
Lectures on
Robotic Planning and Kinematics

Francesco Bullo
Stephen L. Smith

Abbreviated document
in slide format

for presentation purposes

Francesco Bullo
Stephen L. Smith

Lectures on Robotic Planning and Kinematics
Francesco Bullo and Stephen L. Smith

Version v0.91(d) (7 Apr 2016).

This work is licensed under the Creative Commons A�ribution-NonCommercial-ShareAlike
4.0 International License, available at: h�ps://creativecommons.org/licenses/by-nc-sa/4.0. A
summary (not a substitute) of the license is as follows: You are allowed to

• share, that is, copy and redistribute this work in any medium or format, and

• adapt, that is, remix, transform, and build upon this work,

provided (i) appropriate a�ribution is given, (ii) the material is not used for commercial purposes,
and (iii) the adapted material is distributed under the same license as the original.

Exceptions to this licence are the Figures 3.2, 3.3, 3.5, 3.14 and 8.4. Permission is granted to
reproduce these figures as part of this work in both print and electronic formats, for distribution
worldwide in the English language. All other copyrights for these figures belongs to their
respective owners.

We are thankful for any feedback information, including suggestions, errors, or comments about
teaching or research uses.

https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0

Contents

1 Sensor-based Planning 1
1.1 Exercises . 37

2 Motion Planning via Decomposition and Search 47
2.1 Exercises . 88

3 Configuration Spaces 99
3.1 Exercises . 130

4 Free Configuration Spaces via Sampling and Collision Detection 141
4.1 Exercises . 184

5 Motion Planning via Sampling 189
5.1 Exercises . 217

6 Introduction to Kinematics and Rotation Matrices 221
6.1 Appendix: A primer on matrix theory . 242
6.2 Appendix: The theory of groups . 247
6.3 Exercises . 248

7 Rotation Matrices 253
7.1 Exercises . 290

3

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 0, slide 4

8 Displacement Matrices and Inverse Kinematics 303
8.1 Exercises . 327

9 Linear and Angular Velocities of a Rigid Body 335
9.1 Exercises . 350

Bibliography 353

Chapter 1

Sensor-based Planning

In this chapter we begin our investigation into motion planning problems for mobile robots.
This chapter focuses on sensor-based motion planning, where a robot acquires information
about its surroundings using onboard sensors. We consider the basic task of moving from A
to B in an environment with obstacles. Whether or not a robot can succeed at this task will
depend on its sensors and capabilities. In this chapter we

(i) introduce three bug algorithms for sensor-based motion planning,

(ii) define notions of optimality and completeness for motion planning algorithms, and

(iii) study the completeness of the three bug algorithms.

This chapter is inspired by the original article (Lumelsky and Stepanov 1987), the treatment (Lumel-
sky 2006), the first chapter in (Choset et al. 2005) and the lecture slides (Dodds 2006; Hager
2006).

1

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 2

Section 1: Problem setup and modeling assumptions

Motion planning is an important and common problem in robotics. In its simplest form, the
motion planning problem is: how to move a robot from a “start” location to a “goal” location
avoiding obstacles. This problem is sometimes referred to as the “move from A to B” or the
“piano movers problem” (how do you move a complex object like a piano in an environment
with lots of obstacles, like a house).

In this first chapter, we consider a sensor-based planning problem for a point moving in
the plane R2. In other words, we assume the robot has a sensor and, based on the sensor
measurements, it plans its motion from start to goal. To properly describe the motion planning
problem, we need to specify: what capacities does the robot have? What information does the
robot have?

In this chapter, we make the following assumptions on the robot and its environment. As
illustrated in Figure 1.1, we are given

• a workspace W that is a subset of R2 or R3, o�en just a rectangle;

• some obstacles O1, O2, . . . , On;

• a start point pstart and a goal point pgoal; and

• a robot described by a moving point (that is, the robot has zero size).

We define the free workspace Wfree = W \ (O1 ∪O2 ∪ · · · ∪On) as the set of points in W that
are outside all obstacles. (Recall the definition of the set A \B = {a ∈ A | a 6∈ B}, that is, all
points in A that are not in B.)

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 3

O2

O1

pgoal

pstart

W

Figure 1.1: The environment for sensor-based planning

Robot Assumptions We also make some assumptions on the capabilities and knowledge of the
robot. We assume the robot:

• knows the direction towards the goal,

• knows the straight-line distance between itself and the goal,

• does not know anything about the obstacles (number, location, shape, etc),

• has a contact sensor that allows it to locally detect obstacles,

• can move either in a straight line towards the goal or can follow an obstacle boundary
(possibly by using its contact sensor), and

• has limited memory in which it can store distances and angles.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 4

We discuss in more detail later what these robot capabilities imply in terms of robot sensors
and knowledge.

Our task is to plan the robot motion from the start point to the goal point. This plan is not a
precomputed sequence of steps to be executed, but rather a policy to deal with the possible
obstacles that the robot may encounter along the way.

Environment Assumptions Finally, we make some assumptions on the workspace and obstacles:

• the workspace is bounded,

• there are only a finite number of obstacles,

• the start and goal points are in the free workspace Wfree, and

• any straight line drawn in the environment crosses the boundary of each obstacle only a
finite number of times. (This assumption is easily satisfied for “normal objects” and we
will use it later on to establish the correctness of our algorithms.)

In the next sections we see three di�erent algorithms for planning the robot motion from
start to goal, called Bug 0, Bug 1, and Bug 2. Each algorithm has slightly di�erent requirements
on the robot’s capabilities and knowledge. As a result, we will also see that they have di�erent
performance in finding paths from start to goal.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 5

Section 2: The Bug 0 algorithm

Starting from the scenario illustrated in Figure 1.1, suppose the robot heads towards the goal
position from the start position. How does the robot handle collisions with obstacles? (Note
that the robot sensor is local so that the robot only knows it has hit an obstacle.) We need a
strategy to avoid the obstacle and move towards the goal destination.

What follows is our first motion planning algorithm.

The Bug 0 algorithm
1: while not at goal :
2: move towards the goal
3: if hit an obstacle :
4: while not able to move towards the goal :
5: follow the obstacle’s boundary moving to the le�

Moving to the le� means that the robot is just sliding along the obstacle boundary, i.e.,
circumnavigating the obstacle boundary in a clockwise fashion. The moving direction, le�
or right, is fixed but irrelevant. We only need to designate one preferred direction to turn
once the robot hits an obstacle. A right-turning robot will circumnavigate an obstacle in a
counterclockwise fashion. A right-turning robot follows the same path as a le�-turning robot in
a reflected world.

As shown in Figure 1.2 we label the point on the obstacle boundary where the robot hits the
obstacle as phit and the point on the obstacle boundary where the robot leaves as pleave.

Note: we are not being very careful clarifying whether the robot moves in discrete steps or in

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 6

pgoal

pstart

phit

pleave

Figure 1.2: A successful execution of the Bug 0 algorithm

continuous time. For now imagine that the robot can move smoothly, visit all boundary points,
take a measurement at each point and store the distance from the closest boundary point.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 7

The Bug 0 algorithm does not always find a path to the goal Unfortunately, our Bug 0 algorithm
does not work properly in the sense that there are situations (workspaces, obstacles, start
and goal positions) for which there exists a solution (a path from start to goal) but the Bug 0
Algorithm does not find it. We will talk more later about the correctness of an algorithm and in
particular about the notion of completeness.

This example in the Figure 1.3 clearly illustrates a periodic loop generated by the Algorithm
Bug 0. At the end of each loop there is no complete progress to goal.

pstart

pgoal

Figure 1.3: An unsuccessful execution of the Bug 0 Algorithm

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 8

Section 3: The Bug 1 algorithm

The fact that Bug 0 does not always find a path to the goal may not be too surprising: The
algorithm is not making use of all of the capabilities of the robot. In particular, the algorithm
does not use any memory, nor does it use the distance to the goal. This observation motivates
our second smarter sensor-based algorithm for a more capable bug.

The Bug 1 algorithm
1: while not at goal :
2: move towards the goal
3: if hit an obstacle :
4: circumnavigate it (moving to the le� or right is unimportant). While circumnavigating, store in

memory the minimum distance from the obstacle boundary to the goal
5: follow the boundary back to the boundary point with minimum distance to the goal

Note: the only di�erence between Bug 0 and Bug 1 is the reaction to the obstacle encounter,
i.e., the behavior inside the if command.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 9

pgoal

pstart

pstart

pgoal

Figure 1.4: Two successful executions of the Bug 1 Algorithm

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 10

Subsection 4: Implementing Bug 1

The Bug 1 algorithm can be implemented as follows. In the simplest version, when the
robot hits an obstacle at phit, it records the distance and direction to the goal. The robot then
circumnavigates the obstacle, storing in memory a variable containing the minimum distance
from its current position along the obstacle boundary to the goal. Regarding instruction 4:, the
circumnavigation is complete when the robot returns to the distance and direction it recorded
at phit. The robot then partially circumnavigates the obstacle a second time until its distance to
goal matches the minimum distance it has stored in memory.

In a more sophisticated version, the robot would additionally measure the distance it travels
while circumnavigating the obstacle and therefore return to the closest point along the boundary
using the shorter of the clockwise and counterclockwise paths. An instrument for measuring
distance traveled is known as a linear odometer . If the robot moves at constant speed, then a
clock su�ices as a linear odometer: distance traveled is equal to speed times travel time. If the
robot’s speed is variable, then one typically uses encoders in the robot wheels to measure the
number of wheel rotations.

In summary, the Bug 1 robot must have memory for storing information about phit and for
computing pleave and it benefits from (but does not require) a linear odometer, i.e., an instrument
to measure traveled distance.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 11

Subsection 5: Flowcharts

Before we proceed any further, it is useful to stop and discuss how to represent algorithms.
So far we have adopted the pseudocode representation, i.e., a simplified English-like language
that is midway between English and computer programming. It is also useful to understand
how to represent our algorithms using flowcharts. Since flowchart representations can become
quite large, they are typically useful for only simple programs.

According to Wikipedia:pseudocode, “pseudocode is compact and informal high-level de-
scription of a computer programming algorithm that uses the structural conventions of a
programming language, but is intended for human reading rather than machine reading.”

According to Wikipedia:flowchart, “a flowchart is a type of diagram that represents an
algorithm or process, showing the steps as boxes of various kinds, and their order by connecting
these with arrows.”

http://en.wikipedia.org/wiki/Pseudocode
http://en.wikipedia.org/wiki/Flow_chart

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 12

The four constitutive elements of a flowchart A flowchart consists of four symbols shown in
Figure 1.5, which can be thought of as a graphical language.

start/end Circles represent the start and terminating points

Arrows indicate the flow of control

Process/Action Rectangles represent a single command

Decision Diamonds output 2 paths based on a binary question

Figure 1.5: The four elements of a flowchart

Note: The dominant convention in drawing flowcharts is to have the flow of control go from
top to bo�om and le� to right.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 13

start

move to point
closest to goal

circumnavigate
obstacle

hit
obstacle?

reached
goal?

no

yes

noyes

yes

no

take step
towards

goal

able to
step

towards
goal?

end in
failure

end in
success

Figure 1.6: Flowchart representation for the Bug 1 Algorithm

Flowchart representation for the Bug 1 Algorithm If you examine carefully the Bug 1 flowchart,
you can clearly see that the algorithm may end in failure. This is indeed possible if the workspace
is composed of disconnected components (that is, pieces of the free workspace that can not
be connected with a path), and the start and goal locations belong to distinct disconnected
components as shown in Figure 1.7.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 14

Goal

pgoal

pstart

Figure 1.7: Environment for which no path exists from start to goal

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 15

Subsection 6: The performance of the Bug 1 algorithm

Next, let us begin to rigorously analyze the Bug 1 algorithm. There are 2 desirable properties
we wish to establish:

• optimality (with respect to some desirable metric), and

• completeness (i.e., correctness in an appropriate sense).

For now let us begin with the simpler analysis, i.e., the study of optimality. We are interested
in seeing how e�icient is the algorithm in completing its task in a workspace with arbitrary
obstacles.

The question is: what is the length of the path generated by the Bug 1 Algorithm in going
from start to goal? While a precise answer is hard to obtain in general, we can ask three more
specific questions:

(i) Will Bug 1 find the shortest path from start to goal?

(ii) How long will the path found by Bug 1 be? Can we find a lower bound and an upper bound
on the path length generated by Bug 1?

(iii) Is there a workspace where the upper bound is required?

In order to answer these mathematical questions, it is good to have some notation:

D := length of straight segment from start to goal,

perimeter(Oi) = length of perimeter of the ith obstacle.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 16

Theorem 1.1 (Performance of Bug 1). Consider a workspace with n obstacles and assume that
the Bug 1 algorithm finds a path to the goal. Assuming the robot is not equipped with a linear
odometer, the following properties hold:

(i) Bug 1 does not find the shortest path in general;

(ii) the path length generated by Bug 1 is lower bounded by D;

(iii) the path length generated by Bug 1 is upper bounded by D + 2
∑n

i=1 perimeter(Oi); and

(iv) the upper bound is reached in the workspace described in Figure 1.8.

pgoalpstart

Figure 1.8: An example environment where the upper bound
on the performance of Bug 1 is achieved, as stated in Theo-
rem 1.1(iii).

pgoalpstart

Figure 1.9: An example environment where the upper bound
on the performance of Bug 1 is achieved for a robot with a
linear odometer.

Note: Assume now that the robot is equipped with a linear odometer. A�er circumnavigating
an obstacle, the robot can therefore move along the shorter of the two paths from hit point to
leave point. In this case, the robot will travel at most 1/2 of the perimeter to return to the leave
point and the upper bound on the path length can be strengthened toD+ 3

2

∑n
i=1 perimeter(Oi).

An example environment achieving this bound is shown on the right of Figure 1.9.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 17

Section 7: The Bug 2 algorithm

We now aim to design an algorithm faster than Bug 1.

We use the term start-goal line to refer to the unique line that passes through the start point
and goal point. The start-goal line is the dashed line intersecting the two obstacles as shown on
the le� of Figure 1.10. To aid in the design of Bug 2, we begin with a preliminary version.

pgoal

pstart

pgoal

pgoalpstart

pstart

Figure 1.10: The start-goal line, a successful execution of the Bug2.prelim algorithm, and an unsuccessful execution of the Bug
2.prelim algorithm

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 18

The Bug 2.prelim algorithm
1: while not at goal :
2: move towards the goal (along the start-goal line)
3: if hit an obstacle :
4: follow the obstacle’s boundary (moving either le� or right), until you encounter the start-goal line

again and are able to move towards the goal

The example execution on the right of Figure 1.10 amounts to an undesired periodic cyclic
trap again. How do we improve and possibly fix this misbehavior in our algorithm? It turns
out that a small fix is su�icient. For convenience we repeat the entire algorithm, but the only
di�erence is the addition of the requirement that the leave point be closer to the goal than the
hit point!

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 19

The Bug 2 algorithm
1: while not at goal :
2: move towards the goal (along the start-goal line)
3: if hit an obstacle :
4: follow the obstacle’s boundary (the turn direction is irrelevant), until you encounter the start-goal

line again closer to the goal and are able to move towards the goal

From the le� of Figure 1.11 we see that Bug 2 finds a path to the goal where Bug 2.prelim
did not. Let us briefly mention the requirements of Bug 2, although we will compare them more
carefully in Section 1. For Bug 0, we assumed the robot can sense direction towards the goal,
and it knows when it has reached the goal. For Bug 1, we assumed the robot can measure and
store in memory the distances and directions to goal point that it senses along the boundary.
Bug 2 can also measure and store in memory the distance and direction to the goal. In particular,
it stores distance and direction at the hit point and compares these two quantities with the
ones it senses along the boundary.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 20

Subsection 8: Monotonic performance and its implications

Here we briefly discuss why our correction to the Bug 2.prelim algorithm is indeed helpful
and has a chance to render the algorithm correct. Consider the function of time equal to the
distance between the robot and the goal point (this distance is a function of time because the
robot is moving). Let us plot this distance function of time along the execution of the Bug 2
algorithm.

pstart

pgoal

1 2

3 4

56

7 8

9
10

O1

O2

goal
time

distance from
robot to goal

start

following O1

1
2

3 4

5
6

7

8
9

10

following O2

Figure 1.11: The monotonic performance of Bug 2

As Figure 1.11 illustrates, the leave point pleave is closer to the goal than the hit point phit. Of
course, throughout the search phase (while the robot is moving along the boundary to find the

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 21

optimal leave point) the distance function may not always decrease, but a�er the search phase
is complete, the robot will indeed be closer to the goal.

This discussion establishes that the distance between the robot and the goal is a monotonically
decreasing function of time, when the robot is away from any obstacles.

Monotonicity immediately implies that there can be no cycles (and therefore no infinite
cycles) in the execution of the algorithm. This lack of cycle is true because (1) the leave point is
closer to the goal than the hit point and (2) when the robot moves away from the obstacle the
distance continues to decrease. Therefore, it is impossible for the robot to hit the same obstacle
again at the same hit point.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 22

Subsection 9: The performance of the Bug 2 algorithm

Let us now analyze the performance of the Bug 2 algorithm. With the usual convention (D
is the distance between start and goal and perimeter(Oi) is the perimeter of the ith obstacle),
we have the following results.

Theorem 1.2 (Performance of Bug 2). Consider a workspace with n obstacles and assume that
the Bug 2 algorithm finds a path to the goal. The following properties hold:

(i) Bug 2 does not find the shortest path in general;

(ii) the path length generated by Bug 2 is lower bounded by D;

(iii) the path length generated by Bug 2 is upper bounded byD+
∑n

i=1 ci perimeter(Oi)/2, where
ci is the number of intersections of the start-goal line with the boundary of obstacle Oi.

Proof. The first statement is obvious. Regarding the second statement, the lower bound is the
same as that for Bug 1 – no surprise here. Regarding the third statement, the upper bound is
di�erent from that for Bug 1 and is due to the following fact: each time Bug 2 hits an obstacle (at
a hit point), it might need to travel the entire obstacle’s perimeter before finding an appropriate
leave point. So for each pair of hit point and leave point (2 intersection points), the Bug 2 travels
at most the obstacle’s perimeter. �

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 23

Subsection 10: Comparison between bug algorithms

A�er introducing the Bug 1 and Bug 2 algorithms, let us compare in terms of path length. We
ignore Bug 0 in this discussion because we already established it is not correct via the example
in Figure 1.3. Without losing any generality, let us assume both the Bug 1 and Bug 2 algorithms
are le�-turning.

Example where Bug 2 finds shorter path than Bug 1 Recall that the Bug 2 algorithm was introduced
in an a�empt to find shorter paths by not fully exploring the boundary of each encountered
obstacle. Indeed it appears that Bug 2 works be�er in our running example, as shown in
Figure 1.12.

However, it is not clear that this fact must hold true for any problem (remember that a
problem is determined by the workspace, the obstacles, and start and goal positions).

Counterexample where instead Bug 1 is be�er than Bug 2 Looking at the environment in Fig-
ure 1.13, we see that Bug 1 explores the entire perimeter of the obstacle only once and then
moves to point l before leaving the obstacle for the goal. Bug 2, on the other hand, takes a
much longer path. Whenever a robot implementing Bug 2 encounters a “le� finger” in the
environment, then note that the robot ends up traveling all the way back near to the start
position!

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 24

Bug 1 Bug 2

pstart

pgoal

pstart

pgoal

Figure 1.12: Example environment in which Bug 2 is be�er than Bug 1

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 25

Bug 1 Bug 2

pleave

pgoal

pstart

phit

pgoal

pstart

phit,1

phit,2

phit,3

phit,4

pleave,1

pleave,2

pleave,3

pleave,4

Figure 1.13: Example environment where Bug 1 is be�er than Bug 2. Bug 1 has one pair of hit and leave points. Bug 2 hits and
then leaves the obstacle four times, as shown by the sequence of hit and leave points.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 26

Summary of path length Bug 1 performs an exhaustive search by examining all possible leave
points before commi�ing to the optimal choice. Bug 2 is a greedy algorithm that takes the
first-available leave point that is closer to the goal without any specific performance guarantee.
While it is impossible to predict which of the two will outperform in an arbitrary environment,
we may say that Bug 2 will outperform Bug 1 in many simple environments but Bug 1 has more
predictable performance.

Summary of robot capabilities The bug algorithms have slightly di�erent assumptions on the
sensors and capabilities needed by the robot. Table 1.1 summarizes these capabilities: direction

Sensor/Capability Bug 0 Bug 1 Bug 2

direction to goal yes yes yes
distance to goal no yes yes

memory no yes yes
linear odometry no optional no

angular odometry or compass no yes yes

Table 1.1: Summary of the robot capabilities needed to implement each bug algorithm

to goal, distance to goal, memory, linear odometry, and a new capability called angular odometry
or a compass. Recall that linear odometry was an optional capability for Bug 1 and it allowed
the robot to return to the leave point using the shorter of the two paths along the boundary.

The new capability of “angular odometry or compass" is needed in order for the robot to store
the direction to goal in memory. This is required in Bug 1 to determine when circumnavigation
is complete, and in Bug 2 to determine when the start-goal line is encountered. The direction
to goal must be stored in a known reference frame (for example, as a counterclockwise angle

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 27

relative to a fixed x-axis) so that measured directions can be compared to the stored directions.
The robot could define a local reference frame based on its heading, but this frame would rotate
with the robot. It is not useful to store a direction in such a frame, unless the robot also somehow
records the orientation of the frame when the direction was measured.

There are two possible fixes for this problem, illustrated in Figure 1.14. The first option is that
the robot has a compass, and can then record the direction to goal relative to a fixed orientation
as given by the compass. This is shown as the angle α1 relative to north on the le� of Figure 1.14.
The second option is that the robot can use an angular odometer to measure changes in its
heading. The robot can use its initial heading at pstart as the orientation for its reference frame.
The direction to goal can be specified in this initial frame as the sum of two angles, as shown on
the right of Figure 1.14: the angle α2 can be measured with the aid of an angular odometer, and
the angle α3 is the output of the “direction to goal” sensor.

Compass Angular Odometer
pgoalnorth

↵1

pgoal

pstart

current
heading

initial
heading

↵2

↵3

Figure 1.14: Le� figure: the robot records the direction to goal as an angle α1 relative to north. Right figure: the robot measures
the direction to goal as α2 + α3, where α2 must be measured from angular odometry. The angle α3 is what is given by the
“direction to goal” sensor.

This discussion highlights some subtleties in the assumptions we have made on robot

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 28

capabilities. While the Bug algorithms seem very simple at first glance, they actual require
fairly strong assumptions on the sensing and knowledge of the robot. These assumptions are
discussed in more detail by Taylor and LaValle (2009).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 29

Section 11: The completeness of the Bug 1 algorithm

Here we follow up on our previous discussions and formally define the completeness of an
algorithm.

Definition 1.3. An algorithm is complete if, in finite time,

(i) it finds a solution (i.e., a path), if a solution exists, or

(ii) it terminates with a failure decision, if no solution exists.

Next, we establish that one of our proposed algorithms is indeed complete. This result was
originally obtained by Lumelsky and Stepanov (1987).

Theorem 1.4 (Completeness for Bug 1). The Bug 1 algorithm is complete (under the modeling
assumptions stated early in the chapter).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 30

Subsection 12: On the geometry of closed curves

To prove Theorem 1.4, we start by introducing a wonderful and useful geometric result.

Theorem 1.5 (The Jordan Curve Theorem). Every non-self-intersecting continuous closed curve
divides the plane into two connected parts. One part is bounded (called the inside) and the other
part is unbounded (called the outside) and the curve is the boundary of both parts.

InsideOutside

Figure 1.15: A closed curve divides the plane into two parts: the inside and the outside.

Next, consider the following. Imagine that the curve describes the boundary of the obstacle.
Given a start and goal point outside the curve (obstacle), connect the two points using a straight
segment and count the number of intersections between the segment and the boundary of the
obstacle.

It is easy to see that this number of intersections must be even (where we regard 0 as an
even number). Each time the segment enters the inside of the curve, it must then return to the
outside. A few examples are given in Figure 1.16.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 31

pstart
pgoal

0 intersections

pgoalpstart

2 intersections

pstart

pgoal

even number of intersections

Figure 1.16: The number of intersections between a line segment and a closed curve, where the endpoints of the segment lie
on the outside of the curve, is even.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 32

Subsection 13: Proof of the completeness theorem

Here we prove Theorem 1.4. Recall that the Bug 1 algorithm is presented in pseudocode on
page 8 and in flowchart on page 13.

By contradiction, assume Bug 1 does not find a path, even if a path exists Let us prove the theorem
by contradiction. That is, we assume that Bug 1 is incomplete and we find a contradiction.
Consider the situation when a path from start to goal does exist, but Bug 1 does not find it. The
flowchart description of Bug 1 implies the following statement: if Bug 1 does not find the path,
then necessarily Bug 1 will either terminate in failure in finite time or keep cycling forever .

Bug 1 cannot keep cycling forever Suppose Bug 1 cycles forever. Because there is a finite number
of obstacles, the presence of an infinite cycle implies the robot must hit the same obstacle more
than once. Now, during the execution of Bug 1, the distance to the goal is a function of time
that is monotonically decreasing when the robot is away from any obstacle. Moreover, when
the robot hits an obstacle, the distance from pleave to the goal is strictly lower than the distance
from phit to the goal (this fact can be seen geometrically). Therefore, when the robot leaves an
obstacle it is closer to the goal than any point on the obstacle. Hence, Bug 1 cannot hit the
same obstacle twice.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 33

Bug 1 cannot end in failure, if a path exists If Bug 1 is incomplete and a path actually exists, then
the only possible result is that it terminates in failure. According to the Bug 1 flowchart, failure
occurs when: the robot visits all the obstacle boundary points reachable from the hit point,
moves to the boundary point pleave closest to the goal, and is unable to move towards the goal.
Consider now the segment from pleave to the goal point. Because a path exists from start to goal,
a path must also exists between pleave and goal. By the Jordan Curve Theorem 1.5, there must be
an even number of intersections between this segment and the obstacle boundary. Since pleave

is one intersection, there must exist at least another one. Let pother be the intersection point
closest to the goal. Now: the point pother has the following properties:

(i) lies on the obstacle boundary,

(ii) is reachable from pleave (because it is reachable from the goal), and

(iii) is closer to the goal than pleave.

These facts are a contradiction with the definition of pleave.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 34

pother

phit

pleave

pstart

pgoal

Path from start to goal

Figure 1.17: An illustration of the two points pleave and pother

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 35

Section 14: Appendix: Operations on sets

A set is a collection of objects. For example, using standard conventions, N is the set of
natural numbers, R is the set of real numbers, and C is the set of complex numbers.

If a is a point in A, we write a ∈ A. Sets may be defined in one of two alternative ways. A
set is defined by either listing the items, e.g., A = {1, 2, 3}, or by describing the items via a
condition they satisfy, e.g.,

A = {n ∈ N | n < 4}.

By convention, the empty set is denoted by ∅.
The cardinality of a set A is the number of elements in A. The set of natural numbers

has infinite cardinality. As illustrated in Figure 1.18, the three core set operations are union,
intersection, and set-theoretic di�erence.

A set A is a subset of B, wri�en A ⊂ B, if and only if any member of A is a member of B,
that is, a ∈ A implies a ∈ B. Intervals are subsets of the set of real numbers R and are denoted
as follows: for any a < b ∈ R, we define [a, b] = {x | a ≤ x ≤ b},]a, b[= {x | a < x < b},
]a, b] = {x | a < x ≤ b}, [a, b[= {x | a ≤ x < b}, [a,∞[= {x | a ≤ x}, and]−∞, b] =
{x | x ≤ b}.

The Cartesian product of two sets A and B is the set of all possible ordered pairs whose
first component is a member of A and the second component is a member of B: A × B =
{(a, b) | a ∈ A and b ∈ B}. An example is the 2-dimensional plane R2 = R×R. We denote the
unit circle on the plane by S1, the unit sphere in R3 by S2. We denote the 2-torus by T2 = S1×S1.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 36

A B The union of two sets A and B is the collection of points which are in A or in B (or in
both): A∪B = {x | x ∈ A or x ∈ B}.

A B The intersection of two sets A and B is the set that contains all elements of A that
also belong to B: A∩B = {x | x ∈ A and x ∈ B}.

A B The set-theoretic di�erence of two setsA andB, also known as the relative complement
of B in A is the set of elements in A that are not in B: A \B = {a ∈ A | a /∈ B}.

Figure 1.18: The three set operations: union, intersection, and set-theoretic di�erence.

A set S ⊂ Rd is convex if for every pair of points p and q within S, every point on the straight
line segment that joins them (pq) is also within S: If p ∈ S and q ∈ S ⇒ pq ⊂ S, where
pq = {αp+ (1− α)q | α ∈ [0, 1]}.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 37

1.1 Exercises

E1.1 On the right-turning Bug 0 algorithm (25 points).

(i) (10 points) For the following loose pseudo-code implementation of a right-turning Bug 0 algorithm, draw a
flowchart (as discussed in Section 1):

1: while not at goal location :
2: move towards goal
3: if hit an obstacle :
4: while not able to move towards goal :
5: follow obstacle moving to the right until can head towards goal

(ii) (5 points) Draw an environment for which the right-turning Bug 0 algorithm never reaches the goal location,
even though a path from start to goal does exist. Include both start and goal locations along with arrows
indicating the path of the robot. Label several notable points along the path with the le�ers (A,B,C, . . .).

(iii) (5 points) Sketch a graph of the distance between the robot and the goal location along the path you drew for
part (ii). Use the labels from part (ii) to clarify the distance to the goal at the several notable points along the
path.

(iv) (5 points) Draw an environment which contains a path from start to goal, but for which both the le� and right
turning Bug 0 algorithms fail to find it. Include two sketches, showing the path of the le�-turning algorithm
and the path of the right-turning algorithm.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 38

E1.2 A switching Bug 0 algorithm (25 points).

(i) (10 points) Draw a flowchart for the following pseudo-code implementation of the switching Bug 0 algorithm:

1: choose an initial direction (either le� or right)
2: while not at goal :
3: move towards the goal
4: if hit an obstacle :
5: while not able to move towards goal :
6: follow the obstacle boundary moving in the chosen direction
7: switch the choice of direction

(ii) (5 points) Draw an environment for which the switching Bug 0 algorithm never reaches the goal location, even
though a path from start to goal does exist. Include both start and goal locations along with arrows indicating
the path of the robot. Label several notable points along the path with the le�ers (A,B,C, . . .).

(iii) (5 points) Sketch a graph of the distance between the robot and the goal location along the path you drew for
part (ii). Use the labels from part (ii) to clarify the distance to the goal at the several notable points along the
path.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 39

E1.3 The Bug 2 algorithm (25 points).

(i) (10 points) Draw a flowchart for the Bug 2 algorithm (the correct version, not the first a�empt Bug 2.prelim).

(ii) (5 points) Draw the path of a robot using the Bug 2 algorithm for the environment in the following figure. Label
several notable points along the path with the le�ers (A,B,C, . . .).

pstart
pgoal

(iii) (5 points) Sketch a graph of the distance between the robot and the goal location along the path you drew for
part (ii). Use the labels from part (ii) to clarify the distance to the goal at di�erent points along the path.

(iv) (5 points) Explain in a few accurate sentences why the Bug 2 algorithm will always reach the goal location
when it is possible to do so.

Hint: Consider making a monotonicity argument based on your graph for part (iii).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 40

E1.4 On the completeness of the Bug 2 algorithm (5 points).
Even though the Bug 2 algorithm always finds a path when one exists, it is not complete. Do the following:

(i) state what properties render an algorithm complete,

(ii) explain why the Bug 2 algorithm is not complete,

(iii) explain how to revise the pseudocode presented in Section 1 so that the revised Bug 2 is complete,

(iv) provide the flowchart for the revised Bug 2 algorithm.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 41

E1.5 On the Jordan Curve Theorem (15 points).

(i) (5+5 points) Given a workspace with n circular obstacles and start and goal points in the free workspace, let k
denote the number of times that the straight segment from start to goal crosses an obstacle boundary. What
is a lower bound and what is an upper bound on k? For each bound, sketch an example where the bound is
achieved.

(ii) (5 points) What if the obstacles are arbitrary polygons with 5 edges – what are the lower and upper bounds in
this case? Sketch an example where the upper bound is achieved.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 42

E1.6 Programming: Lines and segments (30 points).
In this exercise you are asked to begin implementing a number of basic algorithms that perform geometric computa-
tions. Consider the following planar geometry functions:

computeLineThroughTwoPoints (10 points)
Input: two distinct points p1 = (x1, y1) and p2 = (x2, y2) on the plane.
Output: parameters (a, b, c) defining the line {(x, y) | ax+ by + c = 0} that passes through both p1 and p2.
Normalize the parameters so that a2 + b2 = 1.

computeDistancePointToLine (10 points)
Input: a point q and two distinct points p1 = (x1, y1) and p2 = (x2, y2) defining a line.
Output: the distance from q to the line defined by p1 and p2.

computeDistancePointToSegment (10 points)
Input: a point q and a segment defined by two distinct points (p1, p2).
Output: the distance from q to the segment with extreme points (p1, p2).

For each function, do the following:

(i) explain how to implement the function, possibly deriving analytic formulas, and characterize special cases,

(ii) program the function, including correctness checks on the input data and appropriate error messages, and

(iii) verify your function is correct on a broad range of test inputs.

Hints: To check two points are distinct, use a tolerance equal to 0.18. Regarding computeDistancePointToLine,
compute the orthogonal projection of q onto the line. Regarding computeDistancePointToSegment, the distance
depends on whether or not the orthogonal projection of q onto the line defined by p1 and p2 belongs or not to the segment
between p1 and p2.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 43

E1.7 Programming: Polygons (30 points).
Requires Exercise (E1.6).
A polygon with n vertices is represented as an array with n rows and 2 columns. Consider the following functions:

computeDistancePointToPolygon (15 points)
Input: a polygon P and a point q.
Output: the distance from q to the closest point in P , called the distance from q to the polygon.

computeTangentVectorToPolygon (15 points)
Input: a polygon P and a point q.
Output: the unit-length vector u tangent at point q to the polygon P in the following sense: (i) if q is closest
to a segment of the polygon, then u should be parallel to the segment, (ii) if q is closest to a vertex, then u
should be tangent to a circle centered at the vertex that passes through q, and (iii) the tangent should lie in the
counter-clockwise direction.

Hint: Determine which segment or vertex of P is closest to q to determine whether to use the segment or vertex
tangent case.

For each function, do the following:

(i) explain how to implement the function, possibly deriving analytic formulas, and characterize special cases,

(ii) program the function, including correctness checks on the input data and appropriate error messages, and

(iii) verify your function is correct on a broad range of test inputs.

Programming Note: It is convenient to learn to visualize points, vectors and polygons in your chosen program-
ming environment. To visualize a red square in Matlab (RGB triplet [1,0,0]), one can execute the commands:
» mysquare = [0 0; 0 1; 1 1; 1 0];
» fill(mysquare(:,1), mysquare(:,2), [1,0,0]);
» axis([-0.5 1.5, -0.5 1.5]);
In Python, the plo�ing tools are provided in a module called matplotlib. We can plot the same red square as
follows:
» import matplotlib.pyplot as plt
» mysquare = [[0, 0], [0, 1], [1, 1], [1, 0]]
» square = plt.Polygon(mysquare, fc="r")

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 44

» plt.gca().add_patch(square)
» plt.axis([-0.5, 1.5, -0.5, 1.5])
» plt.show()

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 45

E1.8 Programming Project: The Bug 1 algorithm (80 points).
Requires Exercises (E1.6) and (E1.7).
In this programming project, you are asked to implement the Bug 1 algorithm. For your convenience we provide below
a detailed pseudocode implementation of a simple Bug algorithm called BugBase; this pseudocode implementation
contains all detailed steps required to execute a bug algorithm, but does not have any logic for ge�ing around
obstacles.

The BugBase algorithm
Input: Two locations start and goal in Wfree, a list of polygonal obstacles obstaclesList, and a length

step-size
Output: A sequence, denoted path, of points from start to the first obstacle between start and goal

(or from start to goal if no obstacle lies between them). Successive points are separated by no more
than step-size.

1: current-position = start
2: path = [start]
3: while distance(current-position, goal) > step-size :
4: find polygon closest to current-position
5: if distance from current-position to closest polygon < step-size :
6: return “Failure: There is an obstacle lying between the start and goal” and path
7: compute new current-position by taking a step of length step-size towards goal
8: path = [path, current-position]
9: path = [path, goal]

10: return “Success” and path

Perform the following tasks and document them in a concise project report:

(i) (15 points) Sketch a flowchart and implement the BugBase algorithm.

(ii) (5 points) Describe in a paragraph how you will modify BugBase to implement the Bug 1 algorithm. Explain the
roles of the geometric functions in Exercises (E1.6) and (E1.7) and what new logic will be needed.

(iii) (40 points) Implement a fully-functioning version of Bug 1, described as follows:

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 1, slide 46

computeBug1
Input: Two locations start and goal in Wfree, a list of polygonal obstacles obstaclesList, and a length
step-size
Output: A sequence, denoted path, of points from start to goal or returns an error message if such
a path does not exists. Successive points are separated by no more than step-size and are computed
according to the Bug 1 algorithm.

(iv) (20 points) Test your program on the following environment:
start = (0, 0) and goal = (5, 3)
step-size = 0.1
obstaclesList =

{
{(1, 2), (1, 0), (3, 0)}, {(2, 3), (4, 1), (5, 2)}

}

start = (0, 0)

goal = (5, 3)

Include in your report a plot of the path taken by your bug from start to goal, the total path length and the
computing time, and a plot of the distance from the bug’s position to the goal as a function of time.

Chapter 2

Motion Planning via Decomposition and Search

In this chapter we continue our investigation into motion planning problems. As motiva-
tion for our interest in planning problems, let us remind the reader that the ultimate goal in
robotics is the design of autonomous robots, that is, the design of robots capable of executing
high-level instructions without having to be programmed with extremely detailed commands.
Moving from A to B is one such simple high-level instruction. In this chapter we

(i) study techniques for decomposing the continuous robot workspace into convex regions,

(ii) define roadmaps, which encode the decomposed workspace, and

(iii) introduce graph algorithms for computing point-to-point paths in roadmaps.

The first part of this chapter on decomposition is inspired by Chapter 13 in (de Berg et al. 2000).

47

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 48

Section 1: Problem setup and modeling assumptions

The sensor-based planning problems we studied in the previous chapter are also referred to
as closed-loop planning problems in the sense that the robot actions were functions of the robot
sensors. The loop here is the following: the robot moves, then it senses the environment, and
then it decides how to move again.

In this chapter we begin our discussion about open-loop planning. By open-loop, as compared
with sensor-based and closed-loop, we mean the design of algorithms for robots that do not
have sensors, but rather have access to a map of the environment. Open-loop and closed-loop
strategies are synonyms for feedforward and feedback control.

As in the previous chapter, we are given

• a workspace that is a subset of R2 or R3, o�en just a rectangle,

• some obstacles, say O1, . . . , On,

• a start point and a goal point, and

• a robot described by a moving point.

As in the previous chapter, we define the free workspace Wfree = W \ (O1 ∪O2 ∪ · · · ∪On), see
Figure 2.1. We continue to postpone more realistic and complex problems where the robot has a
shape, size and orientation.

Our task is to plan the robot motion from the start point to the goal point via a precomputed
open-loop sequence of steps to be executed. We want to design a motion plan under the
following modeling assumptions.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 49

pstart

pgoal

Figure 2.1: An example free workspace with start and goal locations

Robot Assumptions The robot has the following capacities:

• knows the start and goal locations, and

• knows the workspace and obstacles.

World Assumptions The workspace has the following properties:

• the workspace is a bounded polygon,

• there are only a finite number of obstacles that are polygons inside the workspace, and

• the start and goal points are inside the workspace and outside all obstacles.

It is instructive now to compare these new robot and world assumptions with the ones in the
previous chapter for sensor-based closed-loop planning. The similarities are the following: (1)
the robot is still just a point, it has no size, shape, or orientation, and (2) the robot’s motion is

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 50

omni-directional (i.e., the robot can move in every possible direction). The di�erences are the
following: (3) the robot has no sensors, but rather knowledge of the free workspace, and (4)
planning is now a sequence of pre-computed steps, whereas before sensor-based algorithms are
a policy on how to deal with possible obstacles encountered along the way.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 51

Subsection 2: Polygons

In these notes, a polygon is a plane figure composed by a finite chain of segments (called
sides or edges) closing in a loop. The points where the segments meet are called vertices (or
corners). Polygons are always assumed to be simple, i.e., their boundary does not cross itself.
Programming-wise, it is convenient to represent a polygon by a counter-clockwise ordered
sequence of vertices. (It is our convention not to repeat the first vertex as last.)

As illustrated in Figure 2.1, this chapter assumes that the workspace is a polygon, that each
obstacle is a polygon (i.e., a polygonal hole inside the workspace), and that the total number of
vertices in workspace and obstacles is n.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 52

Subsection 3: Run-time of an algorithm

In this chapter we will be interested in characterizing the amount of time it takes for a motion
planning algorithm to run, called its run-time, rather than the length of the path it produces.
The run-time of an algorithm is given by the number of computer steps required to execute the
code. For the purposes of these notes, we assume that addition, multiplication and division of
two numbers can be performed in one computer step. Similarly, we assume a single computer
step is required to test if one number is equal to, greater than, or less than another number.
Clearly, the run-time of an algorithm is a function of the input fed to the algorithm, and in
particular its size.

Then, given an input to the algorithm of size n (for example, a polygonal obstacle with n
vertices), it is useful to know the run-time as a function of the input size n. Counting the exact
number of computation steps can be a tricky endeavor, and so one focuses on determining how
the run-time scales with the input size n. That is, if an algorithm takes exactly 5n2 + 4n + 1
computer steps, it is customary to drop all constants and all lower-order terms, and simply
report the run-time as O(n2).

Formally, the big-O notation is defined as follows: Given two positive functions f(n) and
g(n) where n is an arbitrary natural number, we write f ∈ O(g), g, if there exist a number
n0 and a positive constant K such that f(n) ≤ Kg(n) for all n ≥ n0. Thus, if we write that
f ∈ O(g), we are saying that the function f is less than or equal to the function g (up to a
multiplicative constant and for large n). For example, in Figure 2.2 the function f(n) grows
linearly with n and g(n) grows with the square of n. Thus, we have f ∈ O(g).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 53

n

f(n)

g(n)

Figure 2.2: The function f(n) grows linearly with n. The function g(n) grows with the square of n.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 54

Section 4: Workspace decomposition

We start with two useful geometric ideas.

Convexity A set S is convex if for any two points p and q in S, the entire segment pq is also
contained in S. Examples of convex and non-convex sets are drawn in Figure 2.3. (Here we
assume that the set S is a subset of the Euclidean space Rd in some arbitrary dimension d.) For
polygons, convexity is related to the interior angles at each vertex of the polygon (each vertex of
a polygon has an interior and an exterior angle): a polygonal set is convex if and only if each
vertex is convex , i.e., it has an interior angle less than π. A vertex is instead called non-convex if
its interior angle is larger than π.

convex set non-convex set non-convex set

non-convex
vertex

convex
vertex

Figure 2.3: Examples of convex and non-convex sets. A convex set cannot have any hole. Polygons have convex and non-convex
interior angles.

Planning in non-convex sets via convex decompositions Let us now use the notion of convexity
for planning purposes. If the start point and the goal point belong to the same convex set, then

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 55

the segment connecting the two points is an obstacle-free path. If, instead, the free workspace
is not convex, then the following figure and algorithmic ideas provide a simple e�ective answer.

pstart

pgoal

pstart

pgoal

Figure 2.4: Planning through a non-convex environment by moving from a convex subset to another

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 56

Subsection 5: Decomposition into convex subsets

For complex non-convex environments, we use an algorithm to decompose the free workspace
into the union of convex subsets, such as triangles, convex quadrilaterals or trapezoids (quadri-
laterals with at least one pair of parallel sides). The following nomenclature is convenient:

(i) the triangulation of a polygon is the decomposition of the polygon into a collection of
triangles, and

(ii) the trapezoidation of a polygon is the decomposition of the polygon into a collection of
trapezoids. (We allow some trapezoids to have a side of zero length and therefore be
triangles.)

It is easy to see that a polygon can be triangulated in multiple ways (e.g., consider the two
possible diagonals of a square). In what follows we present an algorithm to trapezoidate, i.e.,
decompose into trapezoids, a polygon with polygonal holes.

The sweeping trapezoidation algorithm
Input: a polygon possibly with polygonal holes
Output: a set of disjoint trapezoids, whose union equals the polygon

1: initialize an empty list T of trapezoids
2: order all vertices (of the obstacles and of the workspace) horizontally from le� to right
3: for each vertex selected in a le�-to-right sweeping order :
4: extend vertical segments upwards and downwards from the vertex until they intersect an obstacle or the

workspace boundary
5: add to T the new trapezoids, if any, generated by these segment(s)

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 57

The algorithm is among a class of algorithms studied in computational geometry; feel free
to inform yourself about this topic at Wikipedia:computational geometry. An execution of the
algorithm is illustrated in the Figure 2.5. Note that trapezoids T3 and T7 are degenerate, i.e.,
they are triangles.

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

Figure 2.5: A trapezoidation of a workspace into trapezoids T1, . . . , T10

http://en.wikipedia.org/wiki/Computational_geometry

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 58

Subsection 6: The sweeping trapezoidation algorithm

To understand in more detail how the sweeping trapezoidation algorithm is implemented,
consider a workspace in which the boundary is an axis-aligned rectangle and every obstacle
vertex has a unique x-coordinate. As an example, see Figure 2.5. Since all x-coordinates are
unique, each line segment si describing an obstacle boundary has a le� endpoint `i and a
right endpoint ri, where the x-coordinate of the le� endpoint is smaller than that of the right
endpoint. We write this segment as si = [`i, ri].

To visualize the order in which vertices are processed by the algorithm in step 3:, we define a
sweeping vertical lineLmoving from le� to right. When the sweeping lineL hits an environment
vertex, the vertex must connect two segments. This vertex can be categorized into one of six
types (see Figure 2.6) as summarized in Table 2.1.

Vertex Type Endpoints at Vertex Convex/Concave Example

(i) both le� convex p6 and p8
(ii) both le� concave p3
(iii) both right convex p2 and p4
(iv) both right concave p7
(v) one le� one right convex p1
(vi) one le� one right concave p5

Table 2.1: The six vertex types encountered during the trapezoidal decomposition algorithm

To execute steps 4: and 5: of the sweeping trapezoidation algorithm, we maintain a list S of
the obstacle segments intersected by the sweeping line L. The obstacle segments are stored in

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 59

s1

s2

s3

s4

s6

s7s8

s9

s10

s5

p1

p2

p3

p4

p5

p6

p7

p8

Figure 2.6: The line segments s1, . . . , s10 and the obstacle vertices p1, . . . , p8 required by the algorithm

decreasing order of their y-coordinates at the intersection point with L. A key property of S is
that it changes only when L hits a new vertex. Thus, when the new vertex v is encountered,
steps 4: and 5: update the list of trapezoids T and the list of obstacle segments S . The details of
Steps 4: and 5: are as follow, and are illustrated in Figure 2.7 for each of the six vertex types of
Table 2.1.
4.1: determine the type of vertex v, as shown in Table 2.1
4.2: update S by adding obstacle segments starting at v and removing obstacle segments

ending at v (i.e., add two segments, remove one segment and add one segment, or
remove two segments, depending on vertex type as shown in Figure 2.7)

4.3: use S to extend vertical segments upwards and downwards from v, that is, to find inter-
section points pt and pb above and below v (if any) — more detail on this computation
is given in the paragraph below

5.1: add to T zero, one or two new trapezoids depending on vertex type (see Figure 2.7)

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 60

5.2: update the le� endpoints of the obstacle segments in S above and below the vertex v

The type of v can be determined by checking its convexity and looking at the number of
obstacle segments in S that have v as an endpoint: zero obstacle segments implies v is of type
(i) or (ii); one obstacle segment implies v is of type (v) or (vi); and two obstacle segments implies
v is of type (ii) or (iv). The point pt (respectively, pb) is the defined as the point where the vertical
segment extended upward (respectively, downward) from v intersects an obstacle. In types (i)
and (iii) both pt and pb are defined. In types (ii) and (iv) neither are defined as the upward and
downward vertical segments immediately enter obstacles. In types (v), and (vi) only one of pt
and pb is defined.

Instruction 5.2: updates the obstacle segments in S to facilitate the following computations
of trapezoids.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 61

Type (i)
s1

s2

s3

s10

pb

pt

Update S : [s1, s2] to [s1, s3, s10, s2]
Add to T : [pt, `1, `2, pb]
Update segment endpoints: `1 := pt, and `2 := pb

Type (ii)
s1

s2

s6

s7

s8

s9

Update S : [s1, s6, s9, s2] to [s1, s6, s7, s8, s9, s2]
Add to T : None
Update segment endpoints: None

Type (iii)
s1

s2

s6

s7

s8

s9

pb

pt

p4

Update S : [s1, s6, s7, s8, s9, s2] to [s1, s8, s9, s2]
Add to T : [pt, `1, `6, p4], and [p4, `7, pb]
Update segment endpoints: `1 := pt, and `8 := pb

Type (iv)

p7

s1

s2

s3

s8

s9

s10

Update S : [s1, s8, s9, s10, s3, s2] to [s1, s8, s3, s2]
Add to T : [p7, `9, `10]
Update segment endpoints: None

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 62

Type (v)

p1

pb

s1

s2

s3

s4

s7

Update S : [s1, s7, s3, s2] to [s1, s9, s3, s2]
Add to T : [p1, `3, `2, pb]
Update segment endpoints: `2 := pb

Type (vi)

p5

pts1

s2

s7

s8

s3

Update S : [s1, s8, s3, s2] to [s1, s7, s3, s2]
Add to T : [pt, `1, `8, p5]
Update segment endpoints: `1 := pt

Figure 2.7: The six types of of vertices, showing the update of trapezoids T , segment list S and endpoints.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 63

Subsection 7: Run-time analysis of trapezoidation algorithm

Given a free workspace (i.e., workspace minus obstacles) with n vertices, the sweeping line is
implemented (as in steps 1: and 2:) by sorting the vertices from le� to right; that is, in increasing
order of their x-coordinates. There are many well-known sorting algorithms including bubble
sort, merge sort, quick sort, etc., and the best of these run inO(n log(n)), where n is the number
of items to be sorted (Cormen et al. 2001).

Next, for each vertex v in the sorted list, we perform the steps detailed in Figure 2.7. The
runtime of these steps is dominated by the time needed to insert new segments into S and
delete old segments from S . There are exactly two insert/delete operations for each vertex v,
one for each segment that has v as an endpoint. If we maintain S as a sorted array, then to
insert/delete a segment, we need to scan through the array. Since there are n segments, the
array can contain at most n entries, and insertion or deletion requires O(n) time. We repeat
this procedure for each of the n vertices, giving a total runtime of O(n2).

We can improve the runtime by using a more sophisticated data structure for S that allows us
to insert and delete segments more quickly. In particular, a binary tree can be used to maintain
the ordered segments in S . A segment can be inserted/deleted in O(log(n)), instead of O(n)
time for the simple array implementation. With a binary tree, the sweeping decomposition
algorithm can be implemented with a run-time belonging to O(n log(n)) for a free workspace
with n vertices. The details of binary trees are beyond the scope of this book, but can be found
in (Cormen et al. 2001) or Chapter 13 in (de Berg et al. 2000).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 64

Subsection 8: Navigation on roadmaps

Before proceeding, let us recall the three key ideas we introduced so far: (1) convexity leads
to very simple paths, (2) if the free workspace is not convex, it is easy to navigate between
neighboring convex sets, (3) a complex free workspace can be decomposed into convex subsets
via, for example, the sweeping trapezoidation algorithm.

The next observation is that the sweeping trapezoidation algorithm (and other decomposition-
into-convex-subsets procedures) can easily be modified to additionally provide a list of neigh-
borhood relationships between trapezoids. In other words, we assume that we can compute an
easy-to-navigate roadmap. The roadmap of a trapezoidation is computed as follows; an example
is drawn in Figure 2.8.

The roadmap-from-decomposition algorithm
Input: the trapezoidation of a polygon (possibly with holes)
Output: a roadmap

1: label the center of each trapezoid with the symbol �
2: label the midpoint of each vertical separating segment with the symbol •
3: for each trapezoid :
4: connect the center to all the midpoints in the trapezoid
5: return the roadmap consisting of centers and connections between them through midpoints

As a result of this algorithm we obtain a roadmap specified as follows: (1) a collection of
center points (one for each trapezoid), and (2) a collection of paths connecting center points
(each path being composed of 2 segments, connecting a center to a midpoint and the same
midpoint to a distinct center).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 65

pstart

pgoal

Figure 2.8: An example roadmap for a free workspace

Note: It is not important what precise point we select as center of a trapezoid. We will see
in the next section that the roadmap can be represented as a special type of “graph” that is
generated from an environment partition and is called the “dual graph of a partition.”

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 66

Subsection 9: Navigation on roadmaps: continued

Consider now a motion planning problem in a free workspace Wfree that has been de-
composed into convex subsets and that is now equipped with a roadmap. the planning-via-
decomposition+search algorithm described below provides a solution to this problem by com-
bining various useful concepts.

The planning-via-decomposition+search algorithm
Input: free workspace Wfree, start point pstart and goal point pgoal

Output: a path from pstart to pgoal if it exists, otherwise a failure notice. Either outcome is obtained in finite time.
1: compute a decomposition of Wfree and the corresponding roadmap
2: in the decomposition, find the start trapezoid ∆start containing pstart and the goal trapezoid ∆goal containing
pgoal

3: in the roadmap, search for a path from ∆start to ∆goal

4: if no path exists from ∆start to ∆goal :
5: return failure notice
6: else
7: return path by concatenating:

the segment from pstart to the center of ∆start,
the path from the ∆start to ∆goal, and
the segment from the center of ∆goal to pgoal.

Note: by means of the decomposition, we have transformed a continuous planning problem
into a discrete planning problem: a path in the free workspace is now computed by first
computing a path in the discrete roadmap.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 67

�goal

�start

pstart

pgoal

Figure 2.9: Illustration of the planning-via-decomposition+search algorithm

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 68

Section 10: Search algorithms over graphs

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 69

Subsection 11: Graphs

In the previous section and in the last algorithm, we did not specify (1) what mathematical
object is the roadmap and (2) how to search it. In short,

(1) a roadmap is a “graph” and (2) paths in roadmaps are computed via “graph search
algorithm.”

A graph is a pair (V,E), where V is a set of nodes (also called vertices) and E is a set of edges
(also called links or arcs). Every edge is a pair of nodes. (Note: A graph is not the graph of a
function.) O�en, the graph is denoted by the le�er G, V is called the node set and E is called
the edge set. If {u, v} is an edge, then u and v are said to be neighbors.

(Note: graphs as defined here are sometimes referred to as “unweighted” and “undirected”
graphs.)

Figure 2.10 contains three simple graphs and a more complex example with node set V =
{n1, . . . , n11} and edge set

E = {e1 ={n1, n2}, e2 ={n1, n3}, e3 ={n11, n5}, e4 ={n6, n7}, e5 ={n1, n4}, e6 ={n1, n6},
e7 ={n4, n10}, e8 ={n4, n6}, e9 ={n8, n10}, e10 ={n8, n9}, e11 ={n7, n9}, e12 ={n8, n11}}.

Graphs are widely used in science and engineering in broad range of applications. Graphs
are used to describe wireless communication networks (each node is an antenna and each edge
is a wireless link), electric circuits (each node is a circuit node and each edge is either a resistor,
a capacitor, an inductor, a voltage source or a current source), power grids (each node is a power

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 70

generator and each edge describes the corresponding pair-wise admi�ance), transportation
networks (each node is a location and each edge is a route), social networks (each node is
an individual and each edge describes a relationship between individuals), etc. It is a curious
historical fact that Euler (1741) was perhaps the earliest scientist to study graphs and did so in
the context of path planning problems (other early works include Kirchho� (1847) and Cayley
(1857) on electrical networks and theoretical chemistry, respectively). You are invited to read
the wikipedia pages on Wikipedia:graph and Wikipedia:graph theory.

Now that we know what a graph is, we are interested in defining paths and their properties.
We will need the following simple concepts from graph theory.

(i) A path is an ordered sequence of nodes such that from each node there is an edge to the
next node in the sequence. For example, in Figure 2.10, a path from node n1 to node n5 is
given by the sequence of nodes (n1, n4, n10, n8, n11, n5) or equivalently, by the sequence
of edges (e5, e7, e9, e12, e3). The length of a path is the number of edges in the path from
start node to end node.

(ii) Two nodes in a graph are path-connected if there is a path between them. A graph is
connected if every two nodes are path-connected.

(iii) If a graph is not connected, it is said to have multiple connected components. More precisely,
a connected component is a subgraph in which (1) any two nodes are connected to each
other and (2) all nodes outside the subgraph are not connected to the subgraph. For example,
if a free workspace is disconnected, then the roadmap resulting from any decomposition
algorithm will contain multiple connected components.

(iv) A shortest path between two nodes is a path of minimum length between the two nodes.
The distance between two nodes is the length of a shortest path connecting them, i.e., the

http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Graph_theory

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 71

minimum number of edges required to go from one node to the other. Note that a shortest
path does not need to be unique, e.g., see Figure 2.10 and identify the two distinct shortest
paths from node n8 to node n6.

(v) A cycle is a path with at last three distinct nodes and with no repeating nodes, except
for the first and last node which are the same. A graph that contains no cycles and is
connected is called a tree.

Roadmaps as dual graphs Having introduced some graph theory, let us review our definition
of the roadmap. Given a decomposition of a workspace into a collection of trapezoids (or
more general subsets), the dual graph of the decomposition is the graph whose nodes are the
trapezoids and whose edges are defined as follows: there exists an edge between any two
trapezoids if and only if the two trapezoids share a vertical segment. The roadmap generated
by the workspace trapezoidation is the dual graph of the decomposition with the additional
specifications: to each node of the dual graph (i.e., to each trapezoid) we associate a center
location, and to each edge of the dual graph we associate a polygonal path that connects the
two centers through the midpoint of the common vertical segment.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 72

n2

n1

n3

n4

n6

n7

n8

n9

n10

n11

n5

e3
e1

e2

e4

e5

e6

e7

e8 e9

e10

e11

e12

Figure 2.10: Example graphs. The top three graphs are: the path graph on 4 nodes, the circular graph (also called the ring graph)
on 6 nodes, and a tree (see definition below).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 73

Subsection 12: The breadth-first search algorithm

Now, let us turn our a�ention back to the topic of search. Search algorithms are a classic
subject in computer science and operations research. Here we present a short description
of one algorithm. We refer to (Cormen et al. 2001) for a comprehensive discussion about
computationally-e�icient algorithms for appropriately-defined data structures.

Problem 2.1 (The shortest-path problem). Given a graph with a start node and a goal node, find
a shortest path from the start node to the goal node.

The breadth-first search algorithm, also called BFS algorithm, is one of the simplest graph
search strategy and is optimal in the sense that it computes shortest paths. The algorithm pro-
ceeds in layers. We begin with the start node (Layer 0), and find all of its neighbors (Layer 1). We
then find all unvisited neighbors of Layer 1 (Layer 2), and so on, until we reach a layer that has no
unvisited neighbors. Each vertex v in Layer k+1 is discovered from a vertex u in Layer k; we refer
u as the “parent” of v. An informal easy-to-understand description of this procedure is shown
below. A corresponding execution is shown in Figure 2.11.

1: begin with the start node and mark as visited // The start node forms Layer 0
2: for each unvisited neighbor u of the start node :
3: mark u as visited, and set the start node as the parent of u. // The nodes u form Layer 1
4: for each unvisited neighbor v of the nodes in Layer 1 :
5: mark v as visited and record the neighbor from Layer 1 as the parent of v
6: repeat the process until you reach a layer that has no unvisited neighbors
7: if the goal node has been visited :

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 74

8: follow the parent values back to the start node, and return this sequence of vertices as
the shortest path from start to goal

9: else
10: return a failure notice (i.e., the start and goal node are not path-connected)

1

0

1

1

1

2

3

2
4

start node

3

Figure 2.11: A sample execution of the breadth-first search strategy (in an unweighted graph). Each vertex is labelled with
(and shaded according to) its layer, which turns out to be equal to the distance between that node and the start node.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 75

Section 13: The queue and pseudocode for BFS

To e�iciently implement the BFS algorithm we introduce a useful data structure. A queue
(also called a first-in-first-out (FIFO) queue) is a variable-size data container, denoted Q, that
supports two operations: 1) the operation insert(Q, v) inserts an item v into the back of the
queue, and 2) the operation retrieve(Q) returns (and removes) the item that sits at the front of
the queue. An example of a queue is shown in Figure 2.12.

insert(Q, v)

FIFO Queue Q

v u
u = retrieve(Q)

Figure 2.12: In a FIFO queue, items can be in-
serted and retrieved: the items are retrieved in
the order in which they were inserted.

A queue can be implemented such that each insert and retrieve operation runs in O(1) time;
that is the runtime of each operation is independent of the number of items in the queue.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 76

Programming Note: In Matlab, a simple way to manipulate a list and implement a FIFO
queue is as follows. Define a queue as a row vector by:
» queue = [20, 21];
Insert the element 22 into the queue by adding it to the end of the vector:
» queue = [queue, 22];
Retrieve an element from the queue by:
» element = queue(1); queue(1) = [];
These same three commands in Python are:
» queue = [20, 21]
» queue.append(22)
» element = queue.pop(0)
Note: While these simple queue implementations in Matlab and Python will su�ice in many
applications, they are not e�icient. In particular, the insert and retrieve operations are not
constant time. The reason is that deleting the first element of an array (i.e., a vector) is a
O(n) operation, where n is the length of the array: A�er the element at the front of the array
is deleted, each remaining element is sequentially shi�ed one place to the le� in memory.
To correct this, one typically implements a queue using a fixed-length array along with two
additional pieces of data. The first gives the location of the element at the front of the queue,
and the second gives the location of the back of the queue. These locations are updated a�er
each insertion and retrieval.
E�icient queue implementations are available in Python using the �eue module, which can
be including using the command import Queue.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 77

Here is another more-specific pseudocode version of the breadth-first search strategy that
lends itself to relatively-immediate implementation. The implementation uses an array parent
that contains an entry for each node. The entry parent(u) records the node that lies immediately
before u on the shortest path from vstart to u. We use NONE for parent values that have not yet
been set, and SELF for the start node, whose parent is itself. Notice that the parent values
also serve the purpose of marking nodes as visited or unvisited. A vertex u is unvisited if
parent(u) = NONE and visited otherwise.

The breadth-first search (BFS) algorithm
Input: a graph G, a start node vstart and goal node vgoal

Output: a path from vstart to vgoal if it exists, otherwise a failure notice
1: create an empty queue Q and insert(Q, vstart)
2: for each node v in G :
3: parent(v) = NONE
4: parent(vstart) = SELF
5: while Q is not empty :
6: v = retrieve(Q)
7: for each node u connected to v by an edge :
8: if parent(u) == NONE :
9: set parent(u) = v and insert(Q, u)

10: if u == vgoal :
11: run extract-path algorithm to compute the path from start to goal
12: return success and the path from start to goal
13: return failure notice along with the parent values.

Note that the output of this algorithm is not necessarily unique, since the order in which the
edges are considered in step 7: of the algorithm is not unique.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 78

At the successful completion of BFS, we can use the parent values to define a set of edges
{parent(u), u} for each node u for which parent(u) 6= NONE. These edges define a tree in the
graph G. That is, they form a connected graph that does not contain any cycles. An example is
shown in Figure 2.13.

0

1

0

1

1

1

1

0

1

1

1

2

2

1

0

1

1

1

2

3

2

3

1

0

1

1

1

2

3

2
4

3

Figure 2.13: Execution of the breadth-first search algorithm. In the le�most frame, the start node is colored in blue (Layer 0).
The subsequent frames show Layers 1 to 4 as computed by BFS. We assume here that there is no goal node and just compute
parent values, which are illustrated as blue edges. The blue edges define a subgraph called the BFS tree.

The last piece we need is a method to use the parent values to reconstruct the sequence of
nodes on the shortest path from vstart to vgoal. This can be done as follows:

Note: The extract-path is o�en implemented by inserting each u at the end of the array P

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 79

The extract-path algorithm
Input: a goal node vgoal, and the parent values
Output: a path from vstart to vgoal

1: create an array P = [vgoal]
2: set u = vgoal

3: while parent(u) 6= SELF :
4: u = parent(u)
5: insert u at the beginning of P
6: return P

(rather than at the beginning), and then reversing the order of P prior returning it.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 80

Subsection 14: Representing a graph

One might wonder, how do we represent a graph that can be used as the input to the BFS
algorithm. Recall that a graph G = (V,E) is described by a set of nodes and a set of edges.
For simplicity, label the nodes 1, . . . , n, so that the question quickly reduces to: how do you
represent the edge set E?

1 2 3

4

5

Figure 2.14: A sample graph for demonstrating graph representations

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 81

Representation #1 (Adjacency Table/List): The most common way to to represent the edge set is
via a lookup table, that is, an array whose elements are lists of varying length. The lookup table
contains the adjacency information as follows: the i-th entry is a list of all neighbors of node i.
For example, for the graph above, the adjacency table (commonly called an adjacency list) would
be

AdjTable[1] = [2]

AdjTable[2] = [1, 3, 4]

AdjTable[3] = [2, 5]

AdjTable[4] = [2]

AdjTable[5] = [3]

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 82

Representation #2 (Adjacency Matrix): In some mathematical and optimization problems, it is
o�en convenient to represent the set of edges via the adjacency matrix , i.e., a symmetric matrix
whose i, j entry is equal to 1 if the graph contains the edge {i, j} and is equal to 0 otherwise.
For example, for the graph above, the adjacency matrix would be

A =




0 1 0 0 0
1 0 1 1 0
0 1 0 0 1
0 1 0 0 0
0 0 1 0 0



.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 83

Representation #3 (Edge List): Finally, the set of edges may be represented as an array, where
each entry is an edge in the graph. This representation of edges is called an edge list . For
example, for the graph below, the edge list would be [{1, 2}, {2, 3}, {2, 4}, {3, 5}].

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 84

Programming Note: In Matlab an adjacency table can be implemented using a structure
called a cell array. Type help paren in Matlab for further information. For example, the
adjacency table for the graph in Figure 2.14 would be specified as
» AdjTable{1} = [2];
» AdjTable{2} = [1, 3, 4];
» AdjTable{3} = [2, 5];
» AdjTable{4} = [2];
» AdjTable{5} = [3];
In Python there are two options to represent an adjacency table. The first is as a list of lists
»> AdjTable = [[2], [1, 3, 4], [2, 5], [2], [3]]
Note that since Python indexes from zero (i.e., the first entry of a python list is indexed with
0), the neighbors of node number i are contained in AdjTable[i-1].

Alternatively, an adjacency list can implemented as a Python dictionary
»> AdjTable = {1: [2], 2: [1, 3, 4], 3: [2, 5], 4: [2], 5: [3]}
In this case the neighbors of node i are contained in AdjTable[i].

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 85

Subsection 15: Runtime of BFS

There are two questions that we will commonly ask when designing an optimization algo-
rithm:

(i) Is the algorithm complete? and

(ii) How quickly does it run?

The answer to the first question is that the algorithm is complete: If a path exists in the graph
from the start to the goal, then the BFS algorithm will find the shortest such path. We will
skip the formal proof of this, but an interested reader can refer to a book on algorithms such
as (Cormen et al. 2001) for a complete proof.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 86

To answer the second question, we will determine the runtime of the algorithm as a function
of the size of the input. In the case of BFS, the input is a graph G with node set V and edge
set E. If we let n and m denote the number of vertices and the number edges in the graph G,
respectively, then we can characterize the runtime of BFS as follows.

Theorem 2.2 (Run-time of the BFS algorithm). Consider a graph G = (V,E) with n vertices and
m edges, along with a start and goal node. Then the runtime of the breadth-first-search algorithm is

• O(n+m) if G is represented as an adjacency table,

• O(n2) if G is represented as an adjacency matrix, and

• O(n ·m) if G is represented as an edge list.

Proof. To analyze the run-time of our pseudocode for BFS, we will break it up into di�erent
pieces.

Initialization: First, initializing the queue and inserting vstart in step 1: can be done in O(1)
time. Initializing the parent values for every node in steps 2: to 4: requires a O(1) time per
node, for a total of O(n) time.

Outer while-loop: Notice that this loop runs at most n times: each node is inserted into the
queue at most once (when it is first found by the search) and one node is removed from the
queue at each iteration of the while-loop. Thus, the algorithm spends O(1) time on step 6: at
each iteration of the while-loop, or O(n) in total.

Inner for-loop: Now, let us look at step 7: of BFS. In each iteration of the while-loop this
for-loop runs once for each neighbor node v. The time required for an iteration of the for-loop is
O(1), since it consists of looking at the value of parent(u), and then possibly se�ing parent(u)
to v and inserting u into the queue: all three operations require O(1) time. Notice that for each

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 87

edge {u, v} in the graph, the node v will be listed as a neighbor of u and the node u will be
listed as a neighbor of v. Thus, the number of iterations of the for-loop over the entire execution
of BFS is at most 2m, which is O(m).

Extracting the path: The extract-path algorithm extracts the path from the parent values in
O(n) time, since the while loop runs at most n times.

From this analysis we see that the overall runtime of BFS is O(n + m). However, notice
that in this analysis we were implicitly assuming that our graph is represented as an adjacency
table, since at step 7: we did not account for any extra computation in order to determine the
neighbors of a given node: that is, we assumed that we had a list of the neighbors of each node.

Adjacency matrix: If instead the graph were represented as an adjacency matrix, then we
would require O(n) time to determine the neighbors of a node u: This would be done by
searching through each of the n entries in the row of the adjacency matrix corresponding to
node u. Thus, BFS runs in O(n2) when the graph is represented as an adjacency matrix.

Edge list: If an edge list is used, then the run-time is even worse, as the entire edge list must
be searched at 7: to determine the neighbors of a node v. The run-time of searching the edge
list is O(m), giving a total runtime of O(n ·m). �

Note: If a graph is connected, then m ≥ n− 1. In addition, for any undirected graph, there
can be at most n choose 2 edges, and thus m ≤ n(n − 1)/2. Thus, the number of edges is
m ∈ O(n2). From this we see that the best graph representation for BFS is an adjacency table,
followed by an adjacency matrix, followed by an edge list.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 88

2.1 Exercises

E2.1 Convexity (30 points). Convexity is a key concept, not just in analysis of robotic algorithms but in optimization,
control and numerous other fields.

(i) (6 points) Explain in one paragraph (equal to a few sentences) when a set is convex and why it is useful for
motion planning.

Hint: The question talks about sets, not polygons, so your answer should not refer to internal angles.

(ii) (3 each points) For each of the following 5 properties, state if the property is true or false and provide a sketch
supporting your statement.

(a) The intersection of any two overlapping convex sets is convex.
(b) The union of two convex sets is convex.
(c) Take a set Q and a point p outside Q. If Q is convex, then there exists a unique point in Q, say q, such that

the distance between p and q is smaller than the distance between p and any other point in Q.
(d) Property (ii)c holds if Q is not convex.
(e) Take a line tangent to a convex set Q (that is, a line that just touches the boundary of Q but does not

contain any point in the interior of Q). The line divides Q into two or more components.

(iii) (3 each points) Prove whether the statements (ii)a, (ii)c, and (ii)e are true or false.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 89

E2.2 Partitions and roadmaps (20 points). For the free workspace in figure, do the following:

pgoal

pstart

(i) (5 points) Sketch the free workspace and trapezoidate it (using the sweeping trapezoidation algorithm).

(ii) (5 points) Sketch the dual graph for the trapezoidal partition and the roadmap (i.e., the dual graph with centers
and with connecting polygonal paths through midpoints).

(iii) (5 points) In the dual graph, draw a Breadth-First-Search tree with start node being the trapezoid containing
the start point. Number the nodes in the graph based on the number of hops required to reach each node from
the start node.

(iv) (5 points) Sketch the continuous path from start point to goal point that a robot would actually follow in the
workspace. The path depends upon the decomposition and upon the breadth-first search.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 90

E2.3 The seven bridges of Königsberg (15 points). The city of Königsberg in Prussia (nowadays Kaliningrad in Russia)
was founded on both sides of the Pregel River. The following figure (courtesy of Wikipedia) illustrates some main
topographical features of this city, including four masses of land connected by seven bridges.

Here is the intriguing question that troubled the citizens of this small town during the 18th century:

Find a walk through the city that crosses each bridge exactly once.

Here are the questions:

(i) How many vertices and edges are there? Draw a graph to represent the masses of land and the bridges
connecting them, carefully label the vertices.

Hint: For this exercise only, we accept graphs with multiple edges connecting the same two nodes. Such graphs are
sometimes called multi-graphs or graphs with parallel edges.

(ii) Can you find the desired path? If so, please draw it and label the edges sequentially (1, 2, 3, .., etc). If not,
describe informally why not.

(iii) Assuming that a single additional bridge can be constructed, modify the graph from part (i) and find a walk
that crosses each bridge exactly once.

The comprehensive answer to these questions, given by Euler (1741), is today recognized as one of the earliest works
on graph theory. (While the questions and the answers themselves are not all that important in general, Euler’s
contribution was the introduction of graph theory.)

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 91

E2.4 Counting triangles and trapezoids (15 points). For all of the following questions, explain your reasoning and
provide an answer in terms of the numbers `, n, and ki.

(i) (5 points) How many triangles are required to triangulate a polygonal workspace with ` vertices (and no obstacle
inside)?

(ii) (5 points) How many triangles are required to triangulate a polygonal workspace with ` vertices and one
polygonal obstacle inside (assume that the obstacle has k vertices)?

(iii) (5 points) How many trapezoids are required to trapezoidate a rectangular workspace (with 4 vertices) and n
polygonal obstacles (each with ki vertices) using the sweeping algorithm, in the worst-case?

Hint: Note that there are degenerate situations where the number of trapezoids is lower than for generic vertex
positions. We are asking for the worst-case number, that is, for an upper bound.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 92

E2.5 Computing time complexity (18 points). The time complexity of a program is the number steps or operations
required for the program to execute. For the following brief programs, determine the order of their time complexity
as a function of n, i.e., how the number of required operations scales with n. The order of the time complexity should
be given in “big O” notation, that is, for example, O(1), O(log n), O(n), O(n log n), O(n2), O(nn), etc.
Hint: Count each addition, multiplication or division as having unit cost.

(i) (3 points)
1: a = 0
2: for i from 1 to n :
3: a = a+ 1

(ii) (3 points)
1: a = 0
2: for i from 1 to 10 :
3: a = a+ 1

(iii) (3 points)
1: a = 0
2: for i from 1 to n :
3: a = a+ 1
4: for j from 1 to n :
5: a = a+ 1

(iv) (3 points)
1: a = 0
2: for i from 1 to n :
3: for j from 1 to n :
4: a = a+ 1

(v) (3 points)
1: a = 0
2: for i from 1 to n :
3: for j from i to n :
4: a = a+ 1

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 93

(vi) (3 points)
1: a = n
2: while a > 1 :
3: a = a/2

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 94

E2.6 On connected graphs and trees (10 points). AssumeG is a connected graph with n nodes. Show that the following
statements are equivalent:

(i) G is a tree, and

(ii) G has exactly n− 1 edges.

Hint: Prove the (i)⇒ (ii) direction by induction.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 95

E2.7 The BFS algorithm for disconnected graphs (15 points).
Starting from the BFS algorithm, provide an algorithm in pseudocode that e�iciently performs the following functions:

(i) verifies whether the graph is connected,

(ii) calculates how many connected components it has, and

(iii) computes the number of nodes in each connected component.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 96

E2.8 Programming: BFS algorithm (30 points).
Consider the following functions:

computeBFStree (15 points)
Input: a graph described by its adjacency table AdjTable and a start node start
Output: a vector of pointers parents describing the BFS tree rooted at start

computeBFSpath (15 points)
Input: a graph described by its adjacency table AdjTable, a start node start and a goal node goal
Output: a path from start to goal along the BFS tree rooted at start

For each function, do the following:

(i) explain how to implement the function, possibly deriving analytic formulas, and characterize special cases,

(ii) program the function, including correctness checks on the input data and appropriate error messages, and

(iii) verify your function is correct on a broad range of test inputs and, specifically, on the graph and the start/goal
problem drawn in figure.

start

goal

Hints: The function computeBFSpath should invoke the function computeBFStree.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 97

E2.9 Programming Project: The sweeping trapezoidation algorithm (60 points).
In this project you will write a function that, given as input a rectangular workspace with multiple polygonal
obstacles (each described by a counter-clockwise sequence of vertices), computes the trapezoidal decomposition of
the workspace and the associated roadmap graph. For simplicity, assume that the polygonal obstacles do not overlap
and are strictly inside the rectangular workspace.

(i) Write in detailed pseudocode a function that classifies each obstacle vertex in the 6 possible types.

(ii) Implement the main function:

SweepingTrapezoidation
Input: a rectangle W with polygonal holes P , where P is a list of non-overlapping polygons inside W .
Output: a collection of trapezoids (including the degenerate case of triangles), and a collection of edges
(each describing a shared side between two trapezoids).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 2, slide 98

Chapter 3

Configuration Spaces

The previous chapters focused on planning paths for a robot modelled as a point in the plane.
In this chapter we consider robots with physical size and robots composed of multiple moving
bodies. In particular, we

(i) describe a robot as a single or multiple interconnected rigid bodies,

(ii) define the configuration space of a robot,

(iii) examine numerous example configuration spaces, and

(iv) discuss forward and inverse kinematic maps that arise in robot motion planning.

99

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 100

Section 1: Problem setup: Multi-body robots in realistic workspaces

Recall that we have worked so far with

• a planar workspace W ⊂ R2,

• some obstacles O1, . . . , On, and

• a point robot with no shape, size or orientation.

We then defined the free workspace Wfree = W \ (O1 ∪ · · · ∪On) as the set of locations where
a point robot is not hi�ing any obstacle. A feasible motion plan for a point robot is computed as
a path in Wfree.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 101

Section 2: Robot a single body or interconnected bodies

In this chapter we begin to consider robots that are more realistic than the point robot by
considering robots. As illustrated in Figure 3.1, path planning algorithms for point robots are
not immediately applicable to robots with a shape.

robot

O1

O2

O3

robot

O1

O2

O3

collision!

Figure 3.1: A path planned for a point robot (in le� figure) will not work for a robot with the shape of a disk.

We start with some simple concepts:

(i) a rigid body is a collection of particles whose position relative to one another is fixed,

(ii) a robot is composed of a single rigid body or multiple interconnected rigid bodies,

(iii) robots are 3-dimensional in nature, but this chapter focuses on planar problems; we
postpone 3-dimensional rigid bodies to the later chapters on kinematics and rotation
matrices,

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 102

(iv) it is equivalent to specify

(a) the position of every point belonging to a rigid body, or
(b) the position of a specific point and the orientation of the rigid body, plus a representa-

tion of the shape of the rigid body.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 103

Section 3: Example systems

O2

O1

The disk robot has the shape of a disk
and is characterized by just one param-
eter, its radius r > 0. The disk robot
does not have an orientation. Accord-
ingly, the disk robots only motion is
translation in the plane: that is, trans-
lations in the horizontal and vertical
directions.

O2

O1

The translating polygon robot has a
polygonal shape, e.g., a ship-like shape
in the side figure. This robot is as-
sumed to have a fixed orientation, and
thus it’s only motion is translations in
the plane.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 104

O2

O1
The roto-translating polygon robot ,
with an arbitrary polygonal shape, is
capable of translating in the horizon-
tal and vertical directions as well as
rotating.

A multi-link or multi-body robot is
composed of multiple rigid bodies
(or links) interconnected. Each link
of the robot can rotate and translate
in the plane, but these motions are
constrained by connections to the
other links and to the robot base.
The 1-link robot is described by just
a single angle. The 2-link robot is
described by two angles.

Multi-body robots are commonly used in industrial manipulation tasks. An example of an
industrial manipulator is shown in Figure 3.2. Robots with higher numbers of degrees of freedom
are also of interest, e.g., see Figure 3.3.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 105

 SPECIFICATIONS

Axes
Maximum

motion range
[°]

Maximum speed
[°/sec.]

Allowable
moment

Allowable
moment of

inertia
2]FS100 MLX200

S

L

U

R

B

T

±180

-100/+155

-165/+255

±200

-50/+230

±360

197

175

205

400

400

600

157.6

175

205

400

400

600

–

–

–

39.2

39.2

19.6

–

–

–

1.05

1.05

0.75

Controlled axes
Maximum payload [kg]
Repeatability [mm]
Horizontal reach [mm]
Vertical reach [mm]
Protection (IP rating)
 Standard
 XP version
Weight [kg]
Power requirements
Power rating [kVA]
 Standard
 XP version

6
20

±0.06
1,717

3,063

Body: IP54; Wrist IP67
Body: IP65; Wrist IP67

268
3-phase; 230 VAC at 50/60 Hz

2.0
2.5

MOTOMAN IS A REGISTERED TRADEMARK
ALL OTHER MARKS ARE THE TRADEMARKS AND

REGISTERED TRADEMARKS OF YASKAWA AMERICA, INC.

HP20 ROBOT

OPTIONS
Extended length manipulator cables

MotoPick™ – scheduler and picking
software integrated with vision and
conveyor tracking

MotoSight™ – easy to integrate vision software

TECHNICAL SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE
DS-614 ©2014 YASKAWA AMERICA, INC. SEPTEMBER 2014

All dimensions are metric (mm) and for reference only.
Request detailed drawings for all design/engineering requirements.

Yaskawa America, Inc.
Motoman Robotics Division

100 Automation Way
Miamisburg, OH 45342
Tel: 937.847.6200
Fax: 937.847.6277

motoman.com

VIEW B

VIEW A

VIEW C

180°

180°

R1717

R421

R3
14

1417

80
14

0
76

0
50

5

14
85

55
9

150 795 105

P-Point
Maximum Envelope

1717 2072

P-Point

0

991
260

0.5 6

6

25
 d

ia

50
 d

ia 6 dia Depth: 6mm

PCD40

45°

Tapped holes M6
(Depth: 10mm)
(Pitch: 1.0) (4 holes)

4-18 dia 313

375
335

200
60

2602-12 dia

20
0

25
0 33

5
37

5

Internal user
air line 3/8” PT
(with plug)

Internal user I/O connector
is JL05-2A20-29PC (with cap)
Mating connector will not be supplied, but
complete cables are available as an option

30
63

C

B

A

AXES LEGEND
S-Axis: Swivel Base
L-Axis: Lower Arm
U-Axis: Upper Arm
R-Axis: Arm Roll
B-Axis: Wrist Bend
T-Axis: Tool Flange

Figure 3.2: The Motoman® HP20 manipulator is a multi-body robot versatile high-speed industrial robot with a slim base,
waist, and arm. Image courtesy of Yaskawa Motoman, http://www.motoman.com.

http://www.motoman.com

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 106

Figure 3.3: RoboSimian is an ape-like robot that moves around on four limbs. It was designed and built at NASA’s Jet
Propulsion Laboratory in Pasadena, California. It will compete in the 2015 DARPA Robotics Challenge Finals. Image courtesy
of NASA/JPL-Caltech.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 107

Section 4: The configuration space

In the rest of this chapter we study how to represent the position of robots composed of
rigid bodies assuming no obstacles are present. We postpone the study of obstacles to the next
chapter.

(i) A configuration of a robot is a minimal set of variables that specifies the position and
orientation of each rigid body composing the robot. The robot configuration is usually
denoted by the le�er q.

(ii) The configuration space is the set of all possible configurations of a robot. The robot
configuration space is usually denoted by the le�er Q, so that q ∈ Q.

(iii) The number of degrees of freedom of a robot is the dimension of the configuration space,
i.e., the minimum number of variables required to fully specify the position and orientation
of each rigid body belonging to the robot.

(iv) Given that the robot is at configuration q, we know where all points of the robot are. In
other words, there is a function B(q) as shown in Figure 3.4 that specifies the position
of each point belonging to the robot at configuration q. The function B is called the
configuration map, and it maps each point q configuration space Q to the set of all points
B(q) of the workspace belonging to the robot. Note, one way to represent the position of
every point of the robot at a configuration q is to specify the position, orientation, and
shape of each rigid body belonging to the robot.

Note: The configuration space should not be confused with the workspace. As shown in
Figure 3.4, the workspace is always the 2-dimensional Euclidean space R2 or the 3-dimensional

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 108

configuration space Q workspace W

configuration map B
q

Figure 3.4: Each configuration q determines the position and orientation of each rigid body composing the robot.

space R3 where the robot moves. The configuration space instead is a space of variables that
describe the position and orientation of each rigid body component of a robot.

We now present some examples of configuration spaces for simple robots presented above.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 109

Prismatic
1 freedom

Helical
1 freedom

Planar
3 freedoms

Spherical
3 freedoms

Cylindrical
2 freedoms

Revolute
1 freedom

Figure 3.5: Example joints to interconnect rigid bodies. In classic kinematics, joints are called “kinematic pairs.” Each joint
constrains the relative motion of the two rigid bodies being interconnected. This image is figure 2.21 in (Mason 2001) © 2001
Massachuse�s Institute of Technology; it is used with permission of The MIT Press.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 110

Subsection 5: Configuration space of translating planar robots

1

2

B(0, 0)

1 2

B(1, 2)

B(2, 1)

Figure 3.6: The polygonal robot at distinct positions in the workspace

In this first example we consider the disk robot and the polygonal robot that may only
translate and not rotate. (For these two robots, we silently assume the existence of a constraint
prohibiting the robot from rotating.) As shown in Figure 3.6, we designate a specific point of the
robot to be the reference point (for example, the center of the body).

Given a reference frame in space (we will discuss the concept of reference frame further
beginning in Chapter 6), place the robot such that its reference point lies at the origin of the
reference frame. Let B(0, 0) denote the set of points belonging to the robot when the robot

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 111

is at the reference position (0, 0). Any other placement B(q) of the robot is specified by two
parameters, i.e., by a point q = (qx, qy) in the plane R2.

Therefore, the configuration space of the robot is Q = R2 and a configuration q = (qx, qy) ∈
Q is simply a point in the plane R2. The robot has 2 degrees of freedom since two parameters
are required to specify its configuration.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 112

Subsection 6: Configuration space of the 1-link robot

The configuration q of the 1-link robot is given by the angle of the link relative to a reference
axis (for example, the horizontal axis). The configuration space Q is then the set of angles.

There are two ways we can represent the set of angles. The first is simply as an interval
[−π, π[, where the number −π is included in the interval and the number π is excluded. In this
representation, one must remember that −π and π are the same angle as shown in Figure 3.7,
which can cause problems when calculating distances between angles.

y

x
�� �

Figure 3.7: The circle S1 and its representation as an interval [−π, π[, with −π and π being the same angle. A circle is very
di�erent from a segment, when it comes to path planning.

The second way, as shown in Figure 3.7, is to represent the set of angles as the set of points
on the unit-radius circle. We define the unit circle as S1 = {(x, y) ∈ R2 | x2 + y2 = 1}, where
the symbol S1 is used because the unit-radius circle is also the unit-radius one-dimensional
sphere. The circle naturally captures the fact that −π and π are the same angle.

In summary, the configuration space of the 1-link robot is the circle Q = S1, and a configura-
tion q can be thought of either as a point (x, y) on the circle, or as the corresponding angle θ

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 113

configuration map B(q)

Figure 3.8: The configuration map for the 1-link robot. The point (approximately 45◦ measured counterclockwise from positive
horizontal axis) on the configuration space (le� image) determines where the 1-link robot is in the workspace (right image).

defined by x = cos(θ) and y = sin(θ); see Figure 3.8. We will usually write the configuration
simply as an angle θ ∈ S1. The 1-link robot has 1 degree of freedom since its configuration can
be described by a single angle.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 114

Subsection 7: Configuration space of roto-translating planar robots

The configuration of a planar object that translates and rotates is

q = (x, y, θ),

where (x, y) is the position of the reference point and θ is the angle of the body measured
counterclockwise with respect to the positive horizontal axis. The configuration space of a
roto-translating polygon is Q = R2 × S1. The robot has 3 degrees of freedom. Figure 3.9
illustrates the configuration map. (In the later chapters, we will study this configuration space
as a matrix group of planar displacements.)

configuration map B(q)

y

x

�

Figure 3.9: The configuration map for a roto-translating planar robot. The point and the arrows on the configuration space
(le� image) describes where the rigid body is and where it is moving towards in the workspace (right image).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 115

Subsection 8: Configuration space of robots moving in 3-dimensions

Robots moving in three dimensions may rotate or roto-translate in 3-dimensional Euclidean
space. On the le� of Figure 3.10 we illustrate a three-dimensional robot composed of a single
rigid body. We postpone a detailed treatment of the configuration space for such robots to
the later chapters on kinematics and rotation matrices. For now, let us just mention that a
unconstrained single-rigid-body robot has 6 degrees of freedom: 3 degrees of translational
freedom and 3 degrees of rotational freedom.

`

x

y

z

�1

�2

�1

�2

(x, y)

Figure 3.10: A three-dimensional rigid body on the le� and a 2-link robot on the right

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 116

Subsection 9: Configuration space of a multi-link robot

The configuration space of the 2-link robot brings up some interesting issues. As in Figure 3.10,
let `1 and `2 be the lengths of the first and second link. Let θ1 denote the angle of the first link
measured counterclockwise with respect to the positive horizontal axis, and let θ2 denote the
angle of the second link measure counterclockwise with respect to the first link.

Therefore, the configuration q of the 2-link robot is described by the two angles θ1 and θ2.
The configuration space is then Q = S1 × S1. We will write (θ1, θ2) ∈ S1 × S1 or, slightly less
precisely, (θ1, θ2) ∈ [−π, π[× [−π, π[.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 117

Section 10: The 2-torus

It is useful to define the 2-torus (or simply torus) as the product of two circles: T2 = S1 × S1.
The torus can be depicted in two symbolic ways, see Figure 3.11. The le� figure illustrates
how the torus can be drawn as a square in the plane, but where (1) the vertical on the le� is
identified with the vertical segment on the right and (2) the horizontal segment on the top is
identified with the horizontal segment on the bo�om. The right figure is the 2-torus drawn in
three dimensions: the shape is o�en referred to as the doughnut.

�

���
��

Figure 3.11: The 2-torus T2, sometimes called just the torus. (In the le� figure, the arrows in the le� and right vertical segments
point in the same upward direction meaning that the two segments are to be matched without any twist. For more on this
concept, read Wikipedia:Klein bo�le.)

Note: The doughnut shape is obtained by (1) preparing a square flat sheet, and (2) gluing
together vertical le� with vertical right and horizontal top with horizontal bo�om segments.

http://en.wikipedia.org/wiki/Klein_bottle

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 118

configuration map B(q)

�

���
��

Figure 3.12: The configuration map for the 2-link robot. The point (approximately (40◦, 30◦)) on the configuration space (le�
image) determines the orientation of both robot links in the workspace (right image).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 119

Section 11: The sphere

Note: The 2-sphere (in 3-dimensions) is the set of points in R3 at unit distance from the
origin. In a formula, S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}. The 2-torus and the 2-sphere are
two sets that can be described by two angles. However, the 2-torus is substantially di�erent
from the 2-sphere. In S2 each closed path can be deformed continuously to a point because
S2 has no holes. The 2-torus instead has a hole and it contains closed paths that cannot be
continuously deformed to a point. The 2-sphere is usually drawn quite di�erently from how the
2-torus is drawn, e.g., see Figure 3.13.

latitude

longitude
�180� 180�0�

�90�

90�

0�

Figure 3.13: A world map as a 2-sphere Image courtesy of Wikipedia.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 120

Section 12: Forward and inverse kinematic maps

In this section we discuss how to transform motion planning problems from the workspace
W to the configuration space Q via forward and inverse kinematics maps.

Given a motion planning problem in the workspace “move from point pstart ∈ W to point
pgoal ∈ W ,” we need to translate this specification into the configuration space, i.e., move from
a configuration qstart ∈ Q to a configuration qgoal ∈ Q.

Rather than presenting a general framework, we discuss a specific example, the 2-link robot,
and a specific motivation. Figure 3.14 is the picture of a robotic manipulator commonly used in
pick-up and place and assembly applications. In a vertical view, this manipulator is equivalent
to the 2-link robot we just studied. The end position of this manipulator is the position (x, y)
(near the far end of the 2-link) is where the end-e�ector is a�ached: the end-e�ector is the
device with which the manipulator interacts with the environment, e.g., a robot gripper (for
pick-up and place applications), a welding head, or a spray painting gun.
In short, we next consider the two following problems:

The forward kinematics problem: compute (x, y) as a function of (θ1, θ2), and

The inverse kinematics problem: compute (θ1, θ2) as a function of (x, y).

Note in the forward kinematics problem we are given the joint angles and our goal is to find
the position of the end e�ector. In contrast, in the inverse kinematics problem we are given a
desired end e�ector position and our goal is to find joint angles that place the end e�ector at
the desired position.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 121

Figure 3.14: The Yamaha© YK500XG is a high-speed SCARA
robot with two revolute joints and a vertical prismatic joint.
Image courtesy of Yamaha Motor Co., Ltd, http://global.
yamaha-motor.com/business/robot.

�2

�1

p2 = (x, y)

�

�1

�2

p1

p0 = (0, 0)

�

Figure 3.15: Vertical view of a SCARA robot, with end-e�ector
location (x, y). In the triangle (p0, p1, p2), define γ ∈ [0, π]
as the angle opposite the side p0p2.

http://global.yamaha-motor.com/business/robot
http://global.yamaha-motor.com/business/robot

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 122

Subsection 13: Forward and inverse kinematics for the 2-link robot

Consider the 2-link robot with configuration variables (θ1, θ2) and end-e�ector location (x, y)
as in Figure 3.15. Because the two joint angles (θ1, θ2) are the configuration variables, it should
be possible to express (x, y) as a function of (θ1, θ2). Some basic trigonometry leads to

x = `1 cos(θ1) + `2 cos(θ1 + θ2),

y = `1 sin(θ1) + `2 sin(θ1 + θ2).
(3.1)

A function of the configuration variables that describes the position of a specific point of
the robot body is usually called a forward kinematics map. So, equation (3.1) is the forward
kinematics map for the 2-link robot.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 123

Section 14: Inverse kinematic map

Next, we are interested in computing what are possible configurations (θ1, θ2) when we know
the end-e�ector is at position (x, y), in other words, we are interested in the inverse function.
We start by noting that such a problem does not admit a unique solution, as illustrated in the
following Figure 3.16.

�

p1,elbow-down

p2 = (x, y)

p0 = (0, 0) �

p1,elbow-up

p0 = (0, 0)

p2 = (x, y)

Figure 3.16: Two di�erent solutions to the same inverse kinematics problem (the end-e�ector locations in the figures are
identical): the elbow-down configuration corresponds to θ2 = π − γ ∈ [0, π] and the elbow-up configurations corresponds to
θ2 = −π + γ ∈ [−π, 0].

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 124

Section 15: Proof of inverse kinematic map

We compute the inverse kinematic map as follows. In the triangle defined by (p0, p1, p2),
define γ ∈ [0, π] as the angle opposite the side p0p2, see Figure 3.16. This triangle has sides of
length a = `1, b = `2 and c =

√
x2 + y2. For this triangle, the law of cosines (see Wikipedia),

c2 = a2 + b2 − 2ab cos γ, leads to

x2 + y2 = `2
1 + `2

2 − 2`1`2 cos(γ),

and, in turn, to

cos(γ) =
`2

1 + `2
2 − x2 − y2

2`1`2
. (3.2)

According to the discussion in Appendix 3, there are either zero, one or two solutions to this
equality. The right hand side is in the range [−1,+1] if and only if

−1 ≤ x2 + y2 − `2
1 − `2

2

2`1`2
≤ 1 ⇐⇒ −2`1`2 ≤ x2 + y2 − `2

1 − `2
2 ≤ 2`1`2

⇐⇒ (`1 − `2)
2 ≤ x2 + y2 ≤ (`1 + `2)

2

⇐⇒ |`1 − `2| ≤
√
x2 + y2 ≤ (`1 + `2).

So, for end-e�ector positions (x, y) such that
√
x2 + y2 is in the range [|`1 − `2|, `1 + `2], there

always exist exactly one solution γ in the range [0, π] to equation (3.2) equal to

γ = arccos

(
`2

1 + `2
2 − x2 − y2

2`1`2

)
.

http://en.wikipedia.org/wiki/Law_of_cosines

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 125

Finally, it remains to compute θ2 as a function of γ. From Figure 3.16, it is clear that θ2 = π − γ
for the configuration with “robot elbow down” and θ2 = −π + γ for the configuration with
“robot elbow up.” We summarize this discussion in the following proposition.

Proposition 3.1 (Inverse kinematics for 2-link robot). Consider the 2-link robot with configuration
variables (θ1, θ2) and links lengths (`1, `2) as in Figure 3.15. Given a desired end-e�ector position
(x, y) such that |`1 − `2| ≤

√
x2 + y2 ≤ (`1 + `2), there exist two (possibly coincident) solutions

for the joint angle θ2 given by

θ2,elbow-down = π − arccos

(
`2

1 + `2
2 − x2 − y2

2`1`2

)
∈ [0, π],

θ2,elbow-up = −π + arccos

(
`2

1 + `2
2 − x2 − y2

2`1`2

)
∈ [−π, 0].

The two solutions correspond to the diagrams in Figure 3.16.

We leave to the reader in Exercise E3.7 the following tasks: (i) the interpretation of the
condition |`1 − `2| ≤

√
x2 + y2 ≤ (`1 + `2), and (ii) the computation of the other joint angle θ1.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 126

Section 16: Appendix: Inverse trigonometric problems

We review here some basic identities from trigonometry that are useful in a inverse kinematics
problems.

Solutions to basic trigonometric equalities

Given three numbers a, b, and c, we consider the following equations in the variables α, β and γ:

sin(α) = a, cos(β) = b, and tan(γ) = c.

arcsin(a)

sin(↵)

a arccos(b)

cos(�)b

Figure 3.17: Illustrating the equations sin(α) = a and cos(β) = b

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 127

Because arcsin : [−1, 1]→ [−π/2, π/2] (that is, the arcsin function computes a single angle
always in the interval [−π/2, π/2]), we solve the first equation sin(α) = a as follows:

if |a| > 1, no solution,

if |a| ≤ 1, two (possibly coincident) solutions: α1 = arcsin(a), α2 = π − arcsin(a),
(3.3)

so that, in particular, α1 = α2 = π/2 for a = +1, and α1 = α2 = −π/2 for a = −1.
Because arccos : [−1, 1]→ [0, π] (that is, the arccos function computes a single angle always

in the interval [0, π]), we solve the second equation cos(β) = b as follows:

if |b| > 1, no solution,

if |b| ≤ 1, two (possibly coincident) solutions: β1 = arccos(b), β2 = − arccos(b),
(3.4)

so that, in particular, β1 = β2 = 0 for b = +1, and β1 = β2 = π for b = −1.
Finally, the third equation tan(γ) = c admits two solutions for any c ∈ R:

γ1 = atan(c) and γ2 = atan(c) + π. (3.5)

Four-quadrant arctangent function with two arguments

The four-quadrant arctangent function atan2 computes the inverse tangent map as follows: for
any point (x, y) in the plane except for the origin, the value atan2(y, x) is the angle between
the horizontal positive axis and the point (x, y) measured counterclockwise; see Figure 3.18. So,
for example,

atan2(0, 1) = 0, atan2(1, 0) = π/2, atan2(0,−1) = π, atan2(−1, 0) = −π/2.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 128

(x1, y1)
✓1 = atan2(y1, x1)

✓2 = atan2(y2, x2)

✓3 = atan2(y3, x3)

(x3, y3)

(x2, y2)

✓2

✓3

✓1

Figure 3.18: The four-quadrant arctangent function

Two useful property of the four quadrant arctangent function are:

atan2(y, x) = π + atan2(−y,−x), atan2(y, x) = −π
2

+ atan2(x,−y).

Also, it is easy to see that, for all angles θ, we have

θ = atan2(sin(θ), cos(θ)).

The order of the arguments is very important as there are two possible conventions: (y, x) or
(x, y). In this class, we adopt the (y, x) convention.

Programming Note: In Matlab, the (y, x) convention is used. This can be seen by typing
help atan2 , which produces

ATAN2 Four quadrant inverse tangent.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 129

ATAN2(Y,X) is the four quadrant arctangent of the real parts of the
elements of X and Y. -pi <= ATAN2(Y,X) <= pi.

In Python, atan2 is implemented in the math module as math.atan2 and also uses the (y, x)
convention. Some texts and the program Mathematica use the (x, y) convention.

Alternative solutions to basic trigonometric equalities

The four-quadrant arctangent function provides an alternative and sometimes easier way of
computing solutions to

sin(α) = a, cos(β) = b, and tan(γ) = c,

where we assume |a| ≤ 1 and |b| ≤ 1. Specifically, if sin(α) = a, then cos(α) = ±
√

1− a2 and
therefore

α1 = atan2(a,
√

1− a2), and α2 = atan2(a,−
√

1− a2). (3.6)

Similarly, if cos(β) = b, then sin(β) = ±
√

1− b2 and therefore

β1 = atan2(
√

1− b2, b), and β2 = atan2(−
√

1− b2, b). (3.7)

Finally, tan(γ) = c is equivalent to

γ1 = atan2(c, 1), and γ2 = atan2(−c,−1).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 130

3.1 Exercises

E3.1 Shortest paths and distances on the circle (20 points).
Given two points on the circle θ1 and θ2 (represented as values in the interval [−π, π[), the counter-clockwise distance from θ1 to θ2,
denoted by distcc(θ1, θ2), is the length of the counter-clockwise arc starting at θ1 and ending at θ2. Similarly, the
clockwise distance, denoted by distc(θ1, θ2), is the length of the clockwise arc from θ1 to θ2. Finally, the distance
between θ1 to θ2 is the smallest of the two counter-clockwise and clockwise distances.
Hint: On the unit circle, the length of an arc is equal to the angle subtended by the arc and is measured in radians.

(i) (2 points) Compute counter-clockwise and the clockwise distances between θ1 = π/3 and θ2 = −3π/4.

(ii) (5 points) Provide a formula for the counter-clockwise distance from arbitrary θ1 to arbitrary θ2.

Hint: Recall the “modulo” operator: mod(θ, 2π) is the remainder of the division of θ by 2π.

(iii) (5 points) Provide a formula for the clockwise distance from θ1 to θ2, denoted by distc(θ1, θ2).

(iv) (3 points) Define the distance between two angles to be the smallest between their counterclockwise and
clockwise distance. Provide a formula for the distance between θ1 and θ2, denoted by distcircle(θ1, θ2).

For further reference, note the following general properties:

distcc(θ1, θ2) 6= distcc(θ2, θ1), lack of symmetry of distcc,

distcc(θ1, θ2) = distc(θ2, θ1), relationship between distcc and distc, and

distcircle(θ1, θ2) = distcircle(θ2, θ1), symmetry of distcircle.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 131

E3.2 Shortest paths and distances on the 2-torus (10 points).
Requires Exercise E3.1. Consider the two points (α1, β1) and (α2, β2) in T2 as depicted in the figure.

�

���
��

(�1,⇥1)

(�2,⇥2)

(i) (5 points) Sketch the shortest path between (α1, β1) and (α2, β2).

(ii) (5 points) Define the distance between two points to be the length of the shortest path between them. Provide
a formula for the distance between (α1, β1) and (α2, β2), denoted by dist2-torus

(
(α1, β1), (α2, β2)

)
.

Hints: Your answer should include a square root. Gain deeper intuition into trajectories on the 2-torus by practicing the
classic arcade game Asteroids at http://www.freeasteroids.org.

http://www.freeasteroids.org

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 132

E3.3 Shortest paths and distances on the 2-sphere (10 points).
The 2-sphere S2 is the set of points in R3 at unit distance from the origin.

(i) What do shortest paths between points look like?

(ii) Given two points p = (p1, p2, p3) and q = (q1, q2, q3) in the 2-sphere (so that p21 + p22 + p23 = 1 = q21 + q22 + q23),
provide a formula for the distance between p and q, denoted by dist2-circle

(
p, q).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 133

E3.4 Programming: Distances on the circle and the 2-torus (10 points).
Requires Exercises E3.1 and E3.2. Write the following programs:

computeDistanceOnCircle (5 points)
Input: two angles α and β in the interval [−π, π[
Output: the distance between α and β

computeDistanceOnTorus (5 points)
Input: two points on the torus angles (α1, α2) and (β1, β2)
Output: the distance between (α1, α2) and (β1, β2)

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 134

E3.5 Mapping mother Earth onto a flat surface (10 points).
Cartography, the science and practice of drawing maps, has always arisen the curiosity of mankind and played a key
role in navigation.

(i) In the following world map, which points are drawn more than once? In other words, which points in the map
correspond to the same physical location on mother Earth? Draw lines explaining the identifications, in the
same style as we used for the 2-torus in Figure 3.11.

(ii) The following four figure show di�erent ways of projecting the spherical world onto a flat surface and of
computing straight-line paths from Santa Barbara, California, to Venice, Italy. Briefly explain why the four
straight segments are not identical and how you would compute the actual length of each of them.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 135

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 136

E3.6 Free configuration spaces (30 points).

Robot shapes:
a

b
r

(i) (10 points) Sketch the free configuration space for the disk robot (include the original obstacles and workspace).

Hint: Consider the scale of the robot and workspace, and check the possibility of movement.

(ii) (10 points) Sketch the free configuration space for the rectangular robot assuming that the robot cannot rotate
(include the original obstacles and workspace).

(iii) (10 points) While the free configuration space for the rectangular robot still has polygonal obstacles, the same
is not true for the disk robot. The triangular and trapezoidal partitioning strategies discussed in Chapter 2
require polygonal obstacles. In a few sentences and a clarifying sketch, propose a solution to partitioning the
free configuration space for the disk robot to enable the construction of a roadmap.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 137

E3.7 Reachable workspace and inverse kinematics for 2-link manipulator (25 points).

�2

�1

p2 = (x, y)

�

�1

�2

p1

p0 = (0, 0)

�

This question deals with the inverse kinematics for the 2-link manipulator with link lengths `1 and `2. We are
interested in the following general question: Given the (x, y) location of the end e�ector, what are the values for the
two joint angles (θ1, θ2)? Specifically, perform the following tasks.

(i) (5 points) Call the point (x, y) reachable if there exists joint angles (θ1, θ2) such that the end e�ector is at (x, y).
The set of reachable points is called the reachable workspace. Draw the reachable workspace for three cases:
`1 < `2, `1 = `2 and `1 > `2. Are your pictures consistent with the condition given in Proposition 3.1 that√
x2 + y2 is in the range [|`1 − `2|, `1 + `2]?

(ii) (5 points) For the same three cases as in the previous questions, explain how many (θ1, θ2) solutions there are
for each reachable (x, y).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 138

Hint: In general, there could be no solutions, one solution, two solutions, or for special cases an infinite number of
possible solutions. Also, think carefully about the boundary of the reachable workspace.

(iii) (15 points) Section 3 contains an expression for θ2. Using this expression and the results in Appendix 3 as a
guide, derive an expression for θ1.

Hint: Make sure you use the correct order of arguments in your arctangent function

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 139

E3.8 Kinematic calculations for 3-link manipulator (25 points). You are given a planar three-link manipulator with
a gripper a�ached at the end of the third link (i.e., the gripper is the end-e�ector). Assume the three links have unit
length (i.e., `1 = `2 = `3 = 1).

�1

�2

�1

�2

p3 = (x, y)

p0 = (0, 0)

p1

p2

�3

�

�3

Let θ1 be the orientation of the
first link, measured counterclock-
wise from the horizontal axis. Let
θ2 and θ3 be the relative orien-
tations of second and third link,
respectively, measured counter-
clockwise.

Let (x, y, φ) be the position and
orientation of the gripper, where
φ is measured counterclockwise
relative to the horizontal axis.

(i) (8 points) Write (x, y, φ) as a function of (θ1, θ2, θ3). (This is the forward kinematics map.)

(ii) (8 points) Given (x, y, φ), write a formula for the point (x2, y2) where the second and third link meet.

(iii) (9 points) Write (θ1, θ2, θ3) as a function of (x, y, φ). (This is the inverse kinematics map.)

Hint: Make use of your answer for (ii).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 3, slide 140

Chapter 4

Free Configuration Spaces via Sampling and
Collision Detection

In this chapter we complete the discussion of robot configuration spaces. We discuss the role of
obstacles in both workspace and configuration space, the notion of free configuration space,
and corresponding computational methods. In particular, we

(i) represent obstacles and the free space when the robot is composed of a single or multiple
rigid bodies with proper shape, position and orientation,

(ii) compute free configuration spaces via sampling and collision detection,

(iii) discuss sampling methods, and

(iv) discuss collision detection methods.

141

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 142

Section 1: The free configuration space

As in Chapter 3, the configuration of a robot is a minimal set of variables that describes the
position of each rigid body component of the robot. Therefore, in the configuration space a
robot position is just a single point.

In this section we discuss how to model obstacles in configuration space. The key problem is:
what robot configurations correspond to feasible positions of the robot, i.e., configurations in Q
such that the robot is not in collision with any obstacle in W .

Let us review the basic setup. We are given the workspace W with obstacles O1, . . . , On.
Therefore, the free workspace is

Wfree = W \ (O1 ∪ · · · ∪On).

Second, we are given the robot configuration space Q and the configuration map B(q), which
denotes the set of particles belonging to the robot in the workspace as a function of the robot
configuration q.

(i) The free configuration space Qfree is the set of configurations q such that all points of the
robot are inside Wfree. Because all points of the robot are given by B(q), we can write

Qfree = {q ∈ Q | B(q) is inside Wfree}.

(ii) Given an obstacle O in workspace, the corresponding configuration space obstacle OQ is
the set of configurations q such that the robot at configuration q is in collision with the
obstacle Q. In a formula, this is wri�en as

OQ = {q ∈ Q | B(q) overlaps with O}.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 143

Combining these two notions, if OQ,1, . . . , OQ,n are the configuration space representation of
the obstacles O1, . . . , On, the free configuration space can be wri�en as

Qfree = {q ∈ Q | B(q) ⊂ W} \ (OQ,1 ∪ · · · ∪OQ,n).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 144

Subsection 2: Free configuration space for the disk robot

Consider a planar robot with the shape of a disk of radius r and with the ability to translate
only. In the absence of obstacles, the configuration space and the workspace are identical: the
configuration of the robot is given by the pair (x, y) that takes value in R2. We now imagine
the disk robot is restricted to move inside a rectangle W and to avoid a rectangular obstacle O;
as in Figure 4.1. Easily, the free workspace is the rectangle W minus the obstacle O.

To compute the free configuration space and the obstacles in configuration space we reason
as follows: a disk with radius r is in collision with an obstacle if and only if the disk center
is closer to the obstacle than r. Accordingly, we grow or “expand” the obstacle and, cor-
respondingly, to “shrink” the workspace in the following manner: Using this key idea, the

O

r

W

Figure 4.1: An example configuration space

r
r

Figure 4.2: Expanding an obstacle and shrinking a workspace

obstacle in configuration space is the expanded rectangle and the free configuration space of the
disk robot is described in any of the two completely equivalent forms:

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 145

(i) the set of positions of the disk center such that the disk does not intersect the obstacle
and is inside the workspace,

(ii) the shrunk workspace minus the expanded obstacle.

Free workspace Free configuration space

Figure 4.3: It is equivalent to plan feasible paths for the disk robot moving in the free workspace (le� figure) or for a point
robot moving in the free configuration space (right figure).

Note: one problem with the expansion of polygonal obstacles is that their expansion is no
longer a polygon. At the cost of over-estimating the obstacle and therefore over-constraining
the robot motion, one can always render the expansion a polygon by “over-expanding” the
corners as shown in Figure 4.4.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 146

r r

Figure 4.4: Approximating expanded obstacles by a larger polygonal obstacle

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 147

Subsection 3: Free configuration space for the translating polygonal
robot

Suppose our robot is polygonal and convex with shape as
shown in Figure 4.5. The robot has a fixed orientation as
shown in the figure, and moves by translating in the plane.
Now, given any polygonal convex obstacle, how would
you determine the configuration space obstacle for this
robot? The “obstacle expansion” procedure is now more
complicated than in the disk robot example, because now
both robot and obstacle are polygonal.

Figure 4.5: A polygonal and convex
robot in the plane

There is a simple graphical approach to computing the configuration space obstacle illustrated
in Figure 4.6 and described as follows:

(i) move the robot to touch the obstacle boundary (recall the robot is not allowed to rotate),

(ii) slide the robot body along the obstacle boundary, maintaining the contact between the
robot boundary and the obstacle boundary,

(iii) while sliding, store the location of the reference point of the robot: the resulting path
encloses a convex polygon equal to the configuration space obstacle.

To turn this graphical procedure into a programmable algorithm, we introduce a useful
operation. Given two sets S1 and S2 in R2, the Minkowski di�erence S1 	 S2 is defined by

S1 	 S2 = {p− q | p ∈ S1 and q ∈ S2}.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 148

Figure 4.6: The configuration space obstacle for a translating robot

Proposition 4.1. Assume the robot body, with reference position B(0, 0) and the obstacle O are
convex polygons with n and m vertices respectively. Then the resulting configuration space obstacle
OQ is a convex polygon with at most n+m vertices and satisfies

OQ = O 	 B(0, 0). (4.1)

Given convex polygons O and B(0, 0), we now present a simple algorithm to compute the
Minkowski di�erence in equation (4.1). First, we define the convex hull of a group of points as
the minimum-perimeter convex set containing them. The convex hull of a group of points is a
convex polygon. Graphically, the convex hull can be obtained by snapping a tight rubber band
around all the points (the length of the rubber band is the perimeter of the envelope) as shown
in Figure 4.7. Each convex polygon is the convex hull of its vertices.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 149

Figure 4.7: Example convex hull of a set of points

Programming Note: The Matlab command convhull computes the convex hull in 2 and 3
dimensional spaces. In Python the convex hull of a set of points can be computed using the
scipy module. Import the module using from scipy.spatial import ConvexHull. The
function operates on a numpy array of points. Numpy is imported via import numpy.

Finally, here is the promised algorithm for computing the configuration space obstacle using
the Minkowski di�erence.

The Minkowski-di�erence-via-convex-hull algorithm
Input: two convex polygonal subsets P1 and P2 of R2

Output: the Minkowski di�erence P1 	 P2

1: for each vertex v of P1 :
2: for each vertex w of P2 :
3: compute the di�erence point v − w
4: return the convex hull of all di�erence points

To characterize the runtime of this algorithm, suppose that P1 has n vertices and P2 has m
vertices. The algorithm will compute nm di�erence points. There are many algorithms for com-

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 150

puting the convex hull of a set of points N points, the best of which run in O(N log(N))
time. Therefore, the runtime of the Minkowski-di�erence-via-convex-hull algorithm is in
O(nm log(nm)).

However, recall that by Proposition 4.1, the resulting convex polygon will have at most n+m
vertices. Based on this fact, there exists a much more e�icient algorithm. The idea is to directly
compute the (at most) n + m points, rather than computing nm and then throwing all but
n+m away via the convex hull computation. This more e�icient algorithm can be implemented
to run in O(n+m) time as detailed by de Berg et al. (2000).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 151

Section 4: If you can compute the free space, then ...

To conclude this section, we complete the discussion of the Minkowski di�erence with an
example of its application. That is, a complete motion planning example for the translating
polygon. Figure 4.8 shows a workspace containing a translating polygonal robot, along with the
configuration space obstacles and one possible path from start to goal.

qstart

qgoal

free configuration space

configuration space
obstacles

no passage

workspace space

pstart

pgoal

Figure 4.8: Planning the motion of a translating polygonal robot from start to goal

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 152

Subsection 5: Free configuration space for the 2-link robot

The 2-link robot in Figure 4.9 illustrates how, for general shapes of obstacles and robots and
for robots that can rotate, it is complex to compute exactly the free configuration space. Consider

�2

�1

O1

O2

Figure 4.9: The two-link robot in a workspace with obstacles

the 2-link robot moving in a workspace with two obstacles O1 and O2 as depicted in Figure 4.9.
Let us think about how to compute the free configuration space examining step-by-step the
e�ect of the obstacles. Our three steps are depicted in the three images in Figure 4.10:

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 153

�

���
��

�1

�2

�

2

�

2

(0, 0)

�

���
��

�1

�2

�

2

�

2

(0, 0)

�

���
��

�1

�2

�

2

�

2

(0, 0)

Figure 4.10: Step-by-step graphical approximate computation of the free configuration space for the 2-link robot. The shaded
regions are obstacles in configuration space. The dashed boundaries are highly approximate because of the complexity
inherent int their computation.

(i) in the first image we recall that the 2-link configuration space is a 2-torus,

(ii) in the second image we compute the set of angles θ1 at which the first link hits one of the
two obstacles. This set is the union of two intervals: the obstacle O1 prohibits the angle θ1

from taking value in an interval around θ1 = 0, and, similarly, the obstacle O2 prohibits
the angle θ1 from taking value in an interval around θ1 = π/2. The two intervals in θ1 are
depicted as two vertical rectangles in the second image,

(iii) in the third image, we look to compute the e�ect of the obstacles on the allowable values
of θ2. However, one can begin to see the di�iculty in accurately estimating the free
configuration space. Given an angle θ1 for which the first link is not in collision with
O1 and O2, we can approximately compute what θ2 angles correspond to collision for

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 154

the second link. This calculation is highly approximate as each choice of θ1 changes the
allowable values of θ2. Consequently, this computation is very hard to perform exactly for
general shapes of the obstacles and of the robot links.

From this two-link robot example we can see that a more general method is needed to
compute free configuration spaces. The following section introduces the idea of sampling.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 155

Section 6: Numerical computation of the free configuration space

By now we have studied multiple methods to describe the free configuration space. (1)
For the disk robot and the translating polygon, we saw that we can explicitly characterize
the free configuration space. (2) For the 2-link and the roto-translating polygon, it is hard to
precisely compute the free configurations. In general, unfortunately, it is hard to have an explicit
characterization of the obstacles in configuration space and, in turn, to decompose the free
configuration space into convex subsets.

Therefore, we study here an alternative numerical method, based on sampling and collision
detection.

The sampling & collision-detection algorithm
Input: A number of samples n, the free workspace Wfree, and the robot configuration map B(q)
Output: A set of configurations in the free configuration space

1: Initialize free-configs = ∅
2: Compute a sequence of sample configurations q1, q2, . . . , qn
3: for each configuration sample qi in the sequence :
4: compute the positions of the robot rigid bodies corresponding to the sample, B(qi)
5: detect if the robot collides with the obstacles (i.e., test if B(qi) ⊂ Wfree)
6: if robot does not collide with obstacles and is inside the workspace :
7: Add qi to free-configs
8: return free-configs

This numerical approach computes a “cloud representation” of the free configuration space for
robots and obstacles of arbitrary shape. Motivated by this numerical approach, the next two

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 156

sections study algorithms for sampling and collision detection.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 157

Section 7: Sampling methods

A sampling method should have certain properties:

(i) Uniformity : the samples should provide a “good covering” of space. Mathematically, this
can be formulated using the notion of dispersion; see below.

(ii) Incremental property : the sequence of samples should provide good coverage at any number
n of samples. In other words, it should be possible to increase n continuously and not only
in discrete large amounts.

(iii) La�ice structure: given a sample, the location of nearby samples should be computationally
easy to determine.

Consider the d-dimensional unit cube X = [0, 1]d ⊂ Rd. The sphere-dispersion and the
square-dispersion of a set of points P in the set X are defined by (see also Figure 4.11)

dispersionsphere(P) = radius of the largest empty disk, whose center lies in X,

dispersionsquare(P) =
1

2
the length of the side of the largest empty square whose center lies in X.

Typically, square dispersion is calculated with respect to a fixed coordinate frame. The sides of
the square are aligned with the axes of this coordinate frame and cannot be rotated.

More generally, given a distance metric defining the distance dist(x, y) between any two
points x, y ∈ X , we can define the dispersion of P with respect to the distance metric as

dispersion(P) = max
x∈X

min
p∈P

dist(x, p).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 158

Figure 4.11: A set of points in the unit square with poor, that is, high sphere-dispersion (le� figure) and square-dispersion
(right figure)

That is, the dispersion is defined as maximum distance from a point in X to its nearest sample
in P . The sphere- and square-dispersion measures are given by the following distance metrics:

(i) sphere dispersion uses the 2-norm:

dist(x, p) = ‖x− p‖2 =
√

(x1 − p1)2 + · · ·+ (xd − pd)2,

(ii) square dispersion uses the∞-norm:

dist(x, p) = ‖x− p‖∞ = max(|x1 − p1|, . . . , |xd − pd|),

where x = (x1, . . . , xd) and p = (p1, . . . , pd) are the coordinates of the points x and p.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 159

Note: The sampling methods discussed in this chapter look only at sampling in a d-dimensional
cube. These methods can be extended to sampling methods for general configuration spaces
such as the sphere and the set of rotations.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 160

Section 8: Uniform grids

Uniform grids There are two ways of defining uniform grids in the unit cube X = [0, 1]d as
shown in Figure 4.12 for d = 2. We call them the center grid and the corner grid . Both grids
with n points can be defined if n = kd for some number k. For n = kd for some k, the center
grid is defined in two steps: (1) along each of the d dimensions, divide the [0, 1] interval into k
subintervals of equal length and therefore compute kd sub-cubes of X , (2) place one grid point
at the center of each sub-cube; see the le� image in Figure 4.12. This center uniform grid is

Figure 4.12: Uniform grids with n = 36 points in the 2-dimensional cube. Le� figure: the center grid, also called the Sukharev
grid. Right figure: the corner grid.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 161

sometimes called the Sukharev grid and has minimal square-dispersion (Sukharev 1971) equal to

dispersionsquare(Pcenter grid(n, d)) =
1

2 d
√
n
.

For the corner grid, divide the [0, 1] interval into (k − 1) subintervals of equal length and
therefore compute (k − 1)d sub-cubes of X , (2) place one grid point at each vertex of each
sub-cube; see the right image in Figure 4.12.

Note: There is no uniform grid if n is not equal to kd for some k: one can set k := b d
√
nc,

place the k points as Figure 4.12 and the other points arbitrarily.
Note: It is possible to design multi-resolution versions of the uniform center grid, i.e., compute

a uniform grid with some number of points and then add additional points while keeping the
ones from the previous resolution level. This process is illustrated in Figure 4.13. The growth
in number of points in multi-resolution uniform grids is exponential: one can see that a step
increase in resolution correspond to a jump in number of samples from n to n3d.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 162

Figure 4.13: Growth in number of points when increasing resolution of uniform grid

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 163

Section 9: Random and deterministic sampling

Random and pseudo-random sampling Adopting a random number generator is usually a very
simple approach to (uniformly or possibly non-uniformly) sample the cube X = [0, 1]d. An
example set of 100 randomly generated points is shown in Figure 4.14.

Note: Let P be a set of n points generated independently and uniformly over X . As n→∞,
the setP has (Deheuvels 1983) square-dispersion of orderO

(
(ln(n)/n)1/d

)
. Therefore, randomly-

sampled points have asymptotically worse dispersion than center grids.

Programming Note: In Matlab the command rand(n,d) returns a vector with n rows and
d columns: each row i gives a uniform sample qi in [0, 1]d.
In Python, uniform samples can be generated using the random module or the numpy module:

(i) Import the random module using the command import random. A random number
between 0 and 1 is generated with random.random(). A For-loop can then be used to
generate n samples, in [0, 1]d. Or,

(ii) Import the numpy module using the command import numpy. An array containing
n random numbers between 0 and 1 is generated using numpy.random.sample(n).
Running this d times, d-dimensional coordinates for each sample are generated.

Deterministic sampling sequences Halton sequences (Halton 1960) are an elegant way of sam-
pling an interval with good uniformity (be�er than a pseudorandom sequence, though not as
good as the optimal center grid) and with the incremental property (which the center grid does

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 164

not possess). Each scalar Halton sequence is generated by a prime number. In what follows we
provide (1) an example, (2) the exact definition, and (3) a simple algorithm.

By way of an example, the Halton sequence generated by the prime number 2 is given by

1

2
,

1

4
,
3

4
,

1

8
,
5

8
,
3

8
,
7

8
,

1

16
,

9

16
,

The horizontal spacing illustrates a shi� in accuracy of the sequence. To understand the
Halton sequence we require a formal definition (you might want to review the notion of
Wikipedia:Numeral system). Given a number p, one can write any number i in base p as

i = ejp
j + · · ·+ e1p+ e0, where ej, . . . , e0 ∈ {0, 1, . . . , p− 1}.

The digits of i in base p are then ejej−1 · · · e0. For example, the number 6 is wri�en in p = 2
(i.e., binary) as 110.

Then, the method for a�aining the 6th number in the Halton sequence, using p = 2, is as
follows:

(i) Write the number i in base p, where p is a prime number:

6 in base 2 is 110,

(ii) add a decimal place and then reverse the digits, including the decimal:

110.0 becomes 0.011,

(iii) convert this binary number back to base 10 and output this as the ith number in the Halton
sequence:

0.011 = 0 · 1
2

+ 1 · 1
4

+ 1 · 1
8

=
3

8
.

http://en.wikipedia.org/wiki/Numeral_system

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 165

We can write a formula for the ith number base p as

“ith sample of Halton sequence in base p" =
e0

p
+
e1

p2
+ · · ·+ ej

pj+1
.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 166

Section 10: Halton sequence algorithm

We can write this procedure as an algorithm to compute a Halton sequence of length N
generated by any prime number. Repeating our previous example, let us compute the 6th

The Halton sequence algorithm
Input: length of the sequence N ∈ N and prime number p ∈ N
Output: an array S[1 . . . N] with the first N samples of the Halton sequence generated by p

1: initialize: S to be an array of N zeros (i.e., S(i) = 0 for each i from 1 to N)
2: for each i from 1 to N :
3: initialize: itmp = i, and f = 1/p
4: while itmp > 0 :
5: compute the quotient q and the remainder r of the division itmp/p
6: S(i) = S(i) + f · r
7: itmp = q
8: f = f/p
9: return S

sample of the Halton sequence in base 2, using the algorithm:

(i) First we initialize itmp = 6, S(6) = 0, f = 1/2,

(ii) 6 divided by 2 gives a quotient q = 3 and remainder r = 0. We set S(6) = 0, itmp = 3,
f = 1/4,

(iii) 3 divided by 2 gives a quotient q = 1 and remainder r = 1. We set S(6) = 1/4, itmp = 1,
f = 1/8,

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 167

(iv) 1 divided by 2 gives a quotient q = 0 and remainder r = 1. We set S(6) = 1/4 + 1/8,
itmp = 0, f = 1/16.

For Halton sequences in higher dimensions, select a prime number for each dimension of the
problem: usually, the number 2 for the first dimension, the number 3 for the second dimension,
and so forth. The ith Halton sample in d-dimension is a point in [0, 1]d whose components are
the ith samples of the d sequences computed with d di�erent prime numbers. For example, in
[0, 1]2, using the primes 2 and 3, one has

(1

2
,
1

3

)
,
(1

4
,
2

3

)
,
(3

4
,
1

9

)
,
(1

8
,
4

9

)
,
(5

8
,
7

9

)
,
(3

8
,
2

9

)
,
(7

8
,
5

9

)
,
(1

16
,
8

9

)
,
(9

16
,

1

27

)
,

Figure 4.14 shows the first 100 samples points of the Halton sequence in 2-dimension generated
by the prime numbers 2 and 3.

Note: It is known that the square-dispersion of a Halton sequence of n samples is f(d)/ d
√
n,

where f(d) is a constant for each dimension d. Thus, the Halton sequence achieves a dispersion
similar to that of uniform grids, but has the advantage of allowing for incremental increases in
the number of samples.

Comparison of sampling methods We have seen three sampling methods: uniform grids, random
sampling, and deterministic sampling via the Halton sequence. The uniform grid is optimal in
terms of dispersion. It also possess the la�ice property in that for a given grid resolution the
neighbors of a particular grid point are predetermined (i.e., they are the samples in adjacent
grid squares). However, uniform grids are not incremental, and one must jump from n to n3d

samples to increase the resolution.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 168

Figure 4.14: Le� figure: a pseudorandom set of 100 samples. Right figure: the Halton sequence in 2-dimension generated by
the prime numbers 2 and 3.

Random sampling has higher dispersion, but is incremental. It does not, however, possess
the la�ice structure – the neighbors of a particular sample are not predetermined and must be
computed by searching over all other samples.

Halton sequences have the advantage of achieving nearly the same dispersion as uniform
grids while also being incremental. The la�ice structure of Halton sequences is not as simple as
that of the uniform grid. However, given a number of samples n along with the base used for
each dimension, the neighbors of a given sample are pre-determined, although this calculation
is somewhat more complex.

Table 4.1 summarizes the three methods and their properties.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 169

Sampling property Uniform grids Random sampling Halton sequences

dispersion O
(

1
d√n

)
O
(ln1/d(n)

d√n

)
O
(f(d)

d√n

)

incremental no yes yes
la�ice yes no yes (more complex)

Table 4.1: The three sampling methods and their key properties

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 170

Section 11: Collision detection methods
We now have several di�erent methods for generating samples q1, . . . , qn in the configuration

space Q. The next step is to detect whether or not these configurations are in collision with an
obstacle or workspace boundary. To do this we require several collision detection methods.

Problem 4.2. Given two bodies B1 and B2, determine if they collide. (In equivalent set-theoretic
words, determine if the intersection between two sets is non-empty.)

The distance between two sets A and B is

dist(A,B) = inf
a∈A

inf
b∈B

dist(a, b).

If the distance is zero, then we say the bodies are in collision. Of course, it is undesirable to
check collision by computing the pairwise distance between any two points. Therefore, it is
convenient to devise careful algorithms for collision detection.

Loosely speaking, it is computationally easier to deal with 2-dimensional problems rather
than 3-dimensional problems. Also, it is computationally easier to deal with the following shape
(in order of complexity):

(i) bounding spheres, rather than

(ii) Axis-Aligned Bounding Boxes (AABB), rather than

(iii) Oriented Bounding Boxes, rather than

(iv) convex polygons, rather than

(v) non-convex polygons, rather than

(vi) arbitrary shapes.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 171

Figure 4.15: Bounding boxes are used to over-approximate sets in collision detection problems. Le� figure: Axis-aligned
Bounding Box (AABB). Right figure: Oriented Bounding Box (OBB).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 172

Subsection 12: Basic primitive #1: is a point in a convex polygon?

Problem 4.3. Given a convex polygon and a point, determine if the point is inside the polygon.

The polygon is defined by a counter-clockwise sequence of vertices, p1, . . . , p4 in Figure 4.16.
For each side of the polygon, we define the interior normal as in Figure 4.17 for the side p1p2.

p1

p2

p3

p4

q

Figure 4.16: Testing if a point lies in a polygon

p1

p2

Figure 4.17: Interior normal to a side of the polygon

Note: a convex polygon can be equivalently represented as either (1) a set of n points
(the polygon having those points as vertices) or (2) a set of n half-planes (the polygon being
the intersection of the half-planes). These two equivalent representations are called Vertex
Description and Half-plane Description of a convex polygon. With some computational cost, it
is possible to convert one representation into the other.

Given a convex polygon with counter-clockwise vertices {p1, . . . , pn} and a point q, the
following conditions are equivalent:

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 173

(i) the point q is in the polygon (possibly on the boundary),

(ii) for all i ∈ {1, . . . , n}, the point q belongs to the half-plane with boundary line passing
through the vertices pi and pi+1 and containing the polygon, and

(iii) for all i ∈ {1, . . . , n}, the dot product between the interior normal to the side pipi+1 and
the segment piq is positive or zero.

(Here the convention is that pn+1 = p1. A similar set of results can be given to check that the
point is strictly inside the polygon.)

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 174

Subsection 13: Basic primitive #2: do two segments intersect?

Problem 4.4. Given two segments, determine if they intersect.

p1

p2

p3

p4

Figure 4.18: Testing for the intersection of two segments

Note: any two lines in the plane are in one of three exclusive configuration: (1) parallel
and coincident, (2) parallel and distinct, or (3) intersecting at a single point. In order for two
segments to intersect, the two corresponding lines may be coincident (and the two segments
need to intersect at least partly) or may intersect at a point (and the point must belong to the
two segments).

A segment is described by its two vertices as shown in Figure 4.18. Each point pa belonging
to the segment p1p2 can be wri�en as

pa = p1 + sa(p2 − p1), for sa ∈ [0, 1].

Similarly, we have
pb = p3 + sb(p4 − p3), for sb ∈ [0, 1].

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 175

Assume p1 = (x1, y1), p2 = (x2, y2), p3 = (x3, y3), and p4 = (x4, y4). The equality pa = pb is
equivalent to two linear equations in the two unknowns sa, sb:

x1 + sa(x2 − x1) = x3 + sb(x4 − x3),

y1 + sa(y2 − y1) = y3 + sb(y4 − y3).

These two equations can be solved and, for example, one obtains

sa =
(x4 − x3)(y1 − y3)− (y4 − y3)(x1 − x3)

(y4 − y3)(x2 − x1)− (x4 − x3)(y2 − y1)
=:

num
den

. (4.2)

One can show that

(i) if num = den = 0, then the two lines are coincident,

(ii) if num 6= 0 and den = 0, then the two lines are parallel and distinct, and

(iii) if num 6= 0 and den 6= 0, then the two lines are not parallel and therefore intersect at a
single point.

Now, if the two lines intersect at a point, one still needs to check that the intersection point
actually belongs to the segment. This fact can be checked by solving for the coe�icients sa and
sb and verifying that they belong to the interval [0, 1].

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 176

Subsection 14: Basic primitive #3: do two convex polygons intersect?

Problem 4.5. Given two convex polygons, determine if they intersect.

There are five possible cases that one must consider, and each is illustrated below. It
is computationally easy to distinguish case (1) (no collision), from cases (2), (3) and (4). To
distinguish case (5) from case (1) is a bit more complex.

P2 � P1 = � P2 � P1 �= � P1 � P2 P2 � P1

P2 \ P1 6= ;
and no vertex is in common

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 177

Based on these five cases we can define an algorithm for determining if two convex polygons
intersect.

The polygon-intersection algorithm
Input: two convex polygons P1 and P2

Output: collision or no collision
1: if (any vertex of P1 belongs to P2) OR (any vertex of P2 belongs to P1) :
2: return collision
3: if any edge of P1 intersects any edge of P2 :
4: return collision
5: return no collision

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 178

Subsection 15: Extension to non-convex polygons

Collision detection can be extended to non-convex polygons. First, we need to extend
primitive #1 to test if a point lies in a non-convex polygon.

Problem 4.6. Given a non-convex polygon and a point, determine if the point is inside the polygon.

We solve this problem using an algorithm called ray shooting. A ray is a line with an endpoint
that extends infinitely in one direction. It can be characterized by the endpoint o, and a unit
vector v that points in the direction that the line extends. The procedure is as follows.

Ray-shooting algorithm for point in non-convex polygon
Input: a point q and a non-convex polygon P with n sides s1, . . . , sn.
Output: inside or outside

1: Choose an arbitrary direction, and define a ray R extending from q in the chosen direction.
2: intersections = 0
3: for i from 1 to n :
4: if segment si intersects the ray R :
5: intersections = intersections + 1
6: if intersections is odd :
7: return inside
8: return outside

The algorithm counts the number of times a ray extending from q intersects the boundary of
the polygon. By the Jordan Curve Theorem 1.5 and Figure 1.16, if the number of intersections is
odd, then q must lie inside the polygon. If there are an even number of intersections, then q

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 179

q

s1

s2

s3s4

s5

s6

s7

s8

Figure 4.19: The ray shooting algorithm. The point q lies inside the polygon, and thus the ray intersects the boundary an odd
number of times.

must lie outside the polygon. Figure 4.19 shows an example in which the ray intersects three
segments, s1, s2, and s3. Since the number of intersections is odd, the point q lies in the polygon.

The ray shooting algorithm requires that we test if a ray and a line segment intersect as
shown on the le� of Figure 4.20.

Problem 4.7. Given a line segment s and a ray R, determine if they intersect.

We can solve this problem by thinking of the ray as a very long segment and then applying
primitive #2. The question is how long do we need to make this segment? Notice that the
farthest point from o on the line segment s is one of its end points, p1 or p2. Thus, if the ray and
segment intersect, then the intersection point is at a distance of at most

d = max{‖o− p1‖, ‖o− p2‖}

from the ray endpoint o. Based on this we define a line segment with end points p3 = o and

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 180

p1

p2

ov

p1

p2

p3 = o

p4 = o + vd

d

Figure 4.20: Le� figure: Intersection of a ray and a segment. Right figure: The ray is converted to a segment with length equal
to the distance from o to p1.

p4 = o + dv as shown on the right of Figure 4.20 and test it intersects with the line segment
defined by p1 and p2 using primitive #2. The segment and ray intersect if and only if the two
segments intersect.

Third and finally we can test if two non-convex polygons intersect.

Problem 4.8. Given two non-convex polygons, determine if they intersect.

For this step, we can now use the exact same algorithm as in primitive #3. The two non-convex
polygons must be in one of the five cases shown in the figure above and thus we can apply the
polygon-intersection algorithm using ray shooting to test if the vertices of one polygon lie in
the other.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 181

Subsection 16: Final comments on collision detection

Here are some lessons and some final comments:

(i) collision detection algorithms for simple objects are easy to perform,

(ii) for complex objects, e.g., arbitrary shapes, a reasonable approach is to use hierarchical
approximations and decompositions, described as follows:

(a) approximate the complex shape by a simple enclosing shape, e.g., a sphere, an AABB,
or an OBB,

(b) if no collision occurs between the two simple enclosing shapes, then return a “no
collision” result,

(c) if a collision is detected between two simple enclosing shapes, then approximate the
bodies less conservatively and more accurately, e.g., by decomposing them into the
union of multiple simple shapes. One can then check collision between these more
accurate decompositions;

(iii) to detect collisions between moving objects, discretize time and perform a collision detection
test for each time step, and

(iv) in industrial motion planning applications, collision detection is usually performed via a
stand-alone black-box subroutine, e.g., see (Pan et al. 2012).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 182

Section 17: Appendix: Runtime of the numerical computation of the
free configuration space

Let us now look at the runtime of the sampling & collision-detection algorithm. To do this,
we first characterize the time complexity of the algorithms that are used for sampling and for
collision detection in the overall algorithm (de Berg et al. 2000)

(i) each of the sampling methods (uniform grids, random sampling, and pseudo-random
sampling) for generating n sample points, runs in O(n) time;

(ii) checking if a point belongs to convex polygon with n vertices as in basic primitive #1 has
complexity O(n);

(iii) checking if two lines intersect intersect as in basic primitive #2 can be done in O(1) time
by simply plugging the line endpoints into the corresponding equations;

(iv) given two convex polygons, with n andm vertices respectively, our algorithm for checking if
they intersect as in basic primitive #3 has a runtime in O(nm). Our algorithm for checking
if two non-convex polygons intersect has the same runtime of O(nm). Faster algorithms
exist with runtime in O

(
(n+m) log(n+m) + I log(n+m)

)
, where I is the number of

intersections between the two polygons. This faster algorithm works for both convex and
non-convex polygons.

Returning to the sampling & collision detection algorithm, the runtime of this algorithm
is dominated by the time to check collisions between the robot body and each obstacle. For
each configuration qi we first compute the polygon describing the robot at that configuration,

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 183

B(qi), and then loop over each obstacle polygon Oj , checking for an intersection (i.e., collision)
between B(qi) and Oj . The run time of each collision check is given by the runtime of basic
primitive #3, where n is the number of vertices in the robot polygon, and m is the number of
vertices in the obstacle polygon above. This must be repeated for each obstacle (or until the
first collision is found), and for each sample point.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 184

4.1 Exercises

E4.1 Minkowski di�erence (15 points).
The Minkowski di�erence of a convex polygonal obstacle and a translating convex polygonal robot is a useful method
for computing configuration space obstacles. In this exercise you will explore how to find the configuration space
obstacle for the ship-shaped robot and square obstacle below.

(i) (5 points) First, sketch the trajectory of the robot’s reference point as you slide the robot body around the
outside of the square obstacle. This is a graphical approach to sketching the configuration space obstacle.

(ii) (5 points) Next, in a new drawing of the obstacle use the Minkowski di�erence method to sketch the configuration
space obstacle.

(iii) (5 points) In a couple of sentences, explain why the Minkowski di�erence approach in (ii) is well suited for
implementation in a computer program. (Note: there do exist fast computational methods for finding the
convex hull of a collection of points.)

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 185

E4.2 Dispersion (20 points). This question explores how dispersed, or well placed, a set of sample points are over a space.
First, consider the unit interval from [0, 1].

• A set of three sample points {A,B,C} inside [0, 1] are given. For any point p inside [0, 1], the distance from p
to the set {A,B,C} is the smallest of the three distances |p−A|, |p−B|, and |p− C|.

• The dispersion of the set {A,B,C} is the largest of the distances from all positions p inside [0, 1] to the sample
set {A,B,C}.

Verify that this definition is equivalent to that for sphere-dispersion and square-dispersion for the case of a 1-
dimensional segment. Answer the following question:

(i) (4 points) What is the optimal placement for 3 samples points that minimizes their dispersion? And what is the
corresponding dispersion?

Next, consider the unit cube [0, 1]d in d-dimensions and compute the dispersion of a corner uniform grid (see Section 4)
with k samples on each dimension of the cube, as a function of k, for the following cases:

(ii) (4 points) The sphere-dispersion in 2 dimensions (d = 2).

(iii) (4 points) The square-dispersion in 2 dimensions (d = 2).

(iv) (4 points) The sphere-dispersion in arbitrary dimensions.

(v) (4 points) The square-dispersion in arbitrary dimensions.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 186

E4.3 Programming: Sampling algorithms (40 points).
Consider the unit square [0, 1]2 in the plane. Pick and arbitrary k and do:, for number of samples, write formulas for
the coordinates of:

(i) (5 points) write formulas for the n = k2 sample points in the uniform Sukharev center grid,

(ii) (5 points) write formulas for the n = k2 sample points in the uniform corner grid, where sample points are
placed at the corners of each squarelet (instead of at centers),

(iii) write the following programs (representing a grid with n entries in [0, 1]2 by an array with n rows and 2
columns):

computeGridSukharev (10 points)
Input: the number of samples n (assuming n = k2 for some number k)
Output: the uniform Sukharev center grid on [0, 1]2 with b√nc samples along each axis.

computeGridRandom (10 points)
Input: the number of samples n
Output: a random grid on [0, 1]2 with n uniformly-generated samples

computeGridHalton (10 points)
Input: the number of samples n, two prime numbers b1 and b2
Output: a Halton sequence of n samples inside [0, 1]2 generated by the two prime numbers b1 and b2

For each function, do the following:

(i) explain how to implement the function, possibly deriving analytic formulas, and characterize special cases,

(ii) program the function, including correctness checks on the input data and appropriate error messages, and

(iii) verify your function is correct by plo�ing the three grids for n = 100.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 187

E4.4 Programming: Collision detection primitives (45 points). Implement the three collision detection primitives
for convex polygons discussed in Subsections 4, i.e., write the following programs:

isPointInConvexPolygon (15 points)
Input: a point q and a convex polygon P
Output: true or false

doTwoSegmentsIntersect (15 points)
Input: two segments described by their respective vertices p1, p2 and p3, p4
Output: the answer true or false and, if the answer is true, the intersection point

doTwoConvexPolygonsIntersect (15 points)
Input: two convex polygons P1 and P2

Output: true or false

For the segments intersection test, verify that, given the definitions of num and den in equation (4.2),

(i) if num = den = 0, then the two lines are coincident,

(ii) if num 6= 0 and den = 0, then the two lines are parallel and distinct, and

(iii) if num 6= 0 and den 6= 0, then the two lines are not parallel and therefore intersect at a single point.

For each function, do the following:

(i) explain how to implement the function, possibly deriving analytic formulas, and characterize special cases;
specifically, write a pseudo-code routine to check whether a point is inside a convex polygon,

(ii) program the function, including correctness checks on the input data and appropriate error messages, and

(iii) verify your function is correct on a broad range of test inputs.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 4, slide 188

E4.5 Distance between two lines in three dimensions (20 points). Consider the following idealized collision detection
problem between two aircra� moving along two lines. As in Figure, let line 1 pass through a point p1 with a unit-length
vector n̂1, and let line 2 pass through a point p2 with a unit vector n̂2. For simplicity, assume that the two lines do
not intersect and are not parallel, as in Figure.

line 1

line 2

bn1

bn2

a

p1

p2

↵

(i) The mutual perpendicular segment is the unique shortest segment connecting the two lines (i.e., the segment
touches line 1 and 2) and perpendicular to both lines;

(ii) the distance between the two lines is the length a of the mutual perpendicular segment; and

(iii) the angle between the two lines is the positive angle α ∈ [0, π] about the mutual perpendicular segment (mea-
sured according to the right-hand-rule, with orientation from line 1 to line 2) that line 1 needs to be rotated by,
so that it is parallel to line 2.

Give expressions for a and α as functions of the points p1, p2 and the vectors n̂1, n̂2.
Hint: Pay a�ention to the correct signs

Chapter 5

Motion Planning via Sampling

This chapter presents general roadmap-based approaches to motion planning. Specifically, we
will discuss:

(i) general roadmaps and their desirable properties,

(ii) complete planners based on exact roadmap computation (specifically, we will review
decomposition-based roadmaps and will introduce a novel shortest-paths visibility graph),

(iii) general-purpose planners based on sampling and approximate roadmaps. (Sampling-based
Roadmap Methods) For this general-purpose planners we will discuss:

• connection rules for fixed resolution grid-based roadmaps,
• connection rules for arbitrary-resolution methods,
• comparison between sampling-based approximate and exact planners

(iv) incremental sampling-based planning methods, including:

189

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 190

• from multi-query to single-query,
• rapidly-exploring random trees (RRT),
• the application of receding-horizon incremental planners to sensor-based planning.

(v) Appendix: shortest-path planning via visibility roadmap and shortest path search via
Dijkstra’s algorithm.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 191

Section 1: Roadmaps

Generalizing what we discussed in Chapter 2, a roadmap is here understood to be a collection
of locations in the configuration space along with paths connecting them. With each path, we
associate a positive weight that represents a cost for traveling along that path, for example, the
path length or the travel time. More formally, we can think of a roadmap as a weighted graph
G = (V,E,w), where V is the set of nodes representing robot configurations, E is the set of
edges representing paths between nodes, and w is a function that assigns the weight (e.g., path
length) to each edge in E.

Figure 5.1: An example roadmap. The black dots are the nodes V , the paths connecting nodes are edges E, and the length of
the path gives the edge’s weight.

A roadmap may have the following properties:

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 192

(i) the roadmap is accessible if, for each point qstart in Qfree, there is an easily computable path
from qstart to some node in the roadmap,

(ii) similarly, the roadmap is departable if, for each point qgoal in Qfree, there is an easily
computable path from some node in the roadmap to qgoal, and

(iii) the roadmap is connected if, as in graph theory, any two locations of the roadmap are
connected by a path in the roadmap, and

(iv) the roadmap is e�icient with factor δ ≥ 1 if, for any two locations in the roadmap, say u
and v, the path length from u to v along edges of the roadmap is no longer than δ times
the length of the shortest path from u to v in the environment.

The notions of accessibility and departability are not fully specified as they depend upon the
notion of “easily computable path.” For example, if “easily computable paths” are straight lines
from start locations qstart to nodes of the roadmap, then the roadmap depicted in Figure 5.1 is
not accessible from start locations in the top le� corner, behind the triangular obstacle.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 193

Section 2: Complete planners on exact roadmaps

Decomposition-based roadmaps In Chapter 2 we studied how to generate roadmaps using de-
composition algorithms. For polygonal environments with polygonal obstacles, the sweeping
trapezoidation algorithm decomposes the free environment into a collection of pair-wise adja-
cent convex subsets; see Figure 5.2. The roadmap computed via the decomposition algorithm is
guaranteed to be accessible and departable (via straight segments) and to be connected. It is
clear that this roadmap, however, does not contain shortest paths among environment locations.

qstart

qgoal

Figure 5.2: An exact roadmap (black points and thick dashed red paths) obtained via the sweeping trapezoidation algorithm.
The thin blue paths connect start and goal locations to the roadmap.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 194

Section 3: Visibility roadmaps

Visibility roadmaps Next, we propose a new approach to computing e�icient roadmaps in
environments with polygonal obstacles. Given a set of polygonal obstacles O1, . . . , On, define
the visibility graph G = (V,E,w) with node set V , and edge set E, and weights w as follows:

(i) the nodes V of the visibility graph are all convex vertices of the polygons O1, . . . , On, and

(ii) the edges E of the visibility graph are all pairs of vertices that are visibly connected . That
is, given two nodes u and v in V , we add the edge {u, v} to the edge set E if the straight
line segment between u and v is not in collision with any obstacle.

(iii) the edge weight of an edge {u, v} is given by the length of the segment connecting u and v.

Note: recall that a vertex of a polygon is a convex vertex if its interior angle is strictly smaller
than π radians. (A non-convex vertex has an interior angle larger than π.) The non-convex
vertices of a polygonal obstacle is not needed in the visibility graph.

Figure 5.3 illustrates a visibility graph whose vertices are the black disks and hose edges are
the red dashed segments.

Then, given a start location qstart and a goal location qgoal, along with a visibility graph G of
the obstacles, we connect qstart and qgoal to all nodes in the visibility graph that are visible from
qstart (that is, all nodes that can be connected with a collision-free segment). In this graph we
can search for a path from the start to goal.

Note: The visibility graph we have defined does not include the start and goal locations.
This is done so that the visibility graph represents the configuration space (i.e., the working

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 195

qstart

qgoal

Figure 5.3: A roadmap obtained as the visibility graph generated by three polygonal obstacles. The roadmap edges are drawn
in thick dashed red. The thin blue paths connect start and goal locations to the roadmap.

environment) and not the specific planning problem at hand (which is specified by the start and
goal locations). One can then use the same visibility graph for multiple start-to-goal problems,
rather than re-computing the graph each time.

One can show that the visibility graph has the following properties: if the free environment is
connected, then the visibility graph is connected, departable, accessible. We can also characterize
the e�iciency of the visibility graph in the following theorem.

Theorem 5.1 (Shortest paths through convex polygonal obstacles). Consider a configuration
space with convex polygonal configuration space obstacles. Any shortest path in the free configura-
tion space between qstart and qgoal consists of only straight line segments. Moreover, each segment
endpoint is either the start location qstart, the goal location qgoal, or an obstacle vertex.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 196

This theorem states that the shortest path from start to goal is a path in the visibility graph.
Hence, the roadmap obtained via the visibility graph is optimally e�icient, in the sense that the
e�iciency factor δ is 1. For completeness we include a proof, which can be skipped without loss
of continuity.

Proof. Let P be a shortest path from qstart and qgoal. First, suppose by way of contradiction that
this shortest path does not consist solely of straight line segments. Since the obstacles are
polygonal, there is a point x on the path that lies in the interior of the free space Qfree with
the property that the path P is curved at x, as shown in the le� of Figure 5.4. Since x is in
the interior of the free space, there is a disc of radius r > 0 centered at x that is completely
contained in the free space. The path P passes through the center of this disc, and is curved.
So, we can shorten the path by replacing it with a straight line segment connecting the point
where P enters the disc to the point where it leaves the disc. This contradicts the optimality of
P . Thus, any shortest path consists only of straight line segments.

r x

P

r x

P rx

P

Figure 5.4: The three cases of shortening a suboptimal path for the proof of the optimality of the visibility graph

Next, let’s consider an endpoint of a segment on P that is not the start or goal. The endpoint
cannot lie in interior of Qfree: If it did then there would be a disc centered at the endpoint that

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 197

is completely contained in the free space, and we could replace the subpath of P inside the disc
by a shortest straight line segment as shown in the center of Figure 5.4. Similarly, the endpoint
cannot lie on the interior of an edge of an obstacle (i.e., on the boundary of an obstacle, but not
at a vertex): if it did, then there would be a disc centered at the endpoint such that half the disc
is in the free space, which again implies that we can replace the subpath inside the disc with a
straight line segment, as shown on the right of Figure 5.4. The only possibility le� is that the
endpoint is an obstacle vertex concluding the proof. �

The last question is how long it takes to compute the visibility graph. The number of nodes
in the visibility graph is equal to the total number of obstacle vertices in the environment:
|V | = ∑n

i=1 |Oi|. To compute the edges E, we need to check every pair of nodes vi, vj ∈ V and
see if it intersects with any of the |V | obstacle edges. Thus, the graph can be computed in a
total runtime of O

(
|V |3

)
. A more sophisticated implementation (de Berg et al. 2000) reduces

this runtime to O
(
|V |2 log(|V |)

)
.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 198

Section 4: General-purpose planners via sampling-based roadmaps

Here we propose a general numerical method for motion planning. The method is based
on computing a roadmap for the free configuration space Qfree via (1) sampling, (2) collision
detection, and (3) a so-called connection rule. We have covered techniques for sampling and
collision detection in Chapter 4.

A connection rule is an algorithm that decides when and how to (try to) compute a path
connecting two nodes of a sampled configuration space. The following pseudocode contains a
connection rule based on the notion of neighborhood of a point.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 199

Section 5: Sampling-based roadmap computation

The sampling-based roadmap computation algorithm
Input: number of sample points in roadmap N ∈ N. Requires access to a sampling algorithm, collision detection

algorithm, and a notion of neighborhood in Q
Output: a roadmap (V,E) for the free configuration space Qfree

1: initialize (V,E) to be the empty graph
// compute a set of locations V in Qfree, via sampling & collision detection

2: while number of nodes in V is less than N :
3: compute a new sample q in the configuration space Q
4: if the configuration q is collision-free :
5: add q to V

// compute a set of paths E via the following connection rule
6: for each sampled location q in V :
7: for all other sampled locations p in a neighborhood of q :
8: if the path from q to p hits no obstacle :
9: add the path q to p to E

10: return (V,E)

Once a roadmap is computed, and once a start and goal location are given, the motion plan-
ning problem (find a path from start to goal) is solved using the following method. This method is
similar to the planning-via-decomposition+search algorithm in Section 2:

1: connect qstart and qgoal to the roadmap (i.e., compute a larger graph containing also start
and goal locations)

2: run a graph search algorithm such as the breadth-first search algorithm (or Dijkstra’s
algorithm, that we present later in this chapter) to find a path from start to goal

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 200

Figure 5.5: The free configuration space Qfree, a set of samples in Qfree (the first 100 samples of the Halton sequence with base
numbers (2, 3)), a roadmap in Qfree and, finally, a path connecting a start location to a goal location.

An example sampling-based roadmap and path from start to goal is given in Figure 5.5.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 201

Subsection 6: Neighborhood functions

In deciding which sample configuration p to try to connect to q in step 7: of the previous
algorithm, there are many possible choices. We briefly discuss three choices, each shown in
Figure 5.6:

r

Figure 5.6: Three neighborhood functions. Le� figure: r-radius rule. Middle figure: K-closest rule with K = 3. Right figure:
component-wise K-closest rule with K = 1.

(i) r-radius rule: fix a radius r > 0 and select all locations p within distance r of q,

(ii) K-closest rule: select the K closest locations p to q, and

(iii) component-wise K-closest rule: from each connected component of the current roadmap,
select the K closest locations p to q.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 202

Note that the r-radius rule and the K-closest rules are not very di�erent. If the points are
sampled using a uniform grid, then radius rule and the K-closest rule are essentially the same:
The number of neighbors within a radius r is the exact same for each sample point.

Note: in the r-radius rule, one strategy to design the radius r is to select it approximately of
the same order as the dispersion of the sequence of sample points.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 203

Section 7: Details: distance functions

Distance functions

All neighborhood rules rely upon a notion of distance in the free configuration space Qfree.
Distances between points in Euclidean spaces (e.g., the line, the plane, the 3-dimensional space)
are easy to define and compute. How to properly define the distance between configurations in
arbitrary spaces is more complex. Here are some observations and examples.

• Typically, the distance between points is defined as the length of the shortest path con-
necting two points.

• The exercises E3.1 and E3.2 discuss proper distances on the circle S1 and on the 2-torus T2.

• One can also define shortest paths and distances on the 2-sphere S2. A useful notion is
that of great circle, i.e., the intersection of the sphere with a plane passing through the
sphere center. The shortest path between two points on the 2-sphere is on the great circle
through them and the corresponding distance is the angular distance on the great circle.

• For a roto-translating body with configuration space R2 × S1, the definition of a distance
function involves introducing a trade-o� between translational and angular distances. A
priori, it is not clear how to compare a translational with a rotational displacement.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 204

Exact Planners Approximate Planners
accessible/departable yes not necessarily

connected yes not necessarily
e�icient yes for visibility not guaranteed

applicability narrow broad

Table 5.1: Comparison between exact planners (decomposition-based and visibility roadmaps) and approximate planners
(sampling-based roadmaps)

Section 8: Comparison

Comparison between exact and approximate planners

Exact planners have the important feature of being automatically accessible, departable, and
connected. The visibility graph is additionally e�icient. Unfortunately, exact planners are only
applicable to low-dimensional problems with free configuration spaces that are described by
simple geometric shapes.

Sampling-based approximate roadmaps have the key feature of being broadly and simply
applicable to any problem. Roadmaps are not automatically guaranteed to be connected,
e�icient and easily accessible/departable. As the resolution N increases, these properties
become more easily satisfied, at the cost of increased computational complexity. We summarize
this comparison in Table 5.1.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 205

Section 9: Incremental sampling-based planning

In this section we adapt the sampling-based roadmap to single-query scenarios in which we
are concerned only with computing a path between a single start and goal location, rather than
building a re-usable roadmap of the configuration space.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 206

Subsection 10: Multiple-query and single-query scenarios

Roadmap-based methods are structured in general as a two-phase computation process
consisting of

(i) a preprocessing phase – given the free configuration space, compute the roadmap, followed
by

(ii) a query phase – given start and goal locations, connect them to the roadmap and search
the resulting graph.

This structure is particularly well-suited for multiple-query problems, in which the same roadmap
can be utilized multiple times to solve multiple motion planning problems in the same workspace.
In this sense, we refer to roadmap-based planning methods as “multiple-query solvers.”

However, there are times when we only wish to make a single query, and thus we do not
need to compute a reusable roadmap. In this case we can compute a special roadmap to solve
the specific query. The roadmap is

(i) computed directly as a function of the start location,

(ii) is just a tree, as cycles do not add new paths from the start location.

Such tree-based roadmaps are “single-query solvers” and have some advantages in computation
time when just a single query is needed.

Note: For symmetry reasons that we need not worry about here, one o�en computes two
trees, one originating from the start location and one originating from the goal location.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 207

Subsection 11: Incremental tree-roadmap computation

The following is a general algorithm for constructing a single-query tree roadmap.

The incremental tree-roadmap computation method
Input: start location qstart, number of sample points in tree roadmap N ∈ N. Also requires access to a sampling

algorithm, collision detection algorithm, and a distance notion on Q
Output: a tree roadmap (V,E) for the free configuration space Qfree containing qstart

1: initialize (V,E) to contain the start location qstart and no edges
2: while number of nodes in V is less than N :
3: select a node qexpansion from V for expansion
4: choose a collision-free configuration qnearby near qexpansion

5: if can find a collision-free path from qexpansion to qnearby :
6: add qnearby to V
7: add collision-free path from qexpansion to qnearby to E
8: return (V,E)

We refer to step 3: as node selection and to step 4: as node expansion. An illustration of the
steps 3: to 7: is given in Figure 5.7.

The Rapidly-Exploring Random Tree (RRT) algorithm

Step 3: and 4: are not specified in the algorithm above. In what follows we give these two
instructions according to a famous planning algorithm:
3: choose a random configuration qrandom in Q and select for expansion the node qexpansion

from V that is closest to qrandom

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 208

qstart

qgoal

Figure 5.7: Example of incremental tree roadmap computation

4: select a collision-free configuration qnearby near qexpansion by moving from qexpansion

towards qrandom

Together these two choices push the tree roadmap to grow in random directions and to rapidly
explore the free configuration space. In reality, the name “random” is unnecessary and it is
completely possible to use deterministic Halton sequences to grow an incremental rapidly-
exploring tree.

The following figures illustrate RRTs in an empty environment and in an environment with
obstacles.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 209

qstart

qgoal

Figure 5.8: RRT in an empty environment

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 210

qstart

qgoal

Figure 5.9: RRT in environment with obstacles

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 211

Subsection 12: Application to sensor-based planning

We conclude our discussion of incremental planning methods with a brief discussion of their
application to sensor-based planning problems.

The receding-horizon sensor-based planning algorithm
1: maintain in memory an estimate of your location and of the workspace map around you
2: while robot is not at destination :
3: invoke an incremental (single-query) planner to compute a motion plan from current location towards the

goal over a time horizon T
4: move according to the motion plan for a fraction of the time horizon T
5: while moving, sense the environment with all sensors and update your localization and mapping estimate

Note: regarding instruction 1:, the problem of estimating a map of the world surrounding
the robot and the robot position in the map is referred to as the Simultaneous Localization and
Mapping problem (SLAM).

Note: regarding instruction 3:, the motion plan needs not be complete all the way to the goal
location; it su�ices instead that the robot will be at a location nearer the goal a�er the plan
execution. Also, the plan could have high accuracy for the near future and low accuracy for the
far future.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 212

Section 13: Appendix: Shortest paths in weighted graphs via Dijkstra’s
algorithm

A graph is weighted if a positive number, called the weight , is associated to each edge. In
motion planning problems, the edge weight might be a distance between locations, a time
required to travel or a cost associated with the travel. (In electrical networks the edge weight
may be a resistance or impedance of the edge) The weight of a path is the sum of the weights of
each edge in the path.

The minimum-weight path between two nodes, also called the shortest path in a weighted graph,
is a path of minimum weight between the two nodes.

Consider the following example problem: how to compute the shortest paths from node n1

to all other nodes in the following weighted graph.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 213

n2

n1

n3

n4

40

50

10

20

10

Figure 5.10: Example weighted graph

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 214

Section 14: Ideas

Let us start with some ideas.

(i) A shortest path from n1 to any other node cannot contain any cycle because each edge
has positive weight. Additionally, the set of shortest paths from n1 is a tree.

(ii) Suppose you know the shortest path from A to B and suppose this path passes through C .
Then the path from A to C is also optimal. (This is referred to as the Bellman Principle of
Optimality.)

(iii) We introduce a number dist associated to each node, describing the distance of each node
from the start node n1. At the beginning, we initialize this distance to +∞ for all nodes
other than n1, and we initialize dist(n1) := 0.

We are now ready to present Dijkstra’ algorithm that, given a connected weighted graph G
of order n and a node v, computes a tree Tshortest-paths with all shortest-paths starting at v:

Informal description: For each node, maintain a weighted distance estimate from the
source, denoted by dist. Incrementally construct a tree that contains only shortest
paths from the source. Starting with an empty tree, at each round, add to the tree (1)
the node outside the tree with smallest dist, and (2) the edge corresponding to the
shortest path to this node. The estimates dist are updated as follows: when a node
is added to the tree, the estimates of the neighboring outside nodes are updated (see
details below). The tree is stored using parent pointers that for each node u record
the node immediately before u on the shortest path from the source to u.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 215

Section 15: Dijkstra’s algorithm

Dijkstra’s algorithm
Input: a weighted graph G and a start node vstart

Output: the parent pointer and dist values for each node in the graph G
// Initialization of distance and parent pointer for each node

1: for each node v in G :
2: dist(v) = +∞
3: parent(v) = NONE
4: dist(vstart) = 0
5: Q = set of all nodes in G

// Main loop to grow the tree and update distance estimates
6: while Q is not empty :
7: find node v in Q with smallest dist(v)
8: remove v from Q
9: for each node w connected to v by an edge :

10: if dist(w) > dist(v) + weight(v, w) :
11: dist(w) = dist(v) + weight(v, w)
12: parent(w) = v
13: return parent pointers and dist values for all nodes v

As in BFS the parent pointers define all edges in the shortest path tree as {parent(u), u}
for each node u for which parent(u) 6= NONE. Given a goal node vgoal we can use the parent
pointers to reconstruct the sequence of nodes on the shortest path from vstart to vgoal using the
The extract-path algorithm from Section 2.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 216

n2

n1

n3

n4

40

50

10

20

10

0

+�

+�

+�

For weighted graph above, n1 is start node with dist :=
0. Q := {n1, n2, n3, n4} at step 5:.

n2

n1

n3

n4

40

50

10

20

10

0

50

+�

10

Given Q := {n1, n2, n3, n4} and dist as in figure, first
node in while loop 6:-12: is v = n1.

n2

n1

n3

n4

40

50

10

20

10

0

30

50

10

Given Q := {n2, n3, n4} and dist as in figure, second
node in while loop 6:-12: is v = n3.

n2

n1

n3

n4

1050

10

200

30

40

10

40

Given Q := {n2, n4} and dist as in figure, third node
in while loop 6:-12: is v = n2.

Table 5.2: Example execution of Dijkstra’s algorithm. Near each node we plot the value of the corresponding distance estimate
dist. Each node drawn in blue is already part of the tree containing all shortest paths.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 217

5.1 Exercises

E5.1 Visibility graph (25 points). Consider a rectangular workspace with polygonal obstacles, where n is the total
number of vertices of the obstacles.

(i) (5 points) Give an upper bound on the number of edges in the visibility graph >as a function of n.

(ii) (10 points) What is the time complexity of finding the visibility graph in terms of n assuming that all obstacles
are convex. Explain your reasoning.

Hint: Note that in order to find the visibility graph, one should check whether each edge intersects or is in the
interior of an obstacle.

(iii) (10 points) What is the time complexity of finding the visibility graph (as a function of n) when the environment
can contain both convex and non-convex obstacles. Explain your reasoning.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 218

E5.2 Shortest paths in environments with circular obstacles (14 points). Consider an environment with circular
obstacles as in the figure below.

(i) (10 points) What do shortest paths look like?

(ii) (4 points) In such an environment, can you draw a roadmap that, like the visibility graph in environments with
polygonal obstacles, contains all shortest paths?

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 219

E5.3 Properties of roadmaps (16 points).

(i) (6 points) Explain the importance of each of the four properties required for a roadmap: accessibility, departablil-
ity, connectivity, and e�iciency.

(ii) (10 points) In a paragraph, describe which other property of a roadmap you believe is important for path
planning purposes.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 5, slide 220

Chapter 6

Introduction to Kinematics and Rotation
Matrices

This chapter begins our discussion of two interconnected topics of kinematics and rotation
matrices.

Kinematics is study of motion, independent of the force causing it. In kinematics one is
concerned with describing the motion of objects by relating positions to velocities, i.e., via
di�erential equations of the first order. While it is simple to relate the position of a point to its
linear velocities, relating the position and orientation of an 3D object to its linear and angular
velocities is less obvious. Kinematics is not to be confused with dynamics, where Newton’s law
is adopted to explain how velocities change in time. We will not discuss dynamics in these notes.
In kinematics we study how to define and manipulate:

(i) body positions and orientations,

(ii) reference frames and changes of coordinates, and

221

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 222

(iii) rigid body motions and their composition.

Rotation matrices are a powerful modelling tool with multiple applications. First, the set of
rotation matrices is the configuration space or part of the configuration space of any object
that rotates; recall our discussion about configuration spaces in Chapter 3. Therefore, by
understanding rotation matrices one can then use the motion planning algorithms in the first
part of the course to plan the motion of three-dimensional objects such as aerial, space and
underwater vehicles. Additionally, rotation matrices can be understood as transformations that
rotate objects and play a central role in modeling reference frames in space. In short, rotation
matrices are a fundamental technology in numerous disciplines in engineering and science,
including for example:

(i) robotics and aerospace engineering: orientation of robots, aircra�, underwater vehicles,
satellites;

(ii) medical sciences: modelling of eye movement and of the vestibular system, e.g., see (Allison
et al. 1996);

(iii) computer vision: orientation of cameras and objects in the scene; and

(iv) video games and 3D virtual worlds, see (Carpin et al. 2007; Epic Games, Inc. 2009; Lewis
and Jacobson 2002).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 223

Section 1: Geometric objects and their algebraic representation

The 3-dimensional Euclidean space contains various useful geometric objects:

• points, for example, the point p in Figure 6.1

• free vectors, that is, objects described by a length and a direction, but without a base point
– we do not assume that the free vector is a�ached to any specific start point,

• vectors fixed at a point, that is, vectors with length direction and base points and, therefore,
equivalent to an ordered pair of two points, and

• reference frames; a reference frame is a pair Σ0 = (Oo, {x0, y0, z0}), where O0 is a point
called the origin of the reference frame, and {x0, y0, z0} is a triplet of unit-length orthogonal
vectors fixed at the origin and satisfying the right-hand rule. (recall that two free vectors
are orthogonal when they form an angle of π/2).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 224

O0

p

��!
O0p

x0

y0

z0

Figure 6.1: Basic geometric objects

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 225

Subsection 2: Vector products between free vectors

Two di�erent notions of products between free vectors are useful. In what follows v and w
are two free vectors:

(i) the dot product between free vectors (or scalar product or inner product) is defined as follows:
the scalar quantity v ·w is equal to (length of v)× (length of w)× (cosine of angle between
v and w).

(ii) The cross product between free vectors (or outer product) is defined as follows: the free vec-
tor v × w is equal to the free vector

(a) whose length equal to (length of v) × (length of w) × (sine of angle between v and w),
and

(b) whose direction is orthogonal to both u and v as given by the right-hand-rule.

Note: The dot product is a scalar number, whereas the cross product is another free vector.
Note: Both the dot product and the cross product are defined without any reference frame.

Using these products, one can define orthogonal and parallel free vectors: Two free vectors are
orthogonal if their dot product is zero. Two free vectors are parallel if their cross product is zero.

Note: An axis a unit-length vector. The dot product of a vector with an axis is the length of
the projection of the vector onto the axis.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 226

Subsection 3: Representing vectors and points as arrays

In this and later chapters, it is important to distinguish between vectors and arrays of numbers:

• a free vector and a vector fixed at a point are geometric objects,

• an array is an ordered arrangements of numbers or quantities. An array has entries or
elements, usually real numbers. There are column arrays and row arrays, with any number
of entries (e.g., two entries or three entries). The transpose of a column array is a row array,
of course. A matrix is a double array.

Given a reference frame, we will now review how a free vector can be wri�en as an column
array, whose entries are then called the coordinates of the free vector. O�en one denotes free
vectors and arrays with the same symbol, but you should be able to distinguish between them
and understand what is meant by the context. By introducing coordinates, we study how
to represent and manipulate various geometric objects (points, free vectors, frames, etc) via
algebraic equations.

Let p be a point in 3-dimensional space, v be a free vector, and Σ0 = (O0, {x0, y0, z0}) be a
reference frame, as in Figure 6.1. Let −→pq from O0 to p. The coordinate representation of v and p
with respect to Σ0 are

v0 =



v · x0

v · y0

v · z0


 , p0 =

(−−→
O0p

)0
=




−−→
O0p · x0−−→
O0p · y0−−→
O0p · z0


 .

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 227

In other words, it is possible to decompose a vector or a point into its components along the
three orthogonal axis as

v = (v · x0)x0 + (v · y0)y0 + (v · z0)z0, and
−−→
O0p = (

−−→
O0p · x0)x0 + (

−−→
O0p · y0)y0 + (

−−→
O0p · z0)z0.

Given two vectors v and w with coordinates v0 = [v1, v2, v3]
T and w0 = [w1, w2, w3]

T , it is
possible (see Exercises E6.1 and E6.2) to verify that

v · w = (v0)Tw0 = v1w1 + v2w2 + v3w3,

(v × w)0 =
[
v2w3 − v3w2, v3w1 − v1w3 v1w2 − v2w1

]T
.

Remark 6.1 (Rotations and translations of basic objects). Although the representations of points
and free vectors are identical, remember that points may be translated and free vectors may be
rotated. But, it makes no sense to rotate a point or to translate a free vector.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 228

Section 4: Lessons learned

Remark 6.2 (Geometric and algebraic viewpoints). In summary, kinematic concepts can be
understood using two equivalent languages: a geometric and algebraic viewpoint.
The geometric viewpoint is described by:

• points and free vectors in space, as basic objects,

• properties independent of reference frames, and

• concepts and tools from Euclidean geometry.

The algebraic viewpoint is described by:

• arrays and matrices, as basic objects,

• computations in a specific reference frame, and

• concepts and tools from linear algebra and matrix theory.

The two approaches are equivalent once a reference frame is selected. It is however very useful to
understand both approaches and their equivalence. Typically, a geometric understanding is easy to
a�ain and then the geometric intuition leads to the correct algebraic equations.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 229

Section 5: Geometric properties of rotations

Let us now begin to study rotations in some detail. For now, let us just understand geometri-
cally what properties a rotation should have. We will later study how to represent rotations
algebraically and how to manipulate them.

Geometric properties of rotations

(i) Rotations are operations on free vectors; they preserve length of vectors and angles between
vectors.

(ii) In three-dimensional space, there are three “independent” basic rotations. In vehicle
kinematics, three basic angles are roll, pitch and yaw, as illustrated in Figure 6.2 below.

(iii) Rotations can be composed and the order of composition is essential.

(iv) Each rotation admits an inverse rotation.

(v) Each rotation is a rotation about a rotation axis of a rotation angle. Also, each rotation
leaves its own rotation axis unchanged.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 230

roll x-axis

pitch y-axis

yaw z-axis

Figure 6.2: The roll-pitch-yaw conventions for aircra�. The yaw axis points downward towards the ground. The roll axis points
forward. The pitch axis is selected so that positive pitch corresponds to the front of the aircra� pointing up.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 231

Section 6: Rotations do not commute

Rotations do not commute, i.e., the order of composition is essential Let us now expand a li�le bit
on the fourth property: the order of composition is essential. Imagine that we perform either
one of the following two operations:

• (Composed rotation #1) = rotate about axis x0 by π/2 and then about axis z0 by π/2, or

• (Composed rotation #2) = rotate about axis z0 by π/2 and then about axis x0 by π/2.

As illustrated graphically in Figure 6.3, it is easy to see that the composite rotation #1 is not equal
to the composite rotation #2.

�
2

�
2

`

x0

z0

`

x0

z0

`

x0

z0

`

x0

z0

`

x0

z0

`

x0

z0

B

A
B

AB

C

AB

C A

B

C

D EB

C

D

E

�
2

�
2

Figure 6.3: Rotations do not commute, i.e., the order of composition is essential.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 232

Section 7: Rotations may not be composed as though they were arrays

Rotations may not be composed as though they were arrays Imagine we represent a rotation as an
array of the form 


roll

pitch
yaw


 .

Imagine now the sequence: +90 pitch, +90 roll, -90 pitch. By rotating a rigid body with one’s
own hands, readers should convince themselves that the composite rotation equals +90 yaw.
However, if we write this fact as an equation between arrays, we find the following contradiction:




0
+90

0


+




+90
0
0


+




0
−90

0


 6=




0
0

+90


 .

The lesson of this simple calculation is as follows: if we adopt column arrays to represent rota-
tions, we may not sum column arrays to compute the composite rotation, i.e., the composition of
subsequent rotations. This first a�empt at modeling rotations using column arrays is therefore
unsuccessful.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 233

Section 8: Representing reference frames

Consider two reference frames Σ0 = (O0, {x0, y0}) and Σ1 = (O1, {x1, y1}) in the plane with
the same origin O0 = O1. Because the frames share the same origin, Σ1 is a rotated version of
Σ0 (one can imagine that the rotation is about the direction perpendicular to the figure, coming
out of the page). Let us assume that Σ1 is obtained by rotating Σ0 counterclockwise by an
angle θ. The array representation in the frame Σ0 of the basis vector x1 for the frame Σ1 is

x0

y0

x1

y1

�

Figure 6.4: Two example reference frames with the same origin

x0
1 =

[
x1 · x0

x1 · y0

]
=

[
cos θ
sin θ

]
.

Now, define a 2× 2 reference-frame rotation matrix (representing Σ1 with respect to Σ0) by

R0
1 =

[
x0

1 | y0
1

]
=

[
x1 · x0 y1 · x0

x1 · y0 y1 · y0

]
=

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
. (6.1)

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 234

For example, if θ = π/3, we easily compute R0
1 =

[
1/2 −

√
3/2√

3/2 1/2

]
. In summary, we can

represent the frame Σ1 with respect to the frame Σ0 by either

(i) θ ∈ [−π, π[= S1, or

(ii) R0
1 a 2× 2 matrix with special properties, that we will study in this chapter.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 235

Subsection 9: Three-dimensional reference frames

The fundamental advantage of the rotation matrix representation is that it naturally extends
to problems in three dimensions. Indeed, let us write down 3-dimensional reference frames and
understand 3-dimensional reference-frame rotation matrices. Given two reference frames Σ0 =

x0 x1

y1

y0

z1

z0

Figure 6.5: Two example reference frames with the same origin in three dimensions

(O0, {x0, y0, z0}) and Σ1 = (O1, {x1, y1, z1}) with the same origin O0 = O1 in 3-dimensions,
the reference-frame rotation matrix describing Σ1 with respect to Σ0 is defined by

R0
1 =

[
x0

1 | y0
1 | z0

1

]
=



x1 · x0 y1 · x0 z1 · x0

x1 · y0 y1 · y0 z1 · y0

x1 · z0 y1 · z0 z1 · z0


 . (6.2)

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 236

The reference-frame rotation matrix is also sometimes referred to as the “direction cosine matrix,”
the reason being that each entry is the dot product between unit-length direction vectors.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 237

Subsection 10: Changes of reference frame

Since we just studied how to represent Σ1 as a function of Σ0, let us also define the reference-
frame rotation matrix representing Σ0 with respect to Σ1, denoted by R1

0. By looking at the
entries in equation (6.2), one can immediately establish

R1
0 = (R0

1)T .

We continue to consider two frames Σ0 and Σ1 with the same origin.

Lemma 6.3 (Coordinate transformation). Given a point p and two reference frames Σ0 and Σ1,
the arrays p0 and p1 are related through

p0 = R0
1p

1.

Proof. First, write the geometric decomposition of vector
−−→
O0p with respect to {x1, y1, z1}:

−−→
O0p =

(−−→
O0p · x1

)
x1 +

(−−→
O0p · y1

)
y1 +

(−−→
O0p · z1

)
z1.

Second, express the le�-hand side and the right-hand side with respect to Σ0:

p0 = (
−−→
O0p)

0 =
(−−→
O0p · x1

)
x0

1 +
(−−→
O0p · y1

)
y0

1 +
(−−→
O0p · z1

)
z0

1

=
[
x0

1 | y0
1 | z0

1

]



−−→
O0p · x1−−→
O0p · y1−−→
O0p · z1


 = R0

1p
1.

�

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 238

Remark 6.4 (Subscript and superscript convention). The role of subscript and superscripts in the
equation p0 = R0

1p
1 is important. In the right-hand side, the subscript matches the superscript. The

convention is helpful in remembering correctly how to compose changes of reference frame.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 239

Subsection 11: The three basic rotations

Consider two frames Σ0 = (O0, {x0, y0, z0}) and Σ1 = (O1, {x1, y1, z1}) with the same origin
O0 = O1. If the two frames share the same z-axis, that is, if z0 = z1, then there must exist an
angle θ such that

{
x1 = cos(θ)x0 + sin(θ)y0,

y1 = − sin(θ)x0 + cos(θ)y0,

so that, since z0
1 =




0
0
1


,

R0
1 =




cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


 .

We illustrate this setup in Figure 6.6. Therefore, this reference-frame rotation matrix is a
basic rotation about the z-axis, that we denote by Rotz(θ), that is, a counterclockwise rotation
about the z-axis consistent with right-hand rule. Similar reasoning can be given for the other

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 240

x0

x1

y1

y0

z0 = z1

�

Figure 6.6: The frame Σ1 obtained by rotating about z0 by θ

two basis vectors and, in summary, the three basic rotations about the three orthogonal axes are

Rotx(θ) =




1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)


 , Roty(θ) =




cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)


 ,

Rotz(θ) =




cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


 . (6.3)

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 241

Every one of the three matrices satisfies the following algebraic properties:

Rotz(0) = I3,

Rotz(θ) · Rotz(φ) = Rotz(θ + φ),

(Rotz(θ))
−1 = (Rotz(θ))

T = Rotz(−θ),

each of which has a nice geometric interpretation.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 242

Section 12: Appendix on matrix theory

6.1 Appendix: A primer on matrix theory

In the next chapters we will rely upon basic knowledge of matrix theory. Matrix theory is a broad
field and provides numerous useful tools with applications in most disciplines of engineering
and science.

We briefly review here the concepts that we will use.

(i) We consider arbitrary matrices with real entries A ∈ Rn×m. We denote the (i, j) entry of
A by aij or equivalently by (A)ij . A matrix A ∈ Rn×m defines n row arrays with m entries,
called the rows of A, and m columns arrays with n entries, called the columns of A.

If A ∈ Rd×d we say A is a square matrix of dimension d. We let Id denote the identity
matrix in d dimensions, that is, (Id)ij = 1 if i = j, and (Id)ij = 0 otherwise.

(ii) Given two matricesA andB with dimensionsn×d and d×m respectively, the matrix product
AB is a matrix of dimension n×m with entries

(AB)ij =
d∑

k=1

aikbkj, for i ∈ {1, . . . , n}, and j ∈ {1, . . . ,m}.

In other words, the (i, j) entry of AB is the scalar product of the ith row of A with the jth
column of B.

In matrix multiplication, the order of composition is essential. In other words, for arbitrary
matrices A and B, square of the same dimensions, note that AB 6= BA.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 243

(iii) We regard column arrays as matrices. In other words, ifB is a column vector with n entries,
we write B ∈ Rn×1. Therefore, for example, if A ∈ R2×2 and B ∈ R2×1, the matrix product
is wri�en as [

a11 a12

a21 a22

] [
b1

b2

]
=

[
a11b1 + a12b2

a21b1 + a22b2

]
.

(iv) For a matrix A ∈ Rn×m, the transpose AT ∈ Rm×n is the matrix whose rows are the
columns of A. For matrices A and B of appropriate dimensions, the transpose operation
has the following property: (AB)T = BTAT .

(v) A matrixA ∈ Rd×d is invertible if there exists a matrix, called its inverse matrix and denoted
by A−1 ∈ Rd×d, with property that AA−1 = A−1A = Id.

(vi) The trace of a square matrix A, denoted by trace(A), is the sum of the diagonal entries
of A, that is, trace(A) =

∑d
k=1 akk. For square matrices A and B of the same dimension,

the trace operator has the following property:

trace(AB) = trace(BA).

Therefore, if B is invertible, one also has trace(B−1AB) = trace(A).

(vii) The array v ∈ Rd and the number λ are an eigenvector and eigenvalue for the square matrix
A if Av = λv.

(viii) A matrix A ∈ Rn×m can be wri�en as a block matrix of the form

A =

[
A11 A12

A21 A22

]
, (6.4)

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 244

where A11 ∈ Ra×c, A12 ∈ Ra×d, A21 ∈ Rb×c, and A22 ∈ Rb×d are each matrices such that
a+ b = n and c+ d = m. For example, the matrix

A =




1 2 3 4
5 6 7 8
8 10 11 12
13 14 15 16


 ,

can be wri�en in block form (6.4) by defining four 2× 2 matrices:

A11 =

[
1 2
5 6

]
, A12 =

[
3 4
7 8

]
, A21 =

[
8 9
13 14

]
, A22 =

[
11 12
15 16

]
.

Multiplication of block matrices is performed using the matrix product of the blocks:
[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 245

Section 13: Appendix on matrix theory: determinants

Determinants of square matrices We assume the reader recalls the definition of determinant of
a square matrix in arbitrary dimension. We review here the definition for matrices in two and
three dimensions. In two dimensions, the determinant of a matrix is equal to (plus or minus)
the area of the parallelogram whose sides are the two columns of the matrix; see Figure 6.7
where c1 and c2 are the columns. Specifically,

det
[
c1 c2

]
= det

[
a c
b d

]
= ad− cb.

Note that the determinant can be negative, whereas the area of the parallelogram is always
positive.

In three dimensions, the determinant of a matrix is equal to (plus or minus) the volume of a
parallelepiped whose sides are the three columns of the matrix; see Figure 6.7. Specifically, if c1,
c2, c3 are the three columns of the matrix, we have

det
[
c1 c2 c3

]
= (c1 × c2) · c3. (6.5)

The last product in equation is called the triple product of the three column arrays c1, c2, c3 in
R3.

We conclude with some useful properties of the determinant operator.

Lemma 6.5 (Properties of the determinant). Let A and B be square matrices of the same dimen-
sion.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 246

a + c

b + d

O

c1 = (a, b)

c2 = (c, d)

c1 + c2

r3

r1 + r2

O

c1

c2

c1 + c3

c2 + c3

c1 + c2 + c3

Figure 6.7: The determinant of a 2x2 (resp. 3x3) matrix is related to the area (resp. volume) of an appropriate parallelogram
(resp. parallelepiped).

(i) A is invertible if and only if det(A) 6= 0,

(ii) det(AT) = det(A), and

(iii) det(AB) = det(A) det(B).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 247

Section 14: Appendix: the theory of groups

6.2 Appendix: The theory of groups

Definition 6.6 (Group). A group is a setG along with a binary operation ? that takes two elements
a, b ∈ G and generates a new element a ? b ∈ G, satisfying the following properties:

(i) a ? (b ? c) = (a ? b) ? c for all a, b, c ∈ G (associativity),

(ii) there exists an identity e ∈ G such that a ? e = e ? a = a for all a ∈ G, and

(iii) there exists an inverse a−1 ∈ G such that a ? a−1 = a−1 ? a = e for all a ∈ G.

We write the group as (G, ?) in order to emphasize the operation with respect to which the group is
defined.

Here are some examples of groups:

• the integer numbers with the operation of sum,

• the real positive numbers with the operation of product,

• the set of rotations in n dimensions, with the operation of “rotation composition.” This set
is usually referred to as the group SO(n),

• the set of rotations and translations, we will see later how to describe it via matrices, and

• the set of permutations of {1, . . . ,m}, sometimes referred to as the permutation group.

The last example, the permutation group, contains a finite number of elements; all other example
sets contain an infinite number of elements.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 248

6.3 Exercises

E6.1 Free vectors and arrays (20 points).In this exercise, we distinguish between free vectors (as in geometric vectors
in space) and arrays of numbers (as column lists containing entries). Let us review these two concepts.

A free vector in 2-dimensional or 3-dimensional space is a geometric object with a magnitude (or length)
and a direction. We do not assume that the free vector is a�ached to any specific start point.

An array is an ordered arrangement of numbers or quantities. An array has entries or elements. There
are column arrays and row arrays, with any number of entries (e.g., two entries or three entries). The
transpose of a column array is a row array, of course.

If there is a reference frame in Euclidean space, then a free vector can be wri�en as an column array and the
entries in the array are called the coordinates of the vector. Because of this equivalence, it is convenient to denote
free vectors and arrays with the same symbol.

For the following questions, assume v and w are free vectors in 2-dimensional space and, simultaneously, column
arrays with two entries.

(i) (5 points) What is the formula definition for v · w, the dot product between geometric vectors?

(ii) (5 points) What is the formula definition for vTw, the matrix product between arrays?

(iii) (10 points) Using your formulas from (i) and (ii), prove the following equivalence:

v · w = vTw.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 249

E6.2 Properties of the triple product (20 points). Given two vectors v and w with coordinates v0 = [v1, v2, v3]
T and

w0 = [w1, w2, w3]
T , show that

(v × w)0 =
[
v2w3 − v3w2, v3w1 − v1w3 v1w2 − v2w1

]T
.

Given three vectors r1, r2, and r3 in R3, show that

(r1 × r2) · r3 = (r3 × r1) · r2 = (r2 × r3) · r1.

Explain why the triple product vanishes whenever any two vectors are parallel.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 250

E6.3 Drawing reference frames (20 points). The frame ΣS = (OS , {xS , yS , zS}) is drawn below (a circle surrounding
the origin means that the zS vector is pointing out of the page). Copy the frame in your answer and sketch the
frames ΣM and ΣN determined by

RSM =




1
2

−
√
3

2 0√
6
4

√
2
4

−
√
2

2√
6
4

√
2
4

√
2
2


 , and RNS =




1
2

−
√
3

2 0√
6
4

√
2
4

−
√
2

2√
6
4

√
2
4

√
2
2


 .

xS

yS

zS

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 251

E6.4 Basic rotations and their products (15 points). Consider the basic rotations about the three main axes, defined
in equation (6.3).

(i) (5 points) Compute by hand (i.e., do the algebra) the following products:

R1 = Rotx(π/4) Roty(π/3),

R2 = Roty(π/3) Rotx(π/4),

R3 = Rotz(−π/2) Rotx(π/2) Rotz(π/2).

(ii) (5 points) What is the reason why R1 is not equal to R2?

(iii) (5 points) Express R3 as a single basic rotation.

Hint: Convince yourself of your answers to questions (ii) and (iii) as follows: select x, y, and z axes for a rigid body
(e.g., a book or your bike) and perform the corresponding rotations.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 6, slide 252

Chapter 7

Rotation Matrices

In this chapter we study the set of rotation matrices and all their properties, including how to
compose them and how to parametrize them. Standard references rotation matrices in robotics
include (Craig 2003; Mason 2001; Murray et al. 1994; Siciliano et al. 2009; Spong et al. 2006).

253

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 254

Section 1: From reference frames to general rotation matrices

We continue our study of the properties of reference-frame rotation matrices introduced in
Section 6. First, we note two characterizing properties of each reference-frame rotation matrix.
We then define rotation matrices independently of reference frame, by just requiring them to
satisfy the two characterizing properties.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 255

Subsection 2: The two characterizing properties

We present two important properties of reference-frame rotation matrices. We will later
show that each matrix that satisfies these properties must represent a rotation.

Lemma 7.1 (Orthonormal columns and rows). Let R0
1 be the reference-frame rotation matrix

(in either dimension n ∈ {2, 3}) representing a frame Σ1 with respect to another frame Σ0. The
following facts are true and equivalent:

(i) the columns of R0
1 form a complete set of orthonormal arrays, that is, orthogonal and unit

length, and

(ii) (R0
1)TR0

1 = In.

Proof. By definition of reference frame Σ1, the vectors {x1, y1, z1} are orthonormal. Therefore,
also the three arrays {x0

1, y
0
1, z

0
1} have the properties that (x0

1)
Tx0

1 = (y0
1)Ty0

1 = (z0
1)Tz0

1 = 1
and (x0

1)
Ty0

1 = (y0
1)Tz0

1 = (x0
1)
Tz0

1 = 0 – because the value of the dot product is independent
upon the reference frame. This proves statement (i).

Regarding statement (ii), for R0
1 =

[
x0

1 y0
1 z0

1

]
, we write

(R0
1)T =




(x0
1)
T

(y0
1)T

(z0
1)T




Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 256

and compute

(R0
1)TR0

1 =




(x0
1)
T

(y0
1)T

(z0
1)T


 [x0

1 y0
1 z0

1

]
=




(x0
1)
Tx0

1 (x0
1)
Ty0

1 (x0
1)
Tz0

1

(y0
1)Tx0

1 (y0
1)Ty0

1 (y0
1)Tz0

1

(z0
1)Tx0

1 (z0
1)Ty0

1 (z0
1)Tz0

1


 = I3,

where we have used the definition of matrix product and property (i). �

Note: it is true that RTR = In if and only if RRT = In. Therefore, it su�ices to verify that the
columns of R are orthogonal to imply that also its rows are orthogonal.

Lemma 7.2 (Positive determinant). In dimension n = 2 and n = 3, we have det(R0
1) = +1.

Proof. As we reviewed in equation (6.5) in the appendix to the previous chapter, the determinant
of a 3× 3 matrix is given by the triple product among its columns:

detR0
1 = det

[
x0

1 y0
1 z0

1

]
= (x0

1 × y0
1) · z0

1.

But we know x0
1 × y0

1 = z0
1 precisely because the reference frame Σ1 is right-handed and we

know z0
1 · z0

1 = +1.
�

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 257

Subsection 3: The set of rotation matrices

We are now finally ready to define rotation matrices independently of reference frames.
For n ∈ {2, 3}, we define the set of rotation matrices by

SO(n) = {R ∈ Rn×n | RTR = In and det(R) = +1}.

Here, the abbreviation SO stands for “special orthonormal”, where the word “special” is a
reflection of the determinant being positive. The set SO(n) has some basic properties

(P0) Closedness with respect to matrix product: if R1 and R2 belong to SO(n), then R1R2

belongs SO(n),

(P1) Associativity: if R1, R2 and R3 belong to SO(n), then R1(R2R3) = (R1R2)R3,

(P2) Zero rotation: the “zero rotation” is the identity matrix In with the property that RIn =
InR = R,

(P3) Inverse rotation: for any rotation R, the inverse rotation always exists and is equal to
RT , that is, RTR = RRT = In.

In the Appendix 6.2 later in this chapter we discuss how these four properties turn the set SO(n)
into a so-called group. The proof of these properties is le� as Exercise E7.5.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 258

Subsection 4: Three roles and uses of rotation matrices

Finally, it is useful to emphasize and clarify the three roles that a rotation matrix can play.

(i) The reference-frame rotation matrix R0
1 describes the reference frame Σ1 with respect to

Σ0. Specifically, the columns of R0
1 are the basis vectors of Σ1 with respect to Σ0.

(ii) The reference-frame rotation matrix R0
1 is the coordinate transformation from Σ1 to Σ0, as

characterized by the equation p0 = R0
1p

1.

(iii) Any rotation matrix R ∈ SO(n) can be used to rotate a vector in Rn. Given a point p,
define a new point q as follows: the vector

−−→
O0q is the rotation of the vector

−−→
O0p by an angle

θ, that is,
q0 = Rp0.

This operation is illustrated in Figure 7.1, where R is of the form
[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]

for a planar problem.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 259

x0

y0

p

�

q

x0

y0

p�

q

Figure 7.1: Rotating a point and a rigid body about the origin

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 260

Subsection 5: Geometric properties of rotations

We are now able to verify that our proposed model of rotation matrices enjoy the geometric
properties we initially discussed in Section 6.

(i) “Rotations are operations on free vectors; they preserve length of vectors and angles
between vectors.” Given an array v, the array Rv is the rotated version. Saying that
length of vectors and angles between vectors are preserved is equivalent to the following
equalities:

vTw = (Rv)T (Rw), and ‖v‖ = ‖Rv‖.

We leave the proof of these two equations to Exercise E7.1.

(ii) “In three-dimensional space, there are three independent basic rotations. In vehicle kine-
matics, three basic angles are roll, pitch and yaw.” This fact is reflected by the definition in
equation (6.3) of the three basic rotations Rotx(α), Roty(β), and Rotz(γ). In Section 7, we
will explain how to express any rotation matrix as a product of appropriate basic rotations.

(iii) ”Rotations can be composed and the order of composition is essential.” The composition
of rotations occurs via matrix multiplication: if R1 and R2 are rotation matrices, then
R1R2 and R2R1 are rotation matrices. Indeed, matrix multiplication is not commutative in
general and, in particular, rotations do not commute, that is,

R1R2 6= R2R1.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 261

For example, it is easy to verify that Rotx(π/2) Roty(π/2) 6= Roty(π/2) Rotx(π/2):



1 0 0
0 0 −1
0 1 0






0 0 1
0 1 0
−1 0 0


=




0 0 1
1 0 0
0 1 0


 6=




0 0 1
0 1 0
−1 0 0






1 0 0
0 0 −1
0 1 0


=




0 1 0
0 0 −1
−1 0 0


 .

We study the composition of rotations in the next section.

(iv) “Each rotation admits an inverse rotation.” The inverse rotation matrix of R is RT .

(v) “Each rotation is a rotation about a rotation axis of a rotation angle.” We postpone a
discussion of this property to Section 7 below.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 262

Section 6: Composition of rotations

Let us consider the problem of how to compose rotations. It is easy to see that, to compose
rotations, we multiply the corresponding rotation matrices. There are however two problems:

(i) the order of multiplication ma�ers, and so it is not clear in which order the rotation matrices
should be multiplied, and

(ii) the information “first rotate the body by R[1] and then by R[2]” is ambiguous in the sense
that it is not clear with respect to which frame the second rotation R[2] is expressed.

For example, looking at Figure 7.2, Consider a body with initial reference frame Σ0. Assume Σ0

is a fixed or inertial reference frame and rotate the body about the y0 pitch axis. Because Σ0 is
fixed, we introduce the new body-fixed reference frame Σ1, satisfying y1 = y0 but z1 6= z0 and
x1 6= x0. We call Σ1 the successive or body reference frame. If you are now asked to rotate about
the z axis, it is necessary to know whether that is the z0 or the z1 axis, i.e., whether the second
rotation is expressed in the fixed/inertial frame or in the successive/body frame.

Thus, if we consider the statement

“rotate about y by π/6, then rotate about z by π/3,”

we can use the formulas for the basic rotations to compute the two rotation matrices. But, is
the composite rotation Roty(π/6) Rotz(π/3) or Rotz(π/3) Roty(π/6)?

Problem 7.3 (Composition of rotations). Given a rigid body and two rotations, represented by the
matrices R[1] and R[2], suppose we first rotate the body by R[1] and then by R[2], what information
do we need and how do we compute the resulting rotation?

The following theorem will provide us with the answer to this question.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 263

x0

y0

z0

x1

y1 = y0

z1

Figure 7.2: An initial fixed reference frame Σ0, and the new body-fixed frame Σ1 obtained by rotating about y0

Section 7: Example and main theorem

Theorem 7.4 ("Post-multiplication if successive frame” and “pre-multiplication if fixed frame”).
The composite rotation is

Rcomposite =

{
R[1]R[2], if R[2] is expressed in successive/body frame,

R[2]R[1], if R[2] is expressed in fixed/inertial frame.

Hence, here is the solution to our example: if the statement is “rotate about y0 by π/6, then
rotate about z1 by π/3,” then the composite rotation is Roty(π/6) Rotz(π/3), and instead if the
statement is “rotate about y0 by π/6, then rotate about z0 by π/3,” then the composite rotation
is Rotz(π/3) Roty(π/6).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 264

Section 8: Composition Problem #1

Problem #1: Composing reference-frame changes Given three frames, frame-changes matrices R0
1 and R1

2, what is the frame-change matrix R0
2?

By definition of reference frame rotation matrices, we write

p0 = R0
1p

1, p1 = R1
2p

2, and p0 = R0
2p

2.

Composing the first and second equality, we obtain

p0 = R0
1p

1 = R0
1R

1
2p

2,

and, in turn, we obtain the desired rule:

R0
2 = R0

1R
1
2.

From these calculations we learn two lessons:

(i) Subscript and superscripts play a critical role, e.g., see the correct relationships:

(a) p0 = R0
1p

1,
(b) R0

2 = R0
1R

1
2.

(ii) When the second rotation is expressed with respect to first rotation (which is the case
here because we used the matrix R1

2), then the second rotation is equivalent to a so-called
“rotation expressed in a successive frame” and the final composite rotation is obtained by
“post-multiplying or right-multiplying the second rotation.”

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 265

Section 9: Composition Problem #2

Problem #2: Representing a rotation in a di�erent frame Given rotation S expressed in frame Σ0, what is its representation with respect to Σ1?
Let us write down the facts we know:

• p0 = R0
1p

1,

• rotation in Σ0 is S, hence rotated point q0 = Sp0, and

• q1 = R1
0q

0.

Pu�ing these facts together, we calculate

q1 = R1
0 q

0 = R1
0 S p

0 = R1
0 S R

0
1 p

1 =
(

(R0
1)TSR0

1

)
p1.

Hence, the same rotation has two di�erent expressions as a rotation matrix when expressed in
di�erent frames:

S︸︷︷︸
rotation in frame Σ0

−→ (R0
1)TSR0

1︸ ︷︷ ︸
rotation in frame Σ1

.

Here is the geometric interpretation of this result. Given that S is the rotation expressed
with respect to Σ0, you rotate a point p expressed as p1 with respect to Σ1 by doing three
multiplications: first, express p with respect to Σ0 as R0

1p
1; second, rotate the point R0

1p
1 to

obtain SR0
1p

1, and third, express the resulting point back with respect to Σ1 as (R0
1)TSR0

1p
1.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 266

Section 10: Example of Composition Problem 2

Example 7.5. Given Σ0, define Σ1 by x1 = y0, y1 = z0, and z1 = x0. (Verify that Σ1 is right
handed. Note that, because none of the basis axis is unchanged, Σ1 is not a rotation about a basic
axis of Σ0). Now, consider a rotation S about the vertical axis z0 which is expressed as S = Rotz(θ)
in the Σ0 frame. The rotation S and the two frames are depicted in Figure 7.3. We now write R0

1

and show (R0
1)T Rotz(θ)R

0
1 = Roty(θ):

R0
1 =




0 0 1
1 0 0
0 1 0


 ,

(R0
1)T Rotz(θ)R

0
1 =




0 0 1
1 0 0
0 1 0



T 


cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1






0 0 1
1 0 0
0 1 0




=




0 1 0
0 0 1
1 0 0





−sin(θ) 0 cos(θ)
cos(θ) 0 sin(θ)

0 1 0


 =




cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)


 = Roty(θ).

This answer makes sense because rotating about the z-axis in the Σ0 frame should be the same as
rotating about the y-axis in the Σ1 frame — since we defined y1 = z0.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 267

O0

x0

y0

z0

S

O1 = O0

z1 = x0

x1 = y0

z0 = y1

S

Figure 7.3: A rotation about the axis z0 and a change of reference frame

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 268

Section 11: Proof of Composition Theorem

Proof of Theorem 7.4 We are now ready to understand Theorem 7.4. We assume the frame Σ0

is rotated by R[1] into a frame Σ1 so that R[1] = R0
1.

First, if the rotation matrix R[2] is expressed in the successive/body frame, then we are in a
situation analogous to Problem #1: R[1] rotates Σ0 onto Σ1, and R[2] is expressed with respect to
Σ1 and represents a new frame Σ2. In this case the composite rotation is R0

1R
1
2 = R[1]R[2].

Second, if the rotation matrix R[2] is expressed in the fixed/inertial frame, then we need to
change the reference frame it is expressed in. In other words, the second rotation is R[2] when
expressed with respect to Σ0 and we wish to express it with respect to Σ1. In this case, the
second rotation expressed with respect to Σ1 is (R0

1)TR[2]R
0
1. Hence, the composite rotation is

R0
1 ·
(

(R0
1)TR[2]R

0
1

)
= R[2]R

0
1 = R[2]R[1].

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 269

Section 12: Parametrization of rotation matrices

We start with a result on the dimension of the set of special orthogonal matrices, i.e., on the
degrees of freedom of a rotation.

Theorem 7.6 (Euler rotation theorem). Any rotation matrix can be described by 3 parameters.

Proof. A rotation matrix R has 9 entries, but each column has unit length (3 constraints) and
the three columns are perpendicular with each other (3 additional constraints). Hence, the
degrees of freedom of matrix R are equal to 9− 3− 3 = 3. �

There are numerous ways to represent R. In what follows we discuss (1) Euler angles, (2)
roll-pitch-yaw angles, and (3) the axis-angle parametrization.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 270

Subsection 13: Euler angles

The rotation R is represented by three angles {α, β, γ} corresponding to basic rotations
about Z-Y-Z axis with respect to successive frames. With cβ = cos(β), sβ = sin(β):

R = Rotz(α) Roty(β) Rotz(γ) =



cαcβcγ − sαsγ −cαcβsγ − sαcγ cαsβ
sαcβcγ + cαsγ −sαcβsγ + cαcγ sαsβ
−sβcγ sβsγ cβ


 . (7.1)

Equation (7.1) is illustrated in Figure 7.4 with the following convention:

(i) rotate {x0, y0, z0} about the z0 axis by α to obtain {x1, y1, z1},
(ii) rotate {x1, y1, z1} about the y1 axis by β to obtain {x2, y2, z2}, and

(iii) rotate {x2, y2, z2} about the z2 axis by γ to obtain the final {x3, y3, z3}.

Inverse kinematics for Euler angles Equation (7.1) states how to compute a rotation matrix from
three Euler angles. Next, we consider the following problem: Given a matrix

R =



r11 r12 r13

r21 r22 r23

r31 r32 r33


 ,

compute the Euler angles {α, β, γ}.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 271

↵↵

�

�

�

�

x0

y0

z0 = z1

x1
y1 = y2

x2

z2 = z3

x3

y3

Figure 7.4: The Euler angles defined by the Z-Y-Z convention. Image courtesy of http://www.easyspin.org.

To solve this problem, we carefully consider the 9 scalar equations induced by matrix equation


r11 r12 r13

r21 r22 r23

r31 r32 r33


 =



cαcβcγ − sαsγ −cαcβsγ − sαcγ cαsβ
sαcβcγ + cαsγ −sαcβsγ + cαcγ sαsβ
−sβcγ sβsγ cβ


 .

From the (3, 3) entry we single out the equality cos(β) = r33. Recall that we discussed this

http://www.easyspin.org

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 272

problem and its solution in equation (3.7) via the four-quadrant arctangent function atan2

Appendix 3. Specifically, we computed two solutions, one with sin β > 0 and one with sin β < 0.
Once β is known, it is easy to use again the atan2 function to compute α from the entries r13

and r23 and γ from the entries r31 and r32. These arguments lead to the following theorem and
algorithm.

Theorem 7.7 (Existence and non-uniqueness of Euler angles). Consider a rotation matrix R with
components rij , i, j ∈ {1, 2, 3} and the equation (7.1) in the variables {α, β, γ}:

(i) if −1 < r33 < 1, then there are two sets of Euler angles {α, β, γ} solving equation (7.1).

(ii) if r33 = ±1, then equation (7.1) admits infinite solutions {α, β, γ}.

Moreover, the following algorithm computes the Euler angles of any rotation matrix.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 273

Euler angles algorithm
Input: a rotation matrix R with components rij , i, j ∈ {1, 2, 3}
Output: Euler angles (α, β, γ) for rotation matrix R, i.e., solutions to (7.1)

1: if −1 < r33 < 1 :
2: β1 = atan2(

√
1− r233, r33), α1 = atan2(r23, r13) and γ1 = atan2(r32,−r31)

// (α1, β1, γ1) is solution with positive sin(β)

3: β2 = atan2(−
√

1− r233, r33), α2 = atan2(−r23,−r13), and γ2 = atan2(−r32, r31)
// (α2, β2, γ2) is solution with negative sin(β)

4: return two solutions (α1, β1, γ1) and (α2, β2, γ2)
5: else if r33 = 1 :
6: return any (α, 0, γ) such that α + γ = atan2(r21, r11)
7: else if r33 = −1 :
8: return any (α, π, γ) such that α− γ = atan2(−r21,−r11)

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 274

Section 14: Example Euler angles

Example 7.8. In an example in Section 7, we considered the frame Σ1 defined by x1 = y0, y1 = z0,
and z1 = x0. (One can verify that Σ1 is right handed and that Σ1 is not a rotation about a basic
axis of Σ0). The reference frame rotation matrix is

R0
1 =




0 0 1
1 0 0
0 1 0


 .

We wish to compute the Euler angles for this rotation matrix. The Euler angles algorithm leads to
the two following solutions:

β1 = atan2(1, 0) = π/2,

α1 = atan2(0, 1) = 0,

γ1 = atan2(1, 0) = π/2,

and

β2 = atan2(−1, 0) = −π/2,
α2 = atan2(0,−1) = π,

γ2 = atan2(−1, 0) = −π/2.
From the first set of Euler angles, we know and we indeed verify that

R0
1 = Roty(π/2) Rotz(π/2) ⇐⇒




0 0 1
1 0 0
0 1 0


 =




0 0 1
0 1 0
−1 0 0






0 −1 0
1 0 0
0 0 1


 .

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 275

From the second set of Euler angles, we know and we indeed verify that

R0
1 = Rotz(π) Roty(−π/2) Rotz(−π/2)

⇐⇒




0 0 1
1 0 0
0 1 0


 =



−1 0 0
0 −1 0
0 0 1






0 0 −1
0 1 0
1 0 0






0 1 0
−1 0 0
0 0 1


 .

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 276

Subsection 15: Roll-pitch-yaw angles

Next we consider a second parametrization. The rotation R is represented by three angles
{α, β, γ} corresponding to basic rotations about X-Y-Z axis with respect to fixed frame:

R = Rotz(γ) Roty(β) Rotx(α).

These angles are illustrated in Figure 7.5. The remaining analysis is similar to that for the
Euler angles. Assume a rotating frame is a�ached to a vehicle. The axes are set as follows: the

roll x-axis

pitch y-axis

yaw z-axis

Figure 7.5: The roll-pitch-yaw conventions for aircra�. The yaw axis points downward towards the ground. The roll axis points
forward. The pitch axis is selected so that positive pitch corresponds to the front of the aircra� pointing up.

x-axis points forward (roll axis in a boat) and the z-axis points downwards (towards earth in an
aircra�). Then

(i) α about the x-axis is the roll angle,

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 277

(ii) β about the y-axis is the pitch angle, and

(iii) γ about the z-axis is the yaw angle.

We do not discuss here the inverse kinematics for the roll-pitch-yaw angles as we did earlier for
the Euler angles. Instead we refer the reader to Exercise E7.4.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 278

Subsection 16: Axis-angle parametrization

In this subsection we discuss the axis-angle parametrization. We answer two questions: (i)
what is the rotation matrix corresponding to a given rotation axis and angle? and (ii) what
are the rotation axis and angle of a given rotation matrix? This second question is well posed
because it is true that each rotation is necessarily a rotation about an axis.

Preliminaries: skew symmetric matrices We begin with a necessary detour into the world of
three-dimensional skew symmetric matrices.

Definition 7.9 (Skew symmetric matrices). A square matrix is skew symmetric when it is equal
to minus its transpose. The set of three-dimensional skew symmetric matrices has a specific symbol:

so(3) = {S ∈ R3×3 | ST = −S}.
In skew symmetric matrices the diagonal entries are always zero (why?) and the lower

diagonal elements are uniquely determined by the upper diagonal elements. In other words,
given an incomplete matrix 


? a b
? ? c

? ? ?


 ,

there is a unique way of completing it into a skew matrix:



0 a b
−a 0 c

−b −c 0


 .

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 279

In other words, 3× 3 skew matrices have 3 degree of freedom. Next, we set up an equivalence
between so(3) and R3. Given three real numbers ω1, ω2, and ω3, we define the operation ̂ from
R3 to so(3) and its inverse ∨ by

̂

ω1

ω2

ω3


 =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 ,




0 s12 s13

−s12 0 s23

−s13 −s23 0



∨

=



−s23

s13

−s12


 . (7.2)

A few additional properties of skew symmetric matrices are given in Appendix 7.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 280

Section 17: The axis-angle parametrization and its inverse

The axis-angle parametrization and its inverse

We are now ready to consider the following problem: Given a unit-length rotation axis and angle, what is the corresponding rotation matrix?

Theorem 7.10 (Rodrigues’ formula). Given a unit-length rotation axis n and angle θ ∈ [0, π],
there exists a unique rotation matrix, denoted by Rotn(θ), representing a rotation about n by an
angle θ and it is given by

Rotn(θ) = I3 + sin θ n̂+ (1− cos θ)n̂2.

It is a simple exercise to check that the matrix Rotn(θ) as defined in the equation (7.10) is
indeed a rotation matrix in SO(3). We postpone the proof of this formula to the Appendix 7.

Example 7.11. For example, consider θ = 2π
3 and

n =
1√
3




1
1
1


 .

Note easily that sin(θ) =
√

3/2, cos(θ) = −1/2,

n̂ =
1√
3




0 −1 1
1 0 −1
−1 1 0


 , and n̂2 =

1

3



−2 1 1
1 −2 1
1 1 −2


 .

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 281

Therefore, we compute

Rotn(θ) =




1 0 0
0 1 0
0 0 1


+

√
3

2

1√
3




0 −1 1
1 0 −1
−1 1 0


+

3

2

1

3



−2 1 1
1 −2 1
1 1 −2


 .

Simplifying the expression leads to

Rotn(θ) =




0 0 1
1 0 0
0 1 0


 .

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 282

Section 18: Inverse Rodrigues’ formula

Next, we are also interested in the inverse problem. Given a rotation matrix R, what is the rotation angle θ and the corresponding axis of rotation n?

Theorem 7.12 (Inverse Rodrigues’ formula). Given an arbitrary rotation matrix R, consider the
Rodrigues formula (7.10) in the two variables (θ, n), where θ is the angle of rotation in [0, π] and n
is the unit-length axis of rotation:

(i) if R = I3, then there exists an infinite number of solutions defined by θ = 0 and arbitrary
axis of rotation n,

(ii) if 3 > trace(R) > −1, then there exists a unique solution defined by

θ = arccos((trace(R)− 1)/2),

n =
1

2 sin(θ)
(R−RT)∨,

(iii) if trace(R) = −1, then there exist two solutions defined by θ = π and by the two solutions
n1 = −n2 to nnT = 1

2(R + I3).

Example 7.13. As before, we consider the frame Σ1 defined by x1 = y0, y1 = z0, and z1 = x0,
with reference frame rotation matrix:

R0
1 =




0 0 1
1 0 0
0 1 0


 .

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 283

We now wish to compute the rotation axis and angle for this rotation matrix. Using the Inverse
Rodrigues’ formula and equation (7.2), we obtain:

θ = arccos((trace(R)− 1)/2) = arccos(−1/2) =
2π

3
,

n =
1

2 sin(θ)
(R−RT)∨ =

1

2
√

3/2




0 −1 1
1 0 −1
−1 1 0



∨

=
1√
3




1
1
1


 .

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 284

Section 19: Appendix: Properties of skew symmetric matrices

Given a vector ω = [ω1 ω2 ω3]
T ∈ R3 and the corresponding skew symmetric matrix ω̂ is

defined as

ω̂ =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 .

The following are some key properties of skew symmetric matrices:

(i) The map from ω ∈ R3 to ω̂ ∈ so(3) is linear. That is, given u, v ∈ R3 and α, β ∈ R we have

̂(αu+ βv) = αû+ βv̂.

(ii) For any vectors u, v ∈ R3, we have

ûv = u× v,

where u× v is the cross product of the vectors u and v.

(iii) If R ∈ SO(3) is a rotation matrix and u ∈ R3 is a vector, then

RûRT = R̂u.

(iv) For any vector u ∈ R3 and skew symmetric matrix S ∈ so(3), we have uTSu = 0.

These four properties can be established as follows:

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 285

(i) Linearity follows directly from the definition of a skew symmetric matrix:

̂αu+ βv =




0 −αu3 − βv3 αu2 + βv2

αu3 + βv3 0 −αu1 − βv1

−αu2 − βv2 αu1 + βv1 0




= α




0 −u3 u2

u3 0 −u1

−u2 u1 0


+ β




0 −v3 v2

v3 0 −v1

−v2 v1 0


 = αû+ βv̂.

(ii) The cross product again follows by expanding out the operation

ûv =




0 −u3 u2

u3 0 −u1

−u2 u1 0





v1

v2

v3


 =



u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1


 = u× v.

(iii) Given a rotation matrix R and any two vectors u, v ∈ R3, notice that

R(u× v) = (Ru)× (Rv). (7.3)

That is, rotating the cross product of u and v is equivalent to rotating u and v, and then
taking the cross product. Thus, we have

RûRTv = R(u×RTv) by property (ii)

= (Ru)× (RRTv) by equation (7.3)

= Ru× v since RRT = I3

= R̂uv.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 286

From this we conclude that RûRT = R̂u.

(iv) The final property follows from the cross product property as uTSu = uT (S∨ × u) = 0
since the vector (S∨ × u) is orthogonal to both S∨ and u.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 287

Section 20: Appendix: Proof of Rodrigues’ formula and of its inverse

Proof of Theorem 7.10. The following proof is one of the more complex derivations in the lecture
notes.

Next, we consider the problem of rotating a vector about an axis. Given a point p and an
origin point O, we want to rotate the vector

−→
Op about the rotation axis n by an angle θ to

generate a new point q. By rotation axis n we accept any unit-length vector. Our objective is to
compute the point q as a function of p, or more specifically, the vector q0 as a rotation of p0. By
doing so, we aim to compute the rotation matrix Rotn(θ) that describes a rotation about the
axis n by an angle θ. We illustrate the problem and some relevant variables in the Figure 7.6.

First, we decompose the vector p0 into its component along n and perpendicular to n:

p0 = p0
‖ + p0

⊥ = (n · p0)n− n× (n× p0).

From the figure we can write a formula for q:

q0 = p0
‖ + Rotn(θ)p

0
⊥

=
(
p0 − p0

⊥

)
+
(

sin(θ)(n× p0) + cos(θ)(−1)(n× (n× p0))
)

= p0 + sin(θ)n× p0 + (1− cos θ)n× (n× p0).

If we now write matrix products instead of cross products using the skew symmetric property
that ω× v = ŵv where ŵ ∈ so(3) is a skew symmetric matrix (see Appendix 7), the last equation

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 288

p0

n ⇥ (n ⇥ p0)

O

(n · p0)n

q

n

q0 p

n ⇥ p0
n

✓

Figure 7.6: The circle through p and q is orthogonal to n and has its center on line through n at the point (n · p0)n.

can be rewri�en as:

q0 =
(
I3 + sin θ n̂+ (1− cos θ)n̂2

)

︸ ︷︷ ︸
this must be a rotation matrix

p0 =: Rotn(θ)p
0.

This equality concludes the proof of Theorem 7.10. �

Next, we aim to prove Theorem 7.12 about the inverse Rodrigues formula. To do so, we

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 289

present a simple result first.

Lemma 7.14 (Angle of a rotation matrix). The angle of rotation θ of any R ∈ SO(3) satisfies
trace(R) = 1 + 2 cos(θ).

Proof. IfR is a basic rotation, then result is obvious. IfR is a rotation about an arbitrary axis, we
proceed as follows. First, we note that R is equal to Rotz(θ) with respect to some frame. There-
fore, we can write R as ST Rotz(θ)S. Second, we compute trace(R) = trace(ST Rotz(θ)S) =
trace(SST Rotz(θ)) = trace(Rotz(θ)) = 1 + 2 cos θ. �

Proof of Theorem 7.12. First, it is clear that the rotation axis n can be selected arbitrarily when
we have the rotation matrix R = I3 and the rotation angle θ = 0. Second, from the Rodrigues’
formula we sum R to its transpose RT , note that the symmetric terms disappear, and we obtain

R−RT = 2 sin(θ)n̂.

Now, if sin(θ) 6= 0, i.e., if 0 < θ < π, we obtain the formula for n. Third, when θ = π, there are
two possible choices of rotation axis and the lengthy derivation is postponed to Exercise E7.8. �

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 290

7.1 Exercises

E7.1 Rotation matrices and dot products (20 points). The rotation group SO(3) is the set of all rotation matrices in
3-dimensional space, that is,

SO(3) = {R ∈ R3×3 | RRT = I3, det(R) = +1}.

For all 3-dimensional column arrays v, w and rotation matrices R (i.e., elements of SO(3)), show:

(i) (10 points) vTw = (Rv)T (Rw),

(ii) (5 points) ‖v‖ = ‖Rv‖, where ‖v‖ is the norm of the array v,

(iii) (5 points) Explain the geometric interpretation of facts (i) and (ii).

Hint: Regarding (i), it is not useful to write R in components, i.e., as R =



r11 r12 r13
r21 r22 r23
r31 r32 r33


. Instead, use the properties

of the dot product between vectors and use the fact that R is a rotation matrix.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 291

E7.2 Reasoning about roll-pitch-yaw angles (15 points).

(i) (10 points) Using the image below as a guide, find the rotation matrix representing a roll of π/4, followed by a
pitch of π/2, followed by a yaw of −π/2. Assume that these rotations are expressed in the frame of the aircra�,
i.e., they are expressed in successive frames.

roll x-axis

pitch y-axis

yaw z-axis

(ii) (5 points) Assume the plane is initially flying at constant altitude and right-side up. If the plane performs the
composite rotations from part (i), then will the plane be pointed more towards space or the ground? Explain
you reasoning.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 292

E7.3 Computing Euler angles. Consider the Euler angle representation of a rotation:

RZY Z = Rz,αRy,βRz,γ

=



cαcβcγ − sαsγ −cαcβsγ − sαcγ cαsβ
sαcβcγ + cαsγ −sαcβsγ + cαcγ sαsβ
−sβcγ sβsγ cβ


 .

Given an arbitrary rotation matrix

R =



r11 r12 r13
r21 r22 r23
r31 r32 r33


 , (E7.1)

verify the expressions for the Euler angles α, β and γ of R given in the algorithm of Theorem 7.7.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 293

E7.4 Forward and inverse kinematics of roll-pitch-yaw angles (25 points). In the Roll-Pitch-Yaw parametrization
of rotation matrices, a rotation R is represented by three angles {α, β, γ} corresponding to basic rotations about
X − Y − Z axis with respect to a fixed frame:

R = Rotz(γ) Roty(β) Rotx(α).

(i) (10 points) Compute the components of R as a function of α, β, and γ.

Hint: Adopt the convention cα = cos(α), sα = sin(α), cβ = cos(β), etc, to simplify notation.

(ii) (15 points) Given a rotation matrix

R =



r11 r12 r13
r21 r22 r23
r31 r32 r33


 ,

compute the roll-pitch-yaw angles {α, β, γ} using only atan2 as inverse trigonometric function.

Hint: Use the definition of arctangent with two arguments from Appendix 3.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 294

E7.5 Rotation matrices (20 points). Prove the four properties (P0)-(P4) in Subsection 7.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 295

E7.6 Composing rotation matrices (20 points). Pick a rigid body and let Σbody = (Obody, {xbody, ybody, zbody}) be a
reference frame a�ached to it. Assume the spatial reference frame Σ0 = (O0, {x0, y0, z0}) is at a fixed location and
orientation and let Rinitial be the initial orientation of the rigid body with respect to the spatial frame. Perform the
following subsequent rotations on the body:

(i) rotate by π/3 about the x0 axis,

(ii) rotate by π/5 about the zbody axis,

(iii) rotate by π/2 about the xbody axis,

(iv) rotate by π/4 about the y0 axis,

(v) rotate by π/6 about the ybody axis, and

(vi) rotate by π/5 about the z0 axis.

What is the final orientation of the body? (It is su�icient to write a formula for it and it is not required to perform all
the computations.)

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 296

E7.7 Eigenvectors of rotation matrices (35 points). Show that for any unit-length vector n ∈ R3 and any angle θ:

(i) (10 points) n× n = n̂n = 0.

(ii) (15 points) Rotn(θ) · n = n.

Hint: You do not need to write down n or Rotn(θ) in components. Rather, recall the axis-angle parametrization of
Rotn(θ) and use part (i).

(iii) (5 points) n̂2 is a 3× 3 symmetric matrix.

(iv) (5 points) Explain in a few sentences what the property in part (ii) means and why it is useful.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 297

E7.8 On the Rodrigues’ formula.
Consider the Rodrigues’ formula given in Theorem 7.10. Show that, for arbitrary unit-length rotation axis n and
angle θ, the matrix Rotn(θ) = I3 + sin θ n̂+ (1− cos θ)n̂2 is a rotation matrix.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 298

E7.9 On the inverse Rodrigues’ formula.
Consider the inverse Rodrigues’ formula, given in Theorem 7.12. Consider a rotation matrix R with trace(R) = −1.
Show that

(i) if (θ, n) are an angle and axis representation of R, then θ = π and n is a solution to

nnT =
1

2
(I3 +R),

(ii) if n∗ is a solution, then −n∗ is also a solution,

(iii) there exists at most one index i ∈ {1, 2, 3} such that Rii = −1,

(iv) if Rii 6= −1, then denoting the other two indices by j and k so that {1, 2, 3} = {i, j, k}, an axis of rotation is:

ni =

√
1

2
(1 +Rii), nj =

1

2ni
Rij , and nk =

1

2ni
Rik.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 299

E7.10 Programming: Representing 3D rotations (30 points).
The purpose of this exercise is to write functions to translate between axis-angle representation and rotation matrix
representation of rotations in three dimensions. Specifically, consider the two functions:

computeRMfromAA (10 points)
Input: axis-angle pair (θ, n), where θ ∈ [0, π] and n is a unit-length vector
Output: corresponding rotation matrix R.

computeAAfromRM (10 points)
Input: a rotation matrix R.
Output: the angle-axis representation of R (one of the two solutions if trace(R) = −1 and an arbitrary rotation
axis if trace(R) = 3).

For each function, do the following:

(i) explain how to implement the function, possibly deriving analytic formulas, and characterize special cases,

(ii) program the function, including correctness checks on the input data and appropriate error messages, and

(iii) verify your function is correct on a broad range of test inputs (e.g., for rotation angles equal to 0 radians, π
radians, or other in-between values).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 300

E7.11 Angles and planar rotation matrices (20 points).

(i) (5 points) Assume you are given two numbers a and b satisfying a2 + b2 = 1. Show that there exists a unique
θ ∈ (−π, π] such that a = cos(θ) and b = sin(θ).

Hint: Draw the unit circle, the horizontal axis and the point (a, b).

(ii) (10 points) Assume you are given a 2× 2 rotation matrix R, that is, a matrix

R =

[
r11 r12
r21 r22

]

satisfying RTR = I2 and det(R) = +1. Show that there exists a unique angle θ ∈ (−π, π] such that

R =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

Hint: Use the statement in part (i) and recall that, if you write R =

[
r11 r12
r21 r22

]
, then Cramer’s rule says that

R−1 = 1
det(R)

[
r22 −r12
−r21 r11

]
.

(iii) (5 points) If

R1 =

[
cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

]
, R2 =

[
cos(θ2) − sin(θ2)
sin(θ2) cos(θ2)

]
,

then what is the angle for the rotation matrix R1R2?

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 301

E7.12 Reflection matrices (9 points). A matrix R with orthonormal columns and a negative determinant is known as a
reflection matrix .

(i) (3 points) Show that a reflection matrix R has the properties vTw = (Rv)T (Rw) and ‖v‖ = ‖Rv‖.
(ii) (3 points) Show that the product of two reflection matrices is a rotation matrix.

(iii) (3 points) Explain why such matrices are called reflection matrices. Specifically, what line or what point do they
represent a reflection with respect to?

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 7, slide 302

E7.13 Permutation matrices (16 points).

(i) (4 points) The set of permutations of {1, . . . ,m} is a group in the mathematical sense, as defined in Section 6.2.
This set is called the permutation group and denote by the symbol Pm.

(a) What does it mean to combine permutations?
(b) What is the identity permutation?
(c) What is the inverse permutation?

(ii) (4 points) Show that each permutation in Pm can be described by an m × m matrix with entries equal to
{0,+1} such that each column and each row contains precisely one entry equal to +1.

(iii) (4 points) Show that each permutation matrix is an orthogonal matrix in m dimensions (that is, Pm is a subset
of O(m)).

(iv) (4 points) Show that the group Pm contains a finite number of elements.

Chapter 8

Displacement Matrices and Inverse Kinematics

In this chapter we study rigid-body displacements, i.e., motions composing rotations and
translations. We will represent displacements by introducing displacement matrices. We will
discover that displacement matrices have very similar properties to rotation matrices, as studied
in the previous chapter.

303

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 304

Section 1: Displacements as matrices

Consider two general frames, fix a frame in space and one with a moving body. Consider also a
general point p. Assume the two frames are: Σ0 = (O0, {x0, y0, z0}) and Σ1 = (O1, {x1, y1, z1}),
as depicted in Figure 8.1. To represent Σ1 with respect to Σ0, note that

p

p0

O0

x0

y0

z0

x1

y1

z1

O1

p1

O0
1

Figure 8.1: Reference frames and points in three-dimensions

(i) origin of Σ1 with respect to Σ0 is

O0
1 = (

−−−→
O0O1)

0,

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 305

(ii) the axes of Σ1 with respect to Σ0 are given by R0
1 (as discussed in Chapter 6).

Therefore, the frame Σ1 is represented by pair (O0
1, R

0
1) where O0

1 ∈ R3, and R0
1 ∈ SO(3).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 306

Subsection 2: Changes of reference frame and composition of displace-
ments

Next, let us compute the changes of reference frame. Because
−−→
O0p =

−−−→
O0O1 +

−−→
O1p and

(
−−→
O1p)

0 = R0
1(
−−→
O1p)

1, we obtain:
p0 = R0

1p
1 +O0

1. (8.1)

Given three frames, frame-changes (O0
1, R

0
1) and (O1

2, R
1
2), what is the frame-change (O0

2, R
0
2)?

Let us collect known facts:

p0 = R0
1p

1 +O0
1, p1 = R1

2p
2 +O1

2, p0 = R0
2p

2 +O0
2.

Substitute the second equality into the first:

p0 = R0
1(R1

2p
2 +O1

2) +O0
1 = (R0

1R
1
2)p2 + (R0

1O
1
2 +O0

1).

This implies

R0
2 = R0

1R
1
2, and O0

2 = R0
1O

1
2 +O0

1. (8.2)

As usual, note the important role of subscript and superscripts.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 307

Subsection 3: Matrix representation of displacements and homoge-
neous representation of points

To simplify bookkeeping in equations (8.1) and (8.2), we write displacements as displacement matrices
and points in homogeneous representation.

First, instead of using the pair (R0
1, O

0
1), we represent the frame Σ1 with respect to Σ0 by the

single matrix

H0
1 =

[
R0

1 O0
1

01×3 1

]
,

where 01×3 is 1× 3-vector of zeros. We call such a matrix a displacement matrix . We can now
rewrite equation (8.2) as

H0
2 = H0

1H
1
2 .

This result is true because of the multiplication between block matrices:[
R0

1 O0
1

01×3 1

] [
R1

2 O1
2

01×3 1

]
=

[
R0

1R
1
2 R0

1O
1
2 +O0

1

01×3 1

]
.

In summary, as for rotation matrices, we note that displacement composition corresponds to matrix products.
Second, given a point p, we define the homogeneous representations of the point p with

respect to Σ0 by

P 0 =

[
p0

1

]
.

With this notion, the changes of reference frame in equation (8.1) is rewri�en as the following
matrix-vector multiplication:

P 0 = H0
1P

1. (8.3)

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 308

Subsection 4: Table of correspondences

We summarize similarities and di�erences in Table 8.1.

Rotations Displacements

how to represent Σ1 with respect to Σ0: R0
1 H0

1

how to represent a point p: p0 P 0

how to change reference frame: p0 = R0
1p

1 P 0 = H0
1P

1

how to compose displacements: R0
2 = R0

1R
1
2 H0

2 = H0
1H

1
2

inverse rotation/displacement: R1
0 = (R0

1)
T H1

0 = (H0
1)−1

Table 8.1: Comparison between rotations and displacements

Regarding the last property, the inverse reference frame representation is

H1
0 = (H0

1)−1 =

[
(R0

1)T −(R0
1)TO0

1

01×3 1

]
.

To see that this formula is correct, it su�ices to show that
[
R0

1 O0
1

01×3 1

] [
(R0

1)T −(R0
1)TO0

1

01×3 1

]
= I4.

The formula for the inverse frame representation is illustrated in Figure 8.2.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 309

(R0
1, O

0
1)

�
(R0

1)
T ,�(R0

1)
TO0

1

�
x1

y1

z1

O1

O0

x0

y0

z0

Figure 8.2: Inverse frame representation

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 310

Subsection 5: Displacement matrices

The set of displacement matrices (also called special Euclidean set) is

SE(3) =
{
H ∈ R4×4

∣∣ H =

[
R d
0 1

]
where R ∈ SO(3), d ∈ R3

}
.

Just like the set of rotation matrices SO(3), the set of displacement matrices SE(3) is closed
with respect to matrix multiplication, that is,

H1 and H2 ∈ SE(3) =⇒ H1 ·H2 ∈ SE(3).

Moreover, as with the set SO(3), the order of multiplication of displacements ma�ers:

H1 ·H2 6= H2 ·H1.

And, finally, as with the set SO(3), the set of displacement matrices SE(3) has the properties of
a group, that is

(i) H1(H2H3) = (H1H2)H3 (associativity property),

(ii) I4 ∈ SE(3) is the identity displacement, and

(iii) for any displacement

H =

[
R v

01×3 1

]
,

there always exists the inverse displacement

H−1 =

[
RT −RTv

01×3 1

]
∈ SE(3).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 311

Section 6: Basic and composite displacements

Just like we did for rotation matrices, it is useful to emphasize the three roles and uses of
displacement matrices:

(i) H0
1 describes Σ1 with respect to Σ0, that is, the columns of R0

1 are the bases vectors of Σ1

with respect to Σ0, and O0
1 is origin.

(ii) H0
1 is the coordinate transformation from Σ1 to Σ0, by using the identity P 0 = H0

1P
1.

(iii) AnyH ∈ SE(3) can be used to rotate and then translate a vector. Consider a point p, define
a new point q as follows: the vector

−−→
O0q is the rotation of the vector

−−→
O0p by an angle θ

about axis n0, and followed by the translation by a vector t0:

q0 = Rotn0(θ)p
0 + t0 ⇐⇒ Q0 = HP 0, where H =

[
Rotn(θ) t0

0 1

]
.

Note that the operation “rotate and then translate” is not the same as “first translate and
then rotate.” In what follows we review basic displacements, and how to compose them.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 312

Subsection 7: The six basic displacements

There are six basic displacements: three basic rotations and three basic translations. For
α, β, γ ∈ [−π, π[, the three basic rotations are

Rotdx(α) =

[
Rotx(α) 03×1

01×3 1

]
, Rotdy(β) =

[
Roty(β) 03×1

01×3 1

]
, and Rotdz(γ) =

[
Rotz(γ) 03×1

01×3 1

]
.

Note the choice of symbols Rotx(α) is a rotation matrix representing the rotation by α about x,
and Rotdx(α) is the displacement matrix representing the same rotation.

For a, b, c ∈ R, the three basic translations are

Transx(a) =




1 0 0 a
0 1 0 0
0 0 1 0
0 0 0 1


 , Transy(b) =




1 0 0 0
0 1 0 b

0 0 1 0
0 0 0 1


 , and Transz(c) =




1 0 0 0
0 1 0 0
0 0 1 c
0 0 0 1


 .

For example, the matrix Transx(a) is a translation along the x-axis a distance of a.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 313

Subsection 8: Composition of displacements

Let H0
1 represent Σ1 with respect to Σ0 and consider a second displacement H of Σ1

(i) ifH is expressed in current frame = successive frame = Σ1, then the composite displacement
is obtained by post-multiplication = right-multiplication:

H0
2 = H0

1H.

(ii) if H is expressed in fixed frame = body frame = Σ0, then the composite displacement is
obtained by pre-multiplication = le�-multiplication:

H0
2 = HH0

1 .

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 314

Subsection 9: Composite displacements

In this subsection we study and classify the possible displacements that can be applied to a
point in 3-dimensional Euclidean space. Recall that every operation on a point can be regarded
as an operation on a rigid body by applying that operation to every point a�ached to the rigid
body.

We assume n and t are two unit-length axes, θ is an angle, d is a distance, and r is a reference
point. Given a reference frame Σ0 = {O0, {x0, y0, z0}}, let r0 denote the array representation
of r with respect to Σ0. For simplicity, let n and t denote both the free vectors and their array
representations in Σ. Recall that the rotation matrix Rotn(θ) represents the rotation by an angle
θ about the n axis passing through the point 00, when expressed in the reference frame Σ0.

We describe all possible displacements in Table 8.2. Note that classification in the table is
redundant, in the sense that some operations are special cases of others.

In what follows we justify the expressions for the displacement operations in the first three
rows of the table. The other rows are obtained by combining the results in the first three
rows. Let p be an arbitrary point and let q be the point resulting from the displacement of p
according to one of the operations in the table. Let p0 and q0 be their representation in Σ0 and
let P 0, Q0 ∈ R4 be their homogeneous representations.

(i) Translation by distance d along a vector t:

q0 = p0 + dt,

Q0 =

[
I3 dt

01×3 1

]
P 0.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 315

(ii) Rotation by an angle θ about an axis n passing through the origin. Using Rodrigues’
formula, we write

q0 = Rotn(θ)p
0,

Q0 =

[
Rotn(θ) 03×1

01×3 1

]
P 0.

(iii) Rotation by an angle θ about an axis n passing through a point r. We decompose this
action as follows.

First, we express p in a reference frame Σ1 with r as origin and with unchanged axes.
The frame Σ1 with respect to Σ0 has R0

1 = I3 and O0
1 = r0. Therefore, we have p0 =

R0
1p

1 +O0
1 = p1 + r0 and p1 = p0 − r0.

Second, we rotate p1 about the new origin using Rotn(θ) to obtain q1 = Rotn(θ)p
1 =

Rotn(θ)(p
0 − r0).

Third and final, we express the resulting point back with respect to Σ0 by using q0 =
R0

1q
1 +O0

1 = I3 Rotn(θ)(p
0 − r0) + r0 = Rotn(θ)p

0 + (I3 − Rotn(θ))r
0.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 316

Displacement operation Displacement matrix in SE(3)

(i) Translation by a distance d along an axis t Transt(d) =


 I3 dt

01×3 1




(ii) Rotation by an angle θ about an axis n passing
through the origin

Rotdn(θ) =


Rotn(θ) 03×1

01×3 1




(iii) Rotation by an angle θ about an axis n passing
through a point r

Rotdn,r(θ) =


Rotn(θ) (I3 − Rotn(θ))r0

01×3 1




(iv) Rotation by θ about n passing through the origin,
and then translation by d along t

Transt(d) Rotdn(θ) =


Rotn(θ) dt

01×3 1




(v) Rotation by θ about n passing through r, and then
translation by d along t

Transt(d) Rotdn,r(θ) =
Rotn(θ) (I3 − Rotn(θ))r0 + dt

01×3 1




(vi) Translation by d along t, and then rotation by θ
about n passing through the origin

Rotdn(θ) Transt(d) =


Rotn(θ) dRotn(θ)t

01×3 1




(vii) Translation by d along t, and then rotation by θ
about n passing through r

Rotdn,r(θ) Transt(d) =
Rotn(θ) dRotn(θ)t+ (I3 − Rotn(θ))r0

01×3 1




Table 8.2: Composite displacements and their corresponding displacement matrices

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 317

Section 10: Inverse kinematics on the set of displacements

Recall the inverse kinematics problem introduced in Chapter 3. We are given a desired
configuration for the end e�ector of the robot, and our goal is compute joint angle that achieve
the desired configuration. In Chapter 3 we studied a solved the inverse kinematics problem for a
2-link planar manipulator arm, with links connected by revolute joints (see Figure 3.15). For the
2-link robot, we could compute the joint angles θ1 and θ2 using geometric arguments. However,
for more complex robots that have higher-dimensional configuration spaces, such calculations
are very challenging. In this section we will see how reference frames and displacement matrices
can be used to solve the inverse kinematics problem.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 318

Subsection 11: Multi-link robots

 SPECIFICATIONS

Axes
Maximum

motion range
[°]

Maximum speed
[°/sec.]

Allowable
moment

Allowable
moment of

inertia
2]FS100 MLX200

S

L

U

R

B

T

±180

-100/+155

-165/+255

±200

-50/+230

±360

197

175

205

400

400

600

157.6

175

205

400

400

600

–

–

–

39.2

39.2

19.6

–

–

–

1.05

1.05

0.75

Controlled axes
Maximum payload [kg]
Repeatability [mm]
Horizontal reach [mm]
Vertical reach [mm]
Protection (IP rating)
 Standard
 XP version
Weight [kg]
Power requirements
Power rating [kVA]
 Standard
 XP version

6
20

±0.06
1,717

3,063

Body: IP54; Wrist IP67
Body: IP65; Wrist IP67

268
3-phase; 230 VAC at 50/60 Hz

2.0
2.5

MOTOMAN IS A REGISTERED TRADEMARK
ALL OTHER MARKS ARE THE TRADEMARKS AND

REGISTERED TRADEMARKS OF YASKAWA AMERICA, INC.

HP20 ROBOT

OPTIONS
Extended length manipulator cables

MotoPick™ – scheduler and picking
software integrated with vision and
conveyor tracking

MotoSight™ – easy to integrate vision software

TECHNICAL SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE
DS-614 ©2014 YASKAWA AMERICA, INC. SEPTEMBER 2014

All dimensions are metric (mm) and for reference only.
Request detailed drawings for all design/engineering requirements.

Yaskawa America, Inc.
Motoman Robotics Division

100 Automation Way
Miamisburg, OH 45342
Tel: 937.847.6200
Fax: 937.847.6277

motoman.com

VIEW B

VIEW A

VIEW C

180°

180°

R1717

R421

R3
14

1417

80
14

0
76

0
50

5

14
85

55
9

150 795 105

P-Point
Maximum Envelope

1717 2072

P-Point

0

991
260

0.5 6

6

25
 d

ia

50
 d

ia 6 dia Depth: 6mm

PCD40

45°

Tapped holes M6
(Depth: 10mm)
(Pitch: 1.0) (4 holes)

4-18 dia 313

375
335

200
60

2602-12 dia

20
0

25
0 33

5
37

5

Internal user
air line 3/8” PT
(with plug)

Internal user I/O connector
is JL05-2A20-29PC (with cap)
Mating connector will not be supplied, but
complete cables are available as an option

30
63

C

B

A

AXES LEGEND
S-Axis: Swivel Base
L-Axis: Lower Arm
U-Axis: Upper Arm
R-Axis: Arm Roll
B-Axis: Wrist Bend
T-Axis: Tool Flange

Figure 8.3: The Motoman© HP20 manipulator is a multi-body robot versatile high-speed industrial robot with a slim base,
waist, and arm. Image courtesy of http://www.motoman.com.

Multi-link robots are made for a variety of purposes, from the larger industrial automation
robots as shown in Figure 8.3, to smaller assistive robots as shown in Figure 8.4. For many
applications, a common design is to have a base consisting of three links connected by three
revolute joints. The base is used to position the end e�ector. The end e�ector, or gripper, is
commonly a�ached to the base using a spherical wrist. The wrist is used to orient the gripper
at its desired position.

http://www.motoman.com

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 319

Figure 8.4: The Jaco2 by Kinova Robotics is a light-weight robot arm with six degrees of freedom. Images courtesy of Kinova
Robotics, http://kinovarobotics.com/.

http://kinovarobotics.com/

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 320

Subsection 12: Multiple frames and loops

Consider an environment with multiple frames and with corresponding displacements that
form a loop, as depicted in Figure 8.5. In general, we know that Hj

i = frame Σi expressed with
respect to Σj .

�0

�1
�2

�3
�4

Figure 8.5: Multiple reference frames in a three-dimensional environment

We consider the following sample problem: assume we know all matrices corresponding
to the displacements illustrated in figure, that is, H0

1 , H1
2 , H0

3 H
4
2 , except for the displacement

matrix H3
4 . How would you compute H3

4 ?

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 321

Write known facts and obtain loop relationship

H0
2 = H0

1H
1
2 ,

H0
2 = H0

3H
3
4H

4
2 ,

=⇒ H0
1H

1
2 = H0

3H
3
4H

4
2 .

Therefore
H3

4 = (H0
3)−1H0

1H
1
2(H4

2)−1.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 322

Subsection 13: The pick-up and place problem

Consider the pick-up and place problem illustrated in Figure 8.6. Our goal is use the robot to
grasp the object si�ing on the table, which is an instance of inverse kinematics problem.

�gripper

�object

�table

�base

�1

�2 �3

�3

�1

�2

Figure 8.6: Prototypical pick-up and place problem

• The reference frames Σbase, Σgripper, Σtable, and Σobject describe the placement and orientation
of relevant objects in the environment.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 323

• Each link of the robot (i.e., each rigid body component of the robot) is described by a
reference frame: Σ1, Σ2, Σ3.

• As an aside, a systematic methodology to place frames in each link of a robot is the
Denavit and Hartenberg (D-H) convention (see Wikipedia:D-H Parameters for a discussion
and a clarifying video). Once frames are placed, we should have an expression for the
displacement matrices

Hbase
1 (θ1), H

1
2(θ2), and H2

3(θ3),

as a function of the three joint angles.

• Because of the way the gripper works, the gripper and object need to be at a specific,
desirable “relative displacement with respect to each other” in order for the correct grasp
to take place. Denote this object displacement with respect to the gripper by Hdesired. Then,
the correct grasp takes place when

H
gripper
object = Hdesired.

• Now, we can apply the same ideas as in the previous discussion about multiple frames and
loops. First, let us study the “object with respect to gripper” displacement

Hdesired = H
gripper
object = H

gripper
base Hbase

tableH
table
object = (Hbase

gripper)
−1Hbase

tableH
table
object. (8.4)

• Second, let us study the “gripper with respect to base” displacement, which depends upon
the robot joint angles, i.e., the robot forward kinematics:

Hbase
gripper(θ1, θ2, θ3) = Hbase

1 (θ1)H
1
2(θ2)H

2
3(θ3)H

3
gripper. (8.5)

http://en.wikipedia.org/wiki/Denavit-Hartenberg_Parameters

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 324

• Finally, to place gripper at correct displacement, plug equation (8.5) into equation (8.4) and
solve for joint angles = robot inverse kinematics

Hbase
1 (θ1)H

1
2(θ2)H

2
3(θ3)H

3
gripper = Hbase

tableH
table
objectH

−1
desired. (8.6)

Solving the equation (8.6) is akin to computing Euler angles for a rotation matrix: trigono-
metric calculations are typical.

To continue the analysis, we draw the manipulator in Figure 8.7, measure some distances
and write down the three relevant displacement matrices as function of the joint angles.

�3

�1

�2

xbase

ybase

zbase

x1
y1

z1

x2
y2

z2

x3

y3

z3

�1

�2

�3 `4

�gripper

Figure 8.7: Manipulator with three-revolute joints: variables and parameters

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 325

Hbase
1 (θ1) =




Rotz(θ1)




0
0
`1




01×3 1


 , H

1
2(θ2) =




Rotx(θ2)




0
0
`2




01×3 1


 ,

H2
3(θ3) =




Rotx(θ3)




0
`3

0




01×3 1


 , and H3

gripper =



I3




0
`4

0




01×3 1


 .

A�er some careful bookkeeping (or some symbolic computations on a computer), we obtain

Hbase
1 (θ1)H

1
2(θ2)H

2
3(θ3)H

3
gripper

=




cos(θ1) − cos(θ2 + θ3) sin(θ1) sin(θ1) sin(θ2 + θ3) − sin(θ1)(`3 cos(θ2) + `4 cos(θ2 + θ3))
sin(θ1) cos(θ1) cos(θ2 + θ3) − cos(θ1) sin(θ2 + θ3) cos(θ1)(`3 cos(θ2) + `4 cos(θ2 + θ3))

0 sin(θ2 + θ3) cos(θ2 + θ3) `1 + `2 + `3 sin(θ2) + `4 sin(θ2 + θ3)
0 0 0 1


 .

(8.7)

In what follows, we are only interested in se�ing the location of the end-e�ector equal
to that of the object. In other words, we consider only the three translation components of
equation (8.6), and we only aim to find the angles θ1, θ2, θ3 such that



− sin(θ1)(`3 cos(θ2) + `4 cos(θ2 + θ3))
cos(θ1)(`3 cos(θ2) + `4 cos(θ2 + θ3))
`1 + `2 + `3 sin(θ2) + `4 sin(θ2 + θ3)


 =



v1

v2

v3


 ,

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 326

where (v1, v2, v3) is the translation vector of the displacement matrix Hbase
tableH

table
objectH

−1
desired. This

is an inverse kinematics problem.
Suppose we look for solutions where θ2 ∈]− π/2, π/2[and θ2 + θ3 ∈]− π/2, π/2[so that

the corresponding cosines are strictly positive. Then we have the following equalities:

θ1 = atan2(sin θ1, cos θ1) = atan2(−v1, v2),

`3 cos(θ2) + `4 cos(θ2 + θ3) =
√
v2

1 + v2
2,

`3 sin(θ2) + `4 sin(θ2 + θ3) = v3 − `1 − `2.

The last two equations are identical to the ones we solved for the 2-link manipulator; see
Proposition 3.1.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 327

8.1 Exercises

E8.1 Frame displacements (20 points).
Imagine the frame ΣS = (OS , {xS , yS , zS}) is fixed.

(i) First, draw the frame ΣS and then sketch the frames ΣM and ΣN determined by

HS
M =




1/2 0
√

3/2 1
0 1 0 −1

−
√

3/2 0 1/2 0
0 0 0 1


 , HN

S =




0 0 −1 0

−1/2
√

3/2 0 −
√

3√
3/2 1/2 0 −1
0 0 0 1


 .

(ii) Compute the displacement HN
M .

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 328

E8.2 Change of reference frame (14 points).

(i) Write the displacement matrix describing the position and orientation of frame 1 relative to frame 0.

x0

y0

z0

O0

O1 x1

y1

z1

3

1
1

(ii) Suppose that

A =




1 0 0 0
0 0 0 1
0 0 2 0
0 0 0 1




is a homogeneous transformation defined in frame 0. Given the homogeneous representation of a point p in
frame 0, denoted P 0, then Q0 = AP 0 is a new point in frame 0, and obtained by translating and scaling p.
What is the homogeneous transformation A defined in frame 1?

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 329

E8.3 The set of planar displacements (10 points).
Consider the set of planar displacements, i.e., displacements on the horizontal plan described by a rotation about the
vertical axis by an angle θ and a horizontal translation described by a vector [x, y]. For such a planar displacement,
we define the planar displacement matrix

H =




cos(θ) −sin(θ) x
sin(θ) cos(θ) y

0 0 1


 .

We denote the set of 3× 3 planar displacement matrices by the symbol SE(2).

(i) Show that the set of planar displacement matrices SE(2) is closed with respect to matrix multiplication, that it,
the product of two planar displacement matrices is again a planar displacement matrix.

(ii) What is the planar displacement matrix describing the zero-rotation zero-translation displacement?

(iii) Compute the inverse matrix H−1 and verify it is a planar displacement matrix.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 330

E8.4 Commuting displacements (20 points).
Let v be a unit-length vector. Consider an angle θ and a distance d. Let Rotdv(θ) be 4 × 4 displacement matrix
representing the rotation about v by an angle θ and let Transv(d) be the 4× 4 displacement matrix representing
translation along v by a distance d, so that

Rotdv(θ) =

[
Rotv(θ) 03×1

01×3 1

]
, and Transv(d) =

[
I3 dv

01×3 1

]
.

In general, displacement matrices do not commute, but when the rotations and translations are about the same
vector then they do. Perform the appropriate computations to show that the equality

Rotdv(θ) Transv(d) = Transv(d) Rotdv(θ)

is true for all v, θ, and d.
Hint: Think about how to show this commuting relationship using matrix multiplication by blocks and the properties of
rotation matrices.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 331

E8.5 Using reference frames (20 points).
Consider three robotic cameras with respective body-fixed reference frames Σ1, Σ2, and Σ3. At some time, camera
1 detects an object of interest and, through an appropriate computer-vision algorithm, estimates the object to be
located at coordinates (−2,−1, 5), as expressed with respect to Σ1. At that same time, assume the other camera
frames satisfy

H1
2 =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


 , and H3

2 =




0 0 −1 0
−0.24 −0.97 0 0
−0.97 −0.24 0 0

0 0 0 1


 .

What is the position of the object in reference frames Σ2 and Σ3?

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 332

E8.6 Kinematics of a manipulator (20 points). Consider the manipulator shown below consisting of four links con-
nected by four joints. The first joint is revolute and allows the robot to rotate about the z0 axis. The next three joints
(shown as “boxes”) are prismatic joints that can extend and retract. Assume d2, d3 and d4 can take any value between
1 and 2 and that in the shown configuration, θ1 = 0. The distance `1 is fixed, and assume it is equal to 1.

d2

d4

`1

x0

y0

z0

d3

x4

y4

z4

✓1

(i) What is the configuration space of this robot, and how many degrees of freedom does this robot have?

(ii) Determine the displacement matrix that defines frame 4 relative to frame 0. You should be able to do this by
inspection with the aid of following top view of the manipulator.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 333

x0

y0
✓1

d2 d3

✓1

O4

y4

x4

(iii) Suppose that we would like to grasp an object located at position

p0 =



−2
1.5
0




in frame 0. Find one configuration of the robot that places the origin of frame 4 at p0.
Hint: The figure from part (ii) may be helpful.

(iv) What is R4
0 (the orientation of frame 4 relative to frame 0) when the robot is grasping this object?

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 8, slide 334

Chapter 9

Linear and Angular Velocities of a Rigid Body

In this chapter we study the motion of rigid bodies and therefore of robots. We aim to understand
the notion of linear and angular velocity of a rigid body. Being able to model linear and angular
velocities is a stepping stone to analyzing, simulating and designing the motion of a rigid body.

As in the previous chapter and as illustrated in Figure 9.1, we consider two general frames:

• Σ0 = (O0, {x0, y0, z0}) is fixed in space, i.e., it does not move at all. This frame is called
the spatial frame, and

• Σ1 = (O1, {x1, y1, z1}) is fixed with the rigid body and it is called the body frame.

Moreover, we let p denote a general point, possibly moving in space. We observe that this
moving point satisfies the simple equation

ṗ0(t) = v0(t), (9.1)

where v0 is the linear velocity of the point p expressed with respect to the frame Σ0. Here, we

use the standard notation ṗ0 := dp0

dt to denote the time derivative of p0. It is worth emphasizing

335

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 9, slide 336

that, in equation (9.1), both the point and its linear velocity are expressed with respect to a fixed
frame Σ0.

p

p0

O0

x0

y0

z0

x1

y1

z1

O1

p1

O0
1

Figure 9.1: Reference frames and points in three-dimensions

Next, here are the questions we answer in this chapter:

(i) how do we describe the velocity of a rotating body or rotating frame?

(ii) what are linear and angular velocities of a moving rigid body?

(iii) what is the velocity of a time-varying rotation matrix R(t)?

(iv) assuming we understand a notion of angular velocity, in what frame is the angular velocity
expressed?

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 9, slide 337

Section 1: Angular velocity

We first perform some insightful calculations on rotation matrices and then explain their
meaning as the body angular velocity in spatial and body frame, respectively.

Time derivative of rotation matrices

Recall the set of skew symmetric matrices so(3) and the operation ̂ from R3 to so(3). In
addition, given a matrix R(t) with entries rij(t), the derivative of R(t) with respect to time is a
matrix Ṙ(t) with entries ṙij(t).

Lemma 9.1 (The time-derivative of a rotation matrix). Given a time-dependent rotation matrix
R(t) (i.e., a curve of rotations or a trajectory in the set of rotation matrices), there exist time-
dependent vectors Ωle�(t) ∈ R3 and Ωright(t) ∈ R3 such that

Ṙ(t) = Ω̂le�(t)R(t) = R(t)Ω̂right(t).

Equivalently, we can write Ω̂le�(t) := Ṙ(t)RT (t) and Ω̂right(t) := RT (t)Ṙ(t).

Proof. We reason along the following lines. To begin, we consider the equality R(t)RT (t) = I3

and compute its time derivative (dropping the time argument for simplicity)

ṘRT +RṘT = 03×3,

where 03×3 is the 3×3 matrix of zeros. If we define S(t) = Ṙ(t)RT (t), then the previous equation
implies that S(t) + ST (t) = 03×3 and, in turn, that S(t) ∈ so(3) for all times t. Therefore, there

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 9, slide 338

must exist a time-dependent vector Ωle�(t) ∈ R3 satisfying

Ω̂le�(t) = S(t) = Ṙ(t)RT (t).

Post-multiplying both sides of the la�er equation byR(t) and using the fact thatR(t)RT (t) = I3

we obtain
Ṙ(t) = Ω̂le�(t)R(t).

To obtain the alternative result, we perform the same calculations starting from the equality
R(t)TR(t) = I3. �

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 9, slide 339

Section 2: Two angular velocities

The derivative of a rotation matrix with respect to time is related to the angular velocity of a
rigid body (or, equivalently, of a frame fixed with the body). The previous lemma tells us that
di�erentiating a rotation matrix is equivalent to multiplication by a skew symmetric matrix.
Notice however that there are two ways to compute this derivative. Let us immediately clarify
the meaning of the le� angular velocity Ωle�.

Lemma 9.2 (Relationship between the “classic angular velocity” and the time derivative of a
rotation matrix). Consider a rigid body possessing a point O fixed in time and rotating about an
axis n with a scalar angular speed θ̇(t). Take two reference frames Σ0 and Σ1 coincident at time
t = 0 and with origin fixed at O. Assume Σ0 is fixed in space and Σ1 is fixed with the body. Let
R0

1(t) represent Σ1 with respect to Σ0 so that Ṙ0
1(t) = Ω̂le�(t)R0

1(t). Then

Ωle�(t) = θ̇(t)n0.

Proof. We reason along the following lines. To begin, take a point p a�ached to frame Σ1 and
note that d

dtp
1 = 0 by construction. From the classic notion of angular velocity as illustrated in

Figure 9.2, we know
d

dt
p0(t) = v0(t) = (θ̇(t)n0)× p0(t).

Next, write p0(t) = R0
1(t)p1 and di�erentiate with respect to time to obtain

d

dt
p0(t) = Ṙ0

1(t)p1 = Ω̂le�(t)R0
1(t)p1 = Ωle�(t)× p0(t),

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 9, slide 340

⌦left(t)

✓̇(t)

p0(t)

v0(t)

Figure 9.2: The angular velocity Ωleft(t) and instantaneous (or tangential) velocity v0(t) of a point p0(t)

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 9, slide 341

where we have used the property that for a vector ω and its skew-symmetric matrix ω̂ we have
that the cross product with a vector v satisfies ω × v = ω̂v (see Appendix 7).

Equating the last two formulas we obtain (θ̇(t)n0)× p0(t) = Ωle�(t)× p0(t) and, noting that
p0(t) is arbitrary, we establish the desired result. �

Thus, we see that Ωle� is a vector pointing along the axis of rotation and with length equal
to the angular speed: that is, it is the angular velocity of the rigid body.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 9, slide 342

Subsection 3: Angular velocity in spatial and body frame

Now that we have more properly the meaning of the le� angular velocity Ωle�, we are ready
to give it a more explanatory name and symbol. In previous example, Ṙ0

1(t) = Ω̂le�(t)R0
1(t)

clearly implies the following two facts:

(i) Ωle� is angular velocity of Σ1 with respect to Σ0, and

(ii) Ωle� is expressed in frame Σ0.

As a consequence of these two facts we introduce the following notion.

Definition 9.3 (Angular velocity in spatial frame). Given a rotating frame Σ1(t) (with fixed
origin), its angular velocity with respect to a fixed spatial frame Σ0 expressed in Σ0 is

Ω̂0
0,1(t) := Ṙ0

1(t)(R0
1(t))T .

Definition 9.4 (Angular velocity in body frame). Given a rotating frame Σ1(t) (with fixed origin),
its angular velocity with respect to a fixed spatial frame Σ0 expressed in Σ1 is

Ω̂1
0,1(t) := (R0

1(t))T Ṙ0
1(t).

Finally, it is interesting to consider a point p a�ached to body frame Σ1, so that ṗ1 = 0, and
compute

d

dt
p0(t) = Ω0

0,1(t)× p0(t). (9.2)

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 9, slide 343

Section 4: Linear and angular velocities

We now consider bodies that are not only rotating, but also translating. In other words, the
origin of the body-fixed frame Σ1 is moving with respect to the fixed spatial frame Σ0. In what
follows, we drop the time argument for simplicity.

Lemma 9.5 (Linear and angular velocity). Recall that we represent the location and orientation
of Σ1 with respect to Σ0 by the displacement matrix

H0
1 =

[
R0

1 O0
1

0 1

]
.

Recall the notions of angular velocity in spatial and body frames Ω0
0,1 and Ω1

0,1. Define the linear

velocity of the body-frame origin by Ȯ0
1. With these premises, we write the body velocity as a 4× 4

matrix

Ḣ0
1 =

[
Ω̂0

0,1 v0
1

01×3 0

]
H0

1 , (9.3)

where v0
1 = Ȯ0

1 − Ω0
0,1 ×O0

1. Similarly, in the body frame,

Ḣ0
1 = H0

1

[
Ω̂1

0,1 v1
1

01×3 0

]
, (9.4)

where v1
1 = R0

1Ȯ
0
1.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 9, slide 344

Proof. It is a simple calculation to compute Ḣ0
1(H0

1)−1 and show that the equalities (9.3) and (9.4)
holds true. �

Finally, it is interesting to consider a point p a�ached to body frame Σ1, so that ṗ1 = 0, and
compute

d

dt
P 0 = Ḣ0

1P
1 =

[
Ω̂0

0,1 v0
1

01×3 0

]
H0

1P
1 =

[
Ω̂0

0,1 v0
1

01×3 0

]
P 0,

so that
d

dt
p0(t) = Ω0

0,1 × p0 + v0
1 = Ȯ0

1 + Ω0
0,1 × (p0 −O0

1).

This relationship is the velocity equation for a point fixed with the body and generalizes
equation (9.2).

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 9, slide 345

Subsection 5: Basic velocities

Recall that we defined the three basic rotations in Section 6 and the six basic displacements
in Section 8. We are now in a position to present the basic “independent” velocities of a rigid
body.

First, let us consider the rotation of a rigid body and neglect its position. For a time-varying
rotation matrix, the set of angular velocities (in either spatial or body frame) is the set of skew
symmetric matrices so(3).

Second, from the results in Lemma 9.5, we know that the set of linear and angular velocities
of a rigid body is given by the following set of matrices:

se(3) =
{[S v

03×1 0

] ∣∣ S ∈ so(3), v ∈ R3
}
.

Accordingly, there are 6 basic velocity “vectors” (just like 6 basic displacements): three in-
finitesimal rotations about the three axes and the infinitesimal translations along the three
axes.

Next, it is convenient to introduce the operation ·̂ : R6 → se(3) by

̂


ωx
ωy
ωz
vx
vy
vz




=




0 −ωz ωy vx
ωz 0 −ωx vy
−ωy ωx 0 vz

0 0 0 0


 .

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 9, slide 346

With this notation, the 6 basic velocities are then ê1, . . . , ê6, where

e1 =




1
0
0
0
0
0



, e2 =




0
1
0
0
0
0



, e3 =




0
0
1
0
0
0



, e4 =




0
0
0
1
0
0



, e5 =




0
0
0
0
1
0



, and e6 =




0
0
0
0
0
1



.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 9, slide 347

Section 6: Vehicle motion models and integration

In this section we write down the di�erential equations that describe the motion of some
simple robotic vehicle; these di�erential equations are usually referred to as the equations
of motion of the vehicle. Additionally, we study how to forward integrate these equations of
motion so as to be able to simulate the vehicle motion and possible solve motion planning
problems for them.

Vehicle motion models Typical vehicles determine their motion by controlling their velocity in
the body frame. Indeed, satellite thrusters, boat propellers and aircra� propellers are a�ached
to the vehicle body. Let us present two examples of such systems.

First, consider a simplified model of fully controlled satellite described by

Ṙ(t) = R(t)
(
ω1(t)ê1 + ω2(t)ê2 + ω3(t)ê3

)
,

where ω1, ω2, ω3 are the angular velocity controls. Second, consider a simplified model of an
aircra� described by

Ḣ = H
(
v0(t)ê4 + ω1(t)ê1 + ω2(t)ê2 + ω3(t)ê3

)
,

where v0 is the forward speed and ω1, ω2, ω3 are the angular velocity controls (possibly about
the roll, pitch and yaw axis respectively); see Figure 9.3.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 9, slide 348

!1(t)

!3(t)

v0

!2(t)

Figure 9.3: Angular velocities of a three-dimensional body

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 9, slide 349

Subsection 7: Numerical integration

In what follows we aim to study how to numerically integrate the equations of motion just
described. First, consider Ṙ(t) = R(t)ω̂ with constant angular velocity ω 6= 0. The rotation
R(t+ δt) at time t+ δt is

R(t+ δt) = R(t) Rot ω
‖ω‖

(δt‖ω‖)

= R(t)
(
I3 +

sin((δt)‖ω‖)
‖ω‖ ω̂ +

1− cos((δt)‖ω‖)
‖ω‖2

ω̂2
)
.

Second, consider Ḣ(t) = H(t)(̂ω, v) with constant angular and linear velocity. At time t+ δt,
we have

H(t+ δt) = H(t)

[
R d
1 0

]
,

where

R = I3 +
sin((δt)‖ω‖)
‖ω‖ ω̂ +

1− cos((δt)‖ω‖)
‖ω‖2

ω̂2,

d =
(
I3 +

1− cos((δt)‖ω‖)
‖ω‖2

ω̂ +
‖ω‖(δt)− sin((δt)‖ω‖)

‖ω‖3
ω̂2
)
v.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 9, slide 350

9.1 Exercises

E9.1 A curve in 3D space (20 points).
Let Rotdn(θ) denote the rotation by θ about an axis n and let Transt(d) be the translation displacement by d along
t. Define

v =




1
0
0


 , and p =




0
1
0


 .

For each instant of time t, define q(t) by
[
q(t)

1

]
= Rotdv(tπ) Transv(t)

[
p
1

]
.

Do the following:

(i) (5 points) write out the matrices Rotdv(tπ) and Transv(t),

(ii) (10 points) find equations for the three components of q(t), and

(iii) (5 points) sketch the resulting curve for t in the interval [0, 10].

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 9, slide 351

E9.2 Frame changes (10 points).
Given an inertial fixed frame ΣS , sketch the position and orientation of the frame ΣM at time t = 1 if

HS
M =




cos(πt/3) 0 sin(πt/3) 1
0 1 0 −2t

− sin(πt/3) 0 cos(πt/3) 0
0 0 0 1


 .

Next, assume a point p has components pS = (1, 2, 1) with respect to ΣS . Compute

(i) the components pM (t) of p with respect to ΣM , and

(ii) the velocity ṗM (t) of p with respect to ΣM .

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 9, slide 352

Bibliography

R. S. Allison, M. Eizenman, and B. S. K. Cheung. Combined head and eye tracking system for
dynamic testing of the vestibular system. IEEE Transactions on Biomedical Engineering, 43
(11):1073–1082, 1996.

S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper. USARSim: a robot simulator
for research and education. In IEEE Int. Conf. on Robotics and Automation, pages 1400–1405,
Roma, Italy, Apr. 2007.

A. Cayley. On the Theory of Analytic Forms Called Trees. Philosophical Magazine, 13:19–30,
1857.

H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun.
Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, 2005. ISBN
0-262-03327-5.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press,
2 edition, 2001. ISBN 0262032937.

353

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 9, slide 354

J. J. Craig. Introduction to Robotics: Mechanics and Control. Prentice Hall, 3 edition, 2003. ISBN
0201543613.

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.
Computational Geometry: Algorithms and Applications. Springer, 2 edition, 2000. ISBN
3540656200.

P. Deheuvels. Strong bounds for multidimensional spacings.
Probability Theory and Related Fields, 64(4):411–424, 1983.

Z. Dodds. The bug algorithms. Lecture Slides for CS 154, Harvey Mudd College, 2006.

Epic Games, Inc. Unreal Development Kit. http://www.udk.com, 2009.

L. Euler. Solutio Problematis ad Geometriam Situs Pertinentis.
Commentarii Academiae Scientiarum Imperialis Petropolitanae, 8:128–140, 1741. Also
in Opera Omnia (1), Vol. 7, 1-10.

G. D. Hager. Algorithms for Sensor-Based Robotics. Lecture Slides for CS 336, Johns Hopkins
University, 2006.

J. H. Halton. On the e�iciency of certain quasi-random sequences of points in evaluating
multi-dimensional integrals. Numerische Mathematik, 2:84–90, 1960.

G. Kirchho�. Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der
linearen Verteilung galvanischer Ströme geführt wird. Annalen der Physik und Chemie, 148
(12):497–508, 1847.

http://www.udk.com

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 9, slide 355

M. Lewis and J. Jacobson. Game engines in scientific research. Communications of the ACM, 45
(1):27–31, 2002.

V. Lumelsky. Sensing, Intelligence, Motion: How Robots and Humans Move in an Unstructured World .
John Wiley & Sons, 2006. ISBN 0471707406.

V. J. Lumelsky and A. A. Stepanov. Path planning strategies for a point mobile automaton
moving amidst unknown obstacles of arbitrary shape. Algorithmica, 2:403–430, 1987.

M. T. Mason. Mechanics of Robotic Manipulation. MIT Press, 2001. ISBN 0262133962.

R. M. Murray, Z. X. Li, and S. S. Sastry. A Mathematical Introduction to Robotic Manipulation.
CRC Press, 1994. ISBN 0849379814.

J. Pan, S. Chi�a, and D. Manocha. FCL: a general purpose library for collision and proximity
queries. In IEEE Int. Conf. on Robotics and Automation, pages 3859–3866, Saint Paul, MN,
USA, May 2012.

B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics: Modelling, Planning and Control.
Advanced Textbooks in Control and Signal Processing. Springer, 2009. ISBN 1846286417.

M. W. Spong, S. Hutchinson, and M. Vidyasagar. Robot Modeling and Control. John Wiley &
Sons, 3 edition, 2006. ISBN 0-471-64990-2.

A. G. Sukharev. Optimal strategies of the search for an extremum.
U.S.S.R. Computational Mathematics and Mathematical Physics, 11(4):910–924, 1971.
Translated from Russian, Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki.

Robotic Planning and Kinematics, v0.91(d) (7 Apr 2016). Chapter 9, slide 356

K. Taylor and S. M. LaValle. I-bug: An intensity-based bug algorithm. In
IEEE Int. Conf. on Robotics and Automation, pages 3981–3986, Kobe, Japan, May 2009.

	1 Sensor-based Planning
	1.1 Exercises

	2 Motion Planning via Decomposition and Search
	2.1 Exercises

	3 Configuration Spaces
	3.1 Exercises

	4 Free Configuration Spaces via Sampling and Collision Detection
	4.1 Exercises

	5 Motion Planning via Sampling
	5.1 Exercises

	6 Introduction to Kinematics and Rotation Matrices
	6.1 Appendix: A primer on matrix theory
	6.2 Appendix: The theory of groups
	6.3 Exercises

	7 Rotation Matrices
	7.1 Exercises

	8 Displacement Matrices and Inverse Kinematics
	8.1 Exercises

	9 Linear and Angular Velocities of a Rigid Body
	9.1 Exercises

	Bibliography

