
• your personal learning objectives
• having an interesting technical problem to work on
• find a solution to that problem
• something that someone else might be interested in (opportunity)
• recognition that someone else is interested (results)

We can organize these considerations in two dimensions as shown in
Figure 2.1, as inputs or outputs, and also from in terms of the number
of people concerned: from individual (you), to other engineers (start-
ing with your teammates), and outwards to society at large (your
users or other stakeholders).

Project

Learning

Solution

Results

Inputs hidden1 Outputs

Individual Passion

Profession Problem

Society Opportunity

hidden0
Figure 2.1: Project selection consider-
ations categorized in two dimensions:
inputs vs. outputs; and internal to
external.

32 se capstone handbook [march 31, 2024]

2.1 Problems and Opportunities
Drucker has been described as ‘the
founder of modern management.’ He
is widely considered a visionary: for
example, he coined the term ‘knowl-
edge worker’ in 1959. Harvard Business
Review writes highly of him:
https://hbr.org/2009/11/
why-read-peter-drucker
https://hbr.org/2016/10/
why-peter-druckers-writing-still-feels-so-relevant

There is a famous quote about problems and opportunities:

Results are obtained by exploiting opportunities, not by solving problems.
— Peter F. Drucker

What does Drucker mean by this? There are a variety of ways that
one could interpret the words ‘problem’ and ‘opportunity’. From
our perspective as engineers, we are going to interpret ‘problem’ to
mean a technical challenge: something defined by the current state of
technology, and potential future improvements. For example, making
internal-combustion-engine vehicles more fuel efficient.

By contrast, we will understand ‘opportunity’ to denote something
defined by society at large — something defined outside of the engi-
neering profession. What are society’s needs and wants? Given these
conceptions of ‘problem’ and ‘opportunity’, we might understand
Drucker to be saying that problems and opportunities are disjoint:

opportunity problem

For example, social networking websites such as Yelp, Facebook, or Or, before them, Friendster, Orkut,
MySpace, etc.LinkedIn did not solve a technical problem: they addressed a societal

opportunity. By contrast, from our current point in history, it looks Society does not always know what it
wants or needs. For example, an old
story is that Henry Ford said that if he
had asked people what they wanted,
they would have said faster horses.
https://hbr.org/2011/08/
henry-ford-never-said-the-fast

like trying to make internal-combustion-engine (ice) vehicles more
fuel efficient is solving a problem with no corresponding opportu-
nity: many countries and cities across Europe and Asia have declared
that they will ban the sale of ice vehicles in the coming years. Major
vehicle manufacturers in Europe, Asia — and North America (such
as gm) have said that they will go all-electric or majority-electric in
the near future. The market for ice engines, regardless of their effi-
ciency, is going to get smaller in the near future.

Are all problems and opportunities disjoint? No. Ideally we find
interesting technical challenges that also address societal needs. Ide-
ally we find projects that are in the intersection:

opportunity problem

For example, Watt’s steam engine both solved a technical problem
with Newcomen’s steam engine and responded to society’s need for
mechanized power. Many people mistakenly believe that Watt in-
vented the steam engine. In fact, Newcomen did. But Newcomen’s
engine was so inefficient that it had limited uses. Watt’s break-
through was to separate the heating and cooling of the steam into
separate chambers: the hot chamber was always hot, and the cold
chamber was always cold. Newcomen’s engine, by contrast, had a
single chamber that went through a cycle of heating and cooling.
Watt’s technical breakthrough enabled the Industrial Revolution, and
is why his name is most commonly associated with steam engines.

https://hbr.org/2009/11/why-read-peter-drucker
https://hbr.org/2009/11/why-read-peter-drucker
https://hbr.org/2016/10/why-peter-druckers-writing-still-feels-so-relevant
https://hbr.org/2016/10/why-peter-druckers-writing-still-feels-so-relevant
https://hbr.org/2011/08/henry-ford-never-said-the-fast
https://hbr.org/2011/08/henry-ford-never-said-the-fast

project selection 33

2.2 Kinds of Projects

There are a variety of perspectives one could use to classify capstone
projects. The perspective that we will use here, and elsewhere in this
handbook, is to classify projects by the kind of results that they aim See §14.2 for more discussion of these

result categories.to produce. There are currently five categories:
You can help define new results cate-
gories! se2020 defined the Advanced
Technology category, for example.FOSS: Contribute patches to an existing Free/Open-Source Soft-

Usually established foss projects have
a list of features that they want help
implementing — that is, the foss
project defines the opportunity.

ware project. For example, write patches for the Rust compiler, or
the Xen hypervisor, or the Habitica todo-list game, or the digital
billboard software written by uw Science Computing.

Research: Collaborate with a professor on a research topic, with the The prof will know more about poten-
tial opportunities than you do. Remem-
ber, an opportunity is something that
someone else cares about. In this case,
the prof will know what the research
community might be interested in
reading.

aim of publishing a small paper with your results. This kind of
project is a great choice if you are potentially interested in grad-
uate school. Note that you can satisfy the teamwork component
of capstone outside your class if you have significant interactions
with the prof’s research group.

Consultant: Write software for a specific external partner. For exam- The external partner defines the oppor-
tunity.ple, write a citizen-science bee-tracking app for the international

non-profit Friends of The Earth; or collaborate with grad students
from the uw School of Pharmacy to write an app for patients to
track chemotherapy side-effects.

New Product: Create a new product. This might be, but does not You define the opportunity! That’s
exciting, but also a bit scary, and will
require some work.

have to be, a viable business. For example. uw Flow was a cap-
stone project from se2014; Dynalist.io was a capstone project from
se2017; and Tutturu.tv was a capstone project from se2021.

Advanced Technology: Do something interesting with your technical This kind of project is heavy on the
technical problem. The opportunity here
is typically that other engineers find the
project interesting to hear about.

skills, that typically combines knowledge and skills from mul-
tiple advanced technical elective courses. For example, build a
distributed storage system, or develop a data auditing/cleaning
system, or build a graphics tool that makes it easier for artists to
generate sprites for video games.

Dynalist.io
Tutturu.tv

34 se capstone handbook [march 31, 2024]

2.3 Individual Learning Objectives

Every project is different, but there are some common themes about
how various kinds of projects most likely connect to the curriculum,
and which capstone learning activities are likely to be most relevant.

Kind of Project Courses Likely Learning Activities
Advanced Technology se464 Design

se465 Testing
ates

Design
Testing
Literature Review
Read Turing Awards

Free/Open-Source Software se464 Design
se465 Testing
ates

Design
Testing
Literature Review
Read Turing Awards

Research se464 Design
se465 Testing
ates

Design
Testing
Literature Review
Read Turing Awards

Consultant se463 Reqs
se464 Design
se465 Testing
cs449 hci
ates

User
Requirements
Intellectual Property

New Product se463 Reqs
cs449 hci
bet*

User
Requirements
Strategy
Market Position
Problem Refinement
Apply Domain Knowledge
Privacy by Design
Selected a Database Technology
Intellectual Property

project selection 35

2.4 Team Formation

Teams can form in several ways, including:

• Friends get together to form a team. This has the advantage that
you know each other, but the disadvantage that it can sometimes
be challenging to be productive together.

• Shared interests: You can form a team with classmates who have
shared interests with you. This takes a bit of effort initially to
connect with them, but can be very productive and rewarding.

• External collaborations: It is possible, although uncommon, for
your teammates to be outside of your cohort. There are several
variations of this:

– gene403+404: These are the capstone courses for collaborating
with students from other engineering programs.

– ece498a+b: These are the ece capstone courses. If you want
to work with a team of ece students, then you can join their
capstone courses instead.

– Student Design Team: If you are part of a student design team,
such as Midnight Sun, uwaft, or Watonomous, you can form
your team with them.

– Graduate Students: You can collaborate with a team of graduate
students, for example, as part of a research project.

2.5 Activities to Assist with Project Selection

1. Watch old project videos. See what projects look like when they
are finished. Think about what you want your project to look like
when it is finished.

2. Observe past awards.
3. Creative activities to generate new project proposals.
4. Conceptual activities to analyze project proposals.
5. Hackathons are sometimes focused on specific application areas,

and can connect you with other people in those spaces.
6. UW Problem Lab is an effort that originated in UW’s Economics https://uwaterloo.ca/problem-lab/

Department, to identify opportunities that can make a difference.

https://uwaterloo.ca/problem-lab/

36 se capstone handbook [march 31, 2024]

2.6 Changing Projects

You are allowed to change your project at any time. However, your
grade is generally based on the project you present at each time
point, and the standards applied at each time point remain fixed. On the other hand, you should not

stick with a project that you no longer
believe in. Pivot quickly.

The later you change your project, the more difficult it will be to get
back on track, and the greater risk you put your grade at. Hence, it is
important to pick a good project to start with.

It is possible to receive some credit for a project that has been
abandoned if substantial effort was invested in it. This is especially
true if the previous project had to be abandoned due to external fac-
tors that were beyond your control and which you could not have
reasonably predicated. To receive credit for an abandoned project,
submit a post-mortem report to the instructor. This report should A good example report was writ-

ten by Team SeaSalt in se2013:
https://git.uwaterloo.ca/secapstone/
abstracts/-/blob/master/reports/
project-change-se2013-seasalt.pdf
This example report pre-dates the
current project status sheets, but speaks
to the important issues.

include a project status sheet completed for the time of abandon-
ment as well as accopanying text to elaborate on the status sheet and
explain why the project was abandoned.

The remainder of this chapter discusses some specific stories of
teams who changed their projects and why.

2.6.1 Entrepreneurial Success

se2013 Team JSTD switched projects because their original project
was ‘too successful’. One of the team members took a leave of ab-
sence to work on the project full time. They got investors, lawyers,
users, etc. At the beginning of 4b they were looking for a second
round of investors, and became concerned that if they spoke about
their project publicly on Symposium Day it would spook the poten-
tial investors they were courting. So they invented a new project at
the beginning of 4b to present on Symposium Day.

The original project, which is still an ongoing business, was
Tunezy.com. As described in their SE390 proposal:

This project addresses the problem of fans discovering new musical
talent that is not mainstream, as well as a place for musicians to be
discovered.

Many online social networks, or musician tools are saturated with
very popular, signed, and mainstream artists. If a musician is talented,
it will be hard for people to discover them as they are hidden under all
the popular artists. As well, some sites such as YouTube are also filled
with other music/videos that push musicians further into undiscover-
able space.

This solution generates random environments that can be slightly
altered by parameters such as size, location and terrain, or modelled af-
ter certain templates like a metropolis, town, megalopolis, etc... which
can follow trends of different parts of the world. These environments
are generated procedurally, so they require no artists, 3D modelers

https://git.uwaterloo.ca/secapstone/abstracts/-/blob/master/reports/project-change-se2013-seasalt.pdf
https://git.uwaterloo.ca/secapstone/abstracts/-/blob/master/reports/project-change-se2013-seasalt.pdf
https://git.uwaterloo.ca/secapstone/abstracts/-/blob/master/reports/project-change-se2013-seasalt.pdf
Tunezy.com

project selection 37

or software developers to generate an environment, this application
simply just needs to be run. There will be the option of allowing the
application of your own skins and textures for the environment, but
this would be optional. Everything will be generated on the fly, and
will thus not need mass storage to store this environment.

This solution is a site mainly for the purpose of musicians and fans
interacting. Fans will want to discover new music, and musicians will
want to be discovered. This allows fans to interact with the musicians
more directly, and for vice versa. As well, this will only allow unsigned
musicians, so mainstream artists will not saturate the user base.

On Symposium Day they presented the following alternative project:

Schoolax is a one-stop campus events hub, initially targeting students
at the University of Waterloo. Schoolax’s goal is to get students to be
more involved with campus life by giving them a central location to
search for campus events; our database of events range from career
info sessions to Krav Maga club meets, from Eng Soc pub crawls to CIF
open gyms. Students earn tokens by attending various events. These
tokens can be redeemed on Schoolax for rewards.

Schoolax gathers information from various University of Waterloo
websites and clubs. A majority of events are scraped from various
official sources such as UW Athletics as well as the Centre for Co-
op Education, among many others. In addition, we are vigourously
pursuing partnership opportunities with clubs and organizations to
use Schoolax as their official hub for communicating with members
about upcoming events.

2.6.2 Difficulty Acquiring Data
Text provided by James Rossy, member
of Team SeaSalt.se2013 Team SeaSalt began with the following project:

A system that predicts how flight prices fluctuate over time for pop-
ular routes and automatically alerts consumers when good prices are
available for routes they’re interested in.

After investing over 250 hours in the project they decided to aban-
don it. Accurate price predictions require lots of historical data about
flight prices and a reliable stream of new data. Only a handful of
organizations control access to that flight data and bidding for it
starts in the hundreds of thousands of dollars. As a cheaper alterna-
tive, the team built a scraper to collect data from online sources but
it became evident that such a solution wasn’t reliable and couldn’t
scale. In 4a they started a new project to build a multi-platform dish
review service, somewhat analogous to Yelp or Foodspotting (see
Too-Salty.com).

2.6.3 Problem Too Hard

2014 Team Satisfaction started with the following project:

Too-Salty.com

38 se capstone handbook [march 31, 2024]

SAT Solver on GPUs

This project turned out to be too hard. Multiple research groups
have attempted to solve this problem without making significant
headway. The team knew this heading in to the project, but bravely
tackled something really hard. In 4a they pivoted to a related but
more tractable problem (still with the same customer):

Team Satisfaction is engineering a competitive open-sourced parallel
side-processing framework for satisfiability solvers. The team has
completed a prototype of an architecture that extends a serial conflict-
driven solver with modular formula simplification algorithms that
execute asynchronously.

On way to look at this pivot is that they switched from attempting
a data-parallel approach (GPU) to SAT to a task-parallel approach
(CPU). The knowledge and skills they had gained pursuing the first
approach prepared them to tackle the second approach. Little effort
was wasted.

Risk in project selection is sometime perceived differently by
students and by faculty. Team Satisfaction selected a project with
high intellectual risk: it was a really hard problem (still unsolved as
of this writing). Students sometimes perceive high intellectual risk to
correlate to high academic risk: i.e., if the problem is too hard, then
you might get a bad grade. Faculty assess risk differently. Faculty
would consider this a low academic risk project because it is an intel-
lectually rich area with a committed customer. The chances of getting
a good grade are very high; even if the original proposal doesn’t pan
out, it will be easy to pivot to a related project.

From the faculty perspective, a project proposal that lacks intel-
lectual depth and has no committed customer is at greater risk of
getting a poor grade. However, students sometimes consider projects
like this to be low academic risk, because they are intellectually easy
and have reduced external unknowns (i.e., customer). These are the
kinds of conditions that lead to low ambition and low accomplish-
ment and low assessment.

2.6.4 Couldn’t Agree with Customer on IP Terms

se2012 Team unSchool started with the following project that had
been proposed by an external customer associated with the Young
Social Entrepreneurs of Canada:

Online communication system for financial education. The system is to
provide means for the instructors and students, and students amongst

project selection 39

themselves to effectively communicate with each other. Quests (assign-
ments), submissions and verifications (markings) are also done within
the system. Virtual realities will be constructed in the system to moti-
vate the students, and to provide them with a variety of experiences.
Class-against-class or region-against-region competition could be held
through the system.

Towards the end of 3B the students had difficulty coming to an IP
agreement with the customer. Working with a potential startup
presents different IP concerns than working with an established
business with an established revenue stream. Both sides had reason-
able positions, but were unable to come to an agreement. The student
team presented the additional challenge that they did not speak to
the customer with a unified voice: different team members would
say/email contradicting things.

Over the 3B work term they switched to the following project:

Problem:
Objective: Our client is seeking an automated system that notifies

members of a design team of any relevant change in the design docu-
ments.

Elaboration: The company our client works at usually has teams
of size 10 20 working on pipeline designs. Each team member, after
making changes to his/her design document, is supposed to notify
the rest of the team of this change, so the others could modify their
files accordingly. But the ball is often dropped, resulting in conflicting
designs. Our client tasks us in creating an automated system which
would ensure these notification would get sent out.

Our Solution:
Summary: We build a notification system, with document depen-

dency, on top of a version control system.
Structure: Users are members of a number of projects, and can

upload documents under these projects (teams). The user becomes
the owner of the documents he/she uploads. An uploaded document
may have dependencies on other documents under the same project,
regardless who the owners of the depended documents are. Only the
owner may modify the document and its dependencies. If an owner
modifies a document and commits, a notification is sent to the owners
of documents which depend on the modified document.

2.6.5 Couldn’t Make Up Their Mind

2013 Team Mastodon started with this project:

The idea for our team is to create a website (and possible mobile app)
for “Must see, hear, read" media – like movies, music, and books. The
idea is to keep a list of media for each category that users can up-vote
or down-vote as media that is a “must". A user can also keep track of
personal lists of media that they themselves want to see/hear/read
sometime soon. There would also be the ability to recommend an item

40 se capstone handbook [march 31, 2024]

to a friend so that they have a list of “friend recommended media".
There could also be the ability for users to post on facebook/twitter
what media they’ve read/watched/listened to and recommend it to
friends on facebook, or suggest friends look at their recommendation
lists. Other possible extensions are having different filters for recom-
mended categories – i.e. Top Movies of 2010 or Top Books of the 1950s.

By the beginning of 4a they had lost enthusiasm for their original
project. Eventually they switched to:

We’re creating a piano learning game/tool which allows piano players
to learn musical theory and practice playing by ear, sight reading, and
learning pitch. We’ll be using a midi adapter to convert music played
by the user into a file to compare with the original file to give the user
real-time feedback of what they play. We’ll need a database of midi
files representing music that we can query by difficulty, type, etc.

2.6.6 Too Many Good Ideas

se2016 Team Parallax did a different project each term. All of them
were excellent. Their final project, a debugger for WebGL, won an
honourable mention (§??) even though they had only started working
on it in December. In se490 they did this instead:

The Minecraft popularity explosion has made making simple struc-
tures out of blocks into an exciting and enviable pastime, beyond the
likes that LEGO has enjoyed. While creating abstract structures out of
simple blocks remains a highly creative process, the opposite presents
an interesting mathematics problem - the deconstruction of 3D mod-
els into building blocks, and the reconstruction of the model with
instructions may be deterministic. The Parallax Project explores block
construction using a specified set of LEGO blocks in order to generate
building instructions that optimize structural and aesthetic constraints
in the input model.

They had the system fully implemented: conversion of a 3D image
to Lego voxels, and then assembling those voxels into legal Lego
bricks in a connected structure. This latter task was accomplished by
using a sat solver. They found this sat solver approach worked well
conceptually but didn’t scale, and so decided to change projects over
the work term.

Previously, in se390, they had planned to do a project on an ai
system that could answer elementary school physics questions.

2.6.7 Strategic Re-positioning

Team Kaze from se2016 started with the following project:

Avizu is a web platform designed to make creating, sharing, and find-
ing detailed calenders easy. The primary principle behind Avizu is

project selection 41

the ability to share calenders with others or find calenders that you
feel would interest you, and later be able to recieve notifications and
changes as these calenders grow and evolve.

During the discussion at their se490 midterm demo they realized the
strategic weaknesses of this project:

• lots of well-funded competition (e.g., Google Calendar, Microsoft Outlook, etc.)
• user base so large that it lacks cohesion
• no obvious way to market the software

After the se490 midterm demo they came up with a project that
addressed all of these strategic limitations. They came to Symposium
Day with almost 5000 returning users and won an award (§??).

LolPredict, League of Legends Game Analytics: An analysis tool for the
popular online game League of Legends. The system is designed to
help players analyze previous games and, using personalized trends,
generate suggestions on the optimal way to approach a current game
or how best to improve in the future.

What were the strategic advantages of this new project?

• well-defined user-base
• large, relatively cohesive, user base (in the millions)
• obvious value proposition for users
• easy and obvious marketing channels: Reddit, etc.
• low competition: Riot Games had just released the data api for

League of Legends, and not many people were using it yet

Kaze was brave to make this change. They had already written over
6 kloc on the old project, which they completely abandoned as a
sunk cost. Their courage and strategic re-positioning really paid off.

2.7 Changing Teams

It is rare that students change teams after the first few months of
se390. Usually if this happens it is not a good situation. There were
three teams in se2016 that disbanded: that is, each member went to
join a different team. This was an anomalously high number. This
does not happen in most cohorts. Each had their own reasons:

• Team X lost a team member to an overseas exchange or some other
academic arrangement. That team member, however, was the main
proponent of the project idea. The others were not that interested
in the idea, so they disbanded and joined other teams.

42 se capstone handbook [march 31, 2024]

• Team Y had a hard time deciding on a project idea. Whatever they
had selected at the end of se390, they wanted to do something
else by the beginning of se490. They floundered for a month or
so in se490 looking for a project, and eventually finding what ap-
peared to the instructor to be a good research project with good
faculty support. More than halfway through se490 they decided
that the open-ended nature of research was not for them and dis-
banded.

• Team Z disbanded during the last work term, in between se490
and se491. Some team members felt that others were not pulling
their weight, or other irreconcilable views working together.

The later this kind of team change or disbanding happens, the more
stressful it is for the students. It is important to use se390 to find an
idea that everyone is interested in and comfortable with. It is impor-
tant to use se390 to find a team that can work together effectively.

Being timid in se390 and making what you perceive to be the
most conservative or safe choices is not an effective strategy for
avoiding these problems. In se390 you should be adventurous: try
different ideas and different teammates. Go through a rigorous ex-
ploration process. Then, from a position of wisdom informed by
experience, make solid decisions that will carry you through the
capstone project.

Teamwork Activities

Everything is awesome. Everything is cool
when you’re part of a team.

— The Lego Movie theme song

A good complementary resource to this
chapter is Successful Strategies for Teams
by Kennedy & Nilson.

Working together in a team is a major component of the capstone
design experience. Together you can learn more — and accomplish
more — than on your own. Additionally, almost all professional
engineering work is done in teams, so learning to work together is
a vital professional skill. This chapter has a variety of activities to
guide your team to realize its potential.

3.1 Identify Individual Learning Objectives & Skills

Each individual on the team makes two lists: one for motivations
and learning objectives, and another for current strengths and skills.
Team formation and project selection sometimes skews towards cur-
rent strengths and skills, but you will get more out of the experience
if you place sufficient emphasis on learning objectives and motiva-
tions. You have plenty of time to learn new skills in this project.

Learning objectives and motivations are not limited to technical
topics, and might include societal or entrepreneurial objectives, etc.

When everyone has their two lists, then look for different ways
in which your various objectives and skills might complement each
other. For example, perhaps person x has a technical skill that person
y would like to learn, so person y can be responsible for that part of
the project and get guidance from person x.

https://facultyinnovate.utexas.edu/sites/default/files/TeamworkHandbook-KennedyandNilson.pdf
https://facultyinnovate.utexas.edu/sites/default/files/TeamworkHandbook-KennedyandNilson.pdf

44 se capstone handbook [march 31, 2024]

3.2 Write a Team Working Agreement

How they help: http://www.payton-consulting.com/
agile-team-working-agreements-guide/

• Develop a sense of shared responsibility.
• Increase member’s awareness of their own behaviour.
• Empower the facilitator to lead according to the agreements.
• Enhance the quality of the group process.

Agreements work well when:

• The are important to the team.
• They are limited in number.
• The are fully supported by each member.
• The members are reminded of agreements during process checks.
• The members are reminded of agreements when they are broken.

Revise every release cycle. Agreements should be reviewed and
revised every release cycle (or term).

When agreements are broken

• gently call it out; perhaps with friendly humour
• ask ‘should the agreement be updated?’

Team Disciplines. Choose ∼ 5 to prioritize. Choose items that These examples gathered from a num-
ber of sources, as indicated by the
citations in the margin.

the team needs to work on. Probably most of the items on this list
are good for most teams, but your team might already be doing well
implicitly on many of them. Pick some things to focus on improving.

https://agilepainrelief.com/blog/
team-friction-inspires-working-agreements.
html

• Don’t interrupt teammates
• Practice active listening
• Loud people talk last
• Cellphones off
• Dissenter hat: one person takes the role of finding weaknesses in

the idea being discussed, so the team can make it stronger
• Focus on the Sprint Goal — defer things that come up

https://tech.gsa.gov/guides/agile_
team_working_agreement/

• Don’t be afraid to ask for help
• Be on time, end on time, have an agenda.
• Tell the truth
• Communicate individual schedule
• All changes to the Sprint / Backlog must be approved by the Team
• Use the Impediment Backlog (or swimlane) for blocked issues
• Define and adhere to ‘done’ criteria for stories
• Define and adhere to Version Control rules

http://www.payton-consulting.com/agile-team-working-agreements-guide/
http://www.payton-consulting.com/agile-team-working-agreements-guide/
https://agilepainrelief.com/blog/team-friction-inspires-working-agreements.html
https://agilepainrelief.com/blog/team-friction-inspires-working-agreements.html
https://agilepainrelief.com/blog/team-friction-inspires-working-agreements.html
https://tech.gsa.gov/guides/agile_team_working_agreement/
https://tech.gsa.gov/guides/agile_team_working_agreement/

teamwork activities 45

• Adhere to code documentation standards
• Update Backlog before Standup daily
• Respect your team member’s time

https://www.
c-sharpcorner.com/article/
what-is-scrum-team-working-agreement-and-why-we-need-it/

• Support each other
• Raise concerns/impediments/problems promptly
• If behind schedule, remove lowest priority work items first
• If ahead of schedule, add work items from the backlog by priority
• Be positive
• No blame

https://uwaterloo.ca/
organizational-human-development/
learning-development-programs/
basic-principles

• Focus on the situation, issue, or behaviour, not the person.
• Maintain the self-confidence and self-esteem of others.
• Maintain constructive relationships.
• Take initiative to make things better
• Lead by example.
• Think beyond the moment.

https://git.uwaterloo.ca/secapstone/
teamwork-clinic

• All members will attend meetings or notify the team in advance of
anticipated absences.

• Decisions requiring unanimity can be made during meetings even
if all team members are not present

• Timely attendance and active contribution (providing construc-
tive feedback/ suggestions/ discussion) is expected from ALL
members.

• All members will be fully engaged in team meetings and will not
work on other assignments during meetings.

• Each member will take turns listening as well as talking, and ac-
tive listening will be a strategy for all group discussions.

• If a solution to a discussion/conflict cannot be agreed upon, the
solution will be derived by mandatory vote

• The entire team must come to a unanimous decision to make any
future changes

• Our team will meet every Thursday after che102 class at Williams
Coffee in the plaza

• Agendas for the weekly meetings will be discussed in the team’s
Facebook page.

• X will take notes during all meetings and email them to the team
within 1 day.

• Meetings will still occur if a member cannot attend. They will be
responsible for updating themselves on the discussion points by
reading the minutes and asking any follow up questions.

• Decisions requiring unanimity cannot be made during meetings if
all team members are not present

• All group members will come to the meetings prepared by

– reading the assigned material (as much as possible), and
– coming with ideas pertaining to the tasks and decisions to be

https://www.c-sharpcorner.com/article/what-is-scrum-team-working-agreement-and-why-we-need-it/
https://www.c-sharpcorner.com/article/what-is-scrum-team-working-agreement-and-why-we-need-it/
https://www.c-sharpcorner.com/article/what-is-scrum-team-working-agreement-and-why-we-need-it/
https://uwaterloo.ca/organizational-human-development/learning-development-programs/basic-principles
https://uwaterloo.ca/organizational-human-development/learning-development-programs/basic-principles
https://uwaterloo.ca/organizational-human-development/learning-development-programs/basic-principles
https://uwaterloo.ca/organizational-human-development/learning-development-programs/basic-principles
https://git.uwaterloo.ca/secapstone/teamwork-clinic
https://git.uwaterloo.ca/secapstone/teamwork-clinic

46 se capstone handbook [march 31, 2024]

made.

• All members are expected to communicate any concerns/is-
sues/ideas to the team

• In the event that a member cannot make a meeting or deadline, all
members will be informed as immediately as possible.

teamwork activities 47

3.3 Communicate about Communication

Talk about how you are going to talk. Establish a regular meeting
schedule and attendance expectations, and then work together to
figure out how you are going to stay in communication between
meetings. Also establish what is on the agenda for whole-team meet-
ings and what should be discussed 1:1. Come to an understanding
about how often team members are going to monitor the commu-
nication channels. Especially for larger teams, or teams where there
are diverse activities going on, it can be useful to compartmentalize
discussions, enabling easier search and archiving. But it’s also possi-
ble to set up too many channels, all empty. One team reported that
having a separate channel for pull requests was useful.

Being explicit about communication can be especially useful if
you happen to have team members that are not physically in Water-
loo (off-stream, on coop, etc). A well-functioning team from SE2023
reports:

We really improved our offline communication by setting up a Discord
server with multiple channels for the different facets of the work we
had to do this term. We also had an urgent channel of communication
in a Facebook Messenger chat. Having this set up at the start of the
term was really beneficial so it would be good to incorporate this as
a learning activity requiring some thoughtfulness about how these
communication channels will be used.

48 se capstone handbook [march 31, 2024]

3.4 Host a Retrospective Meeting

The team should periodically meet to reflect on its process:

• What is working well?
• What isn’t working as well as it might?
• What can be improved for next time? Can it be measured?

There are a variety of different ways to approach these questions,
such as:

• Individual intuition: First, privately write down your immediate
thoughts, then share with the team.

• Collective data: First work together as a team to gather and assem-
ble data, then generate insights from the data.

• Structured questions: Use a structured set of questions, such as https://www.agility11.
com/blog/2019/9/4/
the-six-thinking-hats-retrospective

Edward De Bono’s six thinking hats §4.10.

3.5 Practice Backup Behaviour (Supporting Teammates)

Teammates need to reach out for help when they need it, and other
teammates need to step up to provide it.

https://www.agility11.com/blog/2019/9/4/the-six-thinking-hats-retrospective
https://www.agility11.com/blog/2019/9/4/the-six-thinking-hats-retrospective
https://www.agility11.com/blog/2019/9/4/the-six-thinking-hats-retrospective

teamwork activities 49

3.6 Practice Active Listening
https://agilelearninglabs.com/2008/
03/active-listening-techniques/Active listening is an important communication skill that can make

your team more effective. Here are some techniques to practice:

1. The Basics

• Focus your attention on the speaker
• Take notes
• Paraphrasing: repeat back what you think they said
• Summarizing

2. Questions

• Ask open-ended questions
• Ask clarifying questions
• Ask for more information
• Ask for their opinions and analysis
• Let the speaker know when you don’t understand
• Listen all the way to the end, then ask: is there anything else?

3. Nuance

• Use silence
• Use body language
• Acknowledge, and ask about, emotions
• Validate concerns
• Verify assumptions

3.7 Practice Assertive Communication: DESC

The desc script1 might help you communicate effectively in chal-

1 Sharon Anthony Bower and Gor-
don H. Bower. Asserting Yourself. Da
Capo Lifelong Books, 2004

lenging situations:

https://your.yale.edu/sites/
default/files/adviformanagers_
usingdesctomakeyourdifficultconversations.
pdf

The Basic Principles for the University
of Waterloo Workplace:

1. Focus on situation, issue, or be-
haviour, not the person. Do not
create unnecessary relationship
conflict.

2. Maintain the self-confidence and
self-esteem of others.

3. Maintain constructive relationships.
4. Take initiative to make things better.
5. Lead by example.

https://uwaterloo.ca/
organizational-human-development/
learning-development-programs/
basic-principles

1. Describe the behaviour/situation as completely and objectively as
possible.

2. Express your feelings or thoughts about the behaviour/situation.
Use ‘I’ statements.

3. Specify what behaviour/outcome you would prefer.

4. Consequences, both positive and negative.

https://agilelearninglabs.com/2008/03/active-listening-techniques/
https://agilelearninglabs.com/2008/03/active-listening-techniques/
https://your.yale.edu/sites/default/files/adviformanagers_usingdesctomakeyourdifficultconversations.pdf
https://your.yale.edu/sites/default/files/adviformanagers_usingdesctomakeyourdifficultconversations.pdf
https://your.yale.edu/sites/default/files/adviformanagers_usingdesctomakeyourdifficultconversations.pdf
https://your.yale.edu/sites/default/files/adviformanagers_usingdesctomakeyourdifficultconversations.pdf
https://uwaterloo.ca/organizational-human-development/learning-development-programs/basic-principles
https://uwaterloo.ca/organizational-human-development/learning-development-programs/basic-principles
https://uwaterloo.ca/organizational-human-development/learning-development-programs/basic-principles
https://uwaterloo.ca/organizational-human-development/learning-development-programs/basic-principles

50 se capstone handbook [march 31, 2024]

3.8 Apply Two Techniques to Manage Contagious Emotions
https://www.ted.com/talks/jessica_
woods_what_a_cactus_taught_me_
about_prickly_emotions/transcript?
language=en

https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC6188704/

Emotions, including prickly ones, can be contagious. Some emotions
can help us perform better, but others sometimes distract us from
achieving our goals as well as we might.

There are two main techniques for managing contagious emotions.
Both of them involve being self-aware when you are emotionally trig-
gered, and mentally standing back from the situation. The strategies
are compatible: you can apply both.

Cognitive reappraisal is a technique for using your mind to A lateral thinking skill.

think of alternative ways to view the situation — to reframe the sit-
uation. Cognitive appraisal is the mental act of assigning emotional
meaning to a situation based on your understanding of the situation.
For example, if a friend gives you the cold shoulder, you might think
they are upset with you, and then you might think that’s unfair and
get upset yourself. So that’s your first cognitive appraisal of the sit-
uation: my friend is upset with me. That first cognitive appraisal is
going to happen — don’t try to stop it.

The key is to then stand back and try to reappraise the situation.
Could there be another explanation for your friend’s behaviour?
Maybe they are deep in thought. Maybe something happened in
their life. These reappraisals change the emotional meaning of the
experience for you.

Acceptance is about observing and acknowledging your emotions
and physiological response to a situation. It doesn’t mean that you
are ok with what happened. It’s about accepting a situation for what
it is, rather than what you want it to be. There are three questions:2 2 G. Rolfe, D. Freshwater, and M. Jasper.

Critical reflection in nursing and the help-
ing professions: a user’s guide. Palgrave
Macmillan, Basingstoke, 2001

1. What? Mentally and emotionally stand back and allow yourself
space to recognize what’s happening and your response to it. Get
an aerial view of the situation. Don’t try to control or judge your
emotions: just recognize them.

2. So what? What does the situation mean? Why is it important?
How important is it?

3. Now what? What next steps are going to help you and the team
move forward towards your goals?

https://www.ted.com/talks/jessica_woods_what_a_cactus_taught_me_about_prickly_emotions/transcript?language=en
https://www.ted.com/talks/jessica_woods_what_a_cactus_taught_me_about_prickly_emotions/transcript?language=en
https://www.ted.com/talks/jessica_woods_what_a_cactus_taught_me_about_prickly_emotions/transcript?language=en
https://www.ted.com/talks/jessica_woods_what_a_cactus_taught_me_about_prickly_emotions/transcript?language=en
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6188704/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6188704/

teamwork activities 51

3.9 Apply Team Formation Strategies

Identify which stage of formation your team is in, and apply appro-
priate strategies to move your team forward. The most commonly Tuckman model of team develop-

ment: https://en.wikipedia.org/
wiki/Tuckman’s_stages_of_group_
development

used model of team formation has four stages:

1. Forming — getting to know each other
2. Storming — figuring out how the team fits together; initial conflicts
3. Norming — getting on the same page
4. Performing — consistent performance

Figure 3.1 illustrates these four stages (as well as a fifth stage for
project wind-down), and identifies relevant team formation strategies
at each stage. Identify which stage of formation your team is in and
apply appropriate strategies.

Figure 3.1: Phases of team develop-
ment. Image used with permission of
owner. Copyright ©2008-2021 Scott M.
Graffius. All rights reserved.

https://en.wikipedia.org/wiki/Tuckman's_stages_of_group_development
https://en.wikipedia.org/wiki/Tuckman's_stages_of_group_development
https://en.wikipedia.org/wiki/Tuckman's_stages_of_group_development

52 se capstone handbook [march 31, 2024]

3.10 Identify and Resolve Your Teams Dysfunctions

There are five common ways that a team can be dysfunctional,3 as 3 P. Lencioni. Five Dysfunctions of a Team.
John Wiley and Sons Inc., New York,
NY, 2002

depicted in Figure 3.2. A key insight is to work from the bottom of

https://www.youtube.com/watch?v=
GCxct4CR-To (2min video)
https://www.youtube.com/watch?v=
O5EQW026alY (36min video)

the pyramid upwards when resolving dysfunctions. Without trust,
nothing else can be resolved. Lack of commitment cannot be resolved
when there is fear of (healthy, productive) conflict. And so on.

Absence of Trust invulnerability → Go first!

Fear of Conflict artificial harmony → Mine for conflict

Lack of Commitment ambiguity → Force clarity and closure

Avoidance of Accountability low standards → Confront difficult issues

Inattention to Results status and ego → Focus on collective outcomes

Figure 3.2: Lencioni’s pyramid of the
five dysfunctions of a team

https://www.youtube.com/watch?v=GCxct4CR-To
https://www.youtube.com/watch?v=GCxct4CR-To
https://www.youtube.com/watch?v=O5EQW026alY
https://www.youtube.com/watch?v=O5EQW026alY

teamwork activities 53

3.11 Conflict: Introduction The content in this section is from the
University of Waterloo Teamwork Clinic.

Conflict can be productive when it: Conflict can also be destructive when it
is centred on relationships.

• clarifies goals
• leads to better decision-making
• leads to self-development

Three Categories of Conflict:

• relationship / personal
• task (the work itself; also includes resource conflict)
• process (how to do the work)

Common sources of conflict:

• Value asymmetry – differing goals/interest in a project and its
outcomes

• Social Loafing – unequal contributions to the project (quali-
ty/quantity)

• Ego/personality – poor relationships and team culture
• Poor Communication – differing expectations or communication

channels
• Poor Project Management – missing meeting notes, action items,

time lines

54 se capstone handbook [march 31, 2024]

3.12 Conflict: Difficult Behaviours The content in this section is from the
University of Waterloo Teamwork Clinic.

Difficult behaviours include

• Assigning blame to others
• Insulting other team members
• Over-distress as a response to criticism
• Becoming easily frustrated and showing this
• inappropriately
• Refusing to negotiate or pushing for one way as the only way
• Undermining/sabotaging the work or reputation of others (gossip)
• Having difficulty taking responsibility for own behaviour

Dealing with difficult behaviour:

1. Develop an awareness of your biases before confrontation

• Have you had previous conflicts/encounters with this individual
before?

• What assumptions are you making about why they may be act-
ing this way?

• What hesitations do you have about confronting them?

2. Approach with concern for the individual instead of personal
defence/bias/dislike. To do this focus on two outcomes:

• Can the conflict lead to the self-development of those involved?
How?

• Can the conflict lead to a better solution for the team? How?

3. Plan to depolarize the situation

• Finding common ground on a different topic to repair the rela-
tionship after a conflict discussion

• How can you depolarize the situation afterwards?

Addressing difficult behaviour:

1. First Attempt: Select one member to approach the individual 1–
on–1

2. Second Attempt (if there is no change): select one member to
approach the individual 1–on–1 but also involve a third individual
(preferably a non-member) who does not contriute or take sides
but observes the process

3. Third Attempt (if there is still no change): involve the profes-
sor/TA in the conversation using a similar approach to explain the
process and outline the Assertive Communication points made in
previous attempts

teamwork activities 55

3.13 Conflict: Five Handling Modes

There are five different modes for handling conflict,4 which can be

4 K. W. Thomas and R. H. Kilmann.
Thomas–Kilmann Conflict Mode Instru-
ment. Xicom, Tuxedo NY, 1974

organized as depicted in Figure 3.3. Each of these modes is appro- https://en.wikipedia.org/wiki/
Thomas-Kilmann_Conflict_Mode_
Instrumentpriate in some context, and each requires different skills.

Assertive Competing Collaborating
(my way) (win-win)

↕ Compromising
(half & half)

Avoiding Accommodating
Passive (wait & hope) (your way)

Uncooperative ↔ Cooperative

Figure 3.3: Five conflict-handling modes

Skills material below from the University of
Waterloo Teamwork Clinic.

Collaboration Skills — two heads are better than one
Apply when:

• the conflict is important
• compromise isn’t good enough
• merging perspectives
• gaining commitment
• improving relationships
• learning

• Use active and effective listening
• Ability to apply non-threatening confrontation
• Analyzing input in order to identifying concerns

Compromise Skills — split the difference Apply when:

• issues of moderate importance
• you have equal power status
• when you have a strong commit-

ment for resolution
• temporary solution when there are

time constraints

• Ability to negotiate and keep an open dialogue
• Assessing and attributing value of all perspectives
• Finding a resolution that is fair to both sides (middle ground)
• Making concessions or give up some of your desires

Accommodating Skills — let’s do it your way Apply:

• to show reasonableness
• to develop performance
• to create good will
• to keep peace
• when issue is unimportant to you

• Willingness to sacrifice your desires and act with selflessness
• Ability to yield to the desires of others
• Ability to obeying orders

Avoiding Skills — leave well enough alone Apply when:

• issues of low importance
• to reduce tensions
• to buy some time
• you are in a position of lower power

• Knowing when to withdraw
• Ability to leave things unresolved
• Ability to sidestep issues or sensitive topics diplomatically
• Sense of timing

Competing Skills — might makes right Apply when:

• quick action needs to be taken
• unpopular decisions need to be

made
• vital issues must be handled
• protecting self-interests

• Arguing/debating
• Standing your ground
• Stating your position clearly
• Asserting your opinions/feelings
• Using rank/influence

https://en.wikipedia.org/wiki/Thomas-Kilmann_Conflict_Mode_Instrument
https://en.wikipedia.org/wiki/Thomas-Kilmann_Conflict_Mode_Instrument
https://en.wikipedia.org/wiki/Thomas-Kilmann_Conflict_Mode_Instrument

56 se capstone handbook [march 31, 2024]

3.14 Conflict: Reflection Questions
Team conflict reflection questions from the
University of Waterloo Teamwork Clinic.1. Identify your personality type and your teammates personality

types
2. Which strategies did you select from the Personality Differences

sheet to implement this term?
3. Describe one particular conflict that have occurred amongst your

team this term.
4. What type of conflict was this, task, process or relationship? What

makes you think this?
5. What led to the conflict?
6. What strategies did you implement to try and resolve the conflict?
7. In hindsight, which other strategies could you have considered to

help resolve the conflict?
8. What one thing might you do differently next time you work in a

team to help avoid this type of conflict?

teamwork activities 57

3.15 Conflict: Situation Assessment Team conflict situation assessment work-
sheet from the University of Waterloo
Teamwork Clinic.

Team Conflict Assessment

This assessment will help your team decide the best handling style (avoiding, accommodating, compromising,
collaborating, competing) to implement to resolve the conflict being discussed. Discuss each statement below as a
team and check all that accurately describe your team’s conflict situation.

Check
all that
are true

Conflict Situation Statements Conflict Style

 The issue is small and there are more important issues to deal with AVOID
 The issue is not having a negative impact on any relationships in the team AVOID
 Before we can deal with this issue effectively we need to gather more information AVOID

 There are negative emotions or feelings lingering in some members due to this issue AVOID
 TOTAL
 The issue is not seen as important to all team member(s) ACCOMODATE
 There is a chance that the information we have is wrong or incomplete ACCOMODATE
 It is not a good time to resolve this issue ACCOMODATE
 Maintaining harmony in the relationships is extremely important ACCOMODATE
 TOTAL
 Everyone involved is equal in power COMPROMISE
 Those involved have opposing views and are resistant to changing them COMPROMISE
 To save time, we can reach a temporary solution for parts of a more complex issue COMPROMISE
 We have tried to collaborate around this issue and failed COMPROMISE
 TOTAL
 Better understanding the different perspectives on this issue is important for resolution COLLABORATE
 It is important for all individuals to accept and commit to the outcome COLLABORATE
 The individuals involved are flexible in their thinking and are willing to adjust as more

information is presented and new options are suggested
COLLABORATE

 There are existing hard feelings/animosity among members COLLABORATE
 TOTAL
 It is not important to consider opposing perspectives in order to deal with this issue COMPETE
 Time is short and a quick decision is needed immediately COMPETE
 It is clear that some members do not have a chance to contribute their perspectives to

the discussion and need to stand up for their rights/ideas
COMPETE

 The issue involves implementing a difficult decision (ie. enforcing rules/discipline) COMPETE
 TOTAL

The style with the most checks can be considered a reasonable approach in managing this conflict. However, consider the
following statements before deciding as a team which style should be used to resolve your conflict.

CHECK ALL THAT ARE TRUE:
 It is important that the issue is resolved DO NOT AVOID
 It is important that everyone’s ideas/voice are recognized and not neglected DO NOT ACCOMODATE
 Innovation is an important outcome for our team DO NOT COMPROMISE
 We do not have a lot of time to reach a solution DO NOT COLLABORATE
 It is very important that the others involved do not come to resent one

h
DO NOT COMPETE

58 se capstone handbook [march 31, 2024]

Team conflict situation assessment work-
sheet from the University of Waterloo
Teamwork Clinic.

Team Conflict Assessment

 In order to make an informed decision about which style to use, consider the potential outcomes or
consequences of applying each conflict handling style below.

COMPETE: “Might makes right” (I win, you lose)
Positive Outcome:

Negative Outcome:

COLLABORATE: “Two heads are better than one” (I win, you win)

Positive Outcome

Negative Outcome

COMPROMISE: “Split the difference” (I win some, you win some)

Positive Outcome

Negative Outcome

ACCOMMODATE: “Kill your enemies with kindness” (I lose, you win)

Positive Outcome

Negative Outcome

AVOID: “Leave well enough alone” (I lose, you lose)

Positive Outcome

Negative Outcome

BEST APPROACH TO MANAGE THE TEAM’s CONFLICT: _______________________________________

teamwork activities 59

3.16 Conflict: Personality-Based Coping Strategies Personality-based conflict coping strategies
from the University of Waterloo Teamwork
Clinic.

60 se capstone handbook [march 31, 2024]

Personality-based conflict coping strategies
from the University of Waterloo Teamwork
Clinic.

	

teamwork activities 61

3.17 Health: Balsom’s 9 Attributes of Effective Teams5

5 M. Balsom, R. Barrass, J. Michela, and
A. Zdaniuk. Processes and attributes
of highly effective teams. Technical
Report The WORC Group, University of
Waterloo, 2009
Balsom.pdfBriefly assess your team on each of these nine attributes:

1. Mission & Goals: High performing teams have a clear mission and/or goals.
2. Leadership: Leadership functions are performed reliably.
3. Communication: Members learn enough of what others believe, soon enough.
4. Decision Making: Systematic, agreed-upon decision processes are used.
5. Culture: The cultures of high performing teams provide predictability and alignment.
6. Group Motivation: Psychological membership in a valued group can be a source of motivation

and a resource for overcoming problems.
7. Conflict: Effective teams address task conflict productively and prevent personalized conflict.
8. Processes/Meetings: Processes/meetings facilitate communication and decision making.
9. Self-Management: Individual members are efficient self-managers.

3.18 Health: Google
https://rework.withgoogle.com/blog/
five-keys-to-a-successful-google-team/

https://www.nytimes.com/
2016/02/28/magazine/
what-google-learned-from-its-quest-to-build-the-perfect-team.
html
https://apnews.com/article/
8c60341cc1da47e084b8e17e62e83c98

Google conducted over 200 interviews with employees and examined
250 attributes of 180+ Google teams. What they discovered is that
the résumés of the team members matters less than how the team
members interact with each other. They discovered five key dynamics
of successful teams. Self-assess your team (green/yellow/red) on
these five dynamics.

Dynamic Ideal (Green)
Psychological Safety Can we take risks on this team without feeling insecure or embarrassed?
Dependability Can we count on each other to do high quality work on time?
Structure & Clarity Are goals, roles, and execution plans on our team clear?
Meaning of work Are we working on something that is personally important for each of us?
Impact of work Do we fundamentally believe that the work we’re doing matters?

Discussion Guide links:
https://docs.google.com/. . .

https://git.uwaterloo.ca/secapstone/teamwork-
clinic/. . .

Google has also developed a complementary Discussion Guide with
indicators and questions for each dynamic. Use this discussion guide
in a team conversation.

https://uwaterloo.ca/psychology/sites/ca.psychology/files/uploads/files/processesattributeseffectiveteams.jm_.v4.pdf
https://rework.withgoogle.com/blog/five-keys-to-a-successful-google-team/
https://rework.withgoogle.com/blog/five-keys-to-a-successful-google-team/
https://www.nytimes.com/2016/02/28/magazine/what-google-learned-from-its-quest-to-build-the-perfect-team.html
https://www.nytimes.com/2016/02/28/magazine/what-google-learned-from-its-quest-to-build-the-perfect-team.html
https://www.nytimes.com/2016/02/28/magazine/what-google-learned-from-its-quest-to-build-the-perfect-team.html
https://www.nytimes.com/2016/02/28/magazine/what-google-learned-from-its-quest-to-build-the-perfect-team.html
https://apnews.com/article/8c60341cc1da47e084b8e17e62e83c98
https://apnews.com/article/8c60341cc1da47e084b8e17e62e83c98
https://docs.google.com/document/d/1lgiz6mwZeyWEaJxN_NMI-tI5Qijv2BHh27DPLeSLE40/edit
https://git.uwaterloo.ca/secapstone/teamwork-clinic/-/blob/master/external/re_WorkGoogle-TeamEffectivenessDiscussionGuide.pdf
https://git.uwaterloo.ca/secapstone/teamwork-clinic/-/blob/master/external/re_WorkGoogle-TeamEffectivenessDiscussionGuide.pdf

62 se capstone handbook [march 31, 2024]

3.19 Health: Team Barometer
By Jimmy Janlén

https://blog.crisp.se/
2014/01/30/jimmyjanlen/
team-barometer-self-evaluation-tool

Assess the team with green/yellow/red in each of the areas.

Area Green Red
Trust We have the courage to be honest with

each other. We don’t hesitate to engage in
constructive conflicts.

Members rarely speak their mind. We
avoid conflicts. Discussions are tentative
and polite.

Collaboration The team cross-pollinates, sharing per-
spectives, context and innovations with
other teams and other parts of the organi-
zation.

Work is done individually. Little or no col-
laboration within the team or with other
teams.

Feedback We give positive feedback, but also call
out one another’s deficiencies and unpro-
ductive behaviours.

We rarely praise each other or give feed-
back or criticize each other for acting
irresponsibly or breaking our Working
Agreement.

Meeting Engagement People are engaged in meetings. They
want to be there. Discussions are passion-
ate.

Many feel like prisoners in the meeting.
Only a few participate in discussions.

Commitment We commit to our plans and hold each
other accountable for doing our best to
reach our goal and execute assigned action
points.

We don’t have real consensus about our
goals. We don’t really buy in to the plan
or follow up that people keep their com-
mitments.

Improving We passionately strive to figure out how to
work better and more efficiently as a team.
We try to ‘know’ if we get better.

We don’t focus on questioning our process
or way of working. If someone asked us to
prove that we’ve gotten better we have no
clue how we would demonstrate that.

Mutually Responsible We feel mutually responsible for achieving
our goals. We win and fail as a team.

When we fail we try to figure out who
did what wrong. When we succeed we
celebrate individuals. If we pay attention
to it at all . . .

Power We go out of our way to unblock our-
selves when we run into impediments or
dependencies.

When we run into problems or dependen-
cies we alert managers, ask for their help,
and then wait.

Pride We feel pride in our work and what we
accomplish.

We feel ashamed of our pace and the
quality of our results.

. . . continued next page . . .

https://blog.crisp.se/2014/01/30/jimmyjanlen/team-barometer-self-evaluation-tool
https://blog.crisp.se/2014/01/30/jimmyjanlen/team-barometer-self-evaluation-tool
https://blog.crisp.se/2014/01/30/jimmyjanlen/team-barometer-self-evaluation-tool

teamwork activities 63

. . . Team Barometer continued from previous page . . .

Relationships Team members spend time and effort
building string relationships among them-
selves, as well as with partners outside the
team.

We don’t really know each other or what
makes other’s ‘tick.’

Ownership We engage in defining our own goals and
take ownership of our destiny.

We act as pawns in a game of chess. We
don’t demand involvement in defining our
goals and destiny.

Sharing We share what we know and learn. No
one withholds information that affects the
team.

People do stuff under the radar and often
forget to share news or relevant informa-
tion.

Boosts each other We unleash each other’s passion and care
for each other’s personal development. We
leverage our differences.

We don’t know in which areas people
want to grow. We have trouble collaborat-
ing since we are very different and view
things differently.

Loyalty No one has hidden agendas. We feel that
everyone’s loyalty is with this team.

Thea team feels like a disconnected group
of people with different goals and loyalties
that lie elsewhere.

Passion Each member wants this team to be great
and successful.

People just come to work and focus on
their own tasks.

Integrity We honour processes and working agree-
ments even when we are put under pres-
sure.

Our behaviours, collaboration and
communication fall apart when we get
stressed.

64 se capstone handbook [march 31, 2024]

3.20 Health: TeamRetro
https://www.teamretro.com/
health-checks/team-health-check/Assess your team with green/yellow/red in the following areas.

Area Ideal
Ownership The team has clear ownership or a dedicated product owner who is ac-

countable for team’s results and champions the mission inside and outside
of the team.

Value We can define, measure and deliver the value we provide to the business
and the user.

Goal alignment Everyone understands why they are here, supports the idea and believe
they have what it takes to create solutions that add value.

Communication We have clear and consistent communication that ensures that issues are
shared, conflict is reduced, and everyone can work at greater efficiency.

Team roles The current team skill set is right for the current stage and there are clear
roles and responsibilities for each person in the team.

Velocity We learn and implement lessons leading to incremental progress in itera-
tions and production as we go.

Support and resources We are equipped with the right tools and resources and can easily access
support from within and outside the team.

Process Our processes are aligned, effective and do not cause unnecessary delays
and blocks. We have metrics in place to measure our goals.

Fun We enjoy our work and working as a team. We are being challenged and
can develop our skill set or acquire new ones.

https://www.teamretro.com/health-checks/team-health-check/
https://www.teamretro.com/health-checks/team-health-check/

teamwork activities 65

3.21 Health: Spotify

Assign green, yellow, or red for each area of inquiry. https://engineering.
atspotify.com/2014/09/16/
squad-health-check-model/
https://www.andycleff.com/2020/05/
agile-team-health-check-models/

• Green: working well (not necessarily perfect).
• Yellow: some issues need to be improved, but not a disaster.
• Red: serious problems.

Areas of Inquiry:

Area Example of Awesome Example of Crappy
Easy to release Releasing is simple, safe, painless &

mostly automated.
Releasing is risky, painful, lots of manual
work, and takes forever.

Suitable process Our way of working fits us perfectly Our way of working sucks
Tech quality
(code base health)

We’re proud of the quality of our code! It
is clean, easy to read, and has great test
coverage.

Our code is a pile of dung, and technical
debt is raging out of control

Value We deliver great stuff! We’re proud of it
and our stakeholders are really happy.

We deliver crap. We feel ashamed to de-
liver it. Our stakeholders hate us.

Speed We get stuff done really quickly.No wait-
ing, no delays.

We never seem to get done with any-
thing.We keep getting stuck or inter-
rupted. Stories keep getting stuck on
dependencies

Mission We know exactly why we are here, and we
are really excited about it

We have no idea why we are here, there
is no high level picture or focus. Our so-
called mission is completely unclear and
uninspiring.

Fun We love going to work, and have great fun
working together

Boooooooring.

Learning We’re learning lots of interesting stuff all
the time!

We never have time to learn anything

Support We always get great support & help when
we ask for it!

We keep getting stuck because we can?t
get the support & help that we ask for.

Pawns or players We are in control of our destiny! We de-
cide what to build and how to build it.

We are just pawns in a game of chess, with
no influence over what we build or how
we build it

https://engineering.atspotify.com/2014/09/16/squad-health-check-model/
https://engineering.atspotify.com/2014/09/16/squad-health-check-model/
https://engineering.atspotify.com/2014/09/16/squad-health-check-model/
https://www.andycleff.com/2020/05/agile-team-health-check-models/
https://www.andycleff.com/2020/05/agile-team-health-check-models/

66 se capstone handbook [march 31, 2024]

3.22 Process Assessment: Joel Test
https://www.joelonsoftware.
com/2000/08/09/
the-joel-test-12-steps-to-better-code/

Joel Spolsky created The Joel Test in 2000 as an alternative to heavy-
weight process assessments. It is twelve simple yes/no questions:

1. Do you use source control?
2. Can you make a build in one step?
3. Do you make daily builds?
4. Do you have a bug database?
5. Do you fix bugs before writing new code?
6. Do you have an up-to-date schedule?
7. Do you have a spec?
8. Do programmers have quiet working conditions?
9. Do you use the best tools money can buy?
10. Do you have testers?
11. Do new candidates write code during their interview?
12. Do you do hallway usability testing?

Joel says that professional companies score 12/12, and that scores of
10 or less are a concern. That interpretation doesn’t make sense in
the context of student capstone projects, because some of the ques-
tions are about the organization as a whole (e.g., hiring practices). For
question 9, do you use the best tools money can buy?, be aware that
Joel’s company sells software engineering tools (bug/issue tracker).
The economics of software engineering tools are a rich area for dis-
cussion.

The Joel Test has proven popular and useful. In 2019, Brian Con-
way proposed some updates for how practices have evolved: https://medium.com/meshify/

an-updated-joel-test-for-2019-fc732ad24dc6
1. Is your source control effective for the offline programmer?
2. Can you make a build in one step?
3. Do you build, test, and deploy (somewhere) on every commit?
4. Do you have a bug database?
5. Do you fix bugs before writing new code?
6. Does your source have a stable branch from which releases can be cut at any time?
7. Can all of a product’s functionality be verified in one step?
8. Do programmers have access to a door that can be closed for uninterrupted work?
9. Do programmers have the freedom to choose the best tools for the job?
10. Is testing the team’s responsibility?
11. Do new candidates write code during their interview?
12. Do you do hallway usability testing?

https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code/
https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code/
https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code/
https://medium.com/meshify/an-updated-joel-test-for-2019-fc732ad24dc6
https://medium.com/meshify/an-updated-joel-test-for-2019-fc732ad24dc6

teamwork activities 67

3.23 Process Assessment: Scrum Checklist
https://en.wikipedia.org/wiki/Scrum_
(software_development)
https://www.scrum.org/resources/
what-is-scrum

Scrum is a lightweight teamwork process framework that is popular
in software engineering (and beyond).

https://www.crisp.se/
gratis-material-och-guider/
scrum-checklist

Henrik Kniberg (Mojang/Minecraft) has developed a nice Scrum
checklist, which is used all over the world and has been translated
into about twenty different languages.

Complete the Scrum checklist and discuss your findings.

Process is
continuously improving

Have Definition of Done (DoD)

DoD achievable within each
iteration

Team respects DoD

The bottom line

Delivering working, tested
software every 4 weeks or less

Delivering what the
business needs most

Demo happens after every sprint

Shows working, tested
software
Feedback received from
stakeholders & PO

Retrospective happens after every
sprint

Results in concrete
improvement proposals
Some proposals actually get
implemented

Whole team + PO participates

Team has a sprint backlog

Highly visible

Updated daily

Owned exclusively by the
team

Have sprint planning meetings

PO participates

Whole team participates

Results in a sprint plan

Whole team believes plan is
achievable

PO satisfied with priorities

PO brings up-to-date PBL

Iteration length 4 weeks or
less

Always end on time

Team not disrupted or
controlled by outsiders

Timeboxed iterations

PO has a product backlog (PBL)

Top items are prioritized by
business value

Top items are estimated

PO understands purpose of
all backlog items

Top items in PBL small
enough to fit in a sprint

Estimates written by the
team

Clearly defined product owner
(PO)

PO is empowered to prioritize

PO has knowledge to
prioritize

PO has direct contact with
team
PO has direct contact with
stakeholders
PO speaks with one voice (in
case PO is a team)

Team members sit together

If you achieve these you can ignore the rest
of the checklist. Your process is fine.

These are central to Scrum. Without these you
probably shouldn’t call it Scrum.

Core Scrum

PO has product vision that is in
sync with PBL

PBL and product vision is highly
visible

Everyone on the team participates
in estimating
PO available when team is
estimating

Team members not locked into
specific roles

Team has all skills needed to bring
backlog items to Done

Team has a Scrum Master (SM)

Whole team knows top 1-3
impediments

SM has strategy for how to fix
top impediment

SM focusing on removing
impediments

Escalated to management
when team can’t solve

Velocity is measured

Velocity only includes
items that are Done

PO uses velocity for release
planning

Team has a sprint burndown chart

PBL items are broken into tasks
within a sprint

Estimates for ongoing tasks
are updated daily

Highly visible

Updated daily

PO participates at least a
few times per week

All items in sprint plan have an
estimate

SM sits with the team

Daily Scrum is every day, same
time & place

Sprint tasks are estimated

Estimate relative size (story points)
rather than time

Max 15 minutes

Each team member knows
what the others are doing

Most of these will usually be needed, but not always all of them. Experiment!

Recommended but not always necessary

Daily Scrum happens

Whole team participates

Problems & impediments are
surfaced

You have a Chief Product Owner
(if many POs)

Dependent teams do Scrum of
Scrums

Dependent teams integrate within
each sprint

Scaling

Having fun! High energy level.

Overtime work is rare and
happens voluntarily

Discussing, criticizing, and
experimenting with the process

Positive indicators

Scrum Checklist!

http://www.crisp.se/scrum/checklist | Version 2.2 (2010-10-04)

the unofficial!

Henrik Kniberg

PO = Product owner SM = Scrum Master PBL = Product Backlog DoD = Definition of Done

Team usually delivers what
they committed to

Leading indicators of a
good Scrum implementation.

These are pretty fundamental to any Scrum
scaling effort.

Max 9 people per team

Iterations that are doomed to fail
are terminated early

Figure 3.4: Scrum checklist by Henrik
Kniberg. Available at https://www.
crisp.se/gratis-material-och-guider/
scrum-checklist

https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://www.scrum.org/resources/what-is-scrum
https://www.scrum.org/resources/what-is-scrum
https://www.crisp.se/gratis-material-och-guider/scrum-checklist
https://www.crisp.se/gratis-material-och-guider/scrum-checklist
https://www.crisp.se/gratis-material-och-guider/scrum-checklist
https://www.crisp.se/gratis-material-och-guider/scrum-checklist
https://www.crisp.se/gratis-material-och-guider/scrum-checklist
https://www.crisp.se/gratis-material-och-guider/scrum-checklist

68 se capstone handbook [march 31, 2024]

3.24 Process Assessment: CMMI
International standard iso/iec
33001:2015 Information technology –
Process assessment – Concepts and Termi-
nology is roughly similar to cmmi.

The Capability Maturity Model Integration (cmmi) is an organizational
assessment that originated from the Software Engineering Institute
(sei) and Carnegie Mellon University (cmu). Version 2.0 was pub-
lished in 2018, but the original Capability Maturity Model dates from
1986. There are six maturity levels: Text defining these levels from

https://cmmiinstitute.com/learning/
appraisals/levels0. Incomplete: Ad hoc and unknown.

Work may or may not get completed.

1. Initial: Unpredictable and reactive.
Work gets completed but is often delayed and over budget.

2. Managed: Managed on the project level. Projects are planned,
performed, measured, and controlled.

3. Defined: Proactive, rather than reactive. Organization-wide stan- For a capstone project, consider stan-
dards or norms defined outside your
team, for example in industry, govern-
ment, or the open source community.

dards provide guidance across projects, programs, and portfolios.

4. Quantitatively Managed: Measured and controlled. Organization is
data-driven with quantitative performance improvement objectives
that are predictable and align to meet the needs of internal and
external stakeholders.

5. Optimizing: Stable and flexible. Organization is focused on contin-
uous improvement and is built to pivot and respond to opportu-
nity and change. The organization’s stability provides a platform
for agility and innovation.

3.25 Process Assessment: Capability Immaturity Model

The Capability Immaturity Model (cimm)6 is a parody of the Capa- 6 Tom Schorsch. The Capabil-
ity Im-Maturity Model (CIMM).
CrossTalk Magazine, 1995; and
Anthony Finkelstein. SIGSOFT Soft-
ware Engineering Notes, 1992. URL
http://www0.cs.ucl.ac.uk/staff/A.
Finkelstein/papers/immaturity.pdf

bility Maturity Model (originally cmm, now cmmi).

https://en.wikipedia.org/wiki/
Capability_Immaturity_Model

0. Negligent: Team pays lip service to process, but then panics and
flails about chaotically.

-1. Obstructive: Strict adherence to inappropriate and ineffective
processes. Disregard for quality of actual work.

-2. Contemptuous: Everyone knows how ineffective team is, but the
team doesn’t care. The team fudges measurements and indicators.
Poor results are blamed on factors outside the team’s control.

-3. Undermining: Actively downplaying and sabotaging the efforts of
rivals; draining resources from more effective areas.

https://cmmiinstitute.com/learning/appraisals/levels
https://cmmiinstitute.com/learning/appraisals/levels
http://www0.cs.ucl.ac.uk/staff/A.Finkelstein/papers/immaturity.pdf
http://www0.cs.ucl.ac.uk/staff/A.Finkelstein/papers/immaturity.pdf
https://en.wikipedia.org/wiki/Capability_Immaturity_Model
https://en.wikipedia.org/wiki/Capability_Immaturity_Model

teamwork activities 69

3.26 Process Assessment: UX Maturity

Nielsen7 describes eight levels of process maturity with regards to ux 7 Jakob Nielsen. Corporate ux ma-
turity: Stages 1–4. Technical re-
port, Nielsen/Norman Group, 2006.
URL https://www.nngroup.com/
articles/ux-maturity-stages-1-4/; and
Jakob Nielsen. Corporate ux ma-
turity: Stages 5–8. Technical report,
Nielsen/Norman Group, 2006. URL
https://www.nngroup.com/articles/
ux-maturity-stages-5-8/

maturity. These are listed in elsewhere in this document in §11.11.

3.27 Course: PD4 Teamwork

https://uwaterloo.ca/
professional-development-program/
courses/pd4-teamwork

pd4 is a good course to take on a work term — especially in third
year. Here is the course description:

An introduction to the processes and skill required of high-performance
teams. Application of teamwork skills to decision making, conflict res-
olution and leadership. Development of self-awareness and relational
skills to improve one’s ability to collaborate effectively, give and re-
ceive assistance, and empower others. Personal reflection and case
discussion is integrated with observations of teamwork in the co-op
experience work environment.

3.28 Course: INTEG210 Making Collaboration Work
https://uwaterloo.ca/
knowledge-integration/
current-undergraduates/
course-offerings/ki-elective-courses/
integ-210-making-collaboration-work

integ210 Making Collaboration Work is a worthwhile open elective
course. It is taught by the Knowledge Integration department, which is
focused on interdisciplinary collaboration. You can take it any time
after first year. Here is the calendar description:

Collaboration and teamwork are essential for solving complex, real-
world problems and are therefore in high demand by employers. Yet
students rarely have the opportunity to study and apply the theory
and best practices for making collaboration work. In this course, you
will learn how to leverage this research to acquire a variety of impor-
tant skills. These include: effective communication in groups, proac-
tively managing group conflict, identifying biases that hinder creativity,
and leveraging diversity to improve outcomes. You will also put those
skills into practice throughout the course and reflect on how you can
apply them in other situations.

https://www.nngroup.com/articles/ux-maturity-stages-1-4/
https://www.nngroup.com/articles/ux-maturity-stages-1-4/
https://www.nngroup.com/articles/ux-maturity-stages-5-8/
https://www.nngroup.com/articles/ux-maturity-stages-5-8/
https://uwaterloo.ca/professional-development-program/courses/pd4-teamwork
https://uwaterloo.ca/professional-development-program/courses/pd4-teamwork
https://uwaterloo.ca/professional-development-program/courses/pd4-teamwork
https://uwaterloo.ca/knowledge-integration/current-undergraduates/course-offerings/ki-elective-courses/integ-210-making-collaboration-work
https://uwaterloo.ca/knowledge-integration/current-undergraduates/course-offerings/ki-elective-courses/integ-210-making-collaboration-work
https://uwaterloo.ca/knowledge-integration/current-undergraduates/course-offerings/ki-elective-courses/integ-210-making-collaboration-work
https://uwaterloo.ca/knowledge-integration/current-undergraduates/course-offerings/ki-elective-courses/integ-210-making-collaboration-work
https://uwaterloo.ca/knowledge-integration/current-undergraduates/course-offerings/ki-elective-courses/integ-210-making-collaboration-work

Creative Activities

There are many ways to create alternatives, to have ideas. Many
people have theorized or studied how creative thought happens. This
section discusses some of that work, to stimulate you in your quest
for new ideas.

4.1 Modes of Creative Thinking: Intense and Casual

Sanders & Thagard1 identify two modes of creative thinking in com- 1 Daniel Sanders and Paul Thagard.
Creativity in computer science. In
James C. Kaufman and John Baer,
editors, Creativity Across Domains:
Faces of the Muse. Lawrence Erlbaum
Associates, Publishers, 2002

puter science: intense and casual. The intense mode is actively work-
ing on the problem. The casual mode are those ‘aha!’ moments that
happen in the shower2 or when out for a walk3 — when not actively

2 Alan Kay had his own shower in the
basement of Xerox PARC to facilitate
casual mode creativity. [54]
3 Alan Turing found that many of his
ideas came to him on long walks or
runs. [54]

engaged and focused on the problem, but letting one’s mind wander
while idling doing other things.

The casual mode of creativity sounds very appealing: go for a
walk and the idea will just come to you without any explicit work.
It’s not quite like that. Sanders & Thagard identify some common
elements in stories of successful casual mode creativity:

1. Immersion in problem domain
2. Absence of immediate pressure
3. Absence of distractions
4. Mental relaxation
5. Unstructured time
6. Solitude

Note the first step: immersion in the problem domain. That’s the
intense mode of creativity. It is unlikely that an idea will come to
you when you’re out for a walk if you have not already applied some
elbow grease to the problem.

72 se capstone handbook [march 31, 2024]

4.2 Apply SCAMPER
https://www.interaction-design.
org/literature/article/
learn-how-to-use-the-best-ideation-methods-scamper

Start with an existing project concept and apply these operators to it:

• S: Substitute
• C: Combine
• A: Adapt
• M: Modify / Maximize / Minimize
• P: Put to another use
• E: Eliminate
• R: Reverse

4.3 Apply C-K Theory
https://www.ck-theory.org/c-k-theory/
https://www.consuunt.com/c-k-theory/

Herbert A. Simon (Turing Award
1975, Nobel Prize in Economics 1978)
famously conceptualized design as
search within a known problem space.
C-K theory originated with a rejection
of that approach, and instead empha-
sized exploration within a partially
unknown concept space.

Concept-Knowledge (C-K) theory is a relatively recent design method-
ology from France intended to spur innovation and the generation of
new ideas.

The Concept Space is organized as a tree of ideas.

The Knowledge Space is a bag of facts — statements that can be
true of false.

There are four moves in the methodology:

• C→C: one concept leads to another
• C→K: concept leads to knowledge
• K→C: knowledge leads to a new concept
• K→K: knowledge leads to knowledge

4.4 Use Comparison to Generate New Ideas

Many authors, scientists, and researchers have remarked that com-
parison is one of the key ways that they arrive at new ideas. Compar-
isons are generally of similarity or of difference. Figure 4.1 identifies
some kinds of comparisons. Comparisons such as symmetry and
duality involve both similarity and difference, and so we categorize
them separately.

The comparisons of difference in Figure 4.1 come from what is
known as the traditional square of opposition in logic, depicted in Fig-
ure 4.2. For two contradictory propositions, one of them must be true
and the other must be false. For two contrary propositions, at most
one of them is true — but they could both be false. Similarly, for two
subcontrary propositions, at most one of them may be false, but they
may both be true.

https://www.interaction-design.org/literature/article/learn-how-to-use-the-best-ideation-methods-scamper
https://www.interaction-design.org/literature/article/learn-how-to-use-the-best-ideation-methods-scamper
https://www.interaction-design.org/literature/article/learn-how-to-use-the-best-ideation-methods-scamper
https://www.ck-theory.org/c-k-theory/
https://www.consuunt.com/c-k-theory/

creative activities 73

Comparisons

similarity

analogy
metaphor
simile

difference

contradictories
contraries
subcontraries
subalternation

symmetry & duality

Figure 4.1: Some kinds of comparisons

subcontraries

(at most one is false)

contraries

(at most one is true)

Every S is P

(universal affirmative)

Some S is P

(particular affirmative)

Some S is not P

(particular negative)

No S is P

(universal negative)

contradictories

(one is true, one is false) subalternssubalterns

Figure 4.2: The traditional square of
opposition. Originally described by
Aristotle in De Interpretatione, and
subsequently developed by many
others. See, for example, the entry in
the Stanford Encyclopedia of Philosophy
by Parsons [50]: http://plato.stanford.
edu/entries/square/

A strategy for using comparisons to generate new ideas was
proposed and tested by W.J.J. Gordon4: make the familiar strange, and 4 William J.J. Gordon. Synectics: The

Development of Creative Capacity. Harper
& Row, New York, 1961

make the strange familiar.

http://plato.stanford.edu/entries/square/
http://plato.stanford.edu/entries/square/

74 se capstone handbook [march 31, 2024]

Local and Distant analogies. Sanders5 & Thagard6 studied 5 Daniel Sanders and Paul Thagard.
Creativity in computer science. In
James C. Kaufman and John Baer,
editors, Creativity Across Domains:
Faces of the Muse. Lawrence Erlbaum
Associates, Publishers, 2002
6 Director of Waterloo’s Cognitive
Science Program

interviews with famous software designers published in ACM Queue
and found that comparisons of similarity were very often the basis
of new ideas. They categorize these comparisons into local compar-
isons to other computing phenomena, and distant comparisons to
phenomena in other areas. An example of a local analogy that they
give is that the user interface of the original Macintosh computer was
inspired by the user interface of the Xerox Alto. Genetic algorithms
and neural networks are both examples of distant analogies to biolog-
ical processes. They have a nice quotation from Ada Lovelace7 in a 7 The first software engineer.

letter she wrote to Charles Babbage8 comparing Babbage’s Analytical 8 The first hardware engineer.

Engine9 to the Jacquard Loom.10 9 The first computer.
10 The Jacquard Loom was pro-
grammable in the sense that it used
punched cards to describe the pattern
to be woven.

Analogy

local Mac ≈ Xerox Alto

distant
genetic algorithms
neural networks
Analytical Engine ≈ Jacquard Loom

We may say most aptly that the Analytical Engine weaves al-
gebraic patterns just as the Jacquard loom weaves flowers and
leaves.

— Ada Lovelace11 11 H. Goldstine. The computer from Pascal
to Von Neumann. Princeton University
Press, 1972

Symmetry and Duality. e.g., dynamic invariant detection12 is the 12 daikon
dual13 of abstract interpretation14 13 Michael D. Ernst. Static and dynamic

analysis: synergy and duality. In
Jonathan E. Cook and Michael D. Ernst,
editors, Proceedings of the Workshop on
Dynamic Analysis (WODA), Portland,
Oregon, 2003
14 Patrick Cousot and Radhia Cousot.
Abstract interpretation: a unified lattice
model for static analysis of programs
by construction or approximation of
fixpoints. In Conference Record of the
4th ACM Symposium on the Principles
of Programming Languages (POPL), Las
Angeles, CA, January 1977

Ideas may be combined to form new hybrids. Von Fange15

15 Eugene K. Von Fange. Professional
Creativity. Prentice Hall, Englewood
Cliffs, N.J., 1959

describes using an idea matrix to systematically combine previously
generated ideas into new hybrid ideas:

Once a list of ideas has been gathered, we can quickly multiply its
potential by listing the ideas both downward and across a sheet of
paper (an Idea Matrix). By looking at each idea in combination with
every other idea, we can produce still more ideas.

creative activities 75

4.5 Design Space Exploration

There are a variety of techniques one can use to explore a design
space and find new solutions.

Make a local analogy to the normal programs. There are
several kinds of normal programs that we have a good understanding
of how to design. These are often given their own courses in an un-
dergraduate curriculum. For example, compilers, operating systems,
database engines, network protocols, text editors, and so on.

Try conceptualizing your problem as one or more of these normal
programs. For example, if you designed your solution like a compiler
how would it look like? What if you designed your solution like an
operating system?

Make a distant analogy to a biological or physical pro-
cess. Biology in particular has proven to be a useful source of inspi-
ration in many areas of engineering.

Try a different pattern or style. Parnas16 presented two dif- 16 David Lorge Parnas. On the Criteria
to be Used in Decomposing Systems
into Modules. Communications of the
ACM, 15(12):1053–1058, December 1972

ferent designs for his toy example KWIC (Key Word In Context)
program: flowchart and encapsulated. Garlan & Shaw17 came up two

17 David Garlan and Mary Shaw. An
introduction to software architecture.
Technical Report CMU-CS-94-166,
Carnegie Mellon University, January
1994. URL http://www.scs.cmu.
edu/afs/cs/project/able/ftp/intro_
softarch/intro_softarch.pdf

more KWIC designs by trying different architectural styles. In an as-
signment we produced two designs for a simple calculator program,
based on the Interpreter and Visitor design patterns, respectively.
There are a number of catalogues of design patterns and architectural
styles that one can turn to as a source of new ideas.18,19,20,21

18 Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley,
1995
19 F. Buschmann, R. Meunier, H. Rohn-
ert, P. Sommerlad, and M. Stal. Pattern-
Oriented Software Architecture, Volume 1:
A System of Patterns. John Wiley & Sons,
1996
20 D. Schmidt, M. Stal, H. Rohnert,
and F. Buschmann. Pattern-Oriented
Software Architecture, Volume 2: Patterns
for Concurrent and Networked Objects.
Addison-Wesley, 2000
21 Martin Fowler. Patterns of Enterprise
Application Architecture. Addison-
Wesley, 2002

Aim for another Pareto point. The design(s) that you already
have will make certain trade-offs in terms of computation time,
space, effort to implement, modifiability, reusability, etc.. Identify the
criteria that are important for the problem domain, see what trade-
offs your current designs make, and then aim for a different trade-off.
In an assignment we saw calculator designs that were modifiable but
took some effort to implement; we also saw a design that sacrificed
modifiability for a reduction in implementation effort.

Change the technology. Different technology may require or
facilitate different designs. The more different the technology, the
more different the designs may be.

Changing programming paradigms can have a large impact on
the possible designs. For example, when writing a web application
in an imperative language (including imperative object-oriented
languages such as Java), the control-flow is typically structured as a

http://www.scs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf
http://www.scs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf
http://www.scs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf

76 se capstone handbook [march 31, 2024]

state machine with request/response. If writing a web application
in a language that supports continuations, the control-flow can be
structured more like a regular program, and the web application
framework will use continuations to manage the state.22 Try Prolog, 22 Christian Queinnec. Inverting back

the inversion of control or, continua-
tions versus page-centric programming.
Technical Report 7, LIP6, May 2001.
URL http://www.lip6.fr/reports/lip6.
2001.007.html

Ruby, Scheme, or Haskell for a different way of thinking.

http://www.lip6.fr/reports/lip6.2001.007.html
http://www.lip6.fr/reports/lip6.2001.007.html

creative activities 77

Relax a constraint or change an assumption. In an assign-
ment we saw that we could simplify the design of a calculator pro-
gram by changing the syntax of the input language it processes from
infix operators to postfix operators (i.e.., reverse polish notation). In
class we also discussed how the idea of operating system microker-
nels germinated in part from changing the assumption that the file
system should be inside the kernel. The Seaside web application
framework has an unconventional design:23 23 Avi Bryant. Web Heresies: The

Seaside Framework. OSCON, 2006.
URL http://conferences.oreillynet.
com/cs/os2006/view/e_sess/8942

Over the last few years, some best practices have come to be widely ac-
cepted in the web development world. Share as little state as possible.
Use clean, carefully chosen, and meaningful URLs. Use templates to
separate your model from your presentation.

Seaside is a web application framework for Smalltalk that breaks
all of these rules and then some. Think of it as an experiment in trade-
offs: if you reject the conventional wisdoms of web development,
what benefits can you get in return? Quite a lot, it turns out, and this
“experiment” has gained a large open source following, seen years
of production use, and been heralded by some as the future of web
applications.

In this talk, you’ll learn in-depth about Seaside’s heretical design
choices, and how it benefits from them. In particular, you’ll see how
closures and shared state let you ignore the details of URLs and query
fields; how the right HTML generation API makes you less tied to your
presentation layer, not more; how continuations free you from ever
thinking about workflow as a state machine again; and how all of this
combines to enable modularity and reuse like you’ve never seen before.

Morphological analysis.24 Identify all of the design decisions 24 Fritz Zwicky. Discovery, Invention,
Research — Through the Morphological
Approach. The Macmillian Company,
Toronto, 1969

and their possible alternatives, then systematically explore every
possible combination.

What would Dijsktra do? There are many great software de-
signers, many of whom have very distinctive styles. Ask yourself
how they would approach your problem. Here are some names to
familiarize yourself with: Edsgar Dijkstra, Simon Peyton-Jones, Butler
Lampson, Tony Hoare, Rob Pike, Joshua Bloch, Michael Stonebraker,
Ted Codd, Linus Torvalds, Larry Wall, Donald Knuth, David Parnas,
Fred Brooks, Michael Jackson.

4.6 Brainstorming

Brainstorming is a commonly known technique originally devel-
oped by Alex Osborn25. The point of brainstorming is quantity, not 25 Alex F. Osborn. Applied Imagination:

Principles and Procedures of Creative
Problem Solving. Scribner & Sons, New
York, 1953

quality. Setting a quota of the number of ideas to be generated can be
helpful. Osborn’s rules for successful brainstorming are:

http://conferences.oreillynet.com/cs/os2006/view/e_sess/8942
http://conferences.oreillynet.com/cs/os2006/view/e_sess/8942

78 se capstone handbook [march 31, 2024]

1. Judgement is ruled out. Criticism of ideas must be withheld until
later.

2. Free-wheeling is welcomed. The wilder the ideas, the better; it is
easier to tame down than to think up.

3. Quantity is wanted. The greater the number of ideas, the more the
likelihood of winners.

4. Combinations and improvement are sought. In addition to con-
tributing ideas of their own, participants should suggest how ideas
of others can be turned into better ideas; or how two or more ideas
can be joined into still another idea.

Harvard Business Review has an article on brainstorming re-
motely: https://hbr.org/2020/07/how-to-brainstorm-remotely

4.7 6-3-5 Group Brainstorming
https://www.designthinking-methods.
com/en/3Ideenfindung/6-3-5.html

https://en.wikipedia.org/wiki/6-3-5_
Brainwriting

Each participant starts with a blank sheet. Iterate for 6 rounds:

1. Each participant adds 3 ideas (within 5 minutes) to their sheet.
2. Pass sheets one step around the circle.

4.8 Crazy 8s (a form of group brainstorming)

Crazy 8s is form of group brainstorming.

• https://blog.prototypr.io/how-to-run-a-crazy-eights-workshop-60d0a67b29a
• https://www.iamnotmypixels.com/how-to-use-crazy-8s-to-generate-design-ideas/
• https://uxdesign.cc/how-to-do-crazy-8s-remotely-223d7fbd5e98

4.9 Think / Pair / Share

Dym & Little26 present three related techniques that I’ll summarize 26 Clive L. Dym and Patrick Little.
Engineering Design: A Project Based
Introduction. John Wiley & Sons, 3
edition, 2008

with the pedagogical phrase think / pair / share.

1. Think: Each person in the group sketches k ideas, for some pre-
determined value of k usually in the range 1–3. A sketch may be a
drawing or prose.

2. Pair: The sketches are passed around for written commentary.
There is no talking in this step nor the previous step: all communi-
cation is written.

3. Share: The annotated sketches are posted on the wall and form the
basis of a discussion.

https://hbr.org/2020/07/how-to-brainstorm-remotely
https://www.designthinking-methods.com/en/3Ideenfindung/6-3-5.html
https://www.designthinking-methods.com/en/3Ideenfindung/6-3-5.html
https://en.wikipedia.org/wiki/6-3-5_Brainwriting
https://en.wikipedia.org/wiki/6-3-5_Brainwriting
https://blog.prototypr.io/how-to-run-a-crazy-eights-workshop-60d0a67b29a
https://www.iamnotmypixels.com/how-to-use-crazy-8s-to-generate-design-ideas/
https://uxdesign.cc/how-to-do-crazy-8s-remotely-223d7fbd5e98

creative activities 79

4.10 Six Thinking Hats

Edward de Bono, who coined the term lateral thinking, also created
the six thinking hats technique27. Each hat represents a different mode 27 Edward de Bono. Six Thinking

Hats: An Essential Approach to Business
Management. Little, Brown, & Company,
1985

of thinking. Everyone in the group is in the same mode at the same
time, with the possible exception of the facillitator who may always
wear the blue hat. Depending on what task the group is trying to
accomplish they will put the hats on (metaphorically) in a different
order.

Process: the group getting organized.

Facts: review the known facts of the issue being addressed.

Creativity: provocation; investigation; generation.

Positive: what is good? seeking harmony.

Negative: what are the limitations? seeking discord.

Intuition: straight from the gut.

80 se capstone handbook [march 31, 2024]

Task Hat Sequence
Solving Problems

Choosing
Performance review

Process improvement

Solve an analogous problem.28,29 Only one person in the 28 This technique was developed by
W.J.J. Gordon, who also wrote the
Synectics book. Gordon’s ideas are
documented by Cros.29

29 Pierre Cros. Imagination, undeveloped
resource : a critical study of techniques and
programs for stimulating creative thinking
in business. Creative Training Associates,
New York, 1955. URL http://hdl.
handle.net/2027/uc1.l0050673813.
Submitted in partial fulfillment of the
requirements in Professor Georges F.
Doriot’s course in manufacturing at the
Harvard Business School

group, the facilitator, knows what the real problem is. Before meeting
the facilitator identifies the abstract problem domain, e.g., storage
or cutting, and an analogous problem in that domain. In the meet-
ing the facilitator first introduces the abstract problem domain for
discussion. After the group has warmed up to the abstract problem
domain the facilitator introduces the analogous problem. The group
works on the analogous problem using one of the techniques dis-
cussed above. As the discussion progresses the facilitator may reveal
more and more details of the real problem, or the revelation of the
real problem may wait until towards the end. Once the real problem
is fully revealed then the group maps their solutions to the analogous
problem to the real problem, perhaps generating new solutions in the
process.

http://hdl.handle.net/2027/uc1.l0050673813
http://hdl.handle.net/2027/uc1.l0050673813

Planning Activities

5.1 Exploring Early Can Be A Good Strategy
https://www.ted.com/talks/david_
epstein_why_specializing_early_
doesn_t_always_mean_career_success/
transcript?language=en

Watch the ted talk by David Epstein. He contrasts two general plan-
ning strategies: specializing early vs exploring early. In sports, Tiger
Woods is an example of specializing early (started golfing as a baby).
Roger Federer, by contrast, is an example of exploring early: he tried
many other sports before specializing in tennis. Epstein also gives
examples of technologists (e.g., the founder of Nintendo) and mathe-
maticians (e.g., the first woman to win a Fields Medal).

Plans that involve specializing early are often focused on out-
comes. Plans that involve exploring early are generally about skill
development first, and the desired outcome isn’t identified until part-
way through the process.

Create two draft plans for your capstone experience: one that
involves specializing early in order to achieve a specific outcome, and
one that involves exploring early in order to develop skills that you
are interested in.

5.2 Select Project Success Metrics

Especially for New Product projects, it can be important to select and
define the success metrics. Here are a few for consideration. You https://www.ycombinator.com/

library/1y-key-metricsshould also do your own research. Tools like Google Analytics can
https://marketingplatform.google.
com/about/analytics/help measure some of these metrics.

Downloads: The number of times your app has been downloaded.

MAU (Monthly Active Users): The number of users active in a given https://www.investopedia.com/terms/
m/monthly-active-user-mau.aspmonth. Be specific how you define ‘active’: Facebook and Twitter,

for example, have different definitions tailored to their own sites.
Twitter also reports dau (daily active users).

Bounce Rate: Number of users who get to the landing page, but do
not interact with the site further.

https://www.ted.com/talks/david_epstein_why_specializing_early_doesn_t_always_mean_career_success/transcript?language=en
https://www.ted.com/talks/david_epstein_why_specializing_early_doesn_t_always_mean_career_success/transcript?language=en
https://www.ted.com/talks/david_epstein_why_specializing_early_doesn_t_always_mean_career_success/transcript?language=en
https://www.ted.com/talks/david_epstein_why_specializing_early_doesn_t_always_mean_career_success/transcript?language=en
https://www.ycombinator.com/library/1y-key-metrics
https://www.ycombinator.com/library/1y-key-metrics
https://marketingplatform.google.com/about/analytics/
https://marketingplatform.google.com/about/analytics/
https://www.investopedia.com/terms/m/monthly-active-user-mau.asp
https://www.investopedia.com/terms/m/monthly-active-user-mau.asp

82 se capstone handbook [march 31, 2024]

Average Session Duration: Time that users spend on the site.

Number of page views: Total number of pages viewed.

Number of pages per session.

Number of sessions per user.

5.3 Weekly Work Intensity

Rate each week of the term (low / medium / high) for how much
effort you think you’ll be able to put into your project, balancing
against deliverables in other courses. Track your actual experience
against your prediction. Discuss how your prediction compared to
your actual experience and whether you need to change anything
going forward.

planning activities 83

5.4 Plan to Prototype
A key principle of agile project manage-
ment is that the plan will change as the
project progresses and new things are
learnt. At the midterm demo we might
have a retrospective discussion on how
and why things changed, but you will
not be required to stick to this plan.

1. Learn about different kinds of prototypes in §??
2. Identify key technical and non-technical risks for your project
3. Determine which kind of prototype to use to mitigate each risk
4. Think of any other prototypes that might be helpful
5. Organize the order of building the prototypes into a plan

Figure 5.3 tells the story of the seL4
microkernel as a prototype plan

5.4.1 Different Kinds of Prototypes

There are different kinds of prototypes that can be built for different
purposes. This section describes the ideas of exploratory, evolutionary,
and operational prototypes described in the software engineering
literature, as well as a novel approach for depicting a prototyping
plan.

5.4.2 Experimental Prototypes
Plan to throw one away; you will, anyhow.

— Fred BrooksAn experimental prototype is intended to explore or demonstrate
one aspect of a system, and to be discarded after the exploration or
demonstration is complete. The purpose of an experimental proto-
type is to learn something. That knowledge is then used to build the
real system.

Experimental prototypes are often built in a low cost way: in an
inexpensive medium, intentionally excluding certain aspects of the
system. If we were trying to build a house we might first make a
number of sketches; then we might make cardboard mockups of a
few of the designs. These sketches and mockups are experimental
prototypes: our ideas about the system grow as we build and interact
with them, but they are not the final product.

One might consider System R1 as an experimental prototype for 1 An early relational database engine
from IBM Research.DB/2.2 The developers of the seL4 microkernel3 first built an ex-
2 A commercial relational database
engine from IBM.
3 Gerwin Klein, Kevin Elphinstone,
Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elka-
duwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, Thomas Sewell, Har-
vey Tuch, and Simon Winwood. seL4:
Formal verification of an OS kernel. In
Proceedings of the 22nd ACM Symposium
on Operating Systems Principles (SOSP),
Big Sky, MT, USA, October 2009

perimental prototype in Haskell; the final version of the kernel was
written in C. They compare their development time to that of other
groups who have produced L4 microkernels and conclude that this
experimental prototype actually saved them time overall.

Horizontal vs Vertical Experimental Prototypes. All of the
experimental prototypes we’ve discussed so far have been horizontal
prototypes: shallow prototypes of the entire system.

A vertical prototype is a detailed exploration of one facet or sub-
system of the overall system. Since vertical prototypes have a specific
focus they are often written in a programming language that is de-
signed for that task. For example, an algorithm or transformation

84 se capstone handbook [march 31, 2024]

may be prototyped in a functional language; a user interface may be
prototyped in Flash or Visual Basic.

Alternative programming paradigms can be useful for ex- Do five minutes of research to see
if there is a programming language
designed for your specific kind of
problem.

perimental prototypes. Functional programming languages are well
suited to many kinds of algorithms and to symbolic transformations.
Deductive logic languages such as Prolog and Datalog are used for
many artificial intelligence and natural language processing tasks.
There are languages specifically designed for constraint satisfaction
problems such as scheduling. Alloy can also be used in this capacity.

planning activities 85

Don’t let your babies grow up to be cowboys. An experimen-
tal prototype is designed to learn something specific. An experimen-
tal prototype can reduce overall development time if this knowledge,
but not the prototype itself, is used in building the final system.

An experimental prototype can increase overall development One possible exception to this general
rule is if the technology used for
the experimental prototype can be
integrated into the technology used for
the final system as a whole. Proceed
with caution.

time if one succumbs to the temptation to treat it as an evolutionary
prototype — i.e., if one tries to make the experimental prototype
part of the final system. Experimental prototypes are often made
with tools that are not appropriate for the final system. Attempting
to build the final system with unsuitable tools will usually end up
costing, rather than saving, time.

Use experimental prototypes to learn about unfamil-
iar technology. If you are building a system in an unfamiliar
technology, you can save yourself a lot of time by building vertical
experimental prototypes to explore specific characteristics of that
technology. Some students4 learned this lesson the hard way: 4 The iLesion group from se2011. Their

project was to make an iPhone app for
radiologists diagnosing brain lesions
(tumours).In order to code in iPhone, we must use Objective C. However,

none of us was an expert in this language when we started the project.
Consequently, there are some quirks that are specific in Objective C
framework. One such example is exception handling. There are some
methods that are run by the iOS framework on a separate thread (not
main thread). Because our code runs on the main thread, when we call
those methods, because those methods live in a different thread, we
can’t catch an exception on that thread. Unfortunately, we customized
those methods to throw an exception upon connection failures. We
didn’t encounter any problem on the simulator because we had perfect
connection on the wireless network all the time. But, when we actually
tested it on the iPhone, we discovered that it crashed all the time upon
connection failure.

This caused us a lot of grief because in order to fix this problem, we
either have to resort on changing the architecture of our program in
a major way or resort on putting ugly hacks everywhere. Due to time
limitation, we decided to use hacks.

Had we actually tested our program on the device on the early
prototyping stage, we would have caught this problem much sooner,
and we would actually design the program to handle this quirkiness of
the framework.

5.4.3 Evolutionary Prototypes
This is more the Pokémon concept of
evoluation than the biological concept
of evolution. In biological evolution,
children differ from parents, and the
fittest children survive to reproduce.
In Pokémon ‘evolution’, an individual
grows into a new form, like a tadpole
becoming a frog, or a Pikachu becom-
ing a Raichu. In biology, this kind of
transformation is called metamorphosis.

In Pokémon terms we might say that
TEX is legendary because it does not
evolve: it’s version number becomes an
ever closer approximation of π as it is
perfected. In software, as in Pokémon,
legendaries are rare: almost all software
evolves or dies.

An evolutionary prototype is one that eventually becomes the real
system. An evolutionary prototype may start out like a horizontal
experimental prototype as a shallow and incomplete version of the
final system. However the evolutionary prototype is never thrown
away: it evolves into the final system.

86 se capstone handbook [march 31, 2024]

Evolutionary prototypes have been widely advocated in software
engineering. Brooks5 talks about ‘organic growth’. Gabriel6 (and 5 Frederick P. Brooks. The Mythical Man-

Month: Essays on Software Engineering.
Addison-Wesley, 1975
6 Richard P. Gabriel. Lisp: Good news,
bad news, how to win big. AI Expert,
pages 31–39, June 1991. URL http:
//www.dreamsongs.com/NewFiles/
LispGoodNewsBadNews.pdf. Pre-
sented as the keynote address at the
European Conference on the Practical
Applications of Lisp, Cambridge Uni-
versity, March 1990. Commonly known
as ‘Worse is Better’

others) have argued that evolutionary prototypes reduce time to
market and that establishing a user-base and a growth plan is crucial
for a project to stay alive. More recently, this evolutionary approach
has been advocated by the agile programming community.

Evolutionary prototypes can be particularly good for exploring
user requirements and preferences.

It is unwise to start an evolutionary prototype in an unfamiliar
medium: vertical experimental prototypes should be used to learn
the medium and tools before the evolutionary prototype is begun.

Evolutionary prototypes are not well-suited to exploring key al-
gorithmic or computational concerns: experimental prototypes are
better for this. Evolutionary prototypes need to handle all of the
device and user interactions, and this tends to distract one from ex-
perimenting freely with computational dimensions of the problem.

5.4.4 Operational Prototyping

Add experimental prototypes to an evolutionary base, then throw the
experimental bits away and re-implement them properly within the
evolutionary base.7 The modern manifestation of this idea is using 7 Alan M. Davis. Operational proto-

typing: A new development approach.
IEEE Software, 9(5), September 1992

branches in a version control system to explore new features.

5.4.5 When to build which kind of prototype

Characteristics Experimental Prototyping Evolutionary Prototyping Regular Development

Development approach Quick and dirty; sloppy Rigorous; not sloppy Rigorous; not sloppy
What is built Poorly understood

parts
Well-understood parts
first

Entire system

Design drivers Development time Ability to modify easily Depends of project
Goal Verify poorly under-

stood requirements and
then throw away

Uncover unknown re-
quirements and then
evolve

Satisfy all requirements

Figure 5.1: When to build which kind of
prototype: experimental, evolutionary,
operational

Alan M. Davis. Operational proto-
typing: A new development approach.
IEEE Software, 9(5), September 1992

http://www.dreamsongs.com/NewFiles/LispGoodNewsBadNews.pdf
http://www.dreamsongs.com/NewFiles/LispGoodNewsBadNews.pdf
http://www.dreamsongs.com/NewFiles/LispGoodNewsBadNews.pdf

planning activities 87

5.4.6 Picturing a Prototype Plan

There are different kinds of prototypes and all of them may be used
while designing. When multiple prototypes of different kinds all lead
towards a final design it can be useful to visualize how the relate to
each other. First we introduce some iconography for the different
kinds of prototypes discussed above:

Prototypes

Evolutionary

alpha

beta

Experimental

horizontal

vertical

idea

technology

Figure 5.2: Icons for different kinds of
prototypes. Icons drawn by Albert T.
Yuen (se2012). Reuse by se students
permitted.

With these icons we can tell the story of the seL4 verified microker-
nel8 (or of your fourth year design project).

8 Gerwin Klein, Kevin Elphinstone,
Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elka-
duwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, Thomas Sewell, Har-
vey Tuch, and Simon Winwood. seL4:
Formal verification of an OS kernel. In
Proceedings of the 22nd ACM Symposium
on Operating Systems Principles (SOSP),
Big Sky, MT, USA, October 2009

Initial Haskell Prototype

Complete Haskell Prototype Abstract Specification

Proof Infrastructure

Verified seL4 Microkernel

Kernel Team Proof Team
*

Figure 5.3: The story of the seL4 veri-
fied microkernel

88 se capstone handbook [march 31, 2024]

5.5 Old Stories Told in New Ways

An old saying amongst writers is that there are no new stories — only
old stories told in new ways. Indeed, many writers have writen re-
flective books about this adage: e.g., Northrop Frye’s Anatomy of
Criticism, Joseph Campbell’s Myths to Live By, Robert McKee’s Story,
John Yorke’s Into the Woods: A Five-Act Journey Into Story, Christo-
pher Booker’s The Seven Basic Plots, and many others. Consider, for
example, the following story:9 9 This example taken from John

Yorke’s 2016 article in The At-
lantic titled All Stories are The Same:
http://www.theatlantic.com/
entertainment/archive/2016/01/
into-the-woods-excerpt/421566/

A dangerous monster threatens a community. One man takes it on
himself to kill the beast and restore happiness to the kingdom ...

This is Beowulf, the oldest surviving epic poem in Old English (roughly
1000 years old). But it is also the 1975 movie Jaws, or Godzilla, or
Jurassic Park. In other variants of this story, the monster might take
another form. For example, in Erin Brockovich the monster is a cor-
poration; in The Towering Inferno it is fire; in The Posiedon Adventure it
is an upturned boat. This is every episode of the medical drama tv
series House, where the monster takes the form of some disease.

http://www.theatlantic.com/entertainment/archive/2016/01/into-the-woods-excerpt/421566/
http://www.theatlantic.com/entertainment/archive/2016/01/into-the-woods-excerpt/421566/
http://www.theatlantic.com/entertainment/archive/2016/01/into-the-woods-excerpt/421566/

planning activities 89

In retelling an old story in a new way, some details are changed.
The form of the monster; the setting of the kingdom; the gender and
nature of the protagonist, etc. Retelling is, in software engineering
terms, a process of abstraction, transformation, and concretization.

Who’s on First?, as performed by Abbott & Costello, was named https://en.wikipedia.org/wiki/Who’s_
on_First?by Time Magazine as the best comedy sketch of the twentieth cen-

tury. The gag is that the name of the first baseman is ‘Who’. But they
didn’t ‘invent’ it: they perfected it. The baseball version of the sketch
was already on the comedy circuit at the time, and was based on
other previous variants such as Who’s the Boss?. This gag is perhaps
one of the oldest jokes in Western literature: Odysseus uses it with https://en.wikipedia.org/wiki/Odyssey

the Cyclops in Homer’s Odyssey, which is the second oldest extant
work of literature in the West (preceded only by its prequel, Homer’s
Iliad). After Odysseus blinds the Cyclops in his sleep, the Cyclops
asks ‘who did this to me?’, to which Odysseus replies, ‘my name is
Nobody.’ When the Cyclops’ brothers come to help him, they ask
him who blinded him and he says ‘Nobody,’ so they leave without
helping him, thinking that he has also lost his mind. By the time Ab-
bott & Costello got a hold of this joke it was almost three thousand
years old, yet they made it the best of the twentieth century.

Exercise 1: Find two (or more) past projects that told essentially the
same story. The greater the surface differences between the teams the
more interesting your result.

Exercise 2: Find four (or more) past projects that told stories that
your team might retell. These stories will be of two kinds: comedies This distinction goes back to Aristotle’s

Poetics.and tragedies.
A comedy tells of the rise in fortune of a sympathetic central char-

acter. A story with a happy ending (not necessarily a funny story).
Look in the Awards chapter (§??) for comedies.

A tragedy depicts the downfall of a basically good person through
some fatal error or misjudgment, producing suffering and insight on
the part of the protagonist and arousing pity and fear on the part of
the audience. In the capstone context, this corresponds to changing
projects (§2.6) and changing teams (§2.7).

It is important to note that these are not mutually exclusive cat-
egories: a team may both change projects and win an award. For
example, Team Parallax (§2.6.6, §??), and Team Kaze (§2.6.7, §??) both
changed projects and won awards in se2016. Agile development and
startup culture both promote constructive pivoting: embrace change is
the subtitle of the original eXtreme Programming book by Kent Beck.

For this exercise you should find two stories of teams who changed
projects (tragedies) and two stories of teams who won awards (come-

https://en.wikipedia.org/wiki/Who's_on_First?
https://en.wikipedia.org/wiki/Who's_on_First?

90 se capstone handbook [march 31, 2024]

dies) and re-tell them in the context of your team.

Some Generic Old Stories
There are some stories that re-occur more often than others. Some

of these are listed in the chapter on Popular Projects (§5.6) that we
have compiled in collaboration with Velocity. Some of the recurring
patterns are:

Saving third-year undergraduates a few dollars. Many
projects are motivated by trying to save third-year undergraduate
students a few dollars. These projects are often misguided, because
the main strategy to reduce costs is to donate free engineering labour
(yours). By the time you graduate and have a job, you will likely

This strategy is also a violation of
the peo Code of Ethics: 77.7.v states
that practitioners shall ‘uphold the
principle of adequate compensation
for engineering work’. You should
not justify a business case on the
basis of free engineering labour. Note
that this clause does not prevent you
from doing free volunteer work for
a charitable cause, or from having
an interesting hobby. The problem is
when the motivation for the project
is commercial and the competitive
advantage comes from undervaluing
engineering work.

lose motivation for this kind of project, because you will have a better
understanding of why things cost money and will place greater value
on your time.

Moreover, another purported cost-savings strategy that these
projects employ is to abuse the terms of service of an existing busi-
ness, which is clearly unethical.

If you think your project is re-telling this story, you should proba-
bly think about pivoting.

Building a more integrated solution. Some capstone project
proposals are motivated to build a more integrated solution in some
domain where there already exists good solutions to certain aspects
of the problem. Be wary of this motivation for two reasons:

(1) Does your plan involve first re-building all of the good existing
components? That might be time consuming. You might end up
building components that are worse than the existing ones. Would
users in this domain prefer better integration of worse components,
or looser integration of better components?

(2) Why haven’t the developers of the existing solutions done
this integration already? Did they not think of it? Probably they
thought of the idea. There is probably some other practical reason
why this integration hasn’t happened yet. Are you somehow in a
better position than they are to do the integration?

5.6 Compare to Popular Project Ideas

This is a list of project ideas that we have built up in collaboration
with Velocity. These are ideas that we see repeatedly, year after year.
This activity is most appropriate for New Product projects and gener-
ally not applicable to others.

Paul Graham, most famously known for his role in Y Combinator

planning activities 91

accelerator program, wrote that “smart people have bad ideas”10, 10 http://paulgraham.com/bronze.html

and later, “the best startup ideas seem at first like bad ideas”11. It is 11 http://paulgraham.com/swan.html

difficult to build a successful project around one of these ideas, let
alone a business, but some students12 have shown success in building 12 Such projects include Singspiel.ca,

a medical records project with
sanu.mit.edu, and BlackBoxHealth.

both in these areas, provided they have a way to mitigate legal, user
acquisition, and other hurdles in these spaces.

• Smartphone Apps

• Anything with NFC / RFID

• Anything with QR codes

• Anything with Bitcoin

VCs find it less risky to invest directly in bitcoins than to invest
in bitcoin-based businesses. The rationale? If bitcoin prices fall,
so will the business’s ability to profit. But it is also possible for
the business to fail while bitcoin prices rise. So the business adds
unnecessary risk over directly investing in bitcoin.

• Apps that help you meet up with friends more often

• Apps that help you meet up with friends by showing their location
on a map

• Tracking food you eat

• Athlete tracking

Commonly this is envisioned with an athlete wearing an LED-
covered suit. This area is “patented to death”, and entrepreneurs
who attempted to build businesses in this area remarked that they
couldn’t figure out how to build the product without licensing the
patents.

• Grocery list generators

• Apps for new parents

New parents are too tired to use apps that are “nice to have” after
the second or third week.

(e.g. a photo album app containing photos of your children)

• 3D-printed Products

Students usually envision products which don’t fit well with the
constraints of current consumer-grade 3D printers; their designs
take too long to print, or contain overhangs that fail to print at all.

http://paulgraham.com/bronze.html
http://paulgraham.com/swan.html

92 se capstone handbook [march 31, 2024]

• Software targeting Education / Schools / Universities

These institutions’ software decisions are usually made on a ba-
sis of cost, not on a basis of software quality. The “Request for
Proposal” (RFP) processes usually used by larger institutions for
procuring software are also difficult to navigate for newcomers.

• Software that organizes Television shows / Movies / Videos

Licensing TV/Movie content requires lots of lawyers.

• Medical records

There are many legal requirements for handling medical data,
including the Health Insurance Portability and Accountability
Act (in the United States) and the Personal Health Information
Protection Act (in Ontario). In particular, health records in Ontario
may not be transmitted over the “US Internet”, so the current
industry norm is to use fax machines and dedicated ISDN lines.

• Tutor/mentor matching

• Automatic homework/activity scheduling

• Used clothing marketplace/exchange

• Clothing image recognition

• To-Do List

• Electronic / shared / communal whiteboard

• Whiteboard capture (video camera / phone camera / scanning /
smart board)

• Super thin nanotechnology (contact lens, virtual nails)

• Winter snow clearing (robot or wires)

• Music teaching/tutor app

Integration with MIDI-capable instruments is difficult on modern
computers, and real-time signal processing is difficult. Live human
music teachers tend to be cheaper and better than the cost of de-
veloping such software. Finally, many people already use YouTube
videos as a medium for teaching/learning musical skills.

• Karaoke

Acquiring rights to songs requires lawyers (expensive!). Also, most
consumers of karaoke software/hardware are not willing to pay
very much for it.

planning activities 93

• Unified (calendar, sync, files, dropbox)

See: https://xkcd.com/927/

• Online coupons/flyers

• SMS or App-based iClicker replacement

• Software that targets children

Collecting information from children is regulated by the Chil-
dren’s Online Privacy Protection Act and other laws.

• Alarm clock apps (weather, email)

• Collaboration using existing text editors (word, emacs, vim)

• Unified remote / IR blaster on phones

• Store receipts / receipt tracking

• Expense splitting/IOUs app

• Integration with retailers / Point-of-Sale

• Ride-sharing/carpool matching

• Anything that relies on advertising or freemium business models

• An app that automatically texts your girlfriend for you

• A device (e.g. sticker) that helps you find lost items (e.g. keys)
using a mobile app

• Review sites (e.g. past landlords / rental properties)

• Augmented reality

https://xkcd.com/927/

Conceptual Activities

6.1 Problem Identification and Refinement

Project concepts are often conceived with a statement such as: ‘a
fridge inventory app to reduce food waste’. This statement includes
a vague description of both the problem and the proposed solution.
Let’s sharpen them.

6.1.1 Problem-Space Exploration

Identify a broad set of related problems, as well as other possible
uses for the proposed solution. Some of these might be out of scope An important technique in ai is near-

miss learning: giving examples that are
close to the concept, but not quite it.
That’s part of what you are doing here.
http://groups.csail.mit.edu/genesis/
papers/2018JakeBarnwell.pdf

for your project. Identifying what is in scope and out of scope is a
valuable exercise both for you and for communicating with your
audience.

For our example project, we might consider the various kinds or
causes of domestic food waste. We can approach this in two ways:
(1) lateral thinking, and (2) reading the research literature, govern-
ment guidance, advice from non-governmental organizations (ngo),
etc. Let’s do some lateral thinking about food waste first, to get our
brains warmed-up to the topic.

Lateral thinking about why domestic food waste occurs:

• Bought too much food to begin with. Inexperienced Costco shopper?

• Bought food that they think they should eat, but don’t actually Pro tip: peel the broccoli first, then do
not overboil it. Overboiling makes the
broccoli soggy and unappealing, but
does not actually solve the toughness
issue nearly as well as peeling.

really want to eat. For example, maybe the user bought lots of
broccoli, but maybe they don’t actually know how to cook it prop-
erly, and they don’t like eating tough + soggy vegetables, so then
they let it expire instead of eating it.

• Bought unbalanced groceries. Maybe the user likes chicken+broccoli,
but forgot to buy the chicken, and don’t want to eat just broccoli,
so the broccoli goes to waste.

http://groups.csail.mit.edu/genesis/papers/2018 Jake Barnwell.pdf
http://groups.csail.mit.edu/genesis/papers/2018 Jake Barnwell.pdf

96 se capstone handbook [march 31, 2024]

• Food gets lost at the back of the fridge, behind other food.

• Fridge does not actually get opened. Perhaps the user buys gro-
ceries, but then goes out to eat.

• User makes food selections based on mood of the moment rather
than prioritizing upcoming expiration dates. They know the broc-
coli is there, but keep making alternative choices until the broccoli
expires.

• Food expires sooner than expected.

• Dislikes eating leftovers.

• User lacks education: best-before dates are different than expira-
tion dates; slightly past-prime fruits are still great in smoothies
and baked goods; soaking wilted vegetables in ice-water for 5-10
minutes reinvigorates them.

• User actually forgets what is in the fridge. The knowledge is no
longer in their brain. Has Alzheimer’s, for example.

Problem Research. Looking online quickly reveals that domestic
food waste is a well-studied topic. That’s fantastic: the software de-
sign can be informed by and benefit from all of this existing knowl-
edge about the problem of domestic food waste.

• Household Food Waste—How to Avoid It? An Integrative Review by
Lisanne van Geffen, Erica van Herpen, and Hans van Trijp, in the
book Food Waste Management: Solving the Wicked Problem, published
by Springer in 2019 (a scientific publisher). https://link.springer.
com/chapter/10.1007/978-3-030-20561-4_2

• Valuing the Multiple Impacts of Household Food Waste in the scien-
tific journal Frontiers in Nutrition. https://www.frontiersin.org/
articles/10.3389/fnut.2019.00143/full

• Canadian National Zero Waste Council (a non-governmental orga-
nization, ngo). https://lovefoodhatewaste.ca/about/national-zero-waste-council/

• City of Toronto public guidance. https://www.toronto.ca/services-payments/
recycling-organics-garbage/long-term-waste-strategy/waste-reduction/
food-waste/

• Toronto ngo dedicated to reducing food waste. https://tfpc.to/
food-waste-landing/food-waste-theissue

• usa ngo dedicated to reducing food waste. https://foodprint.
org/issues/the-problem-of-food-waste/

https://link.springer.com/chapter/10.1007/978-3-030-20561-4_2
https://link.springer.com/chapter/10.1007/978-3-030-20561-4_2
https://www.frontiersin.org/articles/10.3389/fnut.2019.00143/full
https://www.frontiersin.org/articles/10.3389/fnut.2019.00143/full
https://lovefoodhatewaste.ca/about/national-zero-waste-council/
https://www.toronto.ca/services-payments/recycling-organics-garbage/long-term-waste-strategy/waste-reduction/food-waste/
https://www.toronto.ca/services-payments/recycling-organics-garbage/long-term-waste-strategy/waste-reduction/food-waste/
https://www.toronto.ca/services-payments/recycling-organics-garbage/long-term-waste-strategy/waste-reduction/food-waste/
https://tfpc.to/food-waste-landing/food-waste-theissue
https://tfpc.to/food-waste-landing/food-waste-theissue
https://foodprint.org/issues/the-problem-of-food-waste/
https://foodprint.org/issues/the-problem-of-food-waste/

conceptual activities 97

• usa federal government Environmental Protection Agency (epa
website of public guidance. https://www.epa.gov/recycle/
reducing-wasted-food-home

• uk ngo report on food waste. https://shiftdesign.org/content/
uploads/2014/09/Shift_Food-Waste-inisghts.pdf

6.1.2 Solution-Space Exploration

What other solutions might solve some of the problems? Include
both software solutions, software+hardware solutions, and solutions
that do not involve computing. As with our problem-space explo-
ration above, we can do this both by lateral thinking and by reading.

Lateral thinking about some possible solutions:

• User gets a reward of some sort for actually looking in the fridge
to see what is going to expire in the next 2-3 days. Maybe a habit-
tracking kind of app, or maybe just a bowl of candy on top of
the fridge with the rule that the user can only eat a candy if they
inspect the fridge contents.

• Install a camera inside the fridge door, to send a picture to the
user’s phone. Many manufacturers are doing that kind of thing
these days.

• Buy a counter-depth fridge, which is shallower than normal, so it’s
harder for food to get lost at the back.

• Buy a fridge with the freezer on the bottom, so it’s easier to look in
to the fridge.

• Add a lazy-susan rotating shelf to the fridge, so things at the back
can be spun around to the front.

• Improve shopping habits to match acquisition with consumption.

• Improve meal planning to match acquisition with consumption.

• Don’t eat out so much.

• Make choices to eat food approaching expiry date, rather than
prioritizing the mood of the moment.

Reading about existing solution strategies in the articles and
websites listed above. Generate a list of them, and use that list as a
starting point for how you can add software improve existing ideas.

https://www.epa.gov/recycle/reducing-wasted-food-home
https://www.epa.gov/recycle/reducing-wasted-food-home
https://shiftdesign.org/content/uploads/2014/09/Shift_Food-Waste-inisghts.pdf
https://shiftdesign.org/content/uploads/2014/09/Shift_Food-Waste-inisghts.pdf

98 se capstone handbook [march 31, 2024]

6.1.3 Application-Space Exploration

What else could be done with the proposed solution? In our exam-
ple, what other problems could be solved with a fridge inventory
app? Lateral thinking:

• reduce trips to the grocery store

• ensure that staples are always in stock

• recipe planning/suggestion

6.1.4 Technology-Space Exploration

What is the best technology for the solution, including both hardware
and algorithms? For our food inventory example, a major challenge
would be data entry. What are some possible technologies that can
ease that burden from the user? Again, start with lateral thinking.

• Take a picture of the food as it goes in to the fridge, and say the
date it will expire.

• Put a cheap tablet on the door of the fridge, dedicated to running
this app. The screen turns on when the door opens.

• Make a voice-assistant app using one of those devices from Ama-
zon/Apple/Google. Many people like talking to technology.

• Scan groceries as user puts them in their cart in the store, instead
of when they put them in the fridge at home.

• Consumption data tracking. Knowing what is about to expire is
not just about knowing what went in to the fridge, but also about
what has already come out of it.

– Record each time user takes things out of the fridge.

– Display the list of foods sorted by expiration date, and let the
user just check off what they have already eaten. This could be
done at a separate time from when one is grabbing food out of
the fridge to eat.

6.1.5 Refinement

Refine your conception of the problem and your solution based on
the insights gained from the above exercises. A key objective here
is to ensure that your proposed solution aligns with the problem
you are trying to solve. Perhaps you will have a new solution, a new
feature to add to your solution, or decide to solve a slightly different
problem. Probably you will refine how you explain the alignment of
the problem and your solution.

conceptual activities 99

6.2 Identify the Core Conceptual Data Structure

Many projects have a core conceptual data structure. For example,
consider an app to share favourite places. Is the core conceptual data
structure a list? a set? a bag? Each supports different kinds of usage
scenarios. For example, a walking tour of a city or a museum needs
to be a list, because there is a clear temporal order to the places, and
it could make sense to revisit a place after having learned something
important elsewhere. But a ‘list’ of favourite restaurants is really
a set: there would no intrinsic ordering, and duplicates would be
forbidden.

Another example: a personal habit app, based on the idea of the
habit loop. The habit loop says that a habit has three components: a
cue, the activity, and a reward. So, in computer-science-speak, a habit
is a three-tuple, and a habit app’s core conceptual data structure
would be a set of such three-tuples.

Once this conceptual data structure is identified, then discuss
different ways the user might interact with it. Consider the habit app,
which is a set of three-tuples of ⟨ cue, activity, reward ⟩. Different use
cases might be:

• Destroy an Existing Tuple: That is, break a bad habit.
• Discover an Existing Tuple: Perhaps keep a log to discover the cues

that lead a particular behaviour.
• Create a New Tuple: Since these are three-tuples, the user might

have at least three different starting points, depending which part
of the tuple is known. Then the user’s task can be conceptualized
as a search to fill in the other values of the tuple. Consider:

– Known Cue: Match it up with a new activity + reward. For
example, suppose one already goes for a walk in the morning.
That can be a cue for an additional activity. Bring along an
exercise band to do some shoulder rotations, wrist exercises,
etc., while walking.

– Known Activity: Find cues that can be used to trigger the activ-
ity.

– Known Reward: Suppose the user wants to buy a new bike.
They could change their lunch habits to save money towards
that goal.

6.3 Position in Marketspace

Identify one or two dimensions of differentiation in the relevant
marketspace, and position your project with respect to existing al-
ternatives. Presumably your project represents a different tradeoff as

100 se capstone handbook [march 31, 2024]

compared to existing alternatives, and so populates a new position in
the marketspace.

6.4 Strategic Project Positioning

One of the key factors in choosing your project [§??] and understand-
ing project risk [§6.5] is strategic positioning. Making good strategic
decisions is one of the intended learning outcomes [§1].

On Symposium Day your grade will be determined in part by
your results [§14.2]. At a high-level, your software must have done
something for someone. There are currently four different categories You may propose a new category

if the existing ones do not fit your
project. One potential new category
that has been discussed many times is
framework.

of results to aim for [§14.2]: New Product, Custom Software, Re-

That is, contributing to a large, pre-
existing FOSS system. Not merely
releasing your code as FOSS.

search, and Free/Open Source Software.
Strategic positioning is fairly easy in the Custom Software, Re-

search, and FOSS categories: typically you have an external collabora-
tor who has already identified a good opportunity, and will provide
strong support for data acquisition and marketing (if necessary). But
these are the least popular categories. Most students want to make
new products — that category requires more strategic thinking. Some
common dimensions to consider include:

1. Data acquisition: Does the project need data? How are you going No team has really succeeded with web
scraping. It sucks a huge amount of
time and doesn’t produce good results.

to get it? Both UW Flow se2014 and Kaze se2016 were enabled by
the release of new third party data apis: UW Open Data and Riot
Games, respectively.

2. Marketing: How are you going to acquire users? UW Flow se2014
collaborated with students outside se and student activities, such
as orientation. Kaze se2016 used Reddit to reach League of Leg-
ends players. Sleekbyte se2016 reached out to prominent bloggers
and thought leaders to reach Swift programmers. Parallax se2016
similarly reached out to thought leaders in the WebGL community.

3. New Technology: Is there some new technology that gives your
project good leverage and timing? For example: Sleekbyte se2016
made a linter for Apple’s new programming language, Swift.
People have been making linters for forty years. Nothing new
there. Every mature language needs one. Swift didn’t have a good
one yet. Parallax se2016 made a debugger for WebGL, which was
relatively new and lacking debugger support.

4. Novelty in the real world is usually about shades of gray. Nev-
ertheless, working in a very crowded space, especially one with
entrenched interests, makes it harder to find a niche. The instructor’s opinion of whether

your project is likely to produce results,
based on your project blurb in se390,
can be wrong. That’s why it isn’t part
of the grading, and why we don’t tell
you that you cannot do a particular
project (assuming it is legal and ethical).

There are two main reasons the in-
structor’s opinion might be wrong:
your blurb does not adequately com-
municate your strategic advantages,
and they are not familiar with the
domain.

5. Background knowledge in an area can help you identify a good
opportunity. For example, Mixbox se2014 won a $10k Esch Award
for a music app that presented a new trade-off between features
and usability as compared to existing products.

6. Awesomeness: Some teams are determined to be better. For ex-
ample, a number of teams had done the course critique project
before UW Flow se2014, but they were determined to be better.
Many of the teams who do game-related projects put in astonish-
ing amounts of effort to produce great results: e.g., unLit se2016,

conceptual activities 101

HiveMind se2013, Kinectitude se2013.

102 se capstone handbook [march 31, 2024]

A few more ...

• On Trend

• Focused target population

• Underserved Space. e.g., video games for the blind.

• New technology / change in technological landscape.

• New data source. e.g., Riot Games

• Clear influencers in market, open to innovation. For example,
teachers might influence students.

• Familiarity with the target user community.

• Novel idea.

6.4.1 Strategic Blunders
blunder, noun: a gross error or mistake,
resulting from carelessness, stupidity, or
culpable ignorance. [Webster 1913]Against Vested Interests: Are there large corporations, unions,

social structures, or regulations that the project is likely to come in
conflict with? If so, then the project is probably too big for capstone:
fighting vested interests takes years.

Let’s start with a simple non-software example: flushless urinals. https://www.wired.com/2010/06/ff_
waterless_urinal/These are obviously a good idea from an environmental perspective.

Plumbers unions didn’t like them though because they reduced the
amount of work that plumbers would get: flushless urinals do not
require water supply lines. It took years to come to an agreement that
building codes would require water supply lines to be installed be-
hind the wall anyway, in case the building ever switched to flushing
urinals. Without agreement on the building code, it was difficult to
sell flushless urinals.

Uber is closer to the software space. Uber attempts to disrupt
entrenched interests in the taxi industry — often by breaking the law.
Maybe the existing laws and regulations around the taxi industry are
not fully in the consumer’s best interests and need to be updated in
light of modern technology. But planning to pick this kind of fight
— or planning to break the law — is probably beyond the scope of a
capstone project: consider the volume of time, money, lawsuits, and
people that Uber is investing in its efforts.

Around 2010 it was popular for se project proposals to involve http://www.michaelgeist.ca/tech-law-topics/copyright/
http://www.lessig.org/books/
http://www.reformingcopyright.org/

sharing digital media files (songs, movies, etc.). Those proposals
often broke copyright laws, and so students selected other projects.
Copyright laws do need to be reformed, but breaking the law on a
school project is not the way to achieve that reform. Join an existing
advocacy effort.

https://www.wired.com/2010/06/ff_waterless_urinal/
https://www.wired.com/2010/06/ff_waterless_urinal/
http://www.michaelgeist.ca/tech-law-topics/copyright/
http://www.lessig.org/books/
http://www.reformingcopyright.org/

conceptual activities 103

Access to Data:

Free Engineering Labour: If the commercial competitive advan-
tage of your project is that you could charge less to users because you
are not being paid for your labour, then it might be time to pause
and re-consider. The main exceptions to this are pro-bono projects that “Pro-bono is a Latin phrase for profes-

sional work undertaken voluntarily
and without payment. Unlike tradi-
tional volunteerism, it is service that
uses the specific skills of profession-
als to provide services to those who
are unable to afford them.” https:
//en.wikipedia.org/wiki/Pro_bono

benefit the public good: foss projects, projects for academic environ-
ments, and projects for non-profit organizations. Examples of past
pro-bono projects include:

• UWFlow
• Chantelle + follow-up
• Blueprint
• Speculative Execution
• eCrypt-FS
• ...

Dynalist, for example, is not undervaluing their engineering
labour as a means to compete: they charge market rates (similar to
their competitors), and compete on features.

Densely Populated Market Space: Are there many competitors
already existing in the space? Have many people done this project
before? If so, succeeding might require a high degree of both insight
in the domain and awesomeness might be required. Some examples
of projects that have succeeded in densely populated market spaces
include:

• UWFlow se2014

• MixBot se2014

• Parallax WebGL Debugger se2016

• Dynalist.io se2017

6.5 Understanding Project Risk

Many students perceive risk on capstone projects differently than
the instructors do. Here are few dimensions of project risk, along
with some generalizations about whether students under-estimate or
over-estimate risk in each dimension.

Data. Many historical se capstone project ideas did not reach their For example, in se2013 Team SeaSalt
wanted to do a project with airline
flight information: they abandoned
the project (after hundreds of hours)
when they discovered that the data they
needed costs upwards of one million
dollars. [§2.6.2]

full potential because they required commercially valuable data that
the students did not have access to. One way to succeed on such a
project is to collaborate with a third-party who has the data.

Students often under-estimate project risk due to data availability.

https://en.wikipedia.org/wiki/Pro_bono
https://en.wikipedia.org/wiki/Pro_bono

104 se capstone handbook [march 31, 2024]

Skills. A project idea might require learning a new programming For example, in se2021 Team SEXXI-
Goose chose to patch the Rust Com-
piler, yet nobody on the team had prior
experience with Rust. They learned the
language and succeeded. You can learn
new things and succeed too.

language or technology or concepts. That is ok. You are arguably the
best undergraduate software engineering students in the world. You
have the intellectual capacity to learn. You have the time to learn.

Students often over-estimate risk due to new skill acquisition.

Difficulty. Some projects present greater technical challenges than
others. The instructors know this. Your project grades will be moder-
ated by the difficulty of the challenge your are attempting.

Students often over-estimate risk due to technical challenge.

Popularity. Students tend to lean towards ‘popular’ project ideas Popular Project Ideas §5.6

(this is, by definition, what makes them popular). We, in collabora-
tion with Velocity, have compiled a list of some such projects [§5.6].
It is often difficult to produce results with these project ideas — al-
though there are notable exceptions, such as UWFlow [§??].

Students often under-estimate risk for popular project ideas.

Disagreements about potential. Sometimes the instructor
disagrees with the student assessment of the project potential —
especially around new products. But professors are not experts at as-
sessing new products and market needs and opportunities. The best
way to navigate this issue is to take it out of the realm of opinion by
providing substantive arguments and evidence for your opportunity.
Basing the case on your opinion alone invites the insturctor to have
different opinions.

Marketing. Projects that aim to be evaluated by their user base UWFlow (se2014 [§??] collaborated
with students in other faculties, as well
as orientation week organizers, to build
their user base.

will probably need to have a marketing plan to build that user base.
Students often under-estimate risk associated with marketing.

Scope. Some student project proposals are too big and some are
too small. For example, the general problem of video image search
(proposed in se2016) is too big: this is an active area of research that
requires a more focused project definition. Conversely, address book
synchronization (proposed in se2014) is too small.

Students usually propose projects of reasonable scope.

conceptual activities 105

6.5.1 Project Positioning Assessment

Project

Learning

Solution

Results

Inputs hidden1 Outputs

Individual Passion

Profession Problem

Society Opportunity

hidden0

Strategic Advantages

• passion for project
• clear learning outcomes
• new technology
• new data source
• clear technical problem
• team’s background knowledge
• target population:

– focused
– underserved
– clear influencers
– familiarity to team

• novelty
• awesomeness/commitment

Strategic Blunders

• against vested interests
• access to data
• undervalued engineering labour
• densely populated market space
• significant marketing required
• scope: too small; too large

106 se capstone handbook [march 31, 2024]

6.5.2 Some Strategic Assessments of Student Proposals

Restaurant Feedback System. Small family restaurants often
depend on building good relationships with their local communities
in order to stay afloat. Building this rapport is necessary for success
but can often be challenging because traditionally it requires face-
to-face communication between customers and restaurant owners.
Our proposed Restaurant Feedback System aims to facilitate these
communications by making it easy for customers to anonymously
provide feedback to restaurant owners.

What makes this system different from its existing counterparts
such as Yelp is that all feedback is private and meant only to help
restaurant owners improve their services. Local restaurants are likely
to want to use this system because it can help facilitate more honest
feedback than public review systems, where customers are likely to
exaggerate their comments and be excessively biased for the sake of
helping or harming the public image of the restaurant.

Since this system is set up to help restaurant owners succeed, we
will set up an incentive system in order to get restaurant customers
on board so that they have a reason to make reviews outside of help-
ing local businesses succeed. Owners will be able to create coupons
that they can offer to people who make reviews for their restaurant
anonymously.

Assessment: Your proposal for a Restaurant Feedback System makes
a good effort to lay out a strategy to get results: why it’s different
than Yelp/ChowHound/etc., and how you would entice restaurant
owners and patrons to use the system. That’s good.

I wonder if you actually know anyone who owns a restaurant? Do
they think this a good idea? I suspect that if they see any value in it
at all, they will see it as a way to get repeat business from existing
customers, and not really care about the feedback at all. Asking the
customers for the feedback is just a ruse to get them to think that
their opinion matters: the point is to get them to return and spend
money. Maybe some of the feedback will be meaningful and they
will act on it, but I doubt that they will be motivated by the idea of
feedback.

Also, have you consulted the literature on what motivates contrib-
utors to review sites? My (admittedly limited) knowledge of this area
is that they are motivated by one of the following three things:

1. Social status. Influencing others, being acknowledged as an ex-
pert.

2. Altruism. Contributing to human knowledge.

conceptual activities 107

3. Revenge. Complaining about something that went wrong at one
meal.

Your strategy involves offering them money (a discount on their
next meal). That will motivate some people to respond. But I think
most people who are motivated to respond this way will write the
shortest, most banal text possible in order to get the discount. Most
will probably write something like "good".

We have seen students do projects like this (not exactly the same)
several times in the past, and they have never been able to get trac-
tion. So, even though you have described a strategy for getting re-
sults, this historical experience makes me skeptical that the strategy
will succeed.

You are, of course, free to do what you want, and you should do
something that you are interested in. This strategic feedback is not
part of your grade for SE390. You will be evaluated on your results
on Symposium Day in March 2018 though.

My perception is that it would be much less risky, in terms of
your grades on Symposium Day, to pursue one of the other project
proposals: e.g., mapping underground rivers, watershed simulation
game, medical teaching app, Sana, etc. Project proposals such as
these describe software that people actually want. And many of
these proposals involve greater technical depth than your Restaurant
Feedback System proposal.

I’m happy to chat in class today.

108 se capstone handbook [march 31, 2024]

6.6 OLD: How to Choose a Project

Passion. Projects that students are excited about tend to succeed.
Capstone is a unique opportunity for your to pursue your interests.

Learning. Pick a project where you will learn something. Acquire
some new skills or ideas. Perhaps choose a project where you will be
able to explore some of your ate knowledge in greater depth.

Contribution. Engineering is about applying technology in the Symposium Day Results Rubrics [§14.2]

service of society, including through society’s commercial interests. Positioning can be important. For
example, se2016 Team Sleekbyte made
a linter for Apple’s Swift language at a
time when Swift was new and none of
the existing linters did proper parsing.
Similarly, se2016 Team Kaze was one
of the first to use Riot Games api for
League of Legends. Both of these teams
added value to a previously defined
user community.

Presumably you chose to be in engineering because you find satisfac-
tion in making useful things. The Symposium Day Results Rubrics
[§14.2] are some of the common ways that students have chosen to
make contributions in the past. Your project might make a contribu-
tion in a new way that requires the creation of new rubrics.

Team. You may pick your own team for the final project, with no You may continue either of the mini-
projects on as the full project. You may
form a new team or keep one of the
mini-project teams for the full project.

restrictions other than a minimum size of three (mandated by ceab),
and a maximum size of five (or maybe six; by historical convention
in se). One approach is to choose people you have worked with in
the past and then select an idea that you all (more or less) agree on.
Another approach is to seek out people who are excited about the
same idea as you are.

Ideation. Consider many ideas. The more ideas you consider, the
better the chances of finding a good one that you are satisfied with.

Typically the most difficult thing for engineering students in gen-
erating ideas is to temporarily turn off the critical analysis part of
their brains. Generation and evaluation of ideas are completely sepa-
rate mental activities that should be done on separate days. In engi-
neering education we often focus on analysis and evaluation rather
than generation. Other technical disciplines, such as industrial design
and architecture, spend more time training their students to generate
ideas. This part of capstone is one of your opportunities to develop
your lateral thinking skills, to think of ideas without consequences,
to laugh while doing your school work. Embrace that experience.
Something good will come of it.

6.7 Position in a Conceptual Framework

Find a conceptual framework relevant to your project and write
about where your project fits. Perhaps there is a difference between

conceptual activities 109

what your users want and what you can legally provide, for example.
Here is an example spectrum from anonymous to identified; some-

thing like this was used on a past project:

• Unconditional Anonymity: Anonymity is cryptographically pro-
tected. For example, Tor aims to provide this level of anonymity.

• Revocable Anonymity: Anonymous so long as rules are followed,
but authorities can discover identity if rules are broken. For exam-
ple, by getting a search warrant.

• Partial Anonymity: Anonymous to most others, but perhaps not all.
For example, a post in a class discussion forum that is anonymous
to classmates but not to the instructors.

• Pseudonymous Identity: Like a reddit userid. Not necessarily con-
nected to your actual identity, but something you use repeatedly
over time on the same site, and possibly also on different sites.

• Self-Asserted Identity: You tell people who you are, but without
providing any supporting evidence.

• Socially-Validated Identity: Other people vouch for who you are.
• Verified Identity: Government issued id.

6.8 Write a Research Literature Report

Identify an important facet of your project and explore its prior art For example, movie rental websites and
dating websites both use recommen-
dation systems. What are some of the
ways in which these differ? For most
people, the number of movies they
watch is orders of magnitude larger
than the number of people they date.
These kinds of differences in the empir-
ical data might (or might not) lead to
differences in the kinds of algorithms
that are appropriate.

in the research literature, patent literature, and commercial practice.
For each relevant and important instance of prior art that you find,
include an abstract and an analysis in your report. For research pa-
pers or patents the abstract you include could be the abstract from
the paper (appropriately quoted and cited). Your analysis should
discuss the similarities and differences between the prior work and
your project. Some common topics from the past have included data
synchronization, recommendation systems, version control, and dis-
tributed algorithms.

This (optional) report counts towards your team’s productivity.

6.9 Apply Rules of Thumb

Rule of Thumb: a broadly accurate guide
or principle, based on experience or
practice rather than theory.

This is part of the accumulated wis-
dom of our profession. You should
be aware of these, and part of devel-
oping your professional judgement is
knowing when they apply.

Amdahl’s Law (1967) Used to calculate the maximum possible

https://en.wikipedia.org/wiki/
Amdahl’s_law

overall speedup of a program if part of it is paralellized.

Brooks’s Law1 (1975) Adding manpower to a late software project 1 Frederick P. Brooks. The Mythical
Man-Month: Essays on Software
Engineering. Addison-Wesley, 1975

makes it later.

Brooks on Prototyping2 (1975) Plan to throw one away; you will 2 Frederick P. Brooks. The Mythical
Man-Month: Essays on Software
Engineering. Addison-Wesley, 1975

anyhow.

https://en.wikipedia.org/wiki/Amdahl's_law
https://en.wikipedia.org/wiki/Amdahl's_law

110 se capstone handbook [march 31, 2024]

CAP Theorem3 It is impossible for a distributed system to provide 3 Wikipedia. CAP Theorem
(Brewer ’s Theorem). URL
https://en.wikipedia.org/wiki/
CAP_theorem. Retrieved 2016-11-15

all three of consistency, availability, and partition tolerance.

Fallacies of Distributed Computing were collected by en- https://en.wikipedia.org/wiki/
Fallacies_of_distributed_computinggineers at Sun Microsystems over many years, including L. Peter

Deutsch, Bill Joy, Tom Lyon, James Gosling, and others.

• The network is reliable;
• Latency is zero;
• Bandwidth is infinite;
• The network is secure;
• Topology doesn’t change;
• There is one administrator;
• Transport cost is zero;
• The network is homogeneous.
• We all trust each other.

Conway’s Law4 (1968) Any piece of software reflects the organiza- 4 Melvin E. Conway. How do
committees invent? Datamation,
14(5):28–31, April 1968. URL
http://www.melconway.com/
research/committees.html

tional structure that produced it.

Hyrum’s Law (2018)5
5 Hyrum Wright. Hyrum’s
Law, 2018. URL https://www.
hyrumslaw.com/. This concept is
much older than Hyrum. For ex-
ample, IBM has been maintaining
backwards compatibility for offi-
cially undocumented features/bugs
on their mainframes for over half a
century

With a sufficient number of users of an API,
it does not matter what you promise in the contract:
all observable behaviors of your system
will be depended on by somebody.

Greenspun’s Tenth Rule (1993) Any sufficiently complicated C

https://en.wikipedia.org/wiki/
Greenspun’s_tenth_rule

or Fortran program contains an ad hoc, informally-specified, bug-
ridden, slow implementation of half of Common Lisp.

Hoare’s Razor6 (1980) There are two ways of constructing a soft- 6 C. A. R. Hoare. The emperor’s old
clothes. Communications of the ACM, 24
(2):75–83, February 1981. Acceptance
speech for 1980 Turing Award

ware design: One way is to make it so simple that there are obviously
no deficiencies, and the other way is to make it so complicated that
there are no obvious deficiencies. The first method is far more diffi-
cult.

Saint-Exupéry’s Razor (1939) Perfection is finally attained not Wind, Sand, and Stars (Terre des hommes).
Translated to English by Lewis Galan-
tière. A memoir of adventures in the
early days of aviation. The only non-
software author in this section. This
quote is widely cited by all kinds of
designers, including software design-
ers (e.g., Lampson’s Hints for Systems
Design).

when there is no longer anything to add, but when there is no longer
anything to take away.

Metcalfe’s Law (1980) The value of a network is proportional to

Metcalfe was awarded the 2022 Turing
Award for contributions to networking.

https://en.wikipedia.org/wiki/
Metcalfe’s_law

the square of the number of connected users/devices.

Moore’s Law (1965) Transistor density doubles every two years.

https://en.wikipedia.org/wiki/Moore’
s_law

https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
http://www.melconway.com/research/committees.html
http://www.melconway.com/research/committees.html
https://www.hyrumslaw.com/
https://www.hyrumslaw.com/
https://en.wikipedia.org/wiki/Greenspun's_tenth_rule
https://en.wikipedia.org/wiki/Greenspun's_tenth_rule
https://en.wikipedia.org/wiki/Metcalfe's_law
https://en.wikipedia.org/wiki/Metcalfe's_law
https://en.wikipedia.org/wiki/Moore's_law
https://en.wikipedia.org/wiki/Moore's_law

conceptual activities 111

Lehman’s Law’s of Software Evolution (1972–1996) Lehman https://en.wikipedia.org/wiki/
Lehman’s_laws_of_software_evolutionfirst divides programs into three kinds:

• S-type: Has an exact specification.
• P-type: In an externally defined domain, such as playing chess.
• E-type: Used by people for some socially constructed task. Must

adapt to changes in the social/business environment.

The laws only apply to E-type programs.

1. Continuing Change: an E-type system must be continually adapted
or it becomes progressively less satisfactory.

2. Increasing Complexity: as an E-type system evolves, its complexity
increases unless work is done to maintain or reduce it.

3. Self Regulation: E-type system evolution processes are self-regulating
with the distribution of product and process measures close to
normal.

4. Conservation of Organisational Stability (invariant work rate): the
average effective global activity rate in an evolving E-type system
is invariant over the product’s lifetime.

5. Conservation of Familiarity: as an E-type system evolves, all asso-
ciated with it, developers, sales personnel and users, for example,
must maintain mastery of its content and behaviour to achieve
satisfactory evolution. Excessive growth diminishes that mastery.
Hence the average incremental growth remains invariant as the
system evolves.

6. Continuing Growth: the functional content of an E-type system
must be continually increased to maintain user satisfaction over its
lifetime.

7. Declining Quality: the quality of an E-type system will appear to
be declining unless it is rigorously maintained and adapted to
operational environment changes.

8. Feedback System: E-type evolution processes constitute multi-level,
multi-loop, multi-agent feedback systems and must be treated as
such to achieve significant improvement over any reasonable base.

Parnas’s Criteria7 (1972) A program should be decomposed into 7 David Lorge Parnas. On the Criteria to
be Used in Decomposing Systems into
Modules. Communications of the ACM,
15(12):1053–1058, December 1972
https://en.wikipedia.org/wiki/David_Parnas

modules in a way that encapsulates (hides) things that are likely to
change in the future. When those things do change, adapting the
program is a relatively simple and localized edit. The program’s
module structure should not be derived from a flowchart describing
the computation.

This idea is the basis of design patterns,8 which mostly describe 8 Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley,
1995

how to organize object-oriented software to manage certain kinds of
anticipated future change.

https://en.wikipedia.org/wiki/Lehman's_laws_of_software_evolution
https://en.wikipedia.org/wiki/Lehman's_laws_of_software_evolution
https://en.wikipedia.org/wiki/David_Parnas

112 se capstone handbook [march 31, 2024]

Parnas’s Path As a rule, software systems do not work well until
they have been used, and have failed repeatedly, in real applications.

Lampson’s Hints on System Design9 (1983) Recommended 9 Butler W. Lampson. Hints for com-
puter system design. ACM Operating
Systems Review, 15(5):33–48, October
1983. URL http://research.microsoft.
com/en-us/um/people/blampson/
33-hints/webpage.html. The online
version is slightly revised

reading for anyone doing systems programming. Lampson won
the 1992 Turing Award for his work in computer systems design.
His long career spans Xerox parc, mit, and Microsoft Research.
Significant update in 2021, including a new title Hints and Principles
for Computer System Design.10 10 Butler W. Lampson. Hints and

principles for computer system design.
URL https://arxiv.org/abs/2011.02455.
Updated version of the 1983 classic

Hoare’s Hints on Language Design11 (1973) A classic set of
11 C.A.R. Hoare. Hints on programming
language design. Technical Report
STAN-CS-73-403, Stanford, December
1973. URL http://web.eecs.umich.edu/
~bchandra/courses/papers/Hoare_
Hints.pdf. Keynote talk at POPL’73

guidelines. Lampson recommends this as complementary reading to
his hints. Lampson points out that api design is language design —
just without the concrete syntax.

Perlis’s Epigrams (1982) Selected excerpts:
Epigram: a pithy saying or remark
expressing an idea in a clever and
amusing way. Perlis’s article Epigrams
on Programming was published in acm
sigplan Notices 17(9) 1982.
https://en.wikipedia.org/wiki/
Epigrams_on_Programming

Alan Perlis: (1922–1990) Recipient
of the first Turing Award (1966): for
his influence in the area of advanced
programming techniques and compiler
construction (this official citation refers
to his work on the algol language).
Prof at Yale.
https://en.wikipedia.org/wiki/Alan_Perlis

5. If a program manipulates a large amount of data, it does so in a
small number of ways.

6. Symmetry is a complexity-reducing concept; seek it everywhere.
7. It is easier to write an incorrect program than understand a correct

one.
9. It is better to have 100 functions operate on one data structure

than 10 functions on 10 data structures.
15. Everything should be built top-down, except the first time.
16. Every program has (at least) two purposes: the one for which it

was written, and another for which it wasn’t.
19. A language that doesn’t affect the way you think about program-

ming is not worth knowing.
20. Wherever there is modularity there is the potential for misunder-

standing: Hiding information implies a need to check communica-
tion.

21. Optimization hinders evolution.
31. Simplicity does not precede complexity, but follows it.
54. Beware of the Turing tar-pit in which everything is possible but https://en.wikipedia.org/wiki/Turing_

tarpitnothing of interest is easy.
58. Fools ignore complexity. Pragmatists suffer it. Some can avoid it.

Geniuses remove it.
102. One can’t proceed from the informal to the formal by formal

means.

6.10 Position in Normal vs Radical Design Don’t reinvent the wheel

Engineers have been distinguishing between normal and radical de-
sign for some time:

http://research.microsoft.com/en-us/um/people/blampson/33-hints/webpage.html
http://research.microsoft.com/en-us/um/people/blampson/33-hints/webpage.html
http://research.microsoft.com/en-us/um/people/blampson/33-hints/webpage.html
https://arxiv.org/abs/2011.02455
http://web.eecs.umich.edu/~bchandra/courses/papers/Hoare_Hints.pdf
http://web.eecs.umich.edu/~bchandra/courses/papers/Hoare_Hints.pdf
http://web.eecs.umich.edu/~bchandra/courses/papers/Hoare_Hints.pdf
https://en.wikipedia.org/wiki/Epigrams_on_Programming
https://en.wikipedia.org/wiki/Epigrams_on_Programming
https://en.wikipedia.org/wiki/Alan_Perlis
https://en.wikipedia.org/wiki/Turing_tarpit
https://en.wikipedia.org/wiki/Turing_tarpit

conceptual activities 113

In designing a new machine, an engineer employs familiar compo-
nents, often in rearranged configurations and occasionally in radically
modified ones.12 12 Eugene S. Ferguson. Engineering

and the Mind’s Eye. The MIT Press,
Cambridge, Mass., 1992Ferguson continues:

An auto engine is an everyday machine whose existence 500 years ago
was impossible to imagine. Yet except for the electrical components—
the ignition coil and the spark plugs—nearly all of its elements were
known when Leonardo was alive (1452–1519). The engine is composed
of cylinders and pistons, a crankshaft, conical valves, cams, gears, bear-
ings, chains, belts, and other mechanical components. The repertoire
of mechanical elements was astonishingly close to completion when
Leonardo was filling his notebooks with drawings of them. Some com-
ponents, such as cylinders and pistons, date as far back as the first
century a.d.13 13 Eugene S. Ferguson. Engineering

and the Mind’s Eye. The MIT Press,
Cambridge, Mass., 1992Normal design involves incremental improvement in a product class

that is well understood, with known problems and solutions, and
customary user interactions. By contrast:14 14 Walter G. Vincenti. What Engineers

Know and How They Know It: Analytical
Studies from Aeronautical History. The
Johns Hopkins University Press, 1993

In radical design, how the device should be arranged or even how it
works is largely unknown. The designer has never seen such a device
before and has nor presumption of success. The problem is to design
something that will function well enough to warrant further develop-
ment.

How might we consider the space in between normal and radical
design? Should we group the Toyota Prius with the Apollo space
program (entirely radical) or the 2010 Honda Civic (completely nor-
mal)? Or is it somewhere in between? Figure 6.1 explores the space
between normal and radical in terms of components and their com-
position. In the middle ground, a design might arrange normal com-
ponents in a radical way, or it might involve radical new components
arranged in a normal way.

In software engineering our most common kinds of components
are data structures, algorithms, and protocols. We record normal
arrangements of these components in reference architectures, architec-
tural styles,15 and design patterns.16 A reference architecture describes 15 David Garlan and Mary Shaw. Soft-

ware Architecture: Perspectives on an
Emerging Discipline. Prentice-Hall, Inc.,
1996
16 Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley,
1995

a normal way of building a particular kind of thing, such as a web
server, a compiler, or an operating system. We might say that micro-
kernel and monolithic kernel are two different reference architectures
for operating systems. Architectural styles and design patterns de-
scribe normal ways of arranging components, independent of the
particular problem domain.

Don’t reinvent the wheel. Most engineering practice involves
normal design, and there are many practical benefits to working

114 se capstone handbook [march 31, 2024]

com
ponents

co
m
po

sit
io
n

Normal Radical

radical components
normal composition

normal components
radical composition

Mach
Watt Engine

Aeron
L3

System Rjavac

Figure 6.1: The space between Nor-
mal and Radical design in terms of
components and composition.

For example, we might consider the
Watt steam engine a radical composi-
tion of normal components: James Watt
had the idea to separate the condenser
from the cylinder while repairing a
Newcommen steam engine (a design
that was already fifty years old when
Watt had his idea). Similarly, we might
consider early microkernel designs
(such as Mach) to be a radical com-
position of normal components: an
operating system still has a file system,
memory management, scheduling, etc.;
it’s just that a microkernel arranges
these things differently than a mono-
lithic kernel.

The Aeron chair substitutes mesh
over a frame for fabric and upholstery:
a radical component in what is other-
wise a normal chair. L3 showed that
by re-engineering the components of
a microkernel performance could be
improved considerably.

System R was an early relational
database engine (from IBM). javac is the
standard Java compiler (from Sun).

within the bounds of normality, including: reduced risk, reduced
cost, easier maintenance, easier communication, and faster develop-
ment time. Innovation generally increases risk, and so the benefits of
the proposed innovation should outweigh its costs and risks.

Professional designers find normal solutions to radical problems:
they find a way to minimize the innovation required. Some good
strategies for doing this include:

• Re-imagine the new radical problem as a known normal problem
through an analogy.

• Arrange normal components in a radical way.

• Use radical components in a normal arrangement.

Amateurs, by contrast, find radical solutions to normal problems:
they reinvent the wheel. Amateurs create unnecessary difficulty not
only for themselves, but also for those who must pay for, use, and
maintain the systems they create.

Terminology. The Taylor17 software architecture textbook uses

17 Richard N. Taylor, Nenad Medvi-
dović, and Eric M. Dashofy. Software
Architecture: Foundations, Theory and
Practice. John Wiley & Sons, 2009

the term unprecedented for what we are calling radical design. Our
terminology originates with Edward Constant18, and comes to us by

18 Edward W. Constant. The Origins
of the Turbojet Revolution. The Johns
Hopkins University Press, 1980

way of Vincenti19 and Jackson20.

19 Walter G. Vincenti. What Engineers
Know and How They Know It: Analytical
Studies from Aeronautical History. The
Johns Hopkins University Press, 1993
20 Michael A. Jackson. The Name and
Nature of Software Engineering. In
Egon Börger and Antonio Cisternino,
editors, Advances in Software Engineering:
Revised Lectures of Lipari Summer School
2007, volume 5316 of Lecture Notes in
Computer Science, pages 1–38. Springer-
Verlag, 2008

conceptual activities 115

6.11 Apply an Idea from the Project Domain

Find an idea from the project domain and apply it to the design of
the project.

For example, consider a new product project to make an app for
helping users towards their life goals. Searching on the internet for
‘life goals’ turns up several web pages. One of the top ten is written
by someone who is both a psychologist and a mba, starts with a
citation, and is rather long.21 So probably a good source for project

21 Christine Moore. How to set and
achieve life goals the right way. Tech-
nical report, Positive Psychology, 2020.
URL https://positivepsychology.com/
life-worth-living-setting-life-goals/domain ideas. Let’s skim to see what ideas are there:

1. ‘Goal-setting theory draws on the concept that our conscious ideas guide
our actions (Locke, 1968).’ Ok, so there is a theory of goal setting. https://positivepsychology.com/

goal-setting-theory/But this article doesn’t explain that theory right away, so we’ll put
it on the back burner for now.

2. ‘Goal-setting Can Promote Happiness.’ This section mentions the https://positivepsychology.com/
perma-model/perma model of happiness. Again, that idea is explained on an-

other page, so we’ll put it on the back burner.
3. Ah, the first figure is Maslow’s hierarchy of human needs. That’s https://www.simplypsychology.org/

maslow.htmlclassic psych101 material, so possibly familiar. Let’s go with that.

Figure 6.2: Maslow’s hierarchy of
human needs [image from https:
//www.simplypsychology.org/maslow.
html]

Applying the idea to the project scope. There are many kinds
of life goals. For example, writing a novel, losing weight, getting
admitted to university, quitting smoking, getting married, having

https://positivepsychology.com/life-worth-living-setting-life-goals/
https://positivepsychology.com/life-worth-living-setting-life-goals/
https://positivepsychology.com/goal-setting-theory/
https://positivepsychology.com/goal-setting-theory/
https://positivepsychology.com/perma-model/
https://positivepsychology.com/perma-model/
https://www.simplypsychology.org/maslow.html
https://www.simplypsychology.org/maslow.html
https://www.simplypsychology.org/maslow.html
https://www.simplypsychology.org/maslow.html
https://www.simplypsychology.org/maslow.html

116 se capstone handbook [march 31, 2024]

kids, climbing a mountain, and so on. Just this small example set
is quite diverse. The team could decide to focus on just one part
of Maslow’s hierarchy, for example: Self-Actualization. That might
include goals like writing a novel (for users who are not writers), but
would likely exclude the other examples, as in many cases they are
more likely connected to other levels of Maslow’s hierarchy.

It is important to realize that goals might be at different levels of
the hierarchy for different people. For example, writing a novel is
always a form of creative expression, but is probably more in the
Esteem level for someone who is already a published author, and
perhaps more in the Self-Actualization level for someone in a stem
line of work.

The team might decide that the project scope is supporting Self-
Actualization life goals for users with successful stem careers, who
have always experienced intense external pressure at the Esteem
level. Or the team might decide on a different scope. The point is
that the a project domain idea (Maslow’s hierarchy of human needs)
is being applied to define a scope. Perhaps they could also define
the project using the other ideas from this example model, such as
Locke’s theory of goal setting or the perma model of happiness.

Applying the idea to the project design. Perhaps the team There are many other aspects of this
example project design that Maslow’s
hierarchy could be applied to.

has an idea that users can give each other ‘stickers’ as a way to en-
courage each other towards their life goals. Design question: should
everyone see what stickers have been given to which posts?

Answer from idea application: Stickers are a form of Esteem goal
relization. But Esteem goals are out of scope for this project, and so
might distract the users from their Self-Actualization goals (remem-
ber, the target user group are setting these Self-Actualization goals
in order to try to surmount the constant external pressure to achieve
Esteem goals). So making the stickers private might help the users
still give and receive support with less temptation to turn this app
into yet another social media Esteem project. In that vein, perhaps
each post may receive at most one sticker, or at most three stickers, to
put another limit on Esteem-seeking distraction within the app.

6.12 Apply Cognitive Bias Understanding

Learn about cognitive biases and apply that knowledge to some
aspect of your project, such as: your understanding of the project;
your user’s use of the software, etc.

https://en.wikipedia.org/wiki/List_of_cognitive_biases
https://uwaterloo.ca/knowledge-integration-exhibition/ki-x-2017/

cognitive-casino
https://www.verywellmind.com/what-is-a-cognitive-bias-2794963

https://en.wikipedia.org/wiki/List_of_cognitive_biases
https://uwaterloo.ca/knowledge-integration-exhibition/ki-x-2017/cognitive-casino
https://uwaterloo.ca/knowledge-integration-exhibition/ki-x-2017/cognitive-casino
https://www.verywellmind.com/what-is-a-cognitive-bias-2794963

Requirements Activities

This is a superset of various activities taught in various offerings
of se463. If you are doing one of these activites for se463 then you
cannot double count it for your capstone course.

7.1 Domain Model

7.2 Use Cases & Scenarios

7.3 User Manual

7.4 Lean Canvas

118 se capstone handbook [march 31, 2024]

7.5 Hypothesis Testing
From Prof Jo Atlee

Most of the information in your Lean Canvas are hypotheses. Among
these hypotheses identify five (5) that reflect the riskiest parts of your
plan regarding

• your target customer segments (who are your early adoptors, do
they care about the identified problems)

• the customers’ problems (what their most significant problems are,
how important are they), and

• your competition (how do your customers solve their problems
now, and is their current solution good enough)

For each hypothesis:

1. Construct a pass/fail test (falsifiable hypothesis).
2. Interview at least five members of the relevant customer segment

– enough to suggest whether your hypothesis holds or not (no
need to establish statistical significance). Provide anonymized
data about the customers interviewed (e.g., type of stakeholder,
demographics).

3. Provide a clear and professional summary of the results of the test
(e.g., percentages of responses per test answer, insights learned)

4. If your initial hypothesis is false, provide a pivot hypothesis.

7.6 Identify User’s Emotional Objectives

We are often focused on user’s functional objectives. But in many
circumstances emotional objectives drive decision-making.

• What is the user hoping to feel from use of the software?
• What relationships will be strengthened?
• What will use of the software tell the user about their self-concept? The automobile industry, for example,

has a strong messaging here: this car
will make me feel rich; this car will
make me feel like an adventurer; etc.For example, consider a website to faciliate peer resume critiques.

The functional objectives are around actually doing the resume cri-
tiques. But the emotional objective for the user is to reduce anxiety
around the job search process. What else can the software do to help
achieve this emotional objective?

7.7 Practice Decoding Analogies/Metaphors

Decoding analogies is an important skill for communicating with
clients because they will often explain what they think they want
using an analogy. For example, a client might say that they want

requirements activities 119

software ‘like Garage Band’ because Garage Band is something that
they are familiar with. But their project domain might not be music.

You might have practiced decoding analogies for the sat or ssat
tests. It might be a good idea to do some of those practice problems
now.

Additionally, decoding client analogies in software engineering
requires identifying places where the analogy doesn’t hold. Literary
reasoning tends to focus on the parts of the analogy that work, rather
than the parts that don’t work.

Practice decoding analogical descriptions of software requirements
given by clients.

Design Activities

8.1 Describe Your Architecture
The Software Engineering Institute
at Carnegie Mellon University has
catalogued over 20 different definitions
for software architecture.

http://www.sei.cmu.edu/
architecture/start/definitions.cfm

Describe your architecture using an appropriate technique, which
might be a diagram. Justify why you take a structure-oriented, decision-
oriented, or communication-oriented approach to describing your
project’s architecture.

8.1.1 Structure-Oriented Definitions of Software Architecture

Architectural styles and design patterns are examples of structure-
oriented descriptions of software architecture. Some important
structure-oriented definitions of software architecture include:

• Garlan & Perry:1 The structure of the components of a program/sys- 1 David Garlan and Dewayne E. Perry.
Introduction to the special issue on
software architecture. IEEE Transactions
on Software Engineering, 2(1), April 1995

tem, their interrelationships, and principles and guidelines govern-
ing their design and evolution over time.

• ANSI/IEEE 1471:2 The fundamental organization of a system, 2 IEEE. Recommended practice for
architecture description of software-
intensive systems. Technical Report
ANSI/IEEE 1471-2000, 2000. URL http:
//www.iso-architecture.org/ieee-1471/

embodied in its components, their relationships to each other
and the environment, and the principles governing its design and
evolution.

• Bass, Clements, & Kazman:3 The software architecture of a program 3 Len Bass, Paul Clements, and Rick
Kazman. Software Architecture in
Practice. Addison-Wesley, 2 edition,
2003

or computing system is the structure or structures of the system,
which comprise software elements, the externally visible proper-
ties of those elements, and the relationships among them.

The industrial designer and architect Charles Eames4 made a clearer 4 Bill Moggridge. Designing Interactions.
The MIT Press, Cambridge, Mass., 2007

p.648
and more concise statement of this kind of definition several decades
earlier:

• Eames: A plan for arranging elements in such a way as to best
accomplish a particular purpose.

Structure-oriented definitions are the most common and have consid-
erable influence over our design representations.

http://www.sei.cmu.edu/architecture/start/definitions.cfm
http://www.sei.cmu.edu/architecture/start/definitions.cfm
http://www.iso-architecture.org/ieee-1471/
http://www.iso-architecture.org/ieee-1471/

122 se capstone handbook [march 31, 2024]

8.1.2 Decision-Oriented Definitions of Software Architecture

Decision-oriented definitions are gaining prominence in systems en-
gineering (e.g., Koo & Simmons5) and are occasionally found in soft- 5 H.-Y. Benjamin Koo. A Meta-language

for Systems Architecting. PhD thesis,
Engineering Systems Design, Mas-
sachusetts Institute of Technology, 2005;
and Willard Simmons. A Framework for
Decision Support in Systems Architecting.
PhD thesis, Aeronautics & Astronautics,
Massachusetts Institute of Technology,
2008

ware. For example, the Taylor et alia 6 software architecture textbook

6 Richard N. Taylor, Nenad Medvidović,
and Eric M. Dashofy. Software Archi-
tecture: Foundations, Theory and Practice.
John Wiley & Sons, 2009

gives the following pleasingly concise definition:

• Taylor et al. [58]: A software system’s architecture is the set of princi-
pal design decisions made about the system.

Why are the advantages of a decision-centric view of software ar-
chitecture? Structure-oriented definitions are rooted in an analogy
to the physical world, whereas decision-oriented definitions are in-
herently conceptual. Software is a conceptual, rather than physical,
artifact. For example, important decisions in the design of a software
system include policies about naming, mutation, storage, computa-
tion, etc.. These decisions do not exist as components in the system
but, rather, govern how the components behave and interact.

8.1.3 Communication-Oriented Definitions of Software Architecture

Conway’s Law is an important idea in software engineering:

• Conway7 1968: organizations which design systems ... are con- 7 Melvin E. Conway. How do
committees invent? Datamation,
14(5):28–31, April 1968. URL
http://www.melconway.com/research/
committees.html

strained to produce designs which are copies of the communica-
tion structures of these organizations

When computing was brand new there weren’t software companies.
Software was developed in companies that were organized around
other concerns, such as manufacturing or services or regulation or
historical practice. Conway’s Law arose out of an observation of the
software produced by these companies. But Conway’s Law is still
true today. What we have learned is to change how we organize our
software engineering teams in order to produce the software we
want.

8.2 Extract & Analyze Your Architecture

Use an architecture extraction tool to analyze your code and ex- Doxygen is a well-known open-source
architecture extraction tool. There are
many others.

tract an architecture diagram. Check that the extracted architecture
matches your expectations:8 8 Gail Murphy, David Notkin, and

Kevin J. Sullivan. Software reflexion
models. IEEE Transactions on Software
Engineering, 27(4):364–380, 2001

• Are there nodes missing?
• Are there unexpected nodes?
• Are there edges missing?
• Are there unexpected edges?

http://www.melconway.com/research/committees.html
http://www.melconway.com/research/committees.html

design activities 123

8.3 Apply Formal Methods
Amazon’s web services group now
makes regular use of these techniques.
http://dl.acm.org/citation.cfm?id=2699417

http://alloy.mit.edu

http://spinroot.com
https://en.wikipedia.org/wiki/TLA%2B

Construct a formal logic model of some aspect of your design and
run mechanical analyses on it. Potential tools for this task include
Alloy, Spin, and tla+. This approach can be particularly important
for distributed systems, network protocols, or other projects requiring
precise correctness criteria.

8.4 Apply UI Design Guidelines

Select an appropriate set of user interface guidelines and apply them.
There are user interface guidelines published by free/open-source
organizations, corporations, and even government. Here are some
examples:

• https://www.microsoft.com/design
• https://www.microsoft.com/design/fluent/
• https://developer.apple.com/design/human-interface-guidelines/
• https://material.io/design
• https://developer.android.com/design
• https://www.ibm.com/design/language/
• https://polaris.shopify.com
• https://www.atlassian.design
• https://design.firefox.com/photon/
• https://hig.kde.org
• https://developer.gnome.org/hig/stable
• https://www.usability.gov

8.5 Incorporate Privacy by Design
In September 2019 se students orga-
nized CitizenHacks.com, a privacy-
oriented hackathon with Dr Cavoukian
as invited keynote speaker.

Privacy By Design is a systems engineering approach developed by
Dr Ann Cavoukian, former Information & Privacy Commissioner
of Ontario. It was adopted by the International Assembly of Pri-

https://en.wikipedia.org/wiki/
Privacy_by_designvacy Commissioners and Data Protection Authorities in 2010, and

is incorporated into the European gdpr (General Data Protection
Regulation). It has seven foundational principles: https://www.ipc.on.ca/

wp-content/uploads/resources/
7foundationalprinciples.pdf1. Proactive not Reactive; Preventative not Remedial

2. Privacy is the Default Setting
3. Privacy Embedded into Design
4. Full Functionality — Positive-Sum, not Zero-Sum
5. End-to-End Security — Full Lifecycle Protection
6. Visibility and Transparency — Keep it Open
7. Respect for User Privacy — Keep it User-Centric

Incorporate Privacy by Design into your project.

http://dl.acm.org/citation.cfm?id=2699417
http://alloy.mit.edu
http://spinroot.com
https://en.wikipedia.org/wiki/TLA%2B
https://www.microsoft.com/design
https://www.microsoft.com/design/fluent/
https://developer.apple.com/design/human-interface-guidelines/
https://material.io/design
https://developer.android.com/design
https://www.ibm.com/design/language/
https://polaris.shopify.com
https://www.atlassian.design
https://design.firefox.com/photon/
https://hig.kde.org
https://developer.gnome.org/hig/stable
https://www.usability.gov
CitizenHacks.com
https://en.wikipedia.org/wiki/Privacy_by_design
https://en.wikipedia.org/wiki/Privacy_by_design
https://www.ipc.on.ca/wp-content/uploads/resources/7foundationalprinciples.pdf
https://www.ipc.on.ca/wp-content/uploads/resources/7foundationalprinciples.pdf
https://www.ipc.on.ca/wp-content/uploads/resources/7foundationalprinciples.pdf

124 se capstone handbook [march 31, 2024]

8.6 Peer Design Exploration

In this in-class exercise every team will discuss a design challenge in
their project with other teams. Every team is expected to provide, in
advance of class, a brief (one page maximum) description of at least
one (possibly two) design challenge(s). This description may be di-
agrammatic or textual or some combination thereof. The challenge
might concern fitness for purpose or fitness for future. When in con-
sulting role, each team is expected to provide at least two alternative
solutions to the other team’s presented design challenge.

Class time will be divided into two 50 minute halves, which will
in turn be sub-divided into two 25 minute quarters. In the first quar-
ter team A will describe their design challenge to team B, who will
provide at least two solutions. In the second quarter they will switch
roles and team A will provide solutions to team B’s design challenge.
In the second half team pairings will be rotated.

8.7 Peer Design Review

In this in-class exercise you will apply ideas you have learned in
se464 to reviewing project design from two other teams. These ideas
from se464 will include design patterns, architectural styles, code
smells, and refactoring. Your team will receive reviews from two This exercise will span two class meet-

ings. In each meeting you will review a
team and be reviewed.

other teams. Your report should be a one page diagram and one page
of text covering the following three issues:

• Explanation of the Design. What are the compenents? What li- 1
3 page text + 1 page diagram

braries and tools are used? How are they arranged? Any note-
worthy uses of architectural styles or design patterns? etc. This
exercise is focsed on the internal design and architecture of the
software — not the user experience (that is covered in the Peer
Usability exercise).

• Fitness for Purpose. A rationale for why this design meets the spec- 1
3 page text

ification. Why is this design better than reasonable alternatives? If For example, UW Flow (se 2014) made
a design error by using MongoDB for
data that would have been better stored
in a relational database.

the project is in a known domain with a known solution strategy,
is it following normal design conventions? If the project is in a
novel domain or has a novel solution strategy, why is the proposed
design a good match?

• Fitness for Future. What are the anticipated kinds of change, 1
3 page text

growth, or variability in the domain? Does the design facilitate For example, using the Visitor design
pattern in a compiler enables new
analyses and transformations to be
added to in a modular fashion.

managing that change in a modular fashion? What are core as-
sumptions that cannot be changed?

design activities 125

up to 1 page textDesign Review. As the reviewing team, your job is to think critically
about the other team’s design:

• Does the design report address the questions above?
• Is the design fit for purpose? Does it meet the specification?
• Is the design fit for the future? Can it grow modularly?
• Does the code implement the design? (look at the code!)
• Is the design solving the right problem?
• Are there design alternatives that should be considered?
• Are there coding issues that should be addressed?

8.8 Select a Database Technology
The term NoSQL is new-ish, but the
concept of hierarchical databases
predates commercial SQL databases
by about twenty years. One of the
most successful software products of
all time is IBM’s IMS, which is still a
widely used enterprise product, and
started development in the 1960s for
the Apollo space program. https://en.
wikipedia.org/wiki/IBM_Information_
Management_System

The 1973 Turing Award went to
Charles Bachman for foundational
work on networked/hierarchical
databases (which is the way that many
people use MongoDB today). https:
//amturing.acm.org/award_winners/
bachman_9385610.cfm

SQL databases weren’t acknowl-
edged by the Turing Award un-
til 1981, with Ted Codd’s award.
https://amturing.acm.org/award_
winners/codd_1000892.cfm

Many projects use some kind of database technology. There are many
kinds of database technology. Determine which one best meets the
technical needs of your project. Database technologies vary on sev-
eral dimensions, including:

• Data Model: relational, key/value, hierarchical, graph, object, time-
series, etc.

• Workload: kinds, frequencies, and sizes of reads, writes, and
queries.

• Storage Model: row-oriented, column-oriented, other
• Concurrency Control: Most database engines provide some kind of

concurrency control, although not all provide full acid support.
Some, such as sqlite quite intentionally have no concurrency
control.

• Distributed vs. Centralized.

Technical needs are not the only technology selection criteria in
engineering projects. Other factors might include licensing, avail-
ability of labour, alignment with other organizational standards, etc.
However, you should be able to identify which database technology
is most appropriate for your project’s technical needs, even if you
select something else for non-technical reasons.

8.9 Apply (or Reject) the UNIX Design Philosophy
https://en.wikipedia.org/wiki/Unix_
philosophy

Dan Luu has some interest-
ing discussion and commentary
https://danluu.com/cli-complexity/

The unix design philosophy has been summarized in the following
three points:

• Write programs that do one thing and do it well.
• Write programs to work together.
• Write programs to handle text streams, because that is a universal

interface.

https://en.wikipedia.org/wiki/IBM_Information_Management_System
https://en.wikipedia.org/wiki/IBM_Information_Management_System
https://en.wikipedia.org/wiki/IBM_Information_Management_System
https://amturing.acm.org/award_winners/bachman_9385610.cfm
https://amturing.acm.org/award_winners/bachman_9385610.cfm
https://amturing.acm.org/award_winners/bachman_9385610.cfm
https://amturing.acm.org/award_winners/codd_1000892.cfm
https://amturing.acm.org/award_winners/codd_1000892.cfm
https://en.wikipedia.org/wiki/Unix_philosophy
https://en.wikipedia.org/wiki/Unix_philosophy
https://danluu.com/cli-complexity/

126 se capstone handbook [march 31, 2024]

There are contexts where it can make sense to explicitly reject aspects
of the unix design philosophy, and certainly important thinkers in
software engineering (such as Don Norman) have done so.

Think about your project, whether you are following the unix
philosophy, and whether you should. Compare your project to other
well-known example projects and whether they followed the unix
philosophy or not.

8.10 Read a Book on Approaches to Software Design

Take a look at a book about software design, and discuss in the con-
text of your project. One good approach is that each team member
skims several chapters, so that collectively you have examined the
entire book. The books listed here are a starting point; you might find
other interesting books worth reading.

• Clean Architecture: A Craftsman’s Guide to Software Structure and Design by Robert C. Martin
• Design It!: From Programmer to Software Architect by Michael Keeling
• A Philosophy of Software Design by John Ousterhout
• Software Design Decoded: 66 Ways Experts Think by Marian Petre et alia
• Software Designers in Action: A Human-Centric Look at Design Work by Marian Petre et alia
• Designing Software by Alex Baker et alia

Testing Activities

9.1 Assess Testing

Assess the current state of your project’s testing. This might be as
simple as saying ‘needs improvement’. Or it might be more sophisti-
cated. For example, measuring coverage (of lines, branches, methods,
input space, etc.).

Assessment could also categorize tests by scope: unit tests, func-
tional tests, system tests, integration tests, regression tests, etc.

It’s pretty unsatisfying to read a report that says “OK, our state is
‘needs improvement’.” If your testing is not as good as you would
like it to be, you should also think of the best next steps to improve
your testing.

9.2 Create More Manual Tests

Create more tests, according to some identified goal(s).

9.3 Identify Invariants

Invariants are properties that should always be true (with the possible
exception of intermediate states during what should be atomic up-
dates). For example, that a particular pointer should never be null,
or that some numeric value should always be greater than zero, etc.
Data structures often have invariants. For example, in a red/black
tree, the nodes must alternate between red and black.

Once invariants are identified, then assertions can be added to
check them. This way one gets more value out of an existing library
of test inputs.

9.4 Identify Mathematical Properties

Sometimes parts of a program should have mathematical proper-
ties. For example, an equals method should define a mathematical

128 se capstone handbook [march 31, 2024]

equivalence class, which should be reflexive, symmetric, and transitive.
Two other general properties that can be useful in testing are in-

verse functions and idempotence. For example, parsing and pretty-
printing are inverse functions. Idempotence means that if the func-
tion is applied repeatedly it produces the same result as if applied
only once. For example, data synchronization should be idempo-
tent: after the first synchronization, if nothing has changed, then the
second synchronization shouldn’t change any of the data.

9.5 Use Automated Test Input Generation Tools

There are now a variety of automated test input generation tools,
which tend to fall in to three main categories:

Systematic: Generate all inputs that meet a general description. For e.g., Korat

example, all non-isomorphic trees up to size five.

Random: Generate random inputs, or random sequences of method e.g., Randoop

calls. Systematic techniques tend to be bounded to small inputs,
whereas random testing can create larger inputs.

Fuzz: Generate garbage. Garbage inputs should not cause the pro-
gram to crash.

9.6 Use A Linter
se2016 Team Sleekbyte wrote a linter
for the Swift language.A linter is a tool that scans your source code for problems that are

more sophisticated than what a compiler typically finds, but less so-
phisticated than what an automated test-generation tool might find.
Most mature languages have linters available. For this (and analo-
gously for other activities in this section), report what happens once
you incorporate the linter (or other tool) into your CI workflow. Ide-
ally, you incorporate the linter early and you use it for a few weeks.
Then you report what you find after you’ve been using it. This only
works if you add enough code during your linting period to make
linting worthwhile. Do you find friction from using the linter, as a
developer? Is using the linter tolerable? Do you have a huge pile of
linter issues to fix when you initially add the linter?

9.7 Test Against an Alternative Implementation

Find, or create, an alternative implementation to test against. This
technique is particularly applicable when the goal of your project
is improved performance. The faster and more sophisticated algo-
rithm should still compute the same result as the simpler and slower
algorithm.

testing activities 129

9.8 Set Up Continuous Integration

Set up a continuous integration system.

9.9 Set Up Deployment Environments
https://opensource.com/article/17/5/
colorful-deployments

https://rollout.io/blog/
rolling-deployment/

Separate development, testing, and production environments. Or
Blue/Green deployment (two production environments, where only
one handles live traffic), rolling deployments, etc.

9.10 Statistical Cross-Validation for Machine Learning
https://machinelearningmastery.com/
k-fold-cross-validation/Statistical cross-validation is a group of techniques that can be used

to evaluate how well a machine-learning system will be able to make
correct conclusions on unseen data. https://en.wikipedia.org/wiki/

Cross-validation_(statistics)A popular technique is k-fold cross-validation. Suppose you have
1000 labelled data-points, and you want to do a 5-fold validation
(k=5). Randomly divide the data-points into 5 groups of 200 data-
points each. Do 5 rounds of evaluation, one for each group. In each
round of evaluation there will be 1 test group and 4 training groups.
Train the model on the training groups, evaluate on the test group,
then discard the model before the next round. Report the 5 results.

9.11 Performance Profiling
Michael A. Jackson has famously
coined the first two rules of program
optimization:

1. Don’t do it.
2. (For experts only!): Don’t do it yet.

Measure the performance of your program. Where are the real bot-
tlenecks? If you don’t measure it, you cannot focus your efforts ap-
propriately. For example, tweaking the algorithm won’t matter if the
time is actually dominated by object serialization.

9.12 Scalability Assessment and Planning

Programmers often like to think about the future, when there will be
great demand for the programs they have written and scalability will
be a concern. The first step is to do an assessment of the current de-
sign: how many users is it likely to support before having scalability
concerns? Is there a load tester that can be used to simulate increased
demand to provide empirical evidence for the estimate?

The next step is to make a plan for possible alternative designs
that would be more scalable. Implementing one of these alternative
plans should probably be deferred until there is a good engineering
case that the demand exists, or will soon exist, or the technical debt
of the current design will become a problem itself.

https://opensource.com/article/17/5/colorful-deployments
https://opensource.com/article/17/5/colorful-deployments
https://rollout.io/blog/rolling-deployment/
https://rollout.io/blog/rolling-deployment/
https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/k-fold-cross-validation/
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
https://en.wikipedia.org/wiki/Cross-validation_(statistics)

130 se capstone handbook [march 31, 2024]

9.13 Measure Precision and Recall
https://en.wikipedia.org/wiki/
Precision_and_recall
https://en.wikipedia.org/wiki/
Information_retrieval

Precision and recall are common efficacy measures for information
retrieval and machine learning systems. A system with perfect pre-
cision returns no false positives. A system with perfect recall returns
no false negatives (i.e., finds everything of interest). The challenge is
to do well on both of these measures. Simply returning everything
will have perfect recall but terrible precision. By contrast, a system
that returns nothing will have perfect precision but terrible recall.

https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Information_retrieval

User-Centred Design (from cs449)

This chapter is based on notes taken
by Beverly Vaz se2021 from the s20
offering of cs449 taught by Edith Law.

https://en.wikipedia.org/wiki/
User-centered_designUser-Centred Design is an approach to product design, including

software product design, that considers the user’s perspective at each
step of the design process. Importantly, ucd involves validating the Example cs449 project ap-

plying these techniques:
https://medium.com/gomeet/
cs-449-design-process-of-gomeet-d8ec35997f99

user experience through engaging with actual users. This chapter
summarizes one approach to ucd, as taught in cs449.

Types of Observations that a researcher might make of users: Researcher here means someone who is
studying (researching) the target user
population.

Non-participatory: A detached observer is observed without them
knowing they are under observation. Done in public spaces.

Passive participation: The researcher is known and participants know
the research goals

Active Participation: The researcher is fully engaged with the partici-
pants as they are friends.

Complete participation: The researcher is fully embedded as a spy

10.1 Value Proposition

Ideally, the design and development of any idea should start with
creating a value proposition.

A value proposition is a laser sharp description of the service
you intend to provide and should ideally be summarised in a single
sentence.

It should answer one of the following questions:

• What does your product do?

• How does it work? or,

• What does it feel like to use your product?

https://en.wikipedia.org/wiki/User-centered_design
https://en.wikipedia.org/wiki/User-centered_design
https://medium.com/gomeet/cs-449-design-process-of-gomeet-d8ec35997f99
https://medium.com/gomeet/cs-449-design-process-of-gomeet-d8ec35997f99

132 se capstone handbook [march 31, 2024]

10.2 Persona Empathy Map
https://www.nngroup.com/articles/
empathy-mapping/With these defined, the next step would be to draw the persona-

empathy map. (This is referred to in the handbook as ‘Persona building’).
First, you need to identify the product’s user group, i.e, the general

description of the target user based on certain characteristics.
Next, you should come up with specific descriptions of target

users that you draw from your user group. This would be the per-
sonas you create. These will be fictional characters that represent
what a real target user would be like.

This should be followed up with the creation of empathy maps.
Empathy maps represent what the persona thinks, feels, experiences
and wants.

Keep in mind: When you create personas and empathy maps, you
are making assumptions about your end-users. These assumptions
need to be tested in the field.

To give you an idea of what a persona and empathy map should
look like, here’s an example:

Figure 10.1: Example of what a persona
looks like

https://www.nngroup.com/articles/empathy-mapping/
https://www.nngroup.com/articles/empathy-mapping/

user-centred design (from cs449) 133

Figure 10.2: Example of what an empa-
thy map looks like

134 se capstone handbook [march 31, 2024]

10.3 Gather Data

In order to test your assumptions, you need to gather data. There are
2 ways to go about this.

1. Quantitative Methods
These are methods used to collect a large amount of data and
are listed under ‘Moran’s 9 Quantitative User Activities’ in the
handbook.

2. Qualitative Methods
These are methods used to capture rich descriptions of people and
phenomena.
There are 3 main ways this is done. Through:

• Observations
Can be:

– Controlled - performed in a lab

– Naturalistic - observed at home, on a bus

See 10 for types of observations.

• Interviews
(This is mentioned in the handbook as User Interviews).
An interview has 5 main parts:

(i) Introduction
Seek consent and inform the interviewee about what’s com-
ing up and the purpose of the interview

(ii) Kickoff
Ask non-threatening questions to get to know the intervie-
wee

(iii) Building Rapport
Ask questions to get a detailed understanding of the intervie-
wee

(iv) Grand Tour
Let people tell their story

(v) Reflection/Wrap up
Summarize the main things learnt and thank the interviewee

• Focus Groups
These are great for open questions and story sharing. It helps
explore user’s attitude, opinions, expectations and reactions.

10.4 Analyze Data

After collecting data, it’s important that you analyze it, draw some
findings and reiterate on your design. This can be done with the

user-centred design (from cs449) 135

help of affinity diagramming. The affinity diagram will help identify
features your product should contain.

Method Go through the notes made while collecting data and
write some key points on sticky notes. Arrange the notes in a hierar-
chy using a bottom-up process to reach a single overarching theme
that covers all notes. The themes and sub-themes are initially un-
known. This would reveal issues common across all users.

Here’s an example of what an affinity diagram would look like.
Source: Payton, Talisha (February 8, 2016), Learning UX, Affinity Diagrams: Tips and

Tricks; Retrieved from https://medium.com/learning-ux/affinity-diagrams-tips-and-tricks-

6225e8c1f0df

For each feature that’s been decided, a design argument must be
written. A design argument is a testable hypothesis of why character-
istics of a design will help overcome an obstacle to achieve a desired
outcome.

Once you have the design arguments done, you may proceed
with creation of user stories. (This is mentioned in the handbook as
User Studies.) These describe functionality that will be valuable to
the user.

10.5 Crazy 8s

Once you have the features planned out you can perform Crazy
8. (This is referred to in the handbook as Crazy8 under Creative
Activities). In this activity you draw 8 sketches of different possible
layouts and screen organizations for the feature.

Here’s an example of what a Crazy 8 activity output would look
like.

Follow Crazy 8 with storyboarding. Storyboarding is where you
illustrate the use of a feature. Display the background/context, emo-
tion and accomplishments a user should experience with the feature.

Draw the screens required for the feature. These are called sketches.
Illustrate the path a user would follow when they use the feature and
the screens. This is called user flow.

10.6 Low-Fidelity Prototyping

Once you have the screens drawn out, you can conduct a low-fidelity
prototype evaluation. Low-fidelity prototype evaluations are ex-
pected to be low on technology, have partial functionality and the
interaction is simulated. This can be achieved through a paper proto-
type evaluation.

During the paper prototype evaluation, you want to get users to
try out the screens by making them believe it is an actual application

136 se capstone handbook [march 31, 2024]

Figure 10.3: Image of affinity diagram

user-centred design (from cs449) 137

Figure 10.4: Image of Crazy 8

Figure 10.5: Image of sketch

138 se capstone handbook [march 31, 2024]

on a phone. You manually switch between screens for the user when
they click a button on the screen (this is the simulated interaction
being referred to).

You need to perform the following steps:

• Identify testing goals

• Identify the items to test

• Choose testers

• Prepare the material - tasks, things to observe, questions to ask the
evaluator

• Based on what needs to be done, assign roles - who observes, who
simulates interaction

• Run the evaluation

• Analyze information obtained from the evaluation

Based on your findings, you might need to refine your feature.

10.7 High-Fidelity Prototyping

You can next move to high-fidelity prototyping. Typically a tool
like Figma is used to create the screens and connections are made
between the screens so you can make the interaction seem true and
almost like what a user would experience if they actually interacted
with your application. At this stage, color schemes and logos make a
difference and have to be decided upon.

To evaluate the high-fidelity prototype, you can conduct heuristic
evaluations and cognitive walkthroughs.

Both follow goal-based tasks. However, in a heuristic evaluation,
the evaluators are experts and assess the tasks based on Nielsen’s 10 Usability Rules of Thumb
(mentioned in the handbook).

In a cognitive walkthrough, a typical user is picked and they are
observed as they go about performing the tasks. An ideal way of
performing the task is listed out by the designer and is referred to as
the success story. The user’s actions are compared against the success
story and inferences are made. It’s useful for judging things like ‘Is
adequate feedback provided to the user?’

User Activities

11.1 Take TCPS2 Training: Ethical Conduct with Users

The Canadian Tri-Councils have a framework and training program The Tri-Councils are: nserc (National
Science and Engineering Research
Council), sshrc (Social Sciences and
Humanities Research Council), and
cihr (Canadian Institutes of Health
Research).

for ethical conduct for research involving humans called tcps2. Your user
activities are not necessarily ‘research,’ but you should still do this
training if you wish to conduct serious user activities.

This tcps2 training is mandatory for all students in cs449, and
also for all researchers in Canada who work with human subjects —
including software engineering researchers. https://ethics.gc.ca/eng/

policy-politique_tcps2-eptc2_2018.html

1. Take the training: https://tcps2core.ca/welcome
2. Identify relevant parts of the tcps2 framework.
3. Apply the tcps2 framework to your proposed user activities.

11.2 Do a User Activity

There are dozens of activities that you can do with users. The Courses like cs449, msci343, syde548
teach you about these activities.Nielsen/Norman Group is a leader in this area, and has several

good overview articles to help you select activities that are appro-
priate to for each stage of your project. Most of the rest of this section
provides you pointers to those Nielsen/Norman Group articles.

11.3 Ideate about Possible User Activities that You Might Do

Generate a list of 5–10 ideas of user activities that you might do at
some future point. For each kind of activity, generate at least one (but
preferrably two or three) different ways in which you might apply
that activity in your project. For example, there are multiple ways
one might use a/b testing.

https://ethics.gc.ca/eng/policy-politique_tcps2-eptc2_2018.html
https://ethics.gc.ca/eng/policy-politique_tcps2-eptc2_2018.html
https://tcps2core.ca/welcome

140 se capstone handbook [march 31, 2024]

11.4 Formative vs. Summative Evaluations

stem courses are often focused on summative evaluations, like exams.
Summative evaluations are often quantitative or comparative, and
they typically occur infrequently. Summative evaluations can also be
done for designs:

“Summative evaluations describe how well a design performs.”1 1 Alita Joyce. Formative vs. summa-
tive evaluations. Technical report,
Nielsen/Norman Group, 2019. URL
https://www.nngroup.com/articles/
formative-vs-summative-evaluations/

Formative evaluations are uncommon in stem courses, but they are
essential both for students in open-ended design courses and for
designs:

“Formative evaluations focus on determining which aspects of the
design work well or not, and why.”1

Formative evaluations should occur more frequently than summative The terms formative evaluation and
summative evaluation actually originated
in education theory, by Michael Scriven
in 1967. They were then later adopted
by designers to talk about evaluating
designs.

evaluations in open-ended design situations, to ensure that the prob-
lem definition is aligned with the user needs, and that the proposed
solution strategy is aligned with the problem definition. Similarly,
in design courses, students benefit from formative evaluations to get
feedback to keep them on track.

https://www.nngroup.com/articles/formative-vs-summative-evaluations/
https://www.nngroup.com/articles/formative-vs-summative-evaluations/

user activities 141

11.5 Rohrer Survey of 20 Different User Activities

Rohrer2 organizes 20 different user-research methods along 3 axes:

2 Christian Rohrer. When to
use which user-experience re-
search methods. Technical report,
Nielsen/Norman Group, 2014. URL
https://www.nngroup.com/articles/
which-ux-research-methods/• Attitudinal vs. Behavioral

• Qualitative vs. Quantitative
• Context of Use

Figure 11.1: Central figure from
Rohrer’s user-activity survey article
for the Nielsen/Norman Group.

https://www.nngroup.com/articles/which-ux-research-methods/
https://www.nngroup.com/articles/which-ux-research-methods/

142 se capstone handbook [march 31, 2024]

11.6 Farrell’s Survey of 34 User Activity Methods

Farrell3 surveys 34 user activity methods, organizing them around

3 Susan Farrell. UX research
cheat sheet. Technical report,
Nielsen/Norman Group, 2017. URL
https://www.nngroup.com/articles/
ux-research-cheat-sheet/which phase of the design cycle they are most appropriate for.

Figure 11.2: Central figure from Far-
rell’s user-activity survey article for the
Nielsen/Norman Group.

https://www.nngroup.com/articles/ux-research-cheat-sheet/
https://www.nngroup.com/articles/ux-research-cheat-sheet/

user activities 143

11.7 Moran’s Survey of 9 Quantitative User Activities

Moran4 goes in depth with 9 different quantitative user activities: 4 Kate Moran. Quantitative
user-research methodologies:
An overview. Technical report,
Nielsen/Norman Group, 2018. URL
https://www.nngroup.com/articles/
quantitative-user-research-methods/

• Quantitative Usability Testing (Benchmarking)
• Web Analytics (or App Analytics)
• A/B Testing or Multivariate Testing
• Card Sorting
• Tree Testing
• Surveys or Questionnaires
• Clustering Qualitative Comments
• Desirability Studies
• Eyetracking Testing

11.8 Nielsen’s 10 Usability Rules of Thumb

A good learning activity is to apply Nielsen’s 10 usability rules of
thumb to your project:5 5 Jakob Nielsen. 10 usability heuristics

for user interface design. Technical
report, Nielsen/Norman Group, 1994.
URL https://www.nngroup.com/
articles/ten-usability-heuristics/

• Visibility of system status
• Match between system and the real world
• User control and freedom
• Consistency and standards
• Error prevention
• Recognition rather than recall
• Flexibility and efficiency of use
• Aesthetic and minimalist design
• Help users recognize, diagnose, and recover from errors
• Help and documentation

11.9 Why Testing With 5 Users is Usually Enough

Nielsen6 discusses why usability testing with 5 users is usually 6 Jakob Nielsen. Why you only need
to test with 5 users. Technical report,
Nielsen/Norman Group, 2000. URL
https://www.nngroup.com/articles/
why-you-only-need-to-test-with-5-users/

enough to discover the most prominent flaws in your current design
and give you enough feedback to start refining the design.

11.10 27 Tips for Conducting Successful User Research in the Field

Farrell7 gives 27 tips for conducting user research ‘in the field’ — 7 Susan Farrell. 27 tips and tricks
for conducting successful user re-
search in the field. Technical report,
Nielsen/Norman Group, 2017. URL
https://www.nngroup.com/articles/
tips-user-research-field/

which means outside of the company’s offices. Capstone design
teams typically do not have their own dedicated office space, and
typically have different resources available than a corporation. So not
all of these tips are relevant to your context, but many of them are.

https://www.nngroup.com/articles/quantitative-user-research-methods/
https://www.nngroup.com/articles/quantitative-user-research-methods/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/tips-user-research-field/
https://www.nngroup.com/articles/tips-user-research-field/

144 se capstone handbook [march 31, 2024]

11.11 Levels of ux Design Maturity

Nielsen8 describes eight levels of team/corporate maturity with 8 Jakob Nielsen. Corporate ux ma-
turity: Stages 1–4. Technical re-
port, Nielsen/Norman Group, 2006.
URL https://www.nngroup.com/
articles/ux-maturity-stages-1-4/; and
Jakob Nielsen. Corporate ux ma-
turity: Stages 5–8. Technical report,
Nielsen/Norman Group, 2006. URL
https://www.nngroup.com/articles/
ux-maturity-stages-5-8/

regards to ux maturity. Note that the levels are cumulative, so being

This is analogous to the Capability Ma-
turity Model described by the Software
Engineering Institute at Carnegie Melon
University.

at level 7 also means doing what is required for level 6 etc.

1. Hostility Toward Usability. You can do better than this.
2. Developer-Centered User Experience. The developer’s care about

usability, but they only rely on their own intuitions in making their
designs. They do not due any user activities.

3. Skunkworks User Experience. No official budget or plan for user
activities, but some manage to happen anyways.

4. Dedicated ux Budget. The team actively plans their milestones and
goals around user activities, although typically focused just on
user activities at the end of the design cycle.

5. Managed Usability. The organization dedicates a group to ux This stage doesn’t have a lot of meaning
in our capstone design team context.design.

6. Systematic User-Centred Design (ucd) Process. The team conducts
early user research before they do any design. The team has an
interative design process that involves user activities in each itera-
tion.

7. Integrated User-Centered Design. The project definition and the
requirements are infused with user data.

8. User-Driven Corporation. The organization makes decisions about
which projects to pursue based on user research. The concept
of total user experience goes beyond the screen to also consider
hardware selection and other aspects of user experience.

If your project involves user experience, and no other significant
technical elements, then your team is expected to rise to at least ux
maturity level 6: systematic user-centred design process. The team is The levels are cumulative, so truly

achieving level 7 also means achieving
level 6, etc.

expected to stretch towards maturity level 7 insofar as the project
definition and requirements should at least incorporate user-oriented
data from external sources, if not your own original user research.

For example, if the project was an app for reducing domestic food
waste, that is a 100% user experience project: it likely has no other
significant technical elements. Such a project might even stretch
towards maturity level 8 by considering the hardware of the design,
such as mounting an inexpensive tablet on the fridge or having a
voice-interface device.

https://www.nngroup.com/articles/ux-maturity-stages-1-4/
https://www.nngroup.com/articles/ux-maturity-stages-1-4/
https://www.nngroup.com/articles/ux-maturity-stages-5-8/
https://www.nngroup.com/articles/ux-maturity-stages-5-8/

user activities 145

11.12 Apply Universal Design for Accessibility

‘Universal Design is the design and composition of an environment
so that it can be accessed, understood and used to the greatest extent
possible by all people regardless of their age, size, ability or disabil-
ity.’9 While much of the literature around universal design focuses on 9 http://universaldesign.ie/

What-is-Universal-Design/the physical environment, it is also important in software. The seven
principles of universal design are:10 10 http://universaldesign.ie/

What-is-Universal-Design/
The-7-Principles/

A good book on universal design is:

Sara Hendren. What Can a Body
Do? How We Meet the Built World.
Riverhead Books, 2020. URL
https://www.penguinrandomhouse.
com/books/561049/
what-can-a-body-do-by-sara-hendren/

1. Equitable Use
2. Flexibility in Use
3. Simple and Intuitive Use
4. Perceptible Information
5. Tolerance for Error
6. Low Physical Effort
7. Size and Space for Approach and Use

Learn about universal design and accessibility in software and apply
your new knowledge to your project.

11.13 Peer Usability Review

For this in-class exercise you will have the opportunity to get usabil-
ity feedback from your classmates. If your project does not involve
a usability component then your grade will be determined by the
quality of the feedback you give to other teams.

Class time will be divided into 15-20 minute segments, and teams
will rotate to new partners for each segment.

Teams gathering usability feedback are expected to provide, before
class starts, a brief write-up of what they hope to learn about, what
methods they intend to use, and what questions or activities the
will be requested of the users. It is expected that most teams will
be focused on formative evaluation (i.e., getting feedback on how to http://www.measuringu.com/blog/

formative-summative.phpimprove an incomplete design) rather than summative evaluation (i.e.,
measuring a completed design). Methods might include think- http://www.nngroup.com/articles/which-

ux-research-methods/
http://www.nngroup.com/articles/
thinking-aloud-the-1-usability-tool/

https://en.wikipedia.org/wiki/Think_
aloud_protocol

aloud, participatory design, interviews, focus groups, A/B testing, concept
testing, usability benchmarking, etc. Teams with usability concerns in
their projects are expected to enroll in a usability course or otherwise
educate themselves in this area: teaching this material is beyond the
scope of the se Capstone courses.

Teams are expected to respond to this peer usability feedback by
the se490 final demo. As indicated on the status sheet, this response
could be either to incorporate or refute the feedback.

http://universaldesign.ie/What-is-Universal-Design/
http://universaldesign.ie/What-is-Universal-Design/
http://universaldesign.ie/What-is-Universal-Design/The-7-Principles/
http://universaldesign.ie/What-is-Universal-Design/The-7-Principles/
http://universaldesign.ie/What-is-Universal-Design/The-7-Principles/
https://www.penguinrandomhouse.com/books/561049/what-can-a-body-do-by-sara-hendren/
https://www.penguinrandomhouse.com/books/561049/what-can-a-body-do-by-sara-hendren/
https://www.penguinrandomhouse.com/books/561049/what-can-a-body-do-by-sara-hendren/
http://www.measuringu.com/blog/formative-summative.php
http://www.measuringu.com/blog/formative-summative.php
http://www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/
http://www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/
https://en.wikipedia.org/wiki/Think_aloud_protocol
https://en.wikipedia.org/wiki/Think_aloud_protocol

146 se capstone handbook [march 31, 2024]

11.14 User Acquisition
Contributed by Yingning Gui se2022

11.14.1 Define your user persona

Identify if the project is for enterprise or consumer users. If your
product is best used in teams, then you are likely building for enter-
prise. Consider what type of teams would use it, what type of com-
panies, what size of companies, and what industries. If your product
is for consumers, consider what demographic you are targeting and
where these people currently are online.

Next, flesh out the details of your user persona. What is your ideal
user’s current behaviour? What do they want to achieve? Define the
demographic profiles, goals, and a scenario use case.

11.14.2 Find your users
Places you might find users:

• Reddit
• Twitter
• Facebook
• Hacker News
• Product Hunt
• Beta List
• Indie Hackers

Once you have created your user profile, you can now find places
they are present. The internet has communities for every niche, try
searching for communities relevant to your product on Reddit, Twit-
ter, Hacker News and other forums. Post on these platforms and
engage with potential users. There are also many modern platforms
that product and technology enthusiasts browse to discover new so-
lutions to their problems, such as Product Hunt, Beta List, and Indie
Hackers.

11.14.3 Engage with your users

Be active on social media and keep an eye out for posts mentioning
your product. It’s also common for software products to set up Slack
workspaces or Discord servers for eager users to provide feedback to
the product.

Reflective Activities

12.1 Watch Past Project Presentations

Each member of your team watches a different past project video and
writes a paragraph about what they learned from it.

12.2 Analyze Past Project Awards

Look at projects that have won awards and identify the qualities that
the referees were celebrating. Express contrary opinions if you have
them.

12.3 Index Past Projects

Pick a theme and build a list of past projects connected to that theme.
Use the project abstracts and videos to learn about them. Contribute
your list so that other students can benefit from it in the future.

12.4 Read Past Project Reports

Some past student research projects have produced written reports
(and some of them have been published). Each member of your team
reads a different report and writes a paragraph about what they
learned from it.

https://git.uwaterloo.ca/secapstone/abstracts/-/tree/master/publications
https://git.uwaterloo.ca/secapstone/abstracts/-/tree/master/reports

12.5 Read Turing Award Speeches
https://amturing.acm.org/

Each member of your team reads a different Turing Award speech
and writes a paragraph summarizing it, and another paragraph
about how it might relate to your project.

https://git.uwaterloo.ca/secapstone/abstracts/-/tree/master/publications
https://git.uwaterloo.ca/secapstone/abstracts/-/tree/master/reports
https://amturing.acm.org/

148 se capstone handbook [march 31, 2024]

12.6 Read Video Game History: The Digital Antiquarian
https://www.filfre.net/
https://www.filfre.net/hall-of-fame/Jimmy Maher has been writing about the history of video games

since 2011, covering primarily the period from the 1960s through to
the end of the twentieth century. Each member of your team reads a
different entry and writes a response (summary + project relevance).

12.7 Watch ACM Tech Talks
https://learning.acm.org/techtalks

Each member of your team finds an ACM Tech Talk of some rele-
vance to your project, watches it, and writes a paragraph summa-
rizing the talk, and another paragraph discussing the content with
respect to your project.

12.8 Read ACM Queue Articles
https://queue.acm.org/

ACM Queue is a magazine for practitioners (rather than researchers).
Each member of your team finds an ACM Queue article of some

relevance to your project, reads it, and writes a paragraph summa-
rizing the paper, and another paragraph discussing the content with
respect to your project.

12.9 Read Classic SE Papers
https://kilthub.cmu.edu/articles/
journal_contribution/Seminal_
Papers_in_Software_Engineering_
The_Carnegie_Mellon_Canonical_
Collection/6625733

The Software Engineering Institute at Carnegie Mellon University
have put together an annotated bibliography of classic research pa-
pers in software engineering.

Each member of your team finds a paper relevant for your project,
and writes one paragraph summarizing the paper and one discussing
its relevance for your project.

12.10 Watch a Documentary

As a team, watch a documentary film related to your project. Each
team member writes a paragraph about a different aspect of the film
that is relevant to the project. Some possibilities might include:

• Design Disruptors A documentary about disruptive innovation, https://www.designdisruptors.com/

featuring interviews with a number of prominent designers.
• The Social Dilemma A docudrama about the impact of social net- https://en.wikipedia.org/wiki/The_

Social_Dilemmaworking software and the surveillance capital business model.
• The Great Hack A documentary on using targeted social media ads

to sway elections.

There might also be great documentary films in the domain of your
project that are worth watching and reflecting on.

https://www.filfre.net/
https://www.filfre.net/hall-of-fame/
https://learning.acm.org/techtalks
https://queue.acm.org/
https://kilthub.cmu.edu/articles/journal_contribution/Seminal_Papers_in_Software_Engineering_The_Carnegie_Mellon_Canonical_Collection/6625733
https://kilthub.cmu.edu/articles/journal_contribution/Seminal_Papers_in_Software_Engineering_The_Carnegie_Mellon_Canonical_Collection/6625733
https://kilthub.cmu.edu/articles/journal_contribution/Seminal_Papers_in_Software_Engineering_The_Carnegie_Mellon_Canonical_Collection/6625733
https://kilthub.cmu.edu/articles/journal_contribution/Seminal_Papers_in_Software_Engineering_The_Carnegie_Mellon_Canonical_Collection/6625733
https://kilthub.cmu.edu/articles/journal_contribution/Seminal_Papers_in_Software_Engineering_The_Carnegie_Mellon_Canonical_Collection/6625733
https://www.designdisruptors.com/
https://en.wikipedia.org/wiki/The_Social_Dilemma
https://en.wikipedia.org/wiki/The_Social_Dilemma

reflective activities 149

12.11 Read a Book

There are many good books on software engineering. One classic,
which is perhaps the most famous book in software engineering, is
The Mythical Man-Month by Fred Brooks.1 That was originally pub- 1 Frederick P. Brooks. The Mythical Man-

Month: Essays on Software Engineering.
Addison-Wesley, 1975

lished in 1975, and so predates the invention of version control —
the first research paper on version control was also published that
year. A newer book, in which version control plays a prominent
role, is Software Engineering at Google.2 This book is a fairly com- 2 Titus Winters, Tom Manshreck, and

Hyrum Wright, editors. Software
Engineering at Google. O’Reilly Media,
2020

prehensive overview of what are considered best practices at one
software-intensive company. There are also many other good books
on software engineering.

12.12 Assess Your Choice of Learning Activities There is an old joke that is told in many
cultures. Here is one retelling from
Snopes.com:

“Nikola Tesla visited Henry Ford at
his factory, which was having some
kind of difficulty. Ford asked Tesla if he
could help identify the problem area.
Tesla walked up to a wall of boilerplate
and made a small X in chalk on one
of the plates. Ford was thrilled, and
told him to send an invoice.The bill
arrived, for $10,000. Ford asked for a
breakdown. Tesla sent another invoice,
indicating a $1 charge for marking the
wall with an X, and $9,999 for knowing
where to put it.”

Part of being a professional engineer is knowing a wide range of
techniques and ideas, and being able to select the appropriate ones.
Reflect on the learning activities that your team has done to assess:

• which activities were worthwhile (and why);
• which activities were not (and why);
• which activities an outsider might think that you should have

done, but which you rejected for good reason (near misses);
• and what better alternative activities might have been.

12.13 n + 1 Cohort Feedback (Retrospective)

Apply the lessons that you have learned through the Capstone De-
sign Project to providing guidance for students in the next cohort,
who have just completed se390 before you started se491. Your feed-
back to them will include: Mechanism for submitting

and distributing the n+1 co-
hort feedback reports• Your project abstract.

• Three things you learned through the process.
• One point from the Handbook that, in retrospect, you find interest-

ing or valuable or erroneous.
• Things that you find unclear or missing about their abstract.
• Identification of risks that you perceive for their chosen project.
• Recommendation as to whether they pursue their chosen project

or consider alternatives, possibly from the list of mini-projects and
candidate external projects from their cohort.

https://www.snopes.com/fact-check/know-where-man/

Communication Activities
Poetry is more perfect than history, because
poetry gives us the universal in the guise of
the singular, whereas history is merely the
narration of singular events.

– Aristotle, Poetics

Your communication should be:

• clear,
• correct,
• complete, and
• concise.

Create appropriate abstractions to satisfy these conflicting
objectives — similar to programming. What distinguishes high-level
languages from assembly are the abstraction mechanisms afforded to
the programmer, which enable clearer and more concise exposition
of the ideas. Effective technical communication is about finding and
organizing the right natural language abstractions to express your
project clearly, correctly, completely, and concisely.

Mind the gap between your words and deeds. This gap can con-
sume all the oxygen in review/conversation, which creates frustra-
tion for everyone. Professional technical writing is different than first
year resume inflation writing.

Don’t over-generalize. Make statements and that are precise and
accurate. Clearly distinguish between what your prototype actually
does versus what a fully developed system might do.

Question every adjective. It’s good if each adjective has an ob-
viously observable empirical basis (e.g., ‘the ball is red’), or has a
commonly accepted definition (e.g., ‘the race car is fast’). Avoid ad-
jectives that express judgements, unless you have data or references
to back those judgements. For example, do not say that you have
done an ‘extensive literature review’: it’s not your place to make that
judgement. Each unsubstantiated adjective picks a fight with the
reader.

152 se capstone handbook [march 31, 2024]

13.1 Read Edward Tufte’s Presentation Advice

Edward Tufte was a professor of computer science, statistics, and https://www.edwardtufte.com/tufte/

political science at Yale for twenty years, and at Princeton before that.
He has a large volume of information available online and has also
written five excellent books on stem communication: The format of this handbook is based

Tufte’s books, using the Tufte-LATEX
style sheet.• Visual Display of Quantitative Information

• Envisioning Information
• Visual Explanations
• Beautiful Evidence
• Seeing With Fresh Eyes

Write a brief summary of what you learned and what you will apply
to your presentation.

13.2 Read Trees, Maps, and Theorems Presentation Advice

Jean-Luc Doumont completed his PhD in physics at Stanford, https://www.principiae.be/X0300.php
https://www.principiae.be/book/X0300.phpand now teaches stem people how to organize and present their

thoughts. He has written an excellent book on this topic called Tress, New for 2020! How to give presenta-
tions remotely: https://www.istem.
illinois.edu/news/imrsec.remote.
present.workshop.20.html
https://www.principiae.be/X0800.php

Maps, and Theorems, and also has some resources available online.
Write a brief summary of what you learned and what you will apply
to your presentation.

13.3 Watch Patrick Henry Winston’s Presentation Advice

Patrick Henry Winston was a famous ai researcher at mit, who https://www.youtube.com/watch?v=
Unzc731iCUYgave a popular presentation to students every year on ‘how to speak.’

Write a brief summary of what you learned and what you will apply
to your presentation.

13.4 Learn from TED Presentation Advice
There are many sources of presentation
advice from ted online. Here is one
good article that appeared in Harvard
Business Review: https://hbr.org/2013/
06/how-to-give-a-killer-presentation

The sidebar of this article, Find the
perfect match of data and narrative by
Nancy Duarte, is particularly good.

ted (Technology, Entertainment, Design) talks started in Silicon Val-
ley in 1984, and are widely regarded as well-delivered talks from
experts in their field (‘ideas worth spreading’). There are several col-
lections of advice on how to give a ted-style talk, some written and
some video. Learn from them. Write a brief summary of what you
learned and what you will apply to your presentation.

https://tufte-latex.github.io/tufte-latex/
https://www.principiae.be/X0300.php
https://www.principiae.be/book/X0300.php
https://www.istem.illinois.edu/news/imrsec.remote.present.workshop.20.html
https://www.istem.illinois.edu/news/imrsec.remote.present.workshop.20.html
https://www.istem.illinois.edu/news/imrsec.remote.present.workshop.20.html
https://www.principiae.be/X0800.php
https://www.youtube.com/watch?v=Unzc731iCUY
https://www.youtube.com/watch?v=Unzc731iCUY
https://hbr.org/2013/06/how-to-give-a-killer-presentation
https://hbr.org/2013/06/how-to-give-a-killer-presentation

communication activities 153

13.5 Learn from Nancy Duarte’s Presentation Advice

Nancy Duarte leads the largest communications firm in Silicon Val- https://www.duarte.com/nancy-duarte/

ley. She has written or presented for ted, mit, Stanford, Forbes, https://www.ted.com/talks/nancy_
duarte_the_secret_structure_of_great_
talks

Harvard Business Review, and more. There are many samples of
her teaching available online. Learn from them and write a brief
summary of what you learned and what you will apply to your pre-
sentation.

13.6 Conquer Your Fear of Public Speaking

Many people in stem careers have some fear of public speaking. https://hbr.org/2018/02/
5-ways-to-get-over-your-fear-of-public-speaking

There are many good TEDx talks on
this topic.

Find, and try, some tips for becoming more comfortable with public
speaking. Write a brief summary of what you learned and what you
will apply to your presentation.

https://www.duarte.com/nancy-duarte/
https://www.ted.com/talks/nancy_duarte_the_secret_structure_of_great_talks
https://www.ted.com/talks/nancy_duarte_the_secret_structure_of_great_talks
https://www.ted.com/talks/nancy_duarte_the_secret_structure_of_great_talks
https://hbr.org/2018/02/5-ways-to-get-over-your-fear-of-public-speaking
https://hbr.org/2018/02/5-ways-to-get-over-your-fear-of-public-speaking

154 se capstone handbook [march 31, 2024]

13.7 Choose a Narrative Structure for Your Presentation

Narrative structure is an important abstraction mechanism that will
help focus the audiences attention on the most interesting aspects of
your complex project. Some options include:

Historical. Describe what you did on your project chronologically, An example where this historical
structure worked very well was the TSK
group from 2015. They won third prize
for a series of user studies on a virtual
keyboard design for the Oculus Rift.
The historical structure worked well for
them because the audience joined their
voyage of design and discovery.

from the beginning to the end. This is a popular choice for practice
talks, but is often not the best choice for the final presentation.

The historical structure might involve suspense: will the project
succeed? Will it produce results? Wait to the end to find out! The
tension might escalate as the plot progresses to the climax and
finally resolution.

A variation on the historical structure is espoused by the creators
of South Park:1 if the connectives between the events in your story 1 http://nathanbweller.com/

creators-of-south-park-storytelling-advice-but-therefore-rule/
Reference from Josh Kergen se2018.

are ‘and then’, it’s boring; instead, try to arrange things so that you
can use connectives like ‘but’ and ‘therefore’. These connectives
create greater causal (rather than merely temporal) relationship
between the events, which drives the story forward with greater
purpose.

User-centered. You could alternatively tell a user-centered story, https://en.wikipedia.org/wiki/
Dramatic_structurerather than a story about your group’s journey through the project.

In literature this is often described by Freytag’s pyramid:

denouement

Figure 13.1: Freytag’s Pyramid [image
derived from Wikimedia]

Scientific. A scientific presentation starts with the claim and then
presents the evidence. For example, a paper in the journal Nature
might be titled The Lkb1 metabolic sensor maintains haematopoietic
stem cell survival.2 This title tells us the claim: some specific gene 2 Nature 468:659–663, 2 Dec 2010

The old tv show Columbo used this
structure: every episode begins by
showing the crime taking place, so the
audience knows whodunnit from the
beginning. The drama is around how
Detective Columbo is going to find
evidence to conclude what the audience
already knows.

(Lkb1) helps blood (haematopoietic) stem cells survive. The paper
will tell us the evidence. In mathematics we would expect the title
to state the theorem and the paper to provide the proof.

There is no suspense in this scientific structure: the audience
knows from the outset what the conclusion is.

http://nathanbweller.com/creators-of-south-park-storytelling-advice-but-therefore-rule/
http://nathanbweller.com/creators-of-south-park-storytelling-advice-but-therefore-rule/
https://en.wikipedia.org/wiki/Dramatic_structure
https://en.wikipedia.org/wiki/Dramatic_structure

communication activities 155

13.8 Revise Your Writing

Thanks to Matt Magni ece 2018, and
Carmen Celestini ece290 ta for good
suggestions on this process.

Writing good technical prose is a process. There should be at least a day or two in
between steps for your mind to refresh.

1. Brain Dump: Write down everything in your mind. Start with
what is easiest for you to write about (which might not be the You do not have to write linearly, from

the beginning to the end. It is often
easier to write parts of the middle first.

introduction). Don’t worry if it is messy or disorganized. Keep
writing. New ideas will come to you as you write.

2. Abstraction: Identify the key concepts and ideas. Decide on con-
sistent names for them. Rewrite the introduction and conclusion
using this terminology.

3. Breakdown: Using a whiteboard or a piece of paper, or mind-
mapping software, make point-form notes of everything in the
brain dump. Re-arrange and organize these notes.

4. Target: Who is your audience? How can you explain your project Business people? Software people?
Other kinds of engineers?in terms of things they already understand? What are the three

most important things you want them to know?

5. Rebuild: Start with a blank slate. Re-write all new prose from the Throw out the brain dump. Or lock it
up somewhere so you cannot look at it
during the rebuild step.

point-form notes — including the introduction and conclusion. Do
not look at the old text from the brain dump. Some points might
not fit into the new flow: stick them in an appendix for now.

6. Make it Concrete:

• Use examples wherever possible.
• Rewrite explanations in the reader’s terms, rather than the technology’s internal terminology. In this

example, strict ordering is internal terminology, which is removed in the rewrite:
Before: 7→
The debugger generates the following discriminat-
ing example, where at state S2, process P0 holds
two mutexes {M0, M2}, but at the next state S3,
the process holds three mutexes {M0, M2, M1}, but
they are not in strict order. This uncovers the un-
derconstraint issue, because the strict ordering is
violated.

After:
The debugger generates the following discriminat-
ing example, where at state S2, process P0 holds
two mutexes {M0, M2}. In the next state, S3, pro-
cess P0 additionally acquires mutex M1. The de-
bugger is testing the hypothesis that M1 can be
added to a set that already contains M2 .

• Walk the reader through any inferences or reasoning that the text might require. For example:

Before: 7→
The engineer rejects the discriminating exam-
ple because a process P1 can take an unintended
lower-indexed mutex.

After:
The engineer rejects this discriminating exam-
ple because in state S4 process P1 takes mutex M2

when it already has mutex M3 , thereby violating
the intention that mutexes are acquired in order.

7. Remix the Extras: Add back any important points that had be rele-
gated to the appendix previously.

8. Spelling, Grammar & Consistency: Polish.

156 se capstone handbook [march 31, 2024]

13.9 Revise Your Abstract
This material derived from Prof Dan
Davison’s notes for ece498.
The uw Writing Centre can help you
revise your abstract. They have drop-in
hours in the dc library.

https://uwaterloo.ca/writing-centre/

Your abstract is an important introduction to, and summary of, your
project. It should be in the following form:

Your abstract will evolve over the
course of the project.

• about 300 words (one page of the booklet)
• mostly text (limited figures, tables, formulas, etc.; LATEX permitted)
• primarily present tense
• limited jargon and acronyms
• good grammar and spelling

Your abstract should cover the following five issues: The five W questions can help you see
the big picture: who, what, where,
when, why.Opportunity & Problem. What is the opportunity that your software

will exploit? Who will use it? What is the technical problem it will
solve? Be as clear, specific, and factual as possible. Some examples:

• “Each year, about 850,000 vehicles in North America are in- ece Group 2009.054

volved in a collision due to failure to check one’s blind spot.”
• “In the US and Europe, 300,000 people die every year from ece Group 2012.035

cardiac arrest before they can reach medical care.”

Objective. What does your project aspire to accomplish within the
given context? The objective must be open-ended enough to allow Being open-ended is what makes this

an engineering design project.for multiple solutions to be considered in the design process.

Plausible Design Approach. While the problem and objective must be
rich enough to admit multiple possible solutions, you should have
one in mind to start with. This will likely change as your project
progresses, and might be completely different by the end.

You should identify key design challenges and the advanced Do not mention course numbers here
though. That’s on the Status Sheet
§14.1.

technical knowledge required to meet them.

Expected Benefits over Existing Alternatives. Clearly state at least one
advantage of your (proposed) design over existing alternatives. Be
specific. For example:

• “The main advantage of this design over major alternatives is ece Group 2011.043

that physical size, strength, and/or mobility are not required to
control the wheelchair.”

• “The Autotabber package can be used with existing guitar ece Group 2012.031

systems, and can detect different playing techniques on a per-
string basis, which differentiates this product from pre-existing
solutions.”

Summary of (Expected) Results. What evidence have you gathered This will evolve as your project pro-
gresses. Perhaps it will be written in
future tense in se490 and past tense for
Symposium Day.

(will you gather) to demonstrate that the objective has been accom-
plished? See §14.2 for common approaches and targets.

https://uwaterloo.ca/writing-centre/

communication activities 157

13.9.1 Example Revised Abstract from Team Radiant se2014

Original Abstract: This is a decent abstract: good, but
not great. The revisions below clarify
the context and expand the technical
discussion.

Our customer is a healthcare company in China. The company man-
ufactures portable ECG recorders, and offers service to send captured
ECG graphs to partnering hospitals for diagnosis. This is especially
useful for elderly who may not wish to travel to hospitals regularly for
checkups.

As a part of our project, we are working on extracting important
features in the graphs, and researching on automatic ECG classifica-
tion. Features such as the locations of prominent peaks help to improve
visualization for the doctors; while having automatic classification will
no doubt reduce the company’s operational cost.

Revised abstract:

Electrocardiograms (ECGs) are usually recorded in a clinical setting
by medical professionals using twelve leads attached to the patient. Additional Context:

• who: used by patient

• what: 12-leads vs. 1-lead

• where: clinical vs. home use

• why: patient convenience & cost

Additional Information:

• intuition: shape of QRS complex

• challenges: baseline wandering and
high frequency noise

• advantages: easy to implement +
runs fast

• validation: experimental results

Our industry partner has developed a single-lead ECG machine for use
by patients at home. Patients can then send these readings to remote
doctors. The goal of the machines is to make medical expertise more
accessible, affordable, and convenient.

The ECGs recorded by patients with a single-lead suffer greatly
from baseline wandering and high frequency noises, as compared to
ECGs recorded with twelve-leads in a clinical setting.

Accurate R-peak detection is an important step in ECG analysis. A
variety of methods have been proposed in the past against standard
clinical twelve-lead ECG recordings. In this study, we propose a new
R-peak detection algorithm for single-lead mobile ECG recordings. Our
area-based approach is built on the understanding that QRS complexes
are typically narrow and tall, resulting in large areas over the curve
around these locations. Our algorithm is simple to implement, compu-
tationally efficient, and does not require any signal pre-processing.

We evaluated our algorithm against data collected by patients from Team Radiant did not have these results
in January. This revised abstract was
written in March. Your abstract for
the Symposium Day booklet (due in
January) might not yet have your final
results. You could write (briefly) about
your expected results or assessment
methodology. For example, Team
Radiant could have said, in January,
that they will evaluate against the
standard MIT/BIT dataset as well as
a dataset provided by their industrial
collaborator.

single-lead portable devices, and yielded 99.3% precision and 99.4%
recall. The MIT/BIT Arrhythmia Database of twelve-lead clinical ECG
recordings was also used to verify our algorithm. On this dataset we
obtained a precision of 99.3% and recall of 98.6%.

13.9.2 More Example Abstracts

There is an extensive collection of abstracts from past projects in the
Handbook repository. This collection includes all past se projects,
and several years of ece projects. It is quick and easy to read a sam-
pling of them, and it will help you develop an appreciation for what
makes a good project abstract.

https://git.uwaterloo.ca/secapstone/abstracts

https://git.uwaterloo.ca/secapstone/abstracts

158 se capstone handbook [march 31, 2024]

13.9.3 An entertaining example Abstract

This is not a real project. But it shows you one example of a good structure
for an abstract for a project that might be like yours.

• Historical and cultural context.
• Market opportunity.
• These facts are real.

Broccoli is a popular and nutritious vegetable that has been culti-
vated for over 2500 years. While broccoli originated in what is now
Italy, it is eaten around the world, with 73% of the modern crop
grown in India and China. There are billions of people around the
world who enjoy broccoli on a regular basis, creating a huge market
opportunity for our BB app.

• User’s motivation.
• Usage modalities.
• These facts are real.

Blanching is a fast, healthy, and delicious way to cook broccoli,
either for immediate eating or as a preparatory step for freezing or
sauteing. Broccoli that has been blanched before freezing retains up
to 1300% more vitamin C than broccoli that is frozen directly. There
are two distinct blanching techniques in common use, and both are
supported by BB: boiling and steaming.

• User’s pain point.
• How application of advanced

technical knowledge solves the
problem.

A major challenge in blanching is knowing how long to apply
the heat. BB uses a feedback control system based on two forms of
advanced image processing to ensure perfectly blanched broccoli ev-
ery time. First, the initial time target is set by measuring the average
floret size on the cutting board. Second, during the blanching pro-
cess, the time target is continuously optimized based on the colour
transformation of the vegetable in the pot.

• Initial public deployment during the
last work term, between 4A and 4B.

• Results (fictitious).

Initial deployment of BB to the public was done during the fall
harvest season, in collaboration with the Student Success Office and
the St Jacob’s Farmer’s Market. Farmers reported that broccoli sales
to younger adults increased by 57%. Interestingly, the app also drove
broccoli sales to newly retired older people, a significant subset of
whom are looking for new projects to engage with. App usage was
not significant amongst adults of working age. The Student Success
Office reported overall improved physical and mental health amongst
students who improved their diet by using the BB app.

13.10 Read Authors You Want to Emulate

When you read, start thinking about whether the author has a style
that you admire or want to emulate. For example, many grad stu-
dents (even native English speakers, even in England) read The
Economist for this purpose. Write a brief summary of what you
learned and what you will apply.

communication activities 159

13.11 Write for Accessibility and ESL

If your project includes text for users, you might want to consider
revising that text according to accessibility and esl guidelines. There
are accessibility writing guidelines at both the federal3 and provin- 3 https://www.canada.ca/en/

treasury-board-secretariat/services/
government-communications/
canada-content-style-guide.html

cial4 levels, as well as good online courses5 for you to learn from.

4 https://www.aoda.ca/
accessible-writing-style/
5 http://www.humber.ca/
makingaccessiblemedia/modules/
05/02.html

UWaterloo also has web writing guidelines.6

6 https://uwaterloo.ca/web-resources/
resources/usability/writing-web-tips

Simplified Technical English is an international standard used

http://www.asd-ste100.org/

https://en.wikipedia.org/wiki/
Simplified_Technical_English

in aviation to write instructions for pilots and aircraft mechanics, etc.
It is the international language of aviation, and has also been adopted
for procedures and maintenance manuals in other global industries.
It has an active standards committee that revises the standard every
three or four years. It is a good standard to consider when writing
for an esl audience (English as a Second Language).

Metrics to assess reading level. There are several standard This website implements half a dozen
readability metrics: https://www.
webfx.com/tools/read-able/check.php

metrics to assess reading level. Most of them are based on measures
such as the number of syllables or characters in words, and the num-
ber of words in sentences. Some of these metrics are available in
common word processors. Many of them are available on various
web pages.

Some implementations of these metrics are very sensitive to where
periods are placed. Do not assume that the implementation will
infer a sentence ends at a carriage return. Also, some of the metrics
involve a ratio of the number of big words per sentence. So you can
sometimes bring the scored grade-level down by adding more small
words to a sentence — even though that might actually decrease the
readability of the sentence. Like all metrics, take them as a guideline.

Assessing reading level by grade level of individual
words. The metrics just look at the sizes of words, but not their An example script with these word

lists is in the source repository for this
handbook: https://git.uwaterloo.ca/
secapstone/handbook/-/tree/master/
activities/communication/accessibility

https://en.wiktionary.org/wiki/
Appendix:1000_basic_English_words

https://www.berkeleyschools.net/
wp-content/uploads/2013/05/BUSD_
Academic_Vocabulary.pdf

https://www.flocabulary.com/
1st-grade-vocabulary-word-list/

actual meaning or what grade level a student would be expected to
know the word at. It’s possible to build up some grade-level word
lists from various sources, then write a script that assigns a grade
level to each word in a text. This kind of analysis can help you iden-
tify which specific words might be challenging for readers, as well as
helping you identify when you are using unnecessary synonyms and
could reduce the overall vocabulary of the document by standardiz-
ing terminology.

https://www.canada.ca/en/treasury-board-secretariat/services/government-communications/canada-content-style-guide.html
https://www.canada.ca/en/treasury-board-secretariat/services/government-communications/canada-content-style-guide.html
https://www.canada.ca/en/treasury-board-secretariat/services/government-communications/canada-content-style-guide.html
https://www.canada.ca/en/treasury-board-secretariat/services/government-communications/canada-content-style-guide.html
https://www.aoda.ca/accessible-writing-style/
https://www.aoda.ca/accessible-writing-style/
http://www.humber.ca/makingaccessiblemedia/modules/05/02.html
http://www.humber.ca/makingaccessiblemedia/modules/05/02.html
http://www.humber.ca/makingaccessiblemedia/modules/05/02.html
https://uwaterloo.ca/web-resources/resources/usability/writing-web-tips
https://uwaterloo.ca/web-resources/resources/usability/writing-web-tips
http://www.asd-ste100.org/
https://en.wikipedia.org/wiki/Simplified_Technical_English
https://en.wikipedia.org/wiki/Simplified_Technical_English
https://www.webfx.com/tools/read-able/check.php
https://www.webfx.com/tools/read-able/check.php
https://git.uwaterloo.ca/secapstone/handbook/-/tree/master/activities/communication/accessibility
https://git.uwaterloo.ca/secapstone/handbook/-/tree/master/activities/communication/accessibility
https://git.uwaterloo.ca/secapstone/handbook/-/tree/master/activities/communication/accessibility
https://en.wiktionary.org/wiki/Appendix:1000_basic_English_words
https://en.wiktionary.org/wiki/Appendix:1000_basic_English_words
https://www.berkeleyschools.net/wp-content/uploads/2013/05/BUSD_Academic_Vocabulary.pdf
https://www.berkeleyschools.net/wp-content/uploads/2013/05/BUSD_Academic_Vocabulary.pdf
https://www.berkeleyschools.net/wp-content/uploads/2013/05/BUSD_Academic_Vocabulary.pdf
https://www.flocabulary.com/1st-grade-vocabulary-word-list/
https://www.flocabulary.com/1st-grade-vocabulary-word-list/

Project Evaluation

Capstone projects are intended to show application of almost all of see §1 Learning Objectives

the learning objectives in an undergraduate degree. Consequently,
the evaluation is broad:

Begin Middle End
Facet se390 se490 se491
Reflection (learning outcomes, feedback, impact, ip, etc.) 15% 15% 15%
Requirements & Specifications 25% 20% 15%
Design, Implementation, & Deployment 15% 25% 25%
Verification & Validation (testing & results) 10% 10% 25%
Teamwork 15% 10% 10%
Communication (abstract, demo, presentation) 10% 10% 10%

Formative and Summative Assessments: Final exams are the The terms formative and summative
assessment are also commonly used
in hci. For example, a formative
usability assessment might involve a
user thinking-aloud as they use the
software, in order to give the designer
insight into the user experience.

A summative assessment, by con-
trast, might measure the time taken to
perform a task with a particular user
interface. This summative assessment
measures whether the user interface
meets its objectives, but doesn’t give
insights in to how to improve it.

quintessential example of summative assessments. A summative
assessment measures what has been learned or achieved.

The purpose of a formative assessment is to give feedback. For-
mative assessments can be more varied and exploratory in nature.
Formative assessments might be graded on effort — the grade might
not be intended as a measurement of the learning.

Assessment progression: In the beginning of the capstone pro-
cess there is an emphasis on formative assessments, as exploration
and feedback and learning are the priorities at that time. Towards the
end the focus shifts to summative assessment — both of the software
and of the engineering efforts.

Holistic Evaluation: Capstone design projects differ significantly
in their domains, technical challenges, trade-offs, and objectives.
Holistic evaluation looks at a project as a whole, considering all fac-
tors and trade-offs. In contrast, the analytical or reductive grading
approach examines facets or components in isolation.

162 se capstone handbook [march 31, 2024]

Grading Criteria. Generally speaking, capstone projects should,
in all relevant ways:

• exemplify the learning objectives; see §1 Learning Objectives

• demonstrate the skills expected of a graduate;
• make appropriate trade-offs and judgments; and
• not suffer serious oversights.

A central premise is that the software should perform its intended
function properly and in a unified way.

Quantization by letter grades. In an open-ended design
project, it is more reasonable to grade on a quantized scale.

A+ 95 exceeds expectations on many learning objectives, with no oversights
A 90 demonstrates mastery on all learning objectives, with no oversights
A- 85 demonstrates mastery on most learning objectives, with some minor oversights
B+ 80 adequacy on all learning objectives, mastery of some, with some minor oversights
B 75 adequacy on all learning objectives, with some minor oversights
B- 70 adequacy on all learning objectives, with some serious oversights
C 65 adequacy on most learning objectives, with some serious oversights
D 55 significant shortcomings in learning objectives, major oversights
F 45 unethical, unprofessional, incomplete, etc.

Deductions. Deductions can be assessed for three reasons: over- Three main strategies for avoiding
oversights are peer interactions, learning
activities, and formative assessments.

sights (i.e., poor professional judgment); avoidable deficiencies (a list
will be provided in advance), and missing deadlines.

The table above tries to characterize the role of oversights in grad-
ing. Some projects might not match these patterns, and in those cases
oversights might be factored out and handled separately.

14.1 Project Status Sheets
Fillable pdf at https://ece.uwaterloo.
ca/~se_capstone/status-sheets/
LATEX source for status sheets in hand-
book repo at https://git.uwaterloo.ca/
secapstone/handbook

The project status sheet (sample on following pages) may be used
to characterize the current status of the project. These are not grad-
ing sheets. Their purpose is to give a broad overview of the project.
Depth is provided in the presentation. The breadth of the status sheet
is intended to help prevent oversights—to ensure that all of the bases
are covered. For any given project, some parts of the status sheet will
be more interesting than others.

Lines of Code are reported on the status sheets, but are not the To paraphrase Winston Churchill, lines
of code is the worst metric we have
except for all the others.

primary basis of assessment. Many factors may moderate the inter-

Lines of code should be measured
with cloc: https://www.tecmint.com/
cloc-count-lines-of-code-in-linux/

sudo apt install cloc
loc should not be measured by Git.

pretation of this metric, including difficulty of the problem, nature of
the problem, choice of language, etc.

Lines of code is intended to include exploratory prototypes, tests,
scripts, etc. The metric is intended to include just about everything
written by hand and processed by machine.

https://ece.uwaterloo.ca/~se_capstone/status-sheets/
https://ece.uwaterloo.ca/~se_capstone/status-sheets/
https://git.uwaterloo.ca/secapstone/handbook
https://git.uwaterloo.ca/secapstone/handbook
https://www.tecmint.com/cloc-count-lines-of-code-in-linux/
https://www.tecmint.com/cloc-count-lines-of-code-in-linux/

project evaluation 163

SE+CS Capstone Project Status Sheet
This form attempts to give a broad
project overview. It is about breadth,
not depth. For any given project, there
will be parts of this form that are more
and less important.

Your presentation is where you will
go in depth on the things that are of
particular interest for your project. This
form is to identify interesting issues,
but does not have space to explain them
thoroughly.

Contents

1 Project & Team Identification 2

1.1 Opportunity Assessment 3

1.2 Curriculum Connections 4

2 Applying the Wisdom of the Past 5

2.1 Software Engineering Rules of Thumb 5

2.2 Learning from Prior Capstone Projects 5

3 Feedback Given and Received 6

3.1 Responses to Feedback Received 6

3.2 Summary of Feedback Given 6

4 Processes, Practices, and Tools 7

4.1 Tools 7

4.2 Process 7

4.3 Process Maturity Assessment 8

4.4 Additional Practices 8

5 Requirements & Specification 9

5.1 Exploratory Activity Summary 9

5.2 SRS Summary 9

5.3 Deviations from SRS 9

6 Design, Implementation, and Deployment 10

6.1 Applied Foundations 10

6.2 High-Level Design 10

6.3 Components/Libraries 10

6.4 Implementation 11

6.5 Deployment 11

7 Verification & Validation 12

7.1 Testing 12

7.2 Summative User Activities 12

7.3 Results Target(s) 12

8 Graduate Attributes Self Assessment 13

164 se capstone handbook [march 31, 2024]

se+cs capstone project status sheet 2

1 Project & Team Identification

: Project

Students

TeamName
Abstract: See Handbook for instructions.

project evaluation 165

se+cs capstone project status sheet 3
1.1 Opportunity Assessment

What do you want to learn? What you want to learn might include
Technical Elective courses that com-
plement your project. You might be
learning the content of those courses
through capstone rather than by taking
the course.

What is the opportunity in the world?
Why does the world need your project?
Why is now the right time to do it?
Has something changed in the world to
create this opportunity now? Is this a
longstanding opportunity?

These checklists have some common
advantages and challenges that have
been faced by projects in the past.

Free or undervalued engineering labour
is a strategic blunder if it is the basis
of a proposed commercial competitive
advantage: i.e., we can undercut the
competition because they pay their
engineers and we do not value our
own work. This violates P.E.O. Code of
Ethics 77(7)v. Note that pro bono work
in the public interest, including patches
to established foss projects, does not
suffer this blunder.

Advantages
External Partner
New Technology
New Data Source
Clear Opportunity/Prob.
Clear User Population
Domain Knowledge
Novel Idea
Grounded Idea
Awesomeness
Other

Challenges
Access to Data
Against Vested Interests
Dense Market Space
Significant Marketing
Scope Too Large
Scope Too Small
Scope Too Foggy
Free Engineering Labour
Legal/Regulatory Hurdles
Other

Summary of Advantages

Strategies for Mitigating Challenges

Summary of advantages.

What are you hoping to learn?

Strategies for mitigating identified challenges.

Why does the world need your project? Why is now the right time to
do it?

166 se capstone handbook [march 31, 2024]

se+cs capstone project status sheet 4
1.2 Curriculum Connections

Identify courses with some connection
to your project. It might be the case
that your project goes beyond what is
actually taught in the course — list the
course here anyways.

It’s ok if nobody on your team is
taking the course. Capstone gives you
a change to learn ideas from other
courses on your own. Still list the
course here, as there is a connection.

crud projects need to list cs349 user
interfaces and cs449 / msci343 /
syde548 user-centred design. crud
projects often have no algorithmic tech-
nical depth: their technical depth comes
from human-computer interaction /
user-centred design.

crud is an old industry acryonym
for Create/Read/Update/Delete. In
the modern context, a database-backed
website or app. crud is a very popular
technical category.

Course Who? Why?
SE463
SE464
SE465

everyone
everyone
everyone

project needs a spec
project needs a design
project needs testing

project evaluation 167

se+cs capstone project status sheet 5

2 Applying the Wisdom of the Past

2.1 Software Engineering Rules of Thumb

Lehman Type:

Perlis Epigram:

Another Law:

2.2 Learning from Prior Capstone Projects

Project 1:

Project 2:

Project 3:

Discuss application of another law / rule of thumb to your project

Discuss Lehman Type of your project

Discuss application of Perlis epigram to your project

Discuss what you learned from a past capstone project 1

Discuss what you learned from a past capstone project 2

Discuss what you learned from a past capstone project 3

168 se capstone handbook [march 31, 2024]

se+cs capstone project status sheet 6

3 Feedback Given and Received

3.1 Responses to Feedback Received

Party Date Focus Outcome

3.2 Summary of Feedback Given

Team Date Comment

project evaluation 169

se+cs capstone project status sheet 7

4 Processes, Practices, and Tools

4.1 Tools
Tools you used for version control,
testing, prototyping, etc.

4.2 Process
Briefly describe your team’s process.

Process Alternatives
Briefly describe some alternative pro-
cesses you have used on co-op work
terms and why your team isn’t using
them.

Briefly describe your team's process

Describe allternative proceesses from your co-op work terms and why
your team isn't using them.

170 se capstone handbook [march 31, 2024]

se+cs capstone project status sheet 8
4.3 Process Maturity Assessment

Describe your team’s process.
There are several process assessments

in Software Engineering, including
those listed here. Perhaps you know of
another interesting one.

The process assessments listed here
often apply to entire organizations, and
not just individual projects, but never-
theless many aspects are applicable to
individual projects.

The Joel Test was defined by Joel
Spolsky as a lightweight assessment.

cmmi Capability and Maturity levels
are defined by the Software Engineering
Institute at Carnegie Melon University
(cmu). For individual project teams
it only makes sense to consider cmmi
levels 0–2.

ux Maturity levels are defined by the
Nielsen/Norman Group.

Joel Test:

CMMI Capability:

CMMI Maturity:

UX Maturity:

Other:

Discussion of Process Maturity

4.4 Additional Practices
Brief discussion of your team’s profes-
sional practices of interest, such as code
review, pair programming, etc..

project evaluation 171

14.2 Results (An Aspect of Validation)

As a rule, software systems do not
work well until they have been used,
and have failed repeatedly, in real
applications. — David Parnas

Results may come in many forms, even for a single project. This Note that the grades we assess here
are not the grades these projects re-
ceived historically. In the past capstone
projects were assessed on different cri-
teria than we discuss here — the criteria
have evolved over time. Teams from
2014 are more likely to score highly
than teams from 2012 here because
the criteria used in 2014 were closer to
those presented here than what was
used in 2012.

section discusses some criteria and evaluates some projects within
each. The following subsections describe different perspectives from
which projects can be evaluated. There might be other perspectives
that are reasonable but not included in this document (yet). The
students will indicate from which perspectives they wish their project
to be evaluated.

Some projects might be evaluated under multiple criteria. In that
case, the referees are asked to evaluate under each criteria according
to the rubrics. It is the instructor’s job to merge these into a final Note that it is already the job of the

instructor to merge conflicting reports
from different referees on the same
criteria. That is a different matter than
merging reports across different criteria,
which is what we discuss here.

grade. It is recommended that in the case of a high/low split (e.g., A
on one criteria and C on another) that the instructor take the higher
value and drop the lower one. In the case of two similar evaluations
the instructor might consider merging them to a higher value —
although the exact nature of this merge will be left to the instructor’s
discretion, and might include consideration of the class as a whole.

The distinction between A and A+ in these rubrics often comes
down to factors in the external world. The referee is encouraged to
use their own professional judgement, and is invited to deviate from
these rubrics where it makes sense to do so. Each project is unique
and faces a unique set of external circumstances.

172 se capstone handbook [march 31, 2024]

14.2.1 New Product
Take CS449 to learn how to do user
studies and user-centred design.

A user study might require clearance
from the UW Office of Research Ethics:

https://www.youtube.com/
watch?v=9lE1cNIYay0&list=
UUuGzdVC5BHHcONvGGcaXFcw

https://uwaterloo.ca/
research/office-research-ethics/
research-human-participants/
application-process

Some projects aim to create software to be used by the general public.
In this case, the software is run by individuals for their own private
purposes, rather than by an organization for its collective purpose.
The main criteria here is a function of the number of users and the
amount of engagement each user has with the software; user studies
are an alternative criteria.

These projects are often (but not always) c.r.u.d. c.r.u.d. is an industry term from the
1980’s that stands for Create, Read,
Update, Delete.
The idea of this table is, roughly, the
amount of time people have spent using
your software. So, dozens of people
for dozens of hours each would score
similarly to thousands of people for
several minutes each.

Alternatively, user studies, mentions
in the press, and startup competitions
are to be rewarded here.

Grade Criteria
A+ Thousands of light users or hundreds of heavy users or

positive mention in mainstream/industry press or win-
ning a reputable startup pitch competition.

A Hundreds of users you don’t know or rigorous user study.
B Dozens of users you don’t know or user study.
C Friends have tried your software.
F No users. No user testing.

Team Red Coconut (2014) created the UWFlow.com website for Grade: A+.

students to critique courses and share their schedules. As of Sympo-
sium Day they reported 4700 users, who had collectively performed
480,000 searches. They achieved this level of success by getting the
software working before 4A and having an active marketing plan.

Team Hivemind (2013) created a peer-to-peer framework for im- Grade: C. This project won first prize in
2013. It was a great project, and they
did a great job. Results were not part
of the evaluation criteria before 2014.
The Hivemind group would surely have
shifted their efforts in this direction
— and succeeded — had they been
presented with the modern criteria.

plementing MMORPGs (Massively Multiplayer Online Role Playing
Games). Nobody was using their framework to develop games. No-
body was playing games developed with their framework. They had

Prof Jacques Carrette, Director of Game
Programming at McMaster University,
argues that any game framework
project should implement at least half
a dozen interstingly different games to
demonstrate the flexibility and value of
the framework.

not even implemented a variety of games to demontrate the flexibil-
ity of their framework (or at least they did not say so in their talk).

New products might need a marketing plan in order to grow
the user base (if number of users is chosen as the metric of evalua-
tion). UW Flow (se2014), for example, collaborated with students in
Accounting, as well as various campus orientation programs, in order
to publicize their website to students on campus. Figure 14.1 shows
part of the marketing plan for a new food ordering app in Toronto
(this app was not developed by se students).

The recommended time to activate marketing efforts is the co-op
work term in between 4a and 4b: at this point the software should
be ready for public use (after se490), and there is still time to gather
results heading towards Symposium Day (se491).

https://www.youtube.com/watch?v=9lE1cNIYay0&list=UUuGzdVC5BHHcONvGGcaXFcw
https://www.youtube.com/watch?v=9lE1cNIYay0&list=UUuGzdVC5BHHcONvGGcaXFcw
https://www.youtube.com/watch?v=9lE1cNIYay0&list=UUuGzdVC5BHHcONvGGcaXFcw
https://uwaterloo.ca/research/office-research-ethics/research-human-participants/application-process
https://uwaterloo.ca/research/office-research-ethics/research-human-participants/application-process
https://uwaterloo.ca/research/office-research-ethics/research-human-participants/application-process
https://uwaterloo.ca/research/office-research-ethics/research-human-participants/application-process
UWFlow.com

project evaluation 173

Figure 14.1: Marketing plan for
Toronto-based food ordering app,
Fufu Rocks:

http://www.fufu.rocks/
Picture taken in downtown Toronto
(summer 2015) and submitted by a
Nano’15 grad. The monkey is also
distributing free stickers to remind
people to visit the website.

It is not clear from their website
if the name ‘Fufu’ is just for fun or is
supposed to be a reference to the West
African dish of that name. Fufu does
in fact rock, but it is not clear if they
actually deliver fufu.

Good sources of rental costumes
are Queen of Hearts in Kitchener and
Malabar in Toronto.

http://www.fufu.rocks/

174 se capstone handbook [march 31, 2024]

14.2.2 Research

Some teams choose to collaborate with research groups, usually on
campus, on active research problems. The goal here is to advance
knowledge. An indicator of that is publication in a competitive, peer-
reviewed venue (e.g., conference or journal).

A paper accepted in a competitive, peer-reviewed international
venue earns an A+, even if it is a short paper that describes applying
a known technique in a new context. Having a paper accepted gives
some validation for the work beyond the UW context. There are a
variety of logistical reasons why a paper might not yet have been
accepted by Symposium Day. Here we rely on the Symposium Day
referees to assess the quality of the work. The referee is to exercise their pro-

fessional judgement in assessing the
novelty of the work and the validation
presented for it. This table is a rough
guideline.

Grade Criteria
A+ Novel results or context or paper published, etc.
A Prototype works on a wide range of reasonable inputs

and some challenging ones.
B Prototype works on reasonable inputs.
C Prototype works on trivial inputs.
F Prototype is vapourware.

Team Amalgam (2014) worked to parallelize an algorithm for ex- Grade: A+. The ABZ’14 conference ac-
cepted 34 papers out of 81 submissions,
including one from Team Amalgam. In
other words, there were 47 papers sub-
mitted by international research groups
that were rejected and hence considered
to be of lesser value than Amalgam’s.

act, discrete, multi-objective optimization. Along the way they also
developed some improvements for the computation using formula re-
writing and incremental SATisfiability solving. They had a research
paper accepted in a competitive, peer-reviewed computer science
conference (ABZ’14) by Symposium Day.

Team Radiant (2014) developed a novel technique for doing R- Grade: A. This could have been A+ on
Symposium Day if they had made a
more thorough argument about the
novelty of their work, or if they had a
referee who knew the area and could
vouch for the novelty.

peak detection on ECG (electro-cardiogram) data. They published
this work several months after Symposium Day. The difference be-
tween the published paper and their Symposium Day result was the
thoroughness of their literature review to establish novelty.

Team Satisfaction (2014) developed a parallel boolean SATisfia- Grade: A. Also see Risk Reward section
below.bility solver, in which the main thread runs a standard DPLL/CDLC

solving algorithm, while some side-threads run various formula sim-
plifications.

Team Spike (2014) parallelized the Nengo brain simulation engine, Grade: A-

in collaboration with researchers Terry Stewart and Chris Eliasmith at
the UW Centre for Theoretical Neuroscience.

Team SWan (2013) developed some visualizations for multi-objective Grade: C

optimization. They understood the problem and devised a prototype,
but they had no experiments: they had not run their visualizer on
non-trivial data; they had not done any sort of user study; they had
not made their tool available for others to try.

project evaluation 175

14.2.3 Consulting

Some projects write custom software for a specific customer, usually
an organization, for use in their operations. The following table gives
a general guideline for grades in this area. Referees may consider
other factors that they consider to be important even if those factors
are not included in this table.

A formal letter from the customer
describing their integration plans and
activities would be the ideal form of
evidence.

Grade Criteria
A+ System is in production and is public-facing or part

of critical operations.
A Customer is actively working to integrate system

into production, and system is public-facing or part
of critical operations.

B Customer feedback on an earlier prototype; concerns
have been addressed in newer version.

C Customer feedback on an earlier prototype.
F System diverges significantly from customer require-

ments. Customer does not intend to use the system.
Team has stopped speaking to customer.

Teams WatPark (2012) and NoManaZone (2014) created and Grade: A+

enhanced, respectively, the system used by UW Parking Services to
report which lots are full. UW Parking Services not only uses this
system internally, but also makes it available to the general public.

Team SWT Group (2013) worked on the Facebook application My-

Grade: A+. MyTopFans already had mil-
lions of users when this design project
started, so it is not evaluated under the
Users category here. On Symposium
Day 2013 SWT Group had some friction
with referees who found the idea of
MyTopFans morally distasteful (one
view is that it profits from the natural
insecurities of teenagers).

TopFans, which has millions of users worldwide. They revised the
architecture, improved the user experience, created a mobile version,
and implemented new algorithms based on social science research.

Team Étallonage (2014) worked with JGR Optics (Ottawa) to Grade: A. While Étallonage’s redesign
significantly improved the software,
and JGR Optics was planning to move
it to production, it was not actually in
production as of Symposium Day.

redesign and reimplement their software for calibrating fibre optic
equipment. This software is used in-house by JGR Optics to tune
fibre optic equipment that they then sell. Team Étallonage reduced
the lines of code in the software by an order of magnitude, from 56k
to just 5.5k, while also significantly improving the user interface and
the extensibility of the software.

Team Radiant (2014) worked with Life Care Networks (China), Grade: A. Their presentation does not
give much evidence as to the state
of the integration. The presentation
focuses on the research contribution
(see above).

who manufacture portable ECG recorders. Team Radiant developed
a new algorithm for R-peak detection, as well as automating clinical
decision trees on ECG analysis. They reported that Life Care Net-
works was working to integrate their code as of Symposium Day.

Team EventDex (2012) created a summer camp management sys- Grade: F. These points were not fully
discovered until after the term had
ended and the Instructor spoke with
the customer. Now we expect you to
present more evidence of results on
Symposium Day.

176 se capstone handbook [march 31, 2024]

tem for Engineering Science Quest. This system never went into
production, and in fact significantly diverged from the customer’s re-
quirements. Moreover, they had not actually spoken to the customer
for over six months.

Team SS-Net (ECE 2014) wrote a matching application for the UW Grade: A. As of Symposium Day the
Student Success Office was actively
working with IST to put this system
into production.

Student Success Office’s International Peer Mentorship Programme.
The Student Success Office matches incoming international students
with peer mentors from a group of volunteer students.

14.2.4 Free/Open-Source Software Patch

Some teams choose to contribute to existing free/open-source soft-
ware systems. We encourage such projects.

As with all categories, we rely on ref-
eree judgement: referees are not strictly
bound by these tables of guidelines. A
sentence explaining departure from the
guidelines is appreciated. In particular,
in this context, the technical challenge
of the enhancements attempted is an
important factor.

Grade Criteria
A+ Patches accepted, positive mentions in press/release.
A Patches accepted.
A- Patches accepted but then reverted due to bug/issue.
B Patches submitted and reviewed.
B- Patches submitted.
C Patch appears to work on student computers.
F Patch is vapour.

Team CryptKeeper (2014) added support for Galois/Counter Mode Grade: B. Michael Chang, member
of Team CryptKeeper, recommends
submitting small focused patches
starting in 4A, rather than large patches
in 4B.

to the eCryptfs Linux cryptographic file system. This enhancement

http://new.livestream.com/itmsstudio/
events/2850051 first video, first talk

allows the file system to detect when files have been tampered with
and warn the user. Tampering could occur by malicious actors, disk
corruption, or otherwise. As of Symposium Day they had submitted
their patches to the Linux kernel mailing list twice. The first time the
patch was reviewed and rejected for a security flaw, and the revised
second submission was pending review on Symposium Day.

Team Juntao (2013) worked on the Sana.MIT.edu project. Here is Grade: A
The Sana project is interested in more
collaboration with Waterloo. There is an
SE2016 team working on a Sana project,
and some SE2017 students are taking
the Sana course at MIT remotely. We
encourage you to get involved with this
great project. Contact Derek Rayside.

their abstract:

Sana Mobile is an open source project developed by MIT. Our project is
to make an open source contribution to the existing code base, create a
data visualization portion for a Sana mobile client, an Android mobile
for collecting patient data in remote locations for the doctors in head-
quarters. This project should be able to produce a visual representation
of selected portions of an individual patient’s medical history in a
meaningful fashion. Because of the nature of this app, we must resolve
a wide range problems such as, data synchronization after the device
has been without any internet connection, data caching for displaying
most recent available data in remote areas without any connection, and
designing how to display retrieved data.

http://new.livestream.com/itmsstudio/events/2850051
http://new.livestream.com/itmsstudio/events/2850051

project evaluation 177

14.2.5 Application of Advanced Technology

Some teams choose to focus on solving a particular problem by ap-
plying advanced technical knowledge in a specific domain. Rather
than focus on having an organization or individual users adopt a
product, these projects typically involve finding a problem and solv-
ing it in a way that is better than existing solutions. The main criteria
here is that the project demonstrates excellence in several measures
that have to do with the importance of the problem, the (technical)
difficulty of the problem/solution, novelty, etc.. This may require
gaining significant in-depth knowledge either by combining concepts
from several ATEs or by doing extensive self-study.

Grade Criteria
A+ Demonstrates that a problem was solved convincingly,

meets two or more of the measures below with excellence,
and positive mention from an industry professional.
Measures
· Importance of the problem
· (Technical) difficulty and scope
· Novelty of the solution
· Applies knowledge from multiple upper-year courses

A Demonstrates that a problem was solved convincingly
and meets two or more of the measures above with excel-
lence.

B Demonstrates that a problem was solved convincingly
and meets one of the measures above with excellence.

C Demonstrates that a problem was solved satisfactorily.
Scope and depth similar to a 499 project.

F Demonstrates that a problem was solved marginally.
Scope and depth similar to a course project.

Team Dynalist (2017) created dynalist.io, an outlining app. They Grade: A+. This project received an A+
in New Product rubric [§14.2.1], but
they would have done well under this
rubric as well.

used a novel algorithm for managing collaborative, hierarchical lists.
They received positive mention from industry professionals in the
form of testimonials from its 10k users.

Team Red Coconut (2014) created UWFlow.com website for stu- Grade: B. This project received an A+
in New Product rubric [§14.2.1] with
their large user base but would not have
done as well using this rubric.

dents to critique courses and share their schedules. Course critique
websites have been done multiple times over the years and is not a
novel solution. At its core UWFlow is a c.r.u.d project that would
not meet the difficulty measure with excellence.

dynalist.io
UWFlow.com

178 se capstone handbook [march 31, 2024]

Applications of Advanced Technology might benefit from
working with the appropriate stakeholders to ensure that the prob-
lem being solved is worthwhile and that the solution is appropriate
for the audience being targeted. Finding someone in industry or
academia who is an expert in the domain being focused on can help
a project prove the importance, novelty, or difficulty of the work in-
volved.

When choosing a project, keep in mind the difficulty and scope
of the project. It would be inappropriate to choose a project whose
content is only at a second year level. It would also be inappropriate
to choose a project that could be completed in one term by a single
fourth year student. It is expected that groups will apply their engi-
neering judgement and try to come up with a reasonable scope and
timeline for what can be completed by symposium day.

A possible way to demonstrate that the problem was solved con-
vincingly is by comparing the solution to the alternatives. Aim to
show a concrete example of the major improvement enabled by the
product. Keep in mind that a “major improvement” does not neces-
sarily imply that the problem was solved in its entirety. A project For example, a degree auditer that can

automate 80% of cases is still a major
improvement over no automation.

can still make a big impact even if the problem domain is such that
there is no complete solution.

14.3 Teamwork Assessment

TBD — will include peer evaluation

14.4 Communication Assessment

Generally speaking, all communication should be: There is some inherent tension between
these criteria — especially between
being complete and concise. Learning to
navigate these waters is an important
communication learning objective.

• clear,
• complete,
• concise, and
• correct.

§13 Communication Activities contains specific advice for your ab- In your presentation, it is advisable
to briefly indicate which presentation
advice you are following.

stract, and also refers you to a variety of sources of advice for your
presentation.

14.5 How Referee Grades Get Combined

On Symposium Day, referees submit grading sheets to the instruc-
tor, who is then responsible for merging those grades — or making
exceptions to them. First we’ll discuss merging grades.

project evaluation 179

14.5.1 Merging Referee Reports

The simplest case is when all of the referees agree on what the grades
should be. For example, for team eCryptFS in se2014, the referees got
together after the presentation and then submitted a single grading
sheet with their consensus assessment. This level of unanimity is
rare.

Usually, the referees have different opinions. There are a number
of strategies that the instructor might use to merge the grades. The
instructor might use different merge strategies for different parts of
the grade for the same group. For example, team haks in se2018 had
two external referees: one self-identified as business/non-technical,
and the other self-identified as technical. The business referee’s tech-
nical assessment was given less weight, whereas his communication
assessment was given more weight.

• Average. Take the mean of the referee assessments.

• Weighted Average. Take the mean of the referee assessments, but This can happen for lots of reasons. For
example, there are some referees that
are known to grade to extremes: A or
C, but never give out B’s. If a referee
like that is also known to give out A’s
rarely, then a C from them might be
weighted less — at the instructor’s
discretion.

placing more importance on some referees and less on others.

• Mode. Take the most common grade. For example, if two referees
give A, and one gives B, just go with A.

• Discard Outliers. The instructor might choose to disregard grades
For example, a team in se2016 asked
a grad student, who happened to be
their roommate, to be a referee. He gave
them A+ across the board, which was
not the judgement of the other referees.

On the other side, Team Amalgam
from se2014 had an external referee
from ETH Zurich in Switzerland.
He graded according to European
norms, which are lower than North
American norms. Remember that the
important part of the Symposium Day
experience is the formative feedback
from the referees, not their summative
assessments.

from a particular referee if they are significantly out of line with
the other referees.

• Max/Min. Take one of the outliers.

14.5.2 Making Exceptions to Referee Reports

In rare cases, the instructor (or the students) might completely dis-
agree with the referee’s Symposium Day assessments. There are
several ways in which grades can diverge from referee reports:

• Instructor Assessment. Final grades are at the sole discretion of the
instructor. The instructor can choose to disregard the referee re-
ports. This is a rare occurrence, but does happen sometimes. As a
rule of thumb, the instructor tends to restrict exercising discretion
in this way to assigning grades that are higher than what the refer-
ees assessed. The instructor, as a matter of practice, is unlikely to
disregard all referee reports and assign a lower grade.

• The Risk Reward Bonus §14.7 is one mechanism for adjusting the
final grade outside of the ordinary Symposium Day process. In
this case, the referee assessments from Symposium Day stand, but
bonus points are awarded for factors that are not captured in the
Symposium Day marking rubrics.

180 se capstone handbook [march 31, 2024]

14.6 Referee Selection
If the student team does not nominate
at least three referees, or if some of the
nominated referees are not available,
then the Instructor will coordinate
referees from amongst uw faculty and
staff and se alumnus.

Grading on Symposium Day is done by a panel of (usually three)
referees. Each team may nominate who they would like to evaluate
them on Symposium Day. We are open-minded about high-quality
nominees. The following categories of candidates are encouraged:

• Faculty or staff (from any university). Any personal connections to nominated
referees should be declared to the
Instructor. A personal connection does
not necessarily disqualify the referee —
that judgement is for the instructor to
make.

• se alumnus.
• Graduate students in a related area of research. For example,

Amalgam se2014 had a researcher from ETH Zürich (Switzerland).
• The ‘Customer’ for the project. This is especially relevant for the

Custom Software rubric.
• The creator or maintainer of some technology used in the project.

For example, Team Sleekbyte se2016 had a senior engineer from
the Swift language team at Apple. Team Parallax se2016 had the
creator of WebGL.

The Instructor retains final discretion on grades. This oversight is For example, if one referee on a panel
of three is a significant outlier, the
Instructor may choose to ignore the
outlier, accept only the outlier, take an
average, or some other resolution.

typically exercised when there is significant disagreement on a ref-
eree panel, or when one panel of referees returns grades significantly
out of line with other panels or with historical norms.

14.6.1 Referee Scheduling

There are two kinds of referees from a scheduling perspective:

1. Referees who are unique to your team.

2. Referees who might also be requested by other teams.

14.6.2 Inviting Team-Specific Referees

You can directly invite referees that are unique to your team: referees
that will not be invited by other teams, and that your team has a
deep connection with. Your steps to invitation are:

1. Select two videos of past presentations for your referee to view in You can find links to videos of past
presentations in §?? Awards.advance of Symposium Day. Your selections should be using the

same Results Rubric as your team. Your invitation to your referee
will include your assessment of those past projects.

2. Send a draft of your invitation email to the course instructor See below for an example template.

for suggestions and approval of the referee. Also include a brief For example, if the referee is your old
boss or uncle etc. Previous relationships
do not disqualify referees, but are
important to disclose.

description of the referee’s suitability, their involvement in your
project, and disclose if there is any relationship with the referee
outside of your project.

3. Send your invitation email to your referee; copy the instructor.

project evaluation 181

Here is an example template for your referee invitation email. You
should customise this template to fit the particulars of your situation.

182 se capstone handbook [march 31, 2024]

Dear X,
Thank you for your mentorship/involvement/etc. in our Software Pick one word here.

Engineering Capstone Design Project over the last year. Your efforts
have enriched our educational experience. Say something nice.

We would like to invite you to judge our project on our Symposium
Day, Tuesday, March 28, 2017. Symposium Day is a public event where
all teams in our cohort will present their projects. Judging our project
will involve three steps that will take about an hour in total:

1. Preparation: Watch a 20 minute video of a presentation from a pre-
vious team in a previous year, to become familiar with the grading
sheet and the expected calibre of the projects.

2. Demonstration: We will give you a 10 minute interactive demon- If the referee is remote, then do this
online the day before.stration of our software at our booth on the Symposium floor, sup-

ported by our poster.
3. Presentation: We will give a 20 minute presentation to you and the

general public, followed by 10 minutes of audience questions.

After the presentation you will submit your grading sheet to the course
instructor, Prof P <p@uwaterloo.ca>. Specify how, as appropriate: on paper if

local, via email if remote.If you accept our invitation to judge our project, please reply in the
affirmative and let us know what times you are available on Sympo-
sium Day (March 28, 2017). Presentations typically run from 8:30am
to 3pm. The course instructor will make every effort to schedule our
presentation at a time that is convenient for you.

Thank you,
Team T

Next communication from course instructor ...
referee package
links to videos
sample grading sheet

14.7 Risk Reward (Bonus)
In order to be eligible for the Risk
Reward you must have pivoted to a
project on which you have had some
success. You cannot show up on Sym-
posium Day completely empty handed.

You are encouraged to take sensible risks, and will be rewarded
for doing so in one of two ways. The best case scenario is that your
risk pans out and the referees observe your success on Symposium
Day. The other scenario is that your risk does not pan out, and the
success you have to report on Symposium Day is not as great as you
were hoping. In this latter case the referees might give you a lower You may, if you choose, also discuss

the risks you took (that didn’t pan
out) in your presentation. In that
case, you are asking the referees to
vouch for your Risk Reward petition
with the instructor, not to adjust their
interpretation of the rubrics.

mark than you were hoping for. In this case, you may petition the
Instructor, in writing, before Symposium Day, explaining the risk
you took and why it didn’t pan out. The Instructor, in their sole
discretion, can raise the grades awarded by the referees to reward
you for taking the risk.

Difficulty of the problem to be solved can be a basis for a Risk
Reward petition. Here is a scale of difficulty:

<p@uwaterloo.ca>

project evaluation 183

1. Clay Mathematics Institute Millenium Prize Problem.
2. Other researchers/companies have tried and failed.
3. Requires inventing a new idea in a new area.
4. Applying an old idea in a new area.
5. Using an old idea in a known way.

You should probably not attempt Millenium Prize Problems during
your capstone project — save those for grad school. You might con-
sider attempting problems that other researches have failed at if you
have good collaborators and a reason to think that your approach is
different than what was done in the past.

If you are using an old idea in a known way then it will be chal-
lenging to submit a successful Risk/Reward petition on the basis of
the problem difficulty.

Team Satisfaction (2014) started out attempting to accelerate a
boolean satisfiability solver by using a GPU. They knew at the outset
that this was a hard problem that nobody had ever succeeded at
before (despite a number of attempts by research groups at other
universities). This problem was, as expected, too hard. They pivoted
to parallelizing a boolean satisfiability solver by running a secondary
thread to do formula simplifications.

Team JSTD (2013) started out with a project to connect indepen-
dent musicians with fans (Tunezy.com). By the time SE491 came
around they were talking to investors. They were afraid that the
investors would be scared off if they presented Tunezy at Sympo-
sium Day (perhaps an unfounded fear). So they created another
project, SchoolAx, in January, and presented that at Symposium Day.
SchoolAx was a website to help students find events on campus (and
advertisers to find students). SchoolAx had very limited results —
but it is a great example of what can be accomplished in two months.
Team JSTD had their SchoolAx grade bumped because of Tunezy.

Team Seasalt (2013) started out in SE390 working on a flight pric- In light of Seasalt’s experience, we
now expect you to do more careful due
diligence on data acquisition in SE390
before you invest hundreds of hours in
a project you won’t be able to complete.

ing project. They invested hundreds of hours into this project before
realizing that they would never really be able to get the raw data nec-
essary to make the project succeed. So they switched projects. You
can read their Risk Reward petition in the docs directory where this
handbook is stored.

Tunezy.com

Intellectual Property & Collaborators

Waterloo Policy 73 says, roughly, that the creator owns their own https://uwaterloo.ca/
secretariat-general-counsel/
policies-procedures-guidelines/
policy-73-intellectual-property-rights

intellectual property. By contrast, at most universities the university
owns your intellectual property — just like most employers choose
to do. This policy is intended to promote entrepreneurship: it is
much easier for you to start a company if you own your intellectual
property.

Some projects have an external collaborator (or ‘customer’). We
actively encourage external collaborations because they help clarify
requirements and push you to do your best. Part of the groundwork
of establishing these collaborations is communicating clearly about
intellectual property.

15.1 What is Intellectual Property?

The academic concept of intellectual property is broader than the
legal concepts. In academia we consider ideas to be intellectual prop-
erty that must be properly credited, whereas ideas per se have no
protection in law. The law recognizes four kinds of intellectual prop-
erty: patent, copyright, trademark, and trade secret.

http://www.gnu.org/philosophy/
not-ipr.html

Patent: A patent grants a time-limited commercial monopoly in

The Content Scramble System (CSS)
used to encrypt DVDs is protected by
patent, for example. Any software (or
hardware) that implements this system
without a license is in violation of the
patent — regardless of whether that
software was written from scratch.

exchange for public disclosure of an invention. An invention must
have practical application. Once the time limit expires, anyone can
use the invention. The time limit of a patent is around 20 years in
most countries.

Copyright: Copyright grants a time-limited distribution monopoly

Consider the Linux kernel source
code. It has many contributors. Each
contributor still owns the copyright
on their individual contributions.
They have chosen to release those
contributions under the GPLv2, which
grants others the freedoms to modify
and redistribute that source code. The
Linux kernel will never move to GPLv3,
nor to any other license, because to
do so would require having every
contributor sign off on the license
switch, which is logistically impossible.
Only the copyright owner can change
the license, and copyright is the body
of law that makes free and open source
licences legally possible.

on some written or recorded work. The time limit on copyright in
some countries is life of the author plus fifty years. Copyright is
the branch of law that protects source code, and is the basis for all
free and open source software licenses.

Project Gutenberg redistributes classic
works of literature and thought on
which the copyright has expired.
For example, Shakespeare, Dickens,
Darwin, Adam Smith, etc.

Trademark: The names of companies or products may be trade-
marked to protect their use in the market. For example, ‘Kleenex’
is a trade-marked name for a specific brand of tissues.

https://uwaterloo.ca/secretariat-general-counsel/policies-procedures-guidelines/policy-73-intellectual-property-rights
https://uwaterloo.ca/secretariat-general-counsel/policies-procedures-guidelines/policy-73-intellectual-property-rights
https://uwaterloo.ca/secretariat-general-counsel/policies-procedures-guidelines/policy-73-intellectual-property-rights
https://uwaterloo.ca/secretariat-general-counsel/policies-procedures-guidelines/policy-73-intellectual-property-rights
http://www.gnu.org/philosophy/not-ipr.html
http://www.gnu.org/philosophy/not-ipr.html
https://www.gutenberg.org/

186 se capstone handbook [march 31, 2024]

Trade Secret: Perhaps the most famous example of a trade secret is
the recipe for Coca Cola. Patent, copyright, and trademark all
involve public disclosure. If someone were to steal the recipe for
Coca Cola and attempt to sell it, the Coca Cola company could sue
them under trade secret law.

Consider the case of Einstein’s work on the theory of relativity. His
publications on this topic would be protected by copyright. It is likely that Einstein transferred

his ownership of that copyright to the
journal the published the papers. This
is a common, but increasingly contro-
versial, aspect of scientific publication.
The publisher wants to hold the copy-
right so that they have exclusive right
to distribute the papers, since such
distribution is their business. Some
scientists argue that taxpayer funded re-
search should be freely redistributable;
other scientists go farther and argue
that all knowledge should be freely
redistributable.

But copyright does not protect the idea of the theory of relativity,
just the text that he wrote for the papers. Someone else could write
another paper claiming to have discovered the theory of relativity,
and as long as they used different words, they would not have com-
mitted a violation of copyright law. This would be a gross academic
transgression, because in academia we consider that Einstein ‘owns’
the idea of the theory of relativity, but that concept of ownership
has no basis in law, and the offender could not be punished with
incarceration or government sanctioned fines. The academic com-
munity would shun the offender, but this is the collective action of a
community based on their social norms, and not the act of a central
authority empowered by law.

Einstein could not patent the theory of relativity because the the-
ory itself does not describe any practical applications. If someone
made an invention that used the theory of relativity to do something
practical then they could patent that invention — and they would
own the patent, legally, not Einstein.

15.2 Collaborating on Free / Open Source Software

Collaborating on free or open source software is usually uncon-
tentious: the students retain ownership of the copyright on the source
code, and simply license it to the collaborator using some established
free/open source license.

15.3 Collaborating with an Established Corporation

Collaborating with an established corporation is usually easy. There
are two common cases.

Large corporations typically collaborate with students for the
purpose of meeting potential hiring candidates. These companies
have no intention of using the students’ intellectual property. For
many companies the legal complexity and potential liabilities of
using intellectual property developed by outsiders are prohibitive.

Smaller corporations might actually be interested in using the soft-
ware produced by the students. For example, some groups have used

intellectual property & collaborators 187

their capstone projects to write software for former co-op employ-
ers. In these cases the collaborator would typically pay the students
for their work. This is not common, but there are no university rules
prohibiting it. The project must be up to academic standards, and the
instructor (or judges in SE491) must be able to know enough about
the project in order to evaluate it.

15.4 Collaborating with a Startup
Velocity has good resources online:
http://wiki.velocity.uwaterloo.ca/LegalThe intellectual property discussion is typically the most complex

when collaborating with someone who has a business idea for a
startup. Essentially the students are becoming co-founders with the
collaborator.

A simple approach, which is not generally recommended by the
university, is that the students just give their work to the collaborator.
The rest of this section discusses our recommended approach of co-
ownership.

15.4.1 Understanding Your Startup Collaborator

First, it is important to recognize that everyone has something at risk
and something to gain. Students understand their own situation, but
do not always clearly understand the position of the collaborator. The
collaborator bears the greatest initial risk because they are disclosing
their business idea to the students. They fear that the students will
take that idea and become competitors, or that the students will
disclose the ideas to others who will become competitors. They also
fear the opportunity cost of investing time with the students if things
don’t pan out.

15.4.2 Non-Compete and Non-Disclosure Agreement

We have found that one approach to mitigating the collaborator’s
initial business risk concerns is to have a non-compete and non-
disclosure agreement along the following lines. We have found that
email agreements with clauses such as the following are sufficient to
make everyone comfortable and move the conversation forward.

1. I agree to treat information from collaborator as confidential, and to Non-disclosure, to pacify collaborator

not disclose it beyond what is necessary for my academic require-
ments.

2. I agree to not pursue a project that is related to, or competes with, Non-compete, to pacify collaborator

collaborator’s project while I am a student at the University of Wa-
terloo, unless that project is in collaboration with collaborator.

http://wiki.velocity.uwaterloo.ca/Legal

188 se capstone handbook [march 31, 2024]

3. I understand that course instructor will help our group find a suit- Instructor help, to pacify students

able alternative project and guide us through the capstone design
project process if an alternative becomes necessary.

This is an initial agreement that would be made in the first month
of SE390 so that the discussion can move forward into the second
month. By the third month if everyone wants to move forward then a
more sophisticated agreement is probably necessary.

15.4.3 Co-Founding a Startup with a Collaborator
This is an approach that has been used
successfully by a number of startups
connected with UW. Thanks to Asif
Khan (Nano’12) for sharing it with us.

You and your collaborator are co-founding a company. That company
will own all of the intellectual property, sales contracts, etc., that you
and your collaborator create. But you won’t formally incorporate this
company until some date in the future. For now we’ll consider this
date to be at graduation, but it could be sooner.

When the company is incorporated, you will have to decide how
much of it each person owns. Don’t try to figure this out now: that
approach won’t work, and you’ll spend endless hours arguing about
different hypothetical visions of the future. Instead, what you want
to agree on now are the mechanisms and criteria by which you will
evaluate this in the future.

For example, consider a scenario where the role of the students
is to write the software and the role of the collaborator is to sell the
software. The student contribution can be valued as a function of
the time they have invested in writing the software. The collaborator
contribution can be valued as a function of the sales leads they have
generated. At the date of incorporation, you look at the value that
everyone has contributed and divide the pie accordingly.

Other valuation functions are possible. The key to moving forward
in your discussion at this stage is to focus on the valuation functions
rather than who will own how much of a pie that has not yet been
created.

It might be the case that some people eventually want to leave the
project. For example, after graduation some students might want
to get regular salaried jobs, whereas others might want to continue
with the startup. In this case, the parties who remain in the company
buy out the departing party according to the valuation functions
mentioned above.

It might also be the case that nobody wants to continue with incor-
poration. In that case, everyone owns what they created (which is of
no interest), and goes their separate ways to greener pastures.

An options pool is a good way to buy out departing parties with
future investor money rather than with your own. Here’s how it

intellectual property & collaborators 189

works. In this scenario the departing party is leaving at the time of
incorporation.

Some fraction of the company shares, say up to 10%, are allocated
to the options pool. The value contributed to date by the departing
party is calculated with the appropriate valuation function, say $x.
The departing party then gets x share options: i.e., one share for each
dollar of value they contributed. The departing party can exercise the
options to buy x shares for $ x

100 : i.e., a penny per share.
The anticipated scenario is that eventually a third-party investor

comes along (i.e., a venture capitalist). Investors buy shares in the
company with money. Suppose the investor pays $y per share. The
departed party exercises their options, buys their shares for a penny
a piece, and then sells them to the investor for $y each. In this way
the investor provides both the cash to buy out the departed party, but
also a market valuation for what the company is worth. Obviously
everyone hopes that $y is greater than the nominal $1 per share that
was used when the options were created.

The above scenario assumes that incorporation is happening at the
same time as gradution, and that the departing party is choosing to
leave then, so they get options instead of shares.

Departing after incorporation also happens. In that case, the
remaining parties might have the option to buy the shares from the
departing party at $1 per share. In this way, the departing party gets
paid for what they put in to the company before incorporation.

After incorporation those in the company continue to con-
tribute value. That value can be recognized with cash or with shares.
Amounts can be determined based on time worked (i.e., a salary) or
sales commissions or some other way.

Shares that vest over time are one way to approach this. For exam-
ple, suppose that a person is to get 10,000 shares over four years: they
would receive 2,500 shares per year until, after the fourth year, they
had received all 10,000 shares.

Startups are a rocky road. At any moment someone might want
to, or have to, or need to, leave. The best way to handle this is to
always have agreed upon mechanisms and valuation functions for
these departures to happen as smoothly as possible, with as little
damage as possible to the company.

190 se capstone handbook [march 31, 2024]

15.5 The Research Licensing Approach

Graduate students and professors collaborate with companies all the
time. One of the main ways in which research funding happens in
Canada is that the company gives some money to the university for
research, and then the government matches that money.

There are a variety of ways that intellectual property concerns
can be handled in this graduate student research context. One of
the main approaches advocated by the University of Waterloo is
that, consistent with Policy 73, whoever invents something owns it.
Sticking purely with that position offers nothing to the company,
however, and so is by itself inadequate.

What theuniversity likes to offer to the company is the right to
an exclusive commercial license to the invention(s). At the time the
project starts nobody knows exactly what the invention(s) will be,
nor their value. It is also next to impossible to determine an outcome-
based valuation function in advance. So both the potential value of All of the valuation functions we dis-

cussed above are based on inputs:
how much did someone contribute?
Whether that be in time, sales, etc. The
bottom line, however, is whatever the
market is willing to pay. The point
of the valuation functions above is to
ensure that everyone is adequately
compensated for their inputs. In the
research contract scenario, the graduate
students and professors are already
paid a salary for their time, so their
inputs have been covered. What re-
mains is to value the output through
the market.

the invention(s) and the valuation functions that might be used are
left unspecified, to be negotiated once the project is complete.

15.6 Intellectual Property & Standards Report

The following pages contain a template report covering various as-
pects of intellectual property law: copyright (including software
licensing), patent, trademark, and privacy. There is also a section on
industry standards.

It is typically the case that not all sections of the report are espe-
cially relevant for every project. For example, if your project does not
store any user data then the privacy concerns are limited.

intellectual property & collaborators 191

Intellectual Property and Standards Report
Team Name Student1, Student2, Student3

Date
Instructions: Complete the sections of
the report relevant to your project.

Your goal here is to demonstrate
awareness of the issues. You are not a
lawyer, and you do not need to provide
a legal judgement: if there are grey
areas then you can just say that a legal
opinion should be sought on the matter.

LATEX Instructions:

• Edit main.tex

• Do not rename main.tex

• Set your text editor to use plain
ascii — not unicode. The most
common problem here is ‘smart
quotes’.

• Ampersand is a special character in
LATEX that must be escaped with a
preceding backslash.

• Use the url macro to wrap urls

• main.tex will not build on its own
— it reads in your meta.tex file. So
if you copy just main.tex into an
online LATEX system, it won’t build
properly. You need to build it on
your local machine (if you want to
build it at all).

Project abstract (uncomment LATEX input{../abstract}

Contents

1 Intellectual Property 2

1.1 Copyright 2

1.2 Patent 3

1.3 Trademark 3

1.4 Trade Secrets 3

1.5 Export Controls 3

1.6 End User License Agreement or Terms of Service 3

2 Privacy 4

3 Industry Standards, Regulations, Norms 4

192 se capstone handbook [march 31, 2024]

intellectual property and standards report 2

1 Intellectual Property

‘Intellectual property’ is a recent term used to refer to four histori-
cally distinct sets of laws: patent, copyright, trademark, and trade
secrets.1 1 Richard M. Stallman. Did You Say

‘Intellectual Property’? It’s a Seductive
Mirage, 2012. URL http://www.gnu.
org/philosophy/not-ipr.html. First
version circa 2004

University of Waterloo Policy 732 is unique in that it allows you to

2 University of Waterloo. Policy 73:
Intellectual Property Rights, 2000.
URL http://secretariat.uwaterloo.ca/
Policies/policy73.htm

retain ownership of all of the intellectual property that you create at
school. Very few (if any) other schools have such a policy: usually the
university claims ownership of all intellectual material created as part
of university business. This policy gives you tremendous freedom

According to Policy 73 UW does retain
ownership of final exams by classifying
them as a faculty administrative task
rather than as product of teaching.

and makes writing this report much simpler.

1.1 Copyright

Copyright is the branch of law most commonly associated with soft-
ware, as software is written work. Copyright is the legal basis of
all open-source software licences. You should be able to answer the
following questions:

• What are the licenses attached to the software you are using?

TODO gpl compatibility is discussed on the
gnu web site. There are many other
online resources on this topic.

http://www.gnu.org/licenses/quick-guide-gplv3.html
http://www.gnu.org/licenses/license-list.html

• Are the pieces of software that you are using license compatible

Please provide appropriate references
for your claims, e.g.:

http://www.softwarefreedom.
org/resources/2007/
gpl-non-gpl-collaboration.html

http://www.apache.org/licenses/
GPL-compatibility.html

with each other?

TODO

• What license options are available for your project? If you are
linking with gpl software then your project must be gpl, etc.

TODO

• What license are you choosing for your project? Why?

TODO

• Does your project involve, or appear to involve, sharing or cap- There is a rich legal history on this
topic that you could briefly reference,
e.g., Napster, Morpheus, MegaUpload,
etc.

ture of third party data? Third party data should be understood
broadly, including at least recorded music or movies, Google
maps data, Yelp local business data, etc.. What are the terms of
service/usage for the data?

TODO

• Does your project involve analysis of third-party datasets? Who
owns the copyright of them? What is the licence?

TODO

• Who will retain ownership of the copyrights on your software
after you graduate? You? Your customer? Someone else?

TODO

intellectual property & collaborators 193

intellectual property and standards report 3

1.2 Patent

• Is there patentable material in your project? Have you applied?
Are you applying?

TODO

• Is the software that you are using patent encumbered in certain For example, many codecs are patent
encumbered in most of the developed
world, and hence do not ship with
many gnu/Linux distributions.

countries? Does this restrict the ability to redistribute your soft-
ware?

TODO

1.3 Trademark

TODO

1.4 Trade Secrets

TODO

1.5 Export Controls

In some countries, such as the United States, some technologies, such
as cryptography, are restricted by export controls. For example, this
is why OpenSSH and OpenBSD are developed in Canada.. If tech- http://www.openbsd.org/crypto.html

nology used in your project is subject to export or import controls in
Canada, the United States, or the United Kingdom, please discuss.

TODO

1.6 End User License Agreement or Terms of Service
There are some online tools for generat-
ing these, such as TermsFeed.comIf your project requires an End User License Agreement or a Terms of

Service agreement, please provide and discuss it here.
TODO

194 se capstone handbook [march 31, 2024]

intellectual property and standards report 4

2 Privacy

• Jurisdiction: Where will your software be run? Where will its
users be? Which jurisdictions should be considered?

TODO

• Canada: Personal Information Protection and Electronic Documents Act
(PIPEDA). Some provinces, such as Ontario,

Quebec, Alberta, and British Columbia,
have their own privacy legislation. This
provincial legislation largely mirrors the
federal legislation but is not identical,
and in some cases the differences might
count.

TODO

• USA: Health Insurance Portability and Accountability Act (HIPAA)

TODO

• Europe: Data Protection Directive

TODO

3 Industry Standards, Regulations, Norms

TODO: Identify and briefly discuss relevant industry standards, reg-
ulations, and norms that are relevant to your project. Some pointers
to potentially relevant information below. Please delete those that
are not relevant to your project, and expand those that are — plus, of
course, add other relevant items not on this list.

• Avionics: DO-178C

• Medical Devices: ISO 13485, ISO 13488, GD211

• Security: Common Criteria

• Internet: IETF (Internet Engineering Task Force standards)

• Web: W3C (World Wide Web Consoritium)

• CAP Theorem

• Language standards: SQL, C, Java, etc.

• Google Material Design UI/UX Standard

• Apple Design UI/UX Standard

Bibliography

[1] M. Balsom, R. Barrass, J. Michela, and A. Zdaniuk. Processes
and attributes of highly effective teams. Technical Report The
WORC Group, University of Waterloo, 2009.

[2] Len Bass, Paul Clements, and Rick Kazman. Software Architecture
in Practice. Addison-Wesley, 2 edition, 2003.

[3] Sharon Anthony Bower and Gordon H. Bower. Asserting Yourself.
Da Capo Lifelong Books, 2004.

[4] Frederick P. Brooks. The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley, 1975.

[5] Avi Bryant. Web Heresies: The Seaside Framework. OSCON,
2006. URL http://conferences.oreillynet.com/cs/os2006/view/
e_sess/8942.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture, Volume 1: A System
of Patterns. John Wiley & Sons, 1996.

[7] Canadian Engineering Accreditation Board. Accreditation crite-
ria and procedures, 2013. URL http://www.engineerscanada.
ca/sites/default/files/sites/default/files/accreditation_criteria_
procedures_2013.pdf. Retrieved winter 2014.

[8] Computer Science Accreditation Council. Accreditation crite-
ria for computer science, software engineering and interdisci-
plinary programs, August 2011. URL http://www.cips.ca/sites/
default/files/CSAC_Criteria_2011_v1.pdf. Retrieved winter
2014.

[9] Edward W. Constant. The Origins of the Turbojet Revolution. The
Johns Hopkins University Press, 1980.

[10] Melvin E. Conway. How do committees invent? Datamation,
14(5):28–31, April 1968. URL http://www.melconway.com/
research/committees.html.

http://conferences.oreillynet.com/cs/os2006/view/e_sess/8942
http://conferences.oreillynet.com/cs/os2006/view/e_sess/8942
http://www.engineerscanada.ca/sites/default/files/sites/default/files/accreditation_criteria_procedures_2013.pdf
http://www.engineerscanada.ca/sites/default/files/sites/default/files/accreditation_criteria_procedures_2013.pdf
http://www.engineerscanada.ca/sites/default/files/sites/default/files/accreditation_criteria_procedures_2013.pdf
http://www.cips.ca/sites/default/files/CSAC_Criteria_2011_v1.pdf
http://www.cips.ca/sites/default/files/CSAC_Criteria_2011_v1.pdf
http://www.melconway.com/research/committees.html
http://www.melconway.com/research/committees.html

196 se capstone handbook [march 31, 2024]

[11] Patrick Cousot and Radhia Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. In Conference Record of the
4th ACM Symposium on the Principles of Programming Languages
(POPL), Las Angeles, CA, January 1977.

[12] Pierre Cros. Imagination, undeveloped resource : a critical study of
techniques and programs for stimulating creative thinking in business.
Creative Training Associates, New York, 1955. URL http://
hdl.handle.net/2027/uc1.l0050673813. Submitted in partial
fulfillment of the requirements in Professor Georges F. Doriot’s
course in manufacturing at the Harvard Business School.

[13] Alan M. Davis. Operational prototyping: A new development
approach. IEEE Software, 9(5), September 1992.

[14] Edward de Bono. Six Thinking Hats: An Essential Approach to
Business Management. Little, Brown, & Company, 1985.

[15] Clive L. Dym and Patrick Little. Engineering Design: A Project
Based Introduction. John Wiley & Sons, 3 edition, 2008.

[16] Michael D. Ernst. Static and dynamic analysis: synergy and
duality. In Jonathan E. Cook and Michael D. Ernst, editors, Pro-
ceedings of the Workshop on Dynamic Analysis (WODA), Portland,
Oregon, 2003.

[17] Susan Farrell. 27 tips and tricks for conducting successful
user research in the field. Technical report, Nielsen/Nor-
man Group, 2017. URL https://www.nngroup.com/articles/
tips-user-research-field/.

[18] Susan Farrell. UX research cheat sheet. Technical report,
Nielsen/Norman Group, 2017. URL https://www.nngroup.
com/articles/ux-research-cheat-sheet/.

[19] Eugene S. Ferguson. Engineering and the Mind’s Eye. The MIT
Press, Cambridge, Mass., 1992.

[20] Anthony Finkelstein. SIGSOFT Software Engineering Notes, 1992.
URL http://www0.cs.ucl.ac.uk/staff/A.Finkelstein/papers/
immaturity.pdf.

[21] Martin Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley, 2002.

[22] Richard P. Gabriel. Lisp: Good news, bad news, how to win
big. AI Expert, pages 31–39, June 1991. URL http://www.
dreamsongs.com/NewFiles/LispGoodNewsBadNews.pdf.

http://hdl.handle.net/2027/uc1.l0050673813
http://hdl.handle.net/2027/uc1.l0050673813
https://www.nngroup.com/articles/tips-user-research-field/
https://www.nngroup.com/articles/tips-user-research-field/
https://www.nngroup.com/articles/ux-research-cheat-sheet/
https://www.nngroup.com/articles/ux-research-cheat-sheet/
http://www0.cs.ucl.ac.uk/staff/A.Finkelstein/papers/immaturity.pdf
http://www0.cs.ucl.ac.uk/staff/A.Finkelstein/papers/immaturity.pdf
http://www.dreamsongs.com/NewFiles/LispGoodNewsBadNews.pdf
http://www.dreamsongs.com/NewFiles/LispGoodNewsBadNews.pdf

[appendix 16] bibliography 197

Presented as the keynote address at the European Conference on
the Practical Applications of Lisp, Cambridge University, March
1990. Commonly known as ‘Worse is Better’.

[23] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1995.

[24] David Garlan and Dewayne E. Perry. Introduction to the special
issue on software architecture. IEEE Transactions on Software
Engineering, 2(1), April 1995.

[25] David Garlan and Mary Shaw. An introduction to software
architecture. Technical Report CMU-CS-94-166, Carnegie Mellon
University, January 1994. URL http://www.scs.cmu.edu/afs/
cs/project/able/ftp/intro_softarch/intro_softarch.pdf.

[26] David Garlan and Mary Shaw. Software Architecture: Perspectives
on an Emerging Discipline. Prentice-Hall, Inc., 1996.

[27] H. Goldstine. The computer from Pascal to Von Neumann. Prince-
ton University Press, 1972.

[28] William J.J. Gordon. Synectics: The Development of Creative Capac-
ity. Harper & Row, New York, 1961.

[29] Sara Hendren. What Can a Body Do? How We Meet
the Built World. Riverhead Books, 2020. URL https:
//www.penguinrandomhouse.com/books/561049/
what-can-a-body-do-by-sara-hendren/.

[30] C. A. R. Hoare. The emperor’s old clothes. Communications of the
ACM, 24(2):75–83, February 1981. Acceptance speech for 1980
Turing Award.

[31] C.A.R. Hoare. Hints on programming language design. Techni-
cal Report STAN-CS-73-403, Stanford, December 1973. URL
http://web.eecs.umich.edu/~bchandra/courses/papers/
Hoare_Hints.pdf. Keynote talk at POPL’73.

[32] IEEE. Recommended practice for architecture description of
software-intensive systems. Technical Report ANSI/IEEE 1471-
2000, 2000. URL http://www.iso-architecture.org/ieee-1471/.

[33] Michael A. Jackson. The Name and Nature of Software En-
gineering. In Egon Börger and Antonio Cisternino, editors,
Advances in Software Engineering: Revised Lectures of Lipari Sum-
mer School 2007, volume 5316 of Lecture Notes in Computer Science,
pages 1–38. Springer-Verlag, 2008.

http://www.scs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf
http://www.scs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf
https://www.penguinrandomhouse.com/books/561049/what-can-a-body-do-by-sara-hendren/
https://www.penguinrandomhouse.com/books/561049/what-can-a-body-do-by-sara-hendren/
https://www.penguinrandomhouse.com/books/561049/what-can-a-body-do-by-sara-hendren/
http://web.eecs.umich.edu/~bchandra/courses/papers/Hoare_Hints.pdf
http://web.eecs.umich.edu/~bchandra/courses/papers/Hoare_Hints.pdf
http://www.iso-architecture.org/ieee-1471/

198 se capstone handbook [march 31, 2024]

[34] Alita Joyce. Formative vs. summative evaluations. Technical
report, Nielsen/Norman Group, 2019. URL https://www.
nngroup.com/articles/formative-vs-summative-evaluations/.

[35] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andron-
ick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai En-
gelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Har-
vey Tuch, and Simon Winwood. seL4: Formal verification of
an OS kernel. In Proceedings of the 22nd ACM Symposium on Op-
erating Systems Principles (SOSP), Big Sky, MT, USA, October
2009.

[36] H.-Y. Benjamin Koo. A Meta-language for Systems Architecting.
PhD thesis, Engineering Systems Design, Massachusetts Insti-
tute of Technology, 2005.

[37] Butler W. Lampson. Hints and principles for computer system
design. URL https://arxiv.org/abs/2011.02455. Updated
version of the 1983 classic.

[38] Butler W. Lampson. Hints for computer system design. ACM
Operating Systems Review, 15(5):33–48, October 1983. URL
http://research.microsoft.com/en-us/um/people/blampson/
33-hints/webpage.html. The online version is slightly revised.

[39] P. Lencioni. Five Dysfunctions of a Team. John Wiley and Sons
Inc., New York, NY, 2002.

[40] Bill Moggridge. Designing Interactions. The MIT Press, Cam-
bridge, Mass., 2007.

[41] Christine Moore. How to set and achieve life goals the right
way. Technical report, Positive Psychology, 2020. URL https:
//positivepsychology.com/life-worth-living-setting-life-goals/.

[42] Kate Moran. Quantitative user-research methodolo-
gies: An overview. Technical report, Nielsen/Norman
Group, 2018. URL https://www.nngroup.com/articles/
quantitative-user-research-methods/.

[43] Gail Murphy, David Notkin, and Kevin J. Sullivan. Software
reflexion models. IEEE Transactions on Software Engineering, 27
(4):364–380, 2001.

[44] Jakob Nielsen. 10 usability heuristics for user interface design.
Technical report, Nielsen/Norman Group, 1994. URL https:
//www.nngroup.com/articles/ten-usability-heuristics/.

https://www.nngroup.com/articles/formative-vs-summative-evaluations/
https://www.nngroup.com/articles/formative-vs-summative-evaluations/
https://arxiv.org/abs/2011.02455
http://research.microsoft.com/en-us/um/people/blampson/33-hints/webpage.html
http://research.microsoft.com/en-us/um/people/blampson/33-hints/webpage.html
https://positivepsychology.com/life-worth-living-setting-life-goals/
https://positivepsychology.com/life-worth-living-setting-life-goals/
https://www.nngroup.com/articles/quantitative-user-research-methods/
https://www.nngroup.com/articles/quantitative-user-research-methods/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/

[appendix 16] bibliography 199

[45] Jakob Nielsen. Why you only need to test with 5
users. Technical report, Nielsen/Norman Group,
2000. URL https://www.nngroup.com/articles/
why-you-only-need-to-test-with-5-users/.

[46] Jakob Nielsen. Corporate ux maturity: Stages 1–4. Technical
report, Nielsen/Norman Group, 2006. URL https://www.
nngroup.com/articles/ux-maturity-stages-1-4/.

[47] Jakob Nielsen. Corporate ux maturity: Stages 5–8. Technical
report, Nielsen/Norman Group, 2006. URL https://www.
nngroup.com/articles/ux-maturity-stages-5-8/.

[48] Alex F. Osborn. Applied Imagination: Principles and Procedures of
Creative Problem Solving. Scribner & Sons, New York, 1953.

[49] David Lorge Parnas. On the Criteria to be Used in Decomposing
Systems into Modules. Communications of the ACM, 15(12):1053–
1058, December 1972.

[50] Terence Parsons. The traditional square of opposition. The
Stanford Encyclopedia of Philosophy, (Fall 2008 Edition), 2008. URL
http://plato.stanford.edu/archives/fall2008/entries/square/.

[51] Christian Queinnec. Inverting back the inversion of control
or, continuations versus page-centric programming. Technical
Report 7, LIP6, May 2001. URL http://www.lip6.fr/reports/
lip6.2001.007.html.

[52] Christian Rohrer. When to use which user-experience
research methods. Technical report, Nielsen/Norman
Group, 2014. URL https://www.nngroup.com/articles/
which-ux-research-methods/.

[53] G. Rolfe, D. Freshwater, and M. Jasper. Critical reflection in nurs-
ing and the helping professions: a user’s guide. Palgrave Macmillan,
Basingstoke, 2001.

[54] Daniel Sanders and Paul Thagard. Creativity in computer
science. In James C. Kaufman and John Baer, editors, Creativity
Across Domains: Faces of the Muse. Lawrence Erlbaum Associates,
Publishers, 2002.

[55] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-
Oriented Software Architecture, Volume 2: Patterns for Concurrent
and Networked Objects. Addison-Wesley, 2000.

[56] Tom Schorsch. The Capability Im-Maturity Model (CIMM).
CrossTalk Magazine, 1995.

https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/ux-maturity-stages-1-4/
https://www.nngroup.com/articles/ux-maturity-stages-1-4/
https://www.nngroup.com/articles/ux-maturity-stages-5-8/
https://www.nngroup.com/articles/ux-maturity-stages-5-8/
http://plato.stanford.edu/archives/fall2008/entries/square/
http://www.lip6.fr/reports/lip6.2001.007.html
http://www.lip6.fr/reports/lip6.2001.007.html
https://www.nngroup.com/articles/which-ux-research-methods/
https://www.nngroup.com/articles/which-ux-research-methods/

200 se capstone handbook [march 31, 2024]

[57] Willard Simmons. A Framework for Decision Support in Systems
Architecting. PhD thesis, Aeronautics & Astronautics, Mas-
sachusetts Institute of Technology, 2008.

[58] Richard N. Taylor, Nenad Medvidović, and Eric M. Dashofy.
Software Architecture: Foundations, Theory and Practice. John Wiley
& Sons, 2009.

[59] K. W. Thomas and R. H. Kilmann. Thomas–Kilmann Conflict Mode
Instrument. Xicom, Tuxedo NY, 1974.

[60] Walter G. Vincenti. What Engineers Know and How They Know It:
Analytical Studies from Aeronautical History. The Johns Hopkins
University Press, 1993.

[61] Eugene K. Von Fange. Professional Creativity. Prentice Hall,
Englewood Cliffs, N.J., 1959.

[62] Wikipedia. CAP Theorem (Brewer’s Theorem). URL https:
//en.wikipedia.org/wiki/CAP_theorem. Retrieved 2016-11-15.

[63] Titus Winters, Tom Manshreck, and Hyrum Wright, editors.
Software Engineering at Google. O’Reilly Media, 2020.

[64] Hyrum Wright. Hyrum’s Law, 2018. URL https://www.
hyrumslaw.com/. This concept is much older than Hyrum. For
example, IBM has been maintaining backwards compatibility for
officially undocumented features/bugs on their mainframes for
over half a century.

[65] Fritz Zwicky. Discovery, Invention, Research — Through the Mor-
phological Approach. The Macmillian Company, Toronto, 1969.

https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/CAP_theorem
https://www.hyrumslaw.com/
https://www.hyrumslaw.com/

	Title Page
	Table of Contents
	Learning Objectives
	Course Calendar Descriptions
	CEAB Capstone Learning Objectives
	CIPS Capstone Learning Objectives
	SE Curriculum Committee Intended Graduate Attributes
	Definitions of Engineering & Software Engineering
	Engineers Canada definition of Engineering
	The Professional Engineers Act of Ontario
	Engineering is Math/Science + Commerce
	Origins of `Software Engineering'
	Canadian national occupational classification of SE
	IEEE: SE is the application of engineering to software
	Engineers Canada definition of Software Engineering
	PEO's definition of Software Engineering
	SE is Embedded Systems
	SE is automation of traditional engineering
	SE is Teamwork
	SE is Programming Integrated over Time

	Modes of Assessment: Formative & Summative
	Modes of Instruction: Didactic & Dialectic

	Project Selection
	Problems and Opportunities
	Kinds of Projects
	Individual Learning Objectives
	Team Formation
	Activities to Assist with Project Selection
	Changing Projects
	Entrepreneurial Success
	Difficulty Acquiring Data
	Problem Too Hard
	Couldn't Agree with Customer on IP Terms
	Couldn't Make Up Their Mind
	Too Many Good Ideas
	Strategic Re-positioning

	Changing Teams

	Teamwork Activities
	Identify Individual Learning Objectives & Skills
	Write a Team Working Agreement
	Communicate about Communication
	Host a Retrospective Meeting
	Practice Backup Behaviour (Supporting Teammates)
	Practice Active Listening
	Practice Assertive Communication: DESC
	Apply Two Techniques to Manage Contagious Emotions
	Apply Team Formation Strategies
	Identify and Resolve Your Teams Dysfunctions
	Conflict: Introduction
	Conflict: Difficult Behaviours
	Conflict: Five Handling Modes
	Conflict: Reflection Questions
	Conflict: Situation Assessment
	Conflict: Personality-Based Coping Strategies
	Health: Balsom's 9 Attributes of Effective Teams
	Health: Google
	Health: Team Barometer
	Health: TeamRetro
	Health: Spotify
	Process Assessment: Joel Test
	Process Assessment: Scrum Checklist
	Process Assessment: CMMI
	Process Assessment: Capability Immaturity Model
	Process Assessment: UX Maturity
	Course: PD4 Teamwork
	Course: INTEG210 Making Collaboration Work

	Creative Activities
	Modes of Creative Thinking: Intense and Casual
	Apply SCAMPER
	Apply C-K Theory
	Use Comparison to Generate New Ideas
	Design Space Exploration
	Brainstorming
	6-3-5 Group Brainstorming
	Crazy 8s (a form of group brainstorming)
	Think / Pair / Share
	Six Thinking Hats

	Planning Activities
	Exploring Early Can Be A Good Strategy
	Select Project Success Metrics
	Weekly Work Intensity
	Plan to Prototype
	Different Kinds of Prototypes
	Experimental Prototypes
	Evolutionary Prototypes
	Operational Prototyping
	When to build which kind of prototype
	Picturing a Prototype Plan

	Old Stories Told in New Ways
	Compare to Popular Project Ideas

	Conceptual Activities
	Problem Identification and Refinement
	Problem-Space Exploration
	Solution-Space Exploration
	Application-Space Exploration
	Technology-Space Exploration
	Refinement

	Identify the Core Conceptual Data Structure
	Position in Marketspace
	Strategic Project Positioning
	Strategic Blunders

	Understanding Project Risk
	Project Positioning Assessment
	Some Strategic Assessments of Student Proposals

	OLD: How to Choose a Project
	Position in a Conceptual Framework
	Write a Research Literature Report
	Apply Rules of Thumb
	Position in Normal vs Radical Design
	Apply an Idea from the Project Domain
	Apply Cognitive Bias Understanding

	Requirements Activities
	Domain Model
	Use Cases & Scenarios
	User Manual
	Lean Canvas
	Hypothesis Testing
	Identify User's Emotional Objectives
	Practice Decoding Analogies/Metaphors

	Design Activities
	Describe Your Architecture
	Structure-Oriented Definitions of Software Architecture
	Decision-Oriented Definitions of Software Architecture
	Communication-Oriented Definitions of Software Architecture

	Extract & Analyze Your Architecture
	Apply Formal Methods
	Apply UI Design Guidelines
	Incorporate Privacy by Design
	Peer Design Exploration
	Peer Design Review
	Select a Database Technology
	Apply (or Reject) the UNIX Design Philosophy
	Read a Book on Approaches to Software Design

	Testing Activities
	Assess Testing
	Create More Manual Tests
	Identify Invariants
	Identify Mathematical Properties
	Use Automated Test Input Generation Tools
	Use A Linter
	Test Against an Alternative Implementation
	Set Up Continuous Integration
	Set Up Deployment Environments
	Statistical Cross-Validation for Machine Learning
	Performance Profiling
	Scalability Assessment and Planning
	Measure Precision and Recall

	User-Centred Design (from cs449)
	Value Proposition
	Persona Empathy Map
	Gather Data
	Analyze Data
	Crazy 8s
	Low-Fidelity Prototyping
	High-Fidelity Prototyping

	User Activities
	Take TCPS2 Training: Ethical Conduct with Users
	Do a User Activity
	Ideate about Possible User Activities that You Might Do
	Formative vs. Summative Evaluations
	Rohrer Survey of 20 Different User Activities
	Farrell's Survey of 34 User Activity Methods
	Moran's Survey of 9 Quantitative User Activities
	Nielsen's 10 Usability Rules of Thumb
	Why Testing With 5 Users is Usually Enough
	27 Tips for Conducting Successful User Research in the Field
	Levels of ux Design Maturity
	Apply Universal Design for Accessibility
	Peer Usability Review
	User Acquisition
	Define your user persona
	Find your users
	Engage with your users

	Reflective Activities
	Watch Past Project Presentations
	Analyze Past Project Awards
	Index Past Projects
	Read Past Project Reports
	Read Turing Award Speeches
	Read Video Game History: The Digital Antiquarian
	Watch ACM Tech Talks
	Read ACM Queue Articles
	Read Classic SE Papers
	Watch a Documentary
	Read a Book
	Assess Your Choice of Learning Activities
	n+1 Cohort Feedback (Retrospective)

	Communication Activities
	Read Edward Tufte's Presentation Advice
	Read Trees, Maps, and Theorems Presentation Advice
	Watch Patrick Henry Winston's Presentation Advice
	Learn from TED Presentation Advice
	Learn from Nancy Duarte's Presentation Advice
	Conquer Your Fear of Public Speaking
	Choose a Narrative Structure for Your Presentation
	Revise Your Writing
	Revise Your Abstract
	Example Revised Abstract from Team Radiant se2014
	More Example Abstracts
	An entertaining example Abstract

	Read Authors You Want to Emulate
	Write for Accessibility and ESL

	Project Evaluation
	Project Status Sheets
	Results (An Aspect of Validation)
	New Product
	Research
	Consulting
	Free/Open-Source Software Patch
	Application of Advanced Technology

	Teamwork Assessment
	Communication Assessment
	How Referee Grades Get Combined
	Merging Referee Reports
	Making Exceptions to Referee Reports

	Referee Selection
	Referee Scheduling
	Inviting Team-Specific Referees

	Risk Reward (Bonus)

	Intellectual Property & Collaborators
	What is Intellectual Property?
	Collaborating on Free / Open Source Software
	Collaborating with an Established Corporation
	Collaborating with a Startup
	Understanding Your Startup Collaborator
	Non-Compete and Non-Disclosure Agreement
	Co-Founding a Startup with a Collaborator

	The Research Licensing Approach
	Intellectual Property & Standards Report

	Bibliography

