Target assignment for robotic networks:
asymptotic performance under limited communication

Stephen L. Smith  Francesco Bullo

Abstract— We are given an equal number of mobile robotic
agents, and distinct target locations. Each agent has simple
integrator dynamics, a limited communication range, and
knowledge of the position of every target. We address the
problem of designing a distributed algorithm that allows the
group of agents to divide the targets among themselves and,
simultaneously, leads each agent to reach its unique target.
We do not require connectivity of the communication graph at
any time. We introduce a novel assignment-based algorithm
with the following features: initial assignments and robot
motions follow a greedy rule, and distributed refinements of the
assignment exploit an implicit circular ordering of the targets.
We prove correctness of the algorithm, and give worst-case
asymptotic bounds on the time to complete the assignment as
the environment grows with the number of agents. We show that
among a certain class of distributed algorithms, our algorithm
is asymptotically optimal. The analysis utilizes results on the
Euclidean traveling salesperson problem.

I. INTRODUCTION

Consider a group of n mobile robotic agents and n target
locations, all lying in R%, d > 1. Each agent has a limited
communication range, and knows the location of some subset
(possibly all) of the n targets through GPS coordinates or a
map of the environment. The target assignment problem we
consider is to design a distributed algorithm that allows the
group of agents to efficiently divide the n targets among
themselves and, simultaneously, that leads each agent to
reach its unique target. Such a problem could arise in several
applications. For example, one could think of the agents
as UAV’s on a surveillance mission, and the targets as the
centers of their desired loitering patterns. Or in the context
of formation control, the target positions could describe the
desired formation for a group of robots.

The first question is; how would we divide the targets
among the agents in a centralized fashion? A reasonable
strategy would be to minimize the sum of the distances
traveled by each agent to arrive at its target. The problem
of optimally dividing n persons among n objects, subject
to a linear cost function, is a problem in combinatorial
optimization [1]. When the cost function is the sum, the
problem is referred to as the assignment problem, or the min-
imum weight perfect matching problem in bipartite graphs.
The assignment problem can be written as an integer linear
program. Unlike some integer linear programs, such as the
Euclidean traveling salesperson problem (ETSP), optimal
solutions for the assignment problem can be computed in
polynomial time. In 1955 Kuhn [2] developed the Hungarian
method—the first polynomial time method for solving the
assignment problem. Kuhn’s method solves the problem in

O(n?) computation time (see Section II for a definition of
the O notation).

Another approach to the assignment problem is the auction
algorithm [3], [4], [5], first proposed by Bertsekas. This
method solves the problem in O(n?) computation time, but
can be computed in a parallel fashion, with one processor
for each person. Recently, Moore and Passino [6] modified
the auction algorithm to assign mobile robots to spatially
distributed tasks in the presence of communication delays.
However, in order to exchange bids on a particular object
(task), the auction algorithm, and thus the work in [6],
requires that the communication graph between processors
(robots) is complete.

In this paper we address the target assignment problem
when each agent has knowledge of all target positions, and
a limited communication range r > 0. We introduce a class
of distributed algorithms, called assignment-based motion,
which provide a natural approach to the problem. Following
the recent interest in determining the time complexity of
distributed algorithms for robotic networks (for example, see
[7] and [8]) we study the worst-case asymptotic performance
of the assignment-based motion class as the environment
grows with n. We show that for a d-dimensional cube
environment, [0, 4(n)]?, d > 1, if the side length £(n) grows
at a rate of at least (1 + e)rnl/d, where € > 0, then the
completion time is in Q(n(?=1)/4¢(n)), for all algorithms in
this class.

In Section V we introduce a novel control and com-
munication algorithm, called ETSP ASSGMT, within the
assignment-based motion class. In this algorithm, each agent
computes an ETSP tour through the n targets, turning the
cloud of target points into an ordered ring. Agents then move
along the ring, looking for the next available target. When
agents communicate, they exchange messages of O(logn)
size, containing information on the location of the next
available target along the ring. In Section V-A, we verify the
correctness of this algorithm for any communication graph
which contains, as a subgraph, the r-disk graph. In Section V-
B, we show that when £(n) > (14 ¢)rn'/, for some € > 0,
among all algorithms in the assignment-based motion class,
the ETSP ASSGMT algorithm is asymptotically optimal (i.e.,
a constant factor approximation of the optimal). Finally, in
Section V-D, we note that the ETSP ASSGMT algorithm
solves the target assignment problem in the case when there
are n agents and m targets, with n # m. Due to space
constraints, all proofs have been omitted and can be found
in [9].



II. BACKGROUND

In this section we introduce notation and review some
relevant results in combinatorial optimization.

A. Notation

We let R denote the set of real numbers, R~ denote
the set of positive real numbers, and N denote the set of
positive integers. For a set finite A we let |A| denote its
cardinality. For two functions f,g : N — Ry(, we write
f(n) € O(g) (respectively, f(n) € €(g)) if there exist
N € N and ¢ € Ry such that f(n) < cg(n) for all
n > N (respectively, f(n) > cg(n) for all n > N). If
() € Olg) and f(n) € Dg) we say f(n) € O(g).
Finally, we use the notation (mod m) to denote arithmetic
performed modulo n € N. Thus, for an integer n € N
we have n +1 = 1 (mod n) and 0 = n (mod n), and
{n—1,n,n+1} ={n—1,n,1} (mod n).

B. The assignment problem

Following [4], the classical assignment problem can be
described as follows. Consider n persons who wish to divide
themselves among n objects. For each person ¢, there is
a nonempty set Q[ of objects that i can be assigned to,
and cost ¢;; > 0 associated to each object j € Qll. An
assignment S is a set of person-object pairs (¢, j) such that
j e Qi for all (i,j) € S. For each person ¢ (likewise,
object j), there is at most one pair (4,j) € S. We call the
assignment complete if it contains n pairs. The goal is to
find the complete assignment which minimizes (i.j)es Cij-

Let z;; be a set of variables fori and jinZ := {1,...,n}.
For an assignment S, we write z;; = 1 if (4,5) € S, and
235 = 0 otherwise. Thus, the problem of determining the
optimal assignment can be written as a linear program:

n

minimize E E CijTijs

i=1 jeQli
subject to Z zi; =1 Viel,
jeqlil
> wy=1 VjerL
{iljeQlil}
x5 > 0.

We cannot use linear inequalities to write the constraint that
x;;’s attain only the values zero and one. However, it turns
out, [4], that there always exists an optimal solution in which
the x;;’s satisfy our integer assumption.

C. The Euclidean traveling salesperson problem

Let Q be a set of n points in a compact environment
E Cc R d > 1, and let Q,, be the set of all point sets
Q C & with |Q] = n. Let ETSP(Q) denote the cost of
the ETSP tour over the point set Q, i.e., the length of the
shortest closed path through all points in Q. An important
result, from [10], is that given a compact set &£, there exists
a finite constant (&) such that, for all Q € Q,,,

ETSP(Q) < a(&)ntd—1/4, (1)

In fact, we have that in the worst-case setting, the ETSP(Q)
belongs to O (n(d=1/d),

In our application of these results it will be useful to
consider the case where the environment grows with the
number of points. That is, we are interested in environments
which are cubes, [0,4(n)]%, d > 1, where £(n) is the side
length of the cube. Applying a simple scaling argument to
the result in (1), we arrive at the following corollary.

Corollary 2.1 (ETSP tour length): Consider an environ-
ment £ = [0,4(n)]¢, where d > 1. For every point set
Q € Q,,, we have ETSP(Q) € O(n(?=1/4¢(n)).

The problem of computing an optimal tour is known to
be NP-complete. However, there exist heuristics which can
be computed efficiently and give a constant factor approxi-
mation to the optimal tour. The best known approximation
algorithm is due to Christofides [11]. The Christofides’
algorithm computes a tour that is no more than 3/2 times
longer than the optimal. It runs in time O(n?®). Another
method, known as the double-tree algorithm, produces tours
that are no longer than twice the optimal, in run time O(n?).

III. PROBLEM FORMULATION

To describe the target assignment problem formally, con-
sider n agents in an environment £(n) C RY, d > 1. The
environment & (n) is compact for each n but may grow with
the number of agents. For ease of presentation let £ :=
[0, £(n)]?, where £(n) > 0 (that is, € is a d-dimensional cube
with side length ¢(n)). Each agent has a unique identifier
(UID) taken from the set Iyy;p € N. For simplicity, we
assume that I;rp :=Z = {1,...,n}. However, each agent
does not know the set of UIDs being used (i.e., agent n
does not know it has the largest UID). Agent i € 7 has
position pm € &. Two agents, ¢ and k in Z, are able to
communicate if and only if ||p!’l — p*!|| <, where r > 0
is called the communication range. We refer to the graph
representing the communication links as the r-disk graph.
Agent i’s kinematic model is pl/ = ull, where ul? is a
velocity control input bounded by v > 0. We assume that the
agents move in continuous time and communicate according
to a discrete time communication schedule consisting of an
increasing sequence of time instants with no accumulation
points, {tx}ren. We assume that [t — tg| < tmae, fOr
all £ € N, where t,,, € Rsg. At each communication
round, agents can exchange messages of length O(logn). !
We assume that communication round & occurs at time ¢y,
and that all messages are sent and received instantaneously at
ti. Motion then occurs from ¢y, until ¢ . It should be noted
that in this setup we are emphasizing the time complexity
due to the motion of the agents.

Let Q :={qi,...,q,} be a set of distinct target locations,
q; € & for each j € 7. Agent 7 is equipped with memory
MU, of size |MU]. In this memory, agent i stores a set
of target positions, Qlil C Q. These are the targets to which
agent 7 can be assigned. We let QU (0) denote agent 4’s initial

'The number of bits required to represent an ID, unique among n agents,
grows with the logarithm of n.



target set. In this paper we assume that each agent knows the
position of every target. That is, olil (0) = Qforeachi e Z.
We refer to this as the full knowledge assumption. To store
this amount of information we must assume that the size of
each agents’ memory, | M (2 |, grows linearly with n. Our goal
is to solve the full knowledge target assignment problem:

Determine an algorithm for n € N agents, with
attributes as described above, satisfying the follow-
ing requirement. There exists a time 7' > 0 such
that for every agent ¢ € Z, there is a unique target
q;, € Ql(0) with plil(t) = qj, for all time t > T,
where j; = ji if and only if ¢ = k.
In the remainder of the paper, we will refer to this as the
target assignment problem.

Remark 3.1 (Consistent knowledge): A more general as-
sumption on the initial target sets, Q1) (0), which still ensures
the existence of a complete assignment, is the consistent
knowledge assumption: For each K C 7, K1 (0 =
|C|]. In fact, it was proved by Frobenius, 1917, and Hall,
1935 that this is the necessary and sufficient condition for
the existence of a complete assignment [1]. .
In the full knowledge assumption, each agent knows the
position of all targets in Q. These positions will be stored
in an array within each agents memory, rather than as
an unordered set. To represent this, we replace the target
set Q with the target n-tuple q := (q1,...,dn), and the
local target set Q) with the n-tuple qll. Thus, in the full
knowledge assumption, ql(0) := q for each i € Z. (It is
possible that the order of the targets in the local sets q[¥l may
initially be different. However, given a set of distinct points
in R?, it is always possible to create a unique ordering.)

IV. ASSIGNMENT-BASED ALGORITHMS WITH LOWER
BOUND ANALYSIS

In this section we introduce and analyze a class of deter-
ministic algorithms for the target assignment problem.

A. The assignment-based motion class

The initialization, motion, and communication for each
algorithm in the assignment-based motion class have the
following attributes:

Initialization: In this class of algorithms agent  initially
selects the closest target in q[i], and sets the variable currl?
(agent 7’s current target), to the index of that target.

Motion: Agent i moves toward the target currl’ at
constant speed v > 0:

[1] pl?

u||1[] .
p[l] — v Hq —pli||’ curr[7 7& p

0, otherwise,

2

curr[?]

Communication: If agent : communicates with an agent
k that is moving toward curr® = currl’, and if agent k is
closer to currl’) than agent i, then agent 7 “removes” currl’]
from q!” and selects a new target. The communication is
described in more detail in the following.

Communication round for agent <.
1: Broadcast a message, msgl?l, based on q[% and containing currl?]
and the UID <.
: Receive msF (%] from each agent k within communication range.
- for all msg(¥] received do
Based on msg[’C (possibly) remove assigned targets from qli.
if currl?l = curr k] then
If agent ¢ is farther from currl? than agent k, or if they are
the same distance but i < k, remove currl? from q[ ]
7: Set currld to a target in qld.

AR

B. Lower bound on task complexity

In order to classify the time complexity (i.e., the comple-
tion time) of the assignment-based motion class of algorithms
in solving the target assignment problem, we introduce a few
useful definitions. We say that agent i € Z is assigned to
target qg-l], j € Z, when currll = j. In this case, we also
say target j is assigned to agent ¢. We say that agent ¢+ € 7
enters a conflict over the target currl’l, when agent i receives
a message, msgl¥l, with currld = curr®l. Agent i loses the
conflict if agent i is farther from currl’l than agent k, and
wins the conflict if agent i is closer to currl’ than agent k,
where ties are broken by comparing UIDs.

Now we show that if agent ¢ is assigned to the same target
as another agent, it will enter a conflict in finite time.

Lemma 4.1 (Conflict in finite time): Consider any com-
munication range r > 0, and any fixed number of agents
n € N. If, for two agents ¢ and k, currl! = curr*! at some
time t; > 0, then agent ¢ (and likewise, agent k) will enter
a conflict over currl” in finite time.

With these definitions we give a lower bound on the
time complexity of the target assignment problem when the
environment grows with the number of agents.

Theorem 4.2 (Time complexity of target assignment):
Consider n agents, with communication range r > 0, in an
environment £ = [0,4(n)]?, d > 1. If £(n) > (1 + €)rn'/?,
where € € Ry, then for all algorithms in the assignment-
based motion class, the time complexity of the target
assignment problem is in Q(n(?=1/4¢(n)).

Remark 4.3 (£(n) < Leri¢): We have lower bounded the
time complexity when ¢(n) grows faster than some critical
value, £y = rn'/%. This same type of bound appears in
percolation theory and the study of random geometric graphs,
where it is referred to as the thermodynamic limit [12].
When £4(n) < {..;t, congestion issues in both motion and
communication become more prevalent, and a more complex
communication and motion model would ideally be used.
In the next section we introduce an asymptotically optimal
algorithm in the assignment-based motion class.

V. THE ETSP ASSGMT ALGORITHM

In this section we introduce the ETSP ASSGMT
algorithm—an algorithm within the assignment-based mo-
tion class. We will show that when ¢(n) grows more quickly
than a critical value, this algorithm is asymptotically optimal.
The algorithm can be described as follows.

For each 7 € 7, agent 7% computes a constant factor
approximation of the optimal ETSP tour of the n targets in
q”, denoted tour(q”). We can think of tour as a map which
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Fig. 1. The map tour, creating an ETSP tour of seven targets.

nextl! =1

currll = 7

plil o’
prevlil =6
4
Fig. 2. The initialization for agent 4.

reorders the indices of q”); tour(ql!) = (q[gi](l), e qc[:}(n)),
where o : 7 — T is a bijection. Notice that this map is
independent of ¢ since all agents use the same method. An
example is shown in Fig. 1. Agent ¢ then replaces its n-
tuple gl with tour(q[l]). Next, agent ¢ computes the index
of the closest target in g, and calls it currl’. Agent i also
maintains the index of the next target in the tour which may
be available, next!’l, and first target in the tour before currl’]
which may be available, prev(!l. Thus, nextl! is initialized
to currld + 1 (mod n) and prevl? to curtd — 1 (mod n).
This is depicted in Fig. 2. In order to “remove” assigned
targets from the tuple g, agent i also maintains the n-
tuple, status!’. Letting statusl’(5) denote the jth entry in the
n-tuple, the entries are given by

if agent ¢ knows qg-z] is assigned
to another agent, 3)

?

status! () =
1, otherwise.

Thus, status! is initialized as the n-tuple (1, 1). The ini-
tialization is summarized in Table I. At each communication

TABLE I
THE INITIALIZATION PROCEDURE FOR AGENT 7.

Initialization for agent i.

Assumes: (" := q for each i € Z.
1: Compute a TSP tour of ql, toqr(q[i]), and set qld := tour(ql?).
2: Compute the closest target in q!?, and set currl?] equal to its index:

currl) = arg min ez {|la}’ — pl7|}.
3: Set nextl! := currl’ + 1 (mod n).
4: Set prevld := currld — 1 (mod n).
5: Set status/i ;= 1, (i.e., an n-tuple containing n ones).

round agent ¢ executes the algorithm COMM-RD displayed in
Table II at the end of the paper. The following is an informal
description.

next* = nextl! = 1

currl! = currl! = 7

k] — &
rev"l =
P 0 4

(a) Setup before the conflict over target 7.

currll =1

currlfl =7

2 = next/* = nextl!

previt = prevl! = 5
4

(b) Setup after resolution of the conflict.

Fig. 3. The resolution of a conflict between agents ¢ and k over target 7.
Since agent k is closer to target 7 than agent 7, agent k wins the conflict.

Informal description of COMM-RD for agent ¢

Assumes: status”( ) = 0 for each s € {prevl + 1, prevlll +
2,...,nextl — 1} \ {currl!} (mod n).
1: Broadcast msg[ d , consisting of the target indices, prev[ i, currl?, and
nextl?], the UID 4, and the distance to the current target, dlstm
2: for all messa%es msg[k received do
3: Set statusl? to assigned (‘0’) for each target j from prev[k] +
1 (mod n) to next[k] -1 (mod n) not equal to currld,
4:if prevl®l = next!*] = currl*! + currl? then
5: Set the status of currl*] to 0 (because it was missed in the
previous step).
6: if currd = curr(*] but agent ¢ is farther from currl¥ than agent k
(ties broken with UIDs) then

7: Set the status of currl!l to assigned (‘0°).
8: if currlil = culjr[k] and agent ¢ is closer than agent k then
9: Leave currl? unchanged. However, agent k will set currl*! to

a new target. This tar%et will be at least as far along the tour
as the farther of next(*] and next*]. So, set the status of nextl?!
and next[*] to assigned (‘0°).

10: if the status of every target is assigned (‘0’) then

11: Exit ETSP ASSGMT and stop motion. (This can occur only if

there are more agents than targets and every target is assigned.)

12: else

13: Update currl? to the next target in the tour with status available

‘1), nextlé to the next available target in the tour after currm,
and prevld to the first available target in the tour before currlé].

Fig. 3 gives an example of COMM-RD resolving a conflict
between agents ¢ and k, over currl = currl*], In this figure,
all other agents are omitted.

We are now ready to define the ETSP ASSGMT algorithm.

Definition 5.1 (ETSP ASSGMT): The ETSP ASSGMT al-
gorithm is the triplet consisting of the initialization of each
agent (see Table I), the motion law in (2), and COMM-RD (see
Table II), which is executed at each communication round.

A. Correctness of ETSP ASSGMT

We will now prove the correctness of ETSP ASSGMT. It
should be noted that this result is valid for any communica-



tion graph which contains the r-disk graph as a subgraph. In
order to prove correctness, let us first present some properties
of the algorithm.

Lemma 5.2 (ETSP ASSGMT properties): During an exe-
cution of ETSP ASSGMT the following statements hold:

(i) Once target j € Z, is assigned to some agent, the
assignment may change, but target j remains assigned
for all time.

(ii) Agent i is assigned to the target currl’) which satisfies
status(®! (currl?) = 1.

(iii) For agent i, status(’l(j) = 0, for each j € {prevl® +
1,previd +2 ... nextld — 11\ {currl!} (mod n).

(iv) For agent i, status!’)(j) = 0 only if target j is assigned
to some agent k # .

(v) If, for agent 1, status!? (j) = 0 at some time ¢;, then
statusl’l (j) = 0 for all ¢ > t;.

(vi) If agent i receives msgl*! during a communication
round, agent i will set statusl’l(j) = 0 for each j €
{prevl®l +-1,. .. next™ — 13\ {currl?} (mod n).

With these properties we are now ready to present the
main result of this section.

Theorem 5.3 (Correctness of ETSP ASSGMT): For any
fixed n € N, ETSP ASSGMT solves the target assignment
problem.

The following remark displays that the ETSP ASSGMT
algorithm does not solve the target assignment under the
consistent knowledge assumption.

Remark 5.4 (Consistent knowledge: cont’d): Consider as
in Remark 3.1 the consistent knowledge assumption for each
agent’s target set. Specifically, consider two agents, 1 and 2,
with initial target sets Q1(0) = {q2}, Q#(0) = {q1,q2},
and any initial positions such that p/(0) = qo, We will

have currl? = currl/l = 2. However, agent 2 will win the
conflict over target 2. Thus, agent 1 will set status!*(2) = 0,
and a complete assignment will not be possible. )

B. Time complexity for ETSP ASSGMT

In this section we will give an upper bound on the time
complexity for ETSP ASSGMT. We will show that when
{(n) > (14 €)rn'/?, for some € € R~g, ETSP ASSGMT is
asymptotically optimal among algorithms in the assignment-
based motion class. Before doing this, let us first comment
on the lower bound when the environment grows at a slower
rate.

In what follows we show that if an agent arrives and
remains at its assigned target for sufficiently long time, then
it stays there for all subsequent times.

Lemma 5.5: Consider n agents executing ETSP ASSGMT
with communication range > 0 and assume the time delay
between communication rounds, &4, satisfies .4, < 7/v.
If there exists a time ¢; and an agent i such that pl’/(t) =
currl® for all ¢ € [t1,t1 4 tymas). then pli(t) = currld for all
t> tl + tmaw'

With this lemma we are now able to provide an upper bound
on the time complexity of our scheme.

Theorem 5.6 (Time complexity for ETSP ASSGMT):
Consider n agents and n targets in [0,4(n)]%, d > 1.

If tyae < 7/v, then ETSP ASSGMT solves the target
assignment problem in O(n(4=1/4¢(n) 4+ n) time. If, in
addition, ¢(n) > (1 + €)rn'/¢, where ¢ € Rsq, then
the time complexity is in ©(n(4=1/%(n)), and ETSP
ASSGMT is asymptotically optimal among algorithms in the
assignment-based motion class.

Notice that when #(n) satisfies the bound in Theorem 5.6,
and £(n) € O(n'/%), the time complexity is in O(n).

We have given complexity bounds for the case when r and
v are fixed constants, and ¢(n) grows with n. We allow the
environment £(n) to grow with n so that, as more agents are
involved in the task, their workspace is larger. An equivalent
setup would be to consider ¢ to be fixed, and allow r and v
to vary inversely with the n. That is, we can introduce a set
of parameters, ¢ = 1, and #(n) and ©(n) such that the time
complexity will be the same as for the parameters 7, v, £(n).

Corollary 5.7 (Scaling radius and speed): Consider
n agents in the environment & = [0,1]¢, with speed
¥(n) :=v/€(n), and communication radius 7(n) := r/€(n),
where ¢(n) > (1 + €)rn'/4, and ¢ € Rsq. Then ETSP
ASSGMT solves the target assignment problem with time
complexity in ©(n(4=1/4¢(n)).

Scaling the communication radius r inversely with the
number of agents arises in the study of wireless networks
[13]. In wireless applications there are interference and
media access problems between agents in the network. Since
the agents are in a compact environment, the only way to
limit this interference is to scale the communication radius
inversely with the number of agents. Scaling the agent speed
inversely with n appears in the study of the vehicle routing
problem in [7]. The inverse scaling is required to avoid
collisions in the presence of traffic congestion.

C. Simulations

We have simulated ETSP ASSGMT in R? and R®. To
compute the ETSP tour we have used the concorde
TSP solver.? A representative simulation for 15 agents in
[0,100]> € R? with r = 15 and v = 1 is shown in Fig.
4. The initial configuration shown in Fig. 4(a) consists of
uniformly randomly generated target and agent positions.

D. The case of n agents and m targets

It should be noted that the ETSP ASSGMT algorithm
works without any modification when there are n agents and
m targets. If m > n, at completion, n targets are assigned
and m — n targets are not. When, m < n, at completion,
all m targets are assigned, and the n — m unassigned agents
come to a stop after losing a conflict at each of the m targets.
The complexity bounds are changed as follows.

The lower bound on the assignment-based motion class
in Theorem 4.2, holds when m > n, and ¢(n) > (1 +
e)rml/ ¢ (notice the m instead of n). The bound becomes
Q(U(n)ym=n). If m = Cn where C € Rsq, (e, m >n
but they grow at the same rate), then the bound becomes
Q(¢(n)n(4=1/) The upper bound on ETSP ASSGMT holds

2The concorde TSP solver is available for research use at
http://www.tsp.gatech.edu/concorde/index.html



(a) Initial agent and target positions. (b) Positions after 30 time units.

(c) Positions after 90 time units.

(d) Complete target assignment.

Fig. 4. Simulation for 15 agents, with v = 1 and » = 15. in an environment
[0, 100]3. The targets are spheres and the agents are cubes. An edge is drawn
between two agents when they are within communication range.

for any n and m, and becomes O(£(n)N(4=1/4) where
N := min{n,m}. So our final result would be that if
m = Cn where C' € R>; and when ¢(n) > (1 + ¢)rm!/4,
then ETSP ASSGMT solves the target assignment problem
in ©(¢(n)nd=D/d),

VI. CONCLUSIONS

We have developed the ETSP ASSGMT algorithm for
solving the full knowledge target assignment problem. We
derived worst-case asymptotic bounds on the time complex-
ity, and we showed that among a certain class of algorithms,
ETSP ASSGMT is asymptotically optimal. There are many
possible extensions of this work. We have not given a lower
bound on the time complexity of ETSP ASSGMT when
£(n) < Lepir. Also, the problem is unsolved under the more
general consistent knowledge assumption. We would like to
extend the ETSP ASSGMT algorithm to agents with non-
holonomic motion constraints. Also, it would be interesting
the case where agents acquire target positions through local
sensing. Finally, to derive asymptotic time bounds, we made
some assumptions on the communication structure at each
communication round. An interesting avenue for future study
would be to more accurately address the communication
issues in robotic networks.

REFERENCES
[1] B. Korte and J. Vygen, Combinatorial Optimization: Theory and

Algorithms. No. 21 in Algorithmics and Combinatorics, New York:
Springer Verlag, 3 ed., 2005.

TABLE I
COMMUNICATION ROUND (COMM-RD) FOR AGENT 4.

Name: COMM-RD

Goal: Obtain information on assigned targets.

Assumes: (i) Knowledge of the n-tuple g, and a method for
computing a constant factor TSP tour of the n targets,
tour. (ii) A communication range 7 > 0.

1: Compute distl? := ||pl] — qm i ll-

curr!
2: Broadcast msg[i] = (prevm,curr[i],next[i],i,dist[i]).

3: Receive msgl¥l, from each k # i satistying ||pl — plF]|| < 7.
4: for all msg[k] received do

5 for s = prevl¥! + 1 to next!*] — 1 (mod n) do

6 if s # currll then

7: Set status(’!(s) := 0

8: if prevl®] = next(*] = currl*] # currl’] then

9 Set statusl?! (currl¥1) := 0

10: if currld = currl*! then

11: if (dist > dist*l) OR (distl!l = dist!*] AND i < k) then
12: Set status( (currl’l) := 0.

13: else

14: if nextd £ currl? then

15: Set status!? (next[1) := 0.

16: if next*] £ currl’l then

17: Set status(” (next(¥]) := 0.

18: if statusl?] (j) = 0 for every target j then
19: Exit ETSP ASSGMT and stop motion.

20: else ) )
21:  while st_atus[l] (cur_rm):O do
22: currld := currld + 1 (mod n).

23:  Set nextll] = curr[i]_ + 1 (mod n).
24:  while statusl*! (next(")=0 do

25: next!? ::‘next[i] + 1 (mod n).
26:  while status[”‘] (pre\/_[”“] )=0 do
27: prev(l := prevld — 1 (mod n).

[2] H. W. Kuhn, “The Hungarian method for the assignment problem,”
Naval Research Logistics, vol. 2, pp. 83-97, 1955.

[3] D. P. Bertsekas and D. A. Castaiién, “Parallel synchronous and
asynchronous implementations of the auction algorithm,” Parallel
Computing, vol. 17, pp. 707-732, 1991.

[4] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compu-
tation: Numerical Methods. Belmont, MA: Athena Scientific, 1997.

[5] D. A. Castafién and C. Wu, “Distributed algorithms for dynamic
reassignment,” in IEEE Conf. on Decision and Control, (Maui, HI),
pp. 13-18, Dec. 2003.

[6] B. J. Moore and K. M. Passino, “Distributed task assignment for
mobile agents,” IEEE Transactions on Automatic Control, 2006. to
appear.

[7]1 V. Sharma, M. Savchenko, E. Frazzoli, and P. Voulgaris, “Time
complexity of sensor-based vehicle routing,” in Robotics: Science and
Systems (S. Thrun, G. Sukhatme, S. Schaal, and O. Brock, eds.),
pp- 297-304, Cambridge, MA: MIT Press, 2005.

[8] S. Martinez, F. Bullo, J. Cortés, and E. Frazzoli, “On synchronous
robotic networks — Part I: Models, tasks and complexity notions. &
Part II: Time complexity of rendezvous and deployment algorithms,”
IEEE Transactions on Automatic Control, Apr. 2005. Submitted.

[9] S. L. Smith and F. Bullo, “Target assignment for robotic networks:
asymptotic performance under limited communication.” Available
electronically at http://arxiv.org/abs/cs.RO/0703067, Mar. 2007.

[10] K. J. Supowit, E. M. Reingold, and D. A. Plaisted, “The traveling
salesman problem and minimum mathcing in the unit square,” SIAM
Journal on Computing, vol. 12, pp. 144-156, 1983.

[11] N. Christofides, “Worst-case analysis of a new heuristic for the travel-
ing salesman problem,” Tech. Rep. 388, Carnegie-Mellon University,
Pittsburgh, PA,, Apr. 1976.

[12] M. Penrose, Random Geometric Graphs. Oxford Studies in Probabil-
ity, Oxford, UK: Oxford University Press, 2003.

[13] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” I[EEE
Transactions on Information Theory, vol. 46, no. 2, pp. 388—404, 2000.



