
Target assignment for robotic networks:

Worst-case and stochastic performance in dense environments

Stephen L. Smith Francesco Bullo

Abstract— Consider an equal number of mobile robotic
agents and distinct target locations dispersed in an environment.
Each agent has a limited communication range and knowledge
of every target’s position. We study the following target assign-
ment problem: design a distributed algorithm with which the
agents divide the targets among themselves and, simultaneously,
move to their unique target. This paper focuses on “dense”
environments, where the sum of the communication footprints
is larger than the area of the environment. We introduce the
class of monotonic algorithms, whose worst-case completion
time is lower bounded by the area of the environment. We
propose a monotonic algorithm called GRID ASSGMT and
characterize its asymptotic performance: First, the algorithm is
an asymptotically optimal monotonic algorithm for worst-case
initial conditions. Second, for uniformly randomly distributed
agents and targets the completion time is upper bounded by
the diameter of the environment with high probability. Third,
if the number of agents exceeds the number of targets by a
logarithmic factor, then the completion time is constant with
high probability. Our algorithm also solves a sensor based target
assignment problem where agents have no initial knowledge of
target positions, but acquire them via limited range sensing.

I. INTRODUCTION

Consider n mobile robotic agents, equipped with wireless

transceivers for limited range communication, dispersed in an

environment E ⊂ R
2. Suppose the environment also contains

n target locations, and each agent is given a list of their

positions (the positions may be GPS coordinates). The task

is for the agents to divide the targets among themselves so

that in minimum time, each target location is occupied by an

agent. Since no a priori target-agent assignment is given, the

agents must solve the problem through communication and

motion. This target assignment problem could arise in several

applications, such as UAV’s on a surveillance mission, where

the targets are the centers of their desired loitering patterns.

Alternatively, one could imagine a mobile sensor network

roughly deployed in a remote or hostile environment; the

sensors must solve a target assignment problem to reach the

desired (target) configuration.

a) Centralized and parallel assignment: There is a

wealth of literature on solving centralized versions of the

target assignment problem. The problem of assigning one

agent to each target is known as the maximum matching prob-

lem. The problem of finding a complete assignment/matching

which minimizes the sum of distances (respectively, the

maximum distance) from each agent to its assigned target,

This material is based upon work supported in part by ARO MURI Award
W911NF-05-1-0219 and NSF SENSORS Award IIS-0330008.

S. L. Smith and F. Bullo are with the Center for Control, Dynamical
Systems and Computation, University of California, Santa Barbara, CA
93106, USA, {stephen,bullo}@engineering.ucsb.edu

is known as the sum assignment (respectively, bottleneck

assignment) problem. There exist efficient polynomial time

algorithms for the solution of all these problems [1], [2], [3].

Additionally, the sum assignment problem can be solved in a

parallel fashion via the auction algorithm [4]. However, these

solutions do not directly apply to our problem where, due to

the agents’ limited communication range, the communication

topology is time-varying, and possibly disconnected.

b) Target/task assignment in robotic networks: There

has been a significant amount of work on decentralized

task assignment for UAVs (or UGVs), see for example [5],

[6], [7], [8]. The goal is generally to assign vehicles to

spatially distributed tasks while maximizing the “score” of

the mission. These works develop advanced heuristic meth-

ods, and demonstrate their effectiveness through detailed

simulation or real world implementation. In [9] the auction

algorithm is adapted to solve a task allocation problem in the

presence of communication delays. There has also been prior

work on target assignment problems [10], [11]. In [10] the

authors formulate a target assignment problem as a multi-

player game and seek to optimize a global utility. In [11] an

algorithm based on hybrid systems tools is developed and its

performance is characterized by a bound on the number of

switches of the hybrid system.

In [12] we began an investigation into the scalability prop-

erties of the minimum-time target assignment problem for

agents with limited communication capabilities. We focused

on characterizing the completion time as the number of

agents, n, grows, and the environment E(n) grows to accom-

modate them. We introduced the ETSP ASSGMT algorithm

with worst-case completion time in O(
√

|E(n)|n).1

c) Contribution: In this paper we introduce a broad

class algorithms called monotonic algorithms. We show

that in “sparse” environments where communication is in-

frequent, i.e., when |E(n)|/n → +∞, every monotonic

algorithm has worst-case completion time in Ω(
√

|E(n)|n).
In “dense” environments, i.e., when |E(n)|/n → 0+, every

monotonic algorithm has worst-case completion time in

Ω(|E(n)|). We then develop a novel distributed monotonic

algorithm called GRID ASSGMT. In this algorithm, the agents

partition the environment into cells, and determine local

maximum assignments in the cell which they occupy. A

leader is elected in each cell, and through communication

between leaders of adjacent cells, local assignments are

merged into a complete global assignment. We show that the

1|E(n)| denotes the area of E(n), and, O(·) and Ω(·) are the asymptotic
notations for upper and lower bounds, respectively (see Section II).

worst-case completion time of the GRID ASSGMT algorithm

belongs to O(|E(n)|). Thus, in “dense” environments GRID

ASSGMT is an asymptotically optimal monotonic algorithm

for worst-case initial conditions. Hence, our two algorithms

are complementary: ETSP ASSGMT has better performance

in sparse environments, while GRID ASSGMT has better

performance in dense environments. We also characterize

the GRID ASSGMT algorithms’ stochastic performance in

“dense” environments. First, if the agents and targets are

uniformly randomly distributed, then the completion time be-

longs to O(
√

|E(n)|) with high probability. Second, if there

are n agents and only n/ log n targets, then the completion

time belongs to O(1) with high probability. Due to space

constraints all proofs are omitted, and can be found in [13].

II. COMBINATORIC AND STOCHASTIC PRELIMINARIES

In this section we review a few useful results on the cen-

tralized matching problem, occupancy problems, and random

geometric graphs. We let R, R>0 and N denote the set of

real numbers, the set of positive real numbers, and the set of

positive integers, respectively. Given a finite set A, we let |A|
denote its cardinality, and given an infinite set A ⊂ R

2 we

let |A| denote its area. For two functions f, g : N → R>0, we

write f(n) ∈ O(g) (respectively, f(n) ∈ Ω(g)) if there exist

N ∈ N and c ∈ R>0 such that f(n) ≤ cg(n) for all n ≥ N
(respectively, f(n) ≥ cg(n) for all n ≥ N). If f(n) ∈ O(g)
and f(n) ∈ Ω(g), then we say f(n) ∈ Θ(g). We say

that event A(n) occurs with high probability (w.h.p.) if the

probability of A(n) occurring tends to one as n → +∞.

A. Centralized matching

Consider n persons and the problem of dividing them

among n tasks. For each person i, there is a nonempty set

Q[i] of tasks to which i can be assigned. An assignment or

matching M is a set of person-task pairs (i, j) such that

j ∈ Q[i] for all (i, j) ∈ M , and such that for each person i
(likewise, task j) there is at most one pair (i, j) ∈ M . The

matching M is a maximum matching if for every matching

M̃ , we have |M̃ | ≤ |M |. If |M | = n, then the matching

is complete. The matching M is maximal if there does not

exist a matching M̃ , such that M̃ is a strict superset of M .

Let us present a simple algorithm for computing a maximal

matching. In this algorithm we choose the target-agent pair

with lowest cost, add it to our matching, remove that target

and agent from the problem, and repeat. If each person

can be assigned to any of the n tasks, then this algorithm

determines a complete, and thus maximum, matching.

MAXIMAL MATCH, outputs a maximal matching M

Initialize M := ∅, and Ii := {1, . . . , n}.1

while there exists an i ∈ Ii with |Q[i]| 6= 0 do2

Compute the indices (i∗, j∗) := arg mini∈Ii,j∈Q[i] cij3

Set M := M ∪ (i∗, j∗), Ii := Ii \ {i∗}, and for each i ∈ Ii,4

Q[i] := Q[i] \ {j∗}

B. Occupancy problems

Occupancy problems are concerned with randomly dis-

tributing m balls into n equally sized bins. The two results

we present here will be useful in our analysis.

Theorem 2.1 (Occupancy properties, [14], [15]):

Consider uniformly randomly distributing m balls into n
bins and let γ be any function such that γ(n) → +∞ as

n → +∞. The following statements hold:

(i) if m = n, then w.h.p. each bin contains O
(

log n
log log n

)

balls;

(ii) if m = n log n + γ(n)n, then w.h.p. there exist no

empty bins;

(iii) if m = n log n − γ(n)n, then w.h.p. there exists an

empty bin;

(iv) if m = Kn logn, where K > 1/ log(4/e), then w.h.p.

every bin contains Θ(log n) balls.

We will be interested in partitioning a square environment

into equally sized and openly disjoint square bins such that

the area of each bin is “small.” To do this, we require the

following simple fact.

Lemma 2.2 (Dividing the environment): Given n ∈ N

and rcomm > 0, consider a square environment E(n). If E(n)
is partitioned into b2 equally sized and openly disjoint square

bins, where b := ⌈
√

5|E(n)|/rcomm⌉, then the area of each

bin is no more than r2
comm/5. Moreover, if x, y ∈ E(n) are

in the same bin or in adjacent bins, then ‖x − y‖ ≤ rcomm.

C. Random geometric graphs

For n ∈ N and rcomm ∈ R>0, a planar geometric graph

G(n, rcomm) consists of n vertices in R
2, and undirected

edges connecting all vertex pairs {x, y} with ‖x − y‖ ≤
rcomm. We also refer to this as the rcomm-geometric graph. If

the vertices are randomly distributed in some subset of R
2,

then we call the graph a random geometric graph.

Theorem 2.3 (Connectivity of geometric graphs, [16]):

Consider the random geometric graph G(n, rcomm) obtained

by uniformly randomly distributing n points in the square

environment E(n) with πr2
comm/|E(n)| = (log n + γ(n))/n.

Then G(n, rcomm) is connected w.h.p. if and only if

γ(n) → +∞ as n → +∞.

This theorem will be important for understanding some

of our results, as it provides a bound on the environment

size necessary for the communication graph of n randomly

deployed agents to be asymptotically connected.

III. NETWORK MODEL AND PROBLEM STATEMENT

In this section we formalize our agent and target models

and define the sparse and dense environments.

A. Robotic network model

Consider n agents in an environment E(n) := [0, ℓ(n)]2 ⊂
R

2, where ℓ(n) > 0 (that is, E(n) is a square with

side length ℓ(n)). The environment E(n) is compact for

each n but its size depends on n. A robotic agent, A[i],

i ∈ I := {1, . . . , n}, is described by the tuple A[i] :=
{UID[i],p[i], rcomm,u[i], M [i]}, where the quantities are as

follows: Its unique identifier (UID) is UID[i], taken from

the set IUID ⊂ N. Note that, each agent does not know

the set of UIDs being used and thus does not initially

know the magnitude of its UID relative to those of other

agents. Its position is p
[i] ∈ E(n). Its communication range

is rcomm > 0, i.e., two agents, A[i] and A[k], i, k ∈ I,

can communicate if and only if ‖p[i] − p
[k]‖ ≤ rcomm. Its

continuous time velocity input is u
[i], corresponding to the

kinematic model ṗ
[i] = u

[i], where ‖u[i]‖ ≤ vmax for some

vmax > 0. Finally, its memory is M [i] and is of cardinality

(size) |M [i]|. From now on, we refer to agent A[i] as agent i.
The agents move in continuous time and communicate

according to a synchronous discrete time schedule consisting

of an increasing sequence {tk}k∈N of time instants with no

accumulation points. We assume |tk+1 − tk| ≤ tmax, for

all k ∈ N, where tmax ∈ R>0. At each communication

round, agents can exchange messages of length O(log n).2

Communication round k occurs at time tk, and all messages

are sent and received instantaneously at tk. Motion then

occurs from tk until tk+1. In this setup we are emphasizing

the time complexity due to the motion of the agents.

B. The target assignment problem

Let Q := {q1, . . . ,qn} ⊂ E(n) be a set of distinct target

locations. In this paper we assume that each agent knows

the position of every target. Thus, agent i’s memory, M [i],

contains a copy of Q, which we denote Q[i]. To store Q[i] we

must assume the size of each agents’ memory, |M [i]|, is in

Ω(n). We refer to the assumption that each agent knows all

target positions as the full knowledge assumption. Our goal

is to solve the (full knowledge) target assignment problem:

Determine an algorithm for n ∈ N agents, with

attributes as described above, satisfying the fol-

lowing requirement; there exists a time T ≥ 0 such

that for each target qj ∈ Q, there is a unique agent

i ∈ I, with p
[i](t) = qj for all t ≥ T .

If the task begins at time t = 0, then the completion time

Tc of target assignment is the minimum T ≥ 0, such that

for each target qj ∈ Q, there is a unique agent i ∈ I, with

p
[i](t) = qj for all t ≥ T .

C. Sparse, dense, and critical environments

We wish to study the scalability of a particular approach

to the target assignment problem; that is, how the completion

time increases as we increase the number of agents, n. The

velocity vmax and communication range rcomm of each agent

are independent of n. However, we assume that the size of

the environment increases with n in order to accommodate

an increase in agents. Borrowing terms from the random

geometric graph literature [16], we say that the environment

is sparse if, as we increase the number of agents, the

environment grows quickly enough that the density of agents

(as measured by the sum of their communication footprints)

decreases; we say the environment is critical, if the density is

constant, and we say the environment is dense if the density

increases. Formally, we have the following definition.

Definition 3.1 (Environment size): Environment E(n) is

(i) sparse if |E(n)|/n → +∞ as n → +∞;

(ii) critical if |E(n)|/n → const ∈ R>0 as n → +∞;

2The number of bits required to represent an ID, unique among n agents,
is directly proportional to the logarithm of n.

(iii) dense if |E(n)|/n → 0+, as n → +∞.

Note that a dense environment does not imply the com-

munication graph between agents is dense; from Theorem

2.3 we see that the communication graph at random agent

positions in a dense environment may not even be connected.

D. Monotonic algorithms and ETSP ASSGMT

We introduce a class of algorithms which provides an

intuitive approach to target assignment.

Definition 3.2 (Monotonic algorithms): A deterministic

algorithm for target assignment is monotonic if, for a subset

of agents J ⊂ I, a target qj , and time t1 > 0, we have

p
[i](t1) = qj for each i ∈ J , then there exists an agent

i ∈ J such that p
[i](t) = qj for all t > t1.

We call these algorithms “monotonic” since occupied tar-

gets remain occupied for all time, and thus the number

of occupied targets monotonically increases throughout the

execution. We now lower bound the completion time of the

target assignment problem for any monotonic algorithm.

Theorem 3.3 (Time complexity of target assignment):

Consider n agents, with communication range rcomm > 0,

and n targets in E(n). For all monotonic algorithms the

worst-case completion time Tc of the target assignment

problem is lower bounded as follows:

(i) if E(n) is sparse, then Tc ∈ Ω(
√

n|E(n)|);
(ii) if E(n) is critical, then Tc ∈ Ω(n);

(iii) if E(n) is dense, then Tc ∈ Ω(|E(n)|).
The idea behind the proof is to place the targets in E(n)

such that the rcomm-geometric graph generated by their posi-

tions has a maximum number of disconnected components.

In [12] we introduced the ETSP ASSGMT algorithm,

which is a monotonic algorithm. In this algorithm, each

agent computes a Euclidean traveling salesperson tour of

the n targets, turning the cloud of target points into an

ordered ring. Agents move along the ring looking for the next

available target, and when they communicate, they exchange

information on how far it is to the next available target along

the ring. Combining Theorem 3.3 with the worst-case bound

in [12] we obtain the following.

Theorem 3.4 (ETSP ASSGMT): For any initial positions

of n agents and n targets in E(n), ETSP ASSGMT solves the

target assignment problem in O(
√

n|E(n)|) time. If E(n) is

sparse or critical, then ETSP ASSGMT is an asymptotically

optimal monotonic algorithm for worst-case initial positions.

IV. THE GRID ASSGMT ALGORITHM

In this section we introduce a monotonic algorithm called

GRID ASSGMT. In this algorithm, the agents partition the en-

vironment into cells. Agents then determine local maximum

assignments, and elect a leader in the cell which they occupy.

Through communication between leaders of adjacent cells,

each leader obtains estimates of the location of free targets,

and uses this information to guide unassigned agents to free

targets. We show that in critical or dense environments, GRID

ASSGMT is an asymptotically optimal monotonic algorithm

for worst-case initial conditions. In addition, by utilizing

the results of Section II-B, we characterize the stochastic

performance of GRID ASSGMT.

C(1, 1)

C(2, 1)

C(3, 1)

C(1, 2)

C(2, 2)

C(3, 2)

C(1, 3)

C(2, 3)

C(3, 3)

Fig. 1. Partitioning the environment E(n) into b2 = 9 cells.

A. Algorithm description

We assume that each agent knows the target positions

Q (i.e., Q[i] := Q) and the environment E(n). With this

information, each agent partitions the environment into b2

equally sized square cells, where b ∈ N. It then labels

the cells like entries in a matrix, so cell C(r, c) resides

in the rth row and cth column, as shown in Fig. 1. Since

the agents start with the same information, they all create

the same partition. The quantity b is chosen so that an

agent in cell C(r, c) is within communication range of any

agent in cells C(r, c), C(r − 1, c), C(r + 1, c), C(r, c − 1),
and C(r, c + 1). In light of Lemma 2.2, we see that this

is satisfied when b = ⌈
√

5|E(n)|/rcomm⌉. With this, we

now outline the GRID ASSGMT algorithm. A complete

description is given [13].

Outline of the GRID ASSGMT algorithm

Initialization and role assignment: Each agent partitions

E(n) as described above. In each cell, agents use MAX-

IMAL MATCH to find a maximum assignment between

agents and targets occupying the cell, and assigned

agents elect a leader among them. Accordingly, agents

are labeled leader, unassigned, or assigned non-leader.

Assigned non-leader agents: Each assigned non-leader

agent moves to its assigned target and goes silent.

Cell leaders: Each cell leader assigns free targets in its cell

to unassigned agents that enter the cell. In addition, each

cell leader estimates the number of available targets in

all cells below it in its column (denoted ∆
[i]
blw(r, c) for

leader i of cell C(r, c)). To maintain the estimates, cell

leaders communicate to the cell leader in the cell di-

rectly above. Cell leaders in the top row communicate to

the cell leader directly to the right to obtain an estimate

of the number of available targets in all columns to the

right (denoted ∆
[j]
rght(1, c) for leader j of cell C(1, c)).

Unassigned agents: Each unassigned agent seeks a free

target by entering cells and querying their respective

leaders. The motion of unassigned agents is illustrated

in Fig. 2. Assuming no communication with the leaders,

the nominal order in which an unassigned agent visits

all cells of the grid is shown in the left-hand figure. The

way in which this path is shortened as the unassigned

agent receives available target estimates from cell lead-

ers is shown on the right-hand figure.

Remark 4.1 (Cell leader computations): If agent i is the

leader of cell C(r, c), it computes ∆[i](r, c), which is

∆
[j]
rght(1, 3) ≤ 0

∆
[i]
blw(3, 3) ≤ 0

∆
[k]
blw(1, 2) ≤ 0

Fig. 2. Unassigned agent motion. Left: The nominal order in which an
agent (blue square) searches the cells in the absence of communication.
Right: The shortened path due to the non-positive estimates from leader i
of C(3, 3), leader j of C(1, 3) and leader k of C(1, 2).

∆[k](3, c)

∆
[k]
blw(3, c)

−2

+11

+1

+8

+1

+4

−1

0

−2

+9

+1

+5

+1

−1

−1

0

−2

+6

+1

0

+1

−1

−1

0

−2

+1

+1

0

+1

−1

−1

0

InitializationExample column c Fixed point

comm.
round

comm.
round

comm.
round

∆[l](4, c)

∆
[l]
blw(4, c)

∆[i](1, c)

∆
[i]
blw(1, c)

∆[j](2, c)

∆
[j]
blw(2, c)

Fig. 3. Leader communication. Column c contains agents (blue squares)
and targets (black disks). The figure shows leaders i of C(1, c), j of C(2, c),
k of C(3, c), and l of C(4, c) initializing and updating their estimates of
∆ and ∆blw. Estimates converge to true values in three iterations.

(# of targets)−(# of agents) in C(r, c). In addition, leader i

maintains ∆
[i]
blw(r, c), which is an estimate of (# of targets)−

(# of agents) in cells C(r + 1, c) to C(b, c). This quantity

must be estimated because agent i does not initially know the

number of agents in cells C(r+1, c) to C(b, c). The variable

∆
[i]
blw(r, c) is initialized to the number of targets in cells

C(r + 1, c) to C(b, c), which is necessarily no smaller than

the actual value. Then, at each communication round agent

i updates its estimate by communicating with the leaders in

cells C(r − 1, c) and C(r + 1, c):

1 Send msg[i] := ∆
[i]
blw(r, c)+∆[i](r, c) to leader in C(r−1, c)

and receive msg[k] from leader k of C(r + 1, c).

2 Set ∆
[i]
blw(r, c) := msg[k] = ∆

[k]
blw(r +1, c)+∆[k](r +1, c).

This update procedure is depicted in Fig. 3. A leader j of

cell C(1, c) in the top row uses a similar method to maintain

the estimate ∆
[j]
rght(1, c). It should be noted that as unassigned

agents enter and exit cells, the actual values of ∆blw and ∆rght

change. Thus, there is a procedure (which is fully detailed

in [13]) whereby agents send enter and exit messages

to cell leaders, so that they can maintain their estimates. •

Remark 4.2 (Unassigned agent motion): The motion of

unassigned agents can be described as follows. First, each

unassigned agent seeks a free target in its column. It queries

the leader of its current cell about free targets in its column,

below its current cell. If the leader’s estimate ∆
[i]
blw(r, c) is

positive, then the agent moves down the column. Otherwise,

the agent moves up the column. While moving down, upon

entering a new cell the agent first queries the cell leader on

free targets in the cell, and then on free targets in cells below.

If the agent starts moving up the column, then it only queries

cell leaders on free targets in its current cell (since all targets

below are taken).

Second, if the agent reaches the top cell of its column,

then the column contains no free targets. To transfer to a new

column, the agent queries the leader of the top cell about free

targets in all columns to the right. If the leader’s estimate

∆
[j]
rght(1, c) is positive, then the agent moves to the right;

otherwise, the agent moves to the left. Upon reaching the

cell to the left or right, the agent recommences the column

procedure. •
Remark 4.3 (Comments on GRID ASSGMT): (1) Agents

move at speed vmax, and to transfer between cells agents

move toward the center of the new cell. (2) If an agent

or target lies on the boundary between cells, a simple tie

breaking scheme is used assign it to a cell. (3) In our

presentation, we implicitly assumed that every cell initially

contains at least one agent and one target. If a cell has no

targets, then any agents initially in the cell leave, and the

empty cell is then ignored. If a cell initially contains targets

but no agents, then the first agents to enter the cell run the

MAXIMAL MATCH algorithm and a leader is elected. (4) In

our description, agents use the top row to transfer to a new

column. This choice of “transfer column” is arbitrary and the

top row was chosen for simplicity of presentation. Intuitively,

one could argue that the middle row is a more efficient

choice. In the upcoming analysis we show that such a choice

does not affect the algorithm’s asymptotic performance. •

B. Correctness and time complexity of GRID ASSGMT

We now present our main results on GRID ASSGMT.

Theorem 4.4 (GRID ASSGMT correctness and worst-case):

For any initial positions of n agents and n targets in E(n),
GRID ASSGMT solves the target assignment problem in

O(|E(n)|) time. In addition, if E(n) is dense or critical,

then GRID ASSGMT is an asymptotically optimal monotonic

algorithm for worst-case initial positions.

Remark 4.5 (GRID ASSGMT vs. ETSP ASSGMT): The

worst-case bound for ETSP ASSGMT in Theorem 3.4

was O(
√

|E(n)|n). Thus, in sparse environments ETSP

ASSGMT performs better, where as in dense environments

GRID ASSGMT performs better. In critical environments, the

bounds are equal. In practice, a robot can determine which

algorithm to run by comparing the area of the environment

|E(n)| to the area of n disks of radius rcomm. That is, a robot

could use a rule such as the following: if |E(n)| > πr2
commn,

then execute ETSP ASSGMT, else if |E(n)| < πr2
commn,

then execute GRID ASSGMT. •
In the following theorem we will see that for randomly

placed targets and agents, the performance of GRID ASSGMT

is considerably better than in the worst-case.

Theorem 4.6 (Stochastic time complexity): Consider n
agents and n targets, uniformly randomly distributed in

E(n). Then GRID ASSGMT solves the target assignment

problem in O(
√

|E(n)|) time with high probability if

|E(n)| ≤
r2

comm

5

n

log n + γ(n)
,

where γ is any function such that γ(n) → +∞ as n → +∞.

Remark 4.7 (Generalization of Theorem 4.6): The bound

in Theorem 4.6 holds not only for uniformly randomly

distributed initial positions, but for any initial positions such

that every cell contains at least one target and at least one

agent.

Theorem 4.8 (Stochastic time complexity, cont’d):

Consider n agents and n/ logn targets, uniformly randomly

distributed in E(n). Then GRID ASSGMT solves the target

assignment problem in O(1) time with high probability if

there exists K > 1/ log(4/e), such that

|E(n)| ≤
r2

comm

5

n

K log n
.

Remark 4.9 (Wireless congestion): Since wireless com-

munication is a shared medium, simultaneous messages sent

in close proximity will collide, resulting in dropped packets.

Clear reception of a signal requires that no other signals are

present at the same point in time and space. As the density

of agents increases (as measured by their communication

footprints), so does wireless communication congestion. In

the design of GRID ASSGMT we have tried to limit the

amount of simultaneous communication. To this end we

introduced a leader in each cell, who sent messages (of size

O(log n)) only to its adjacent cells, and all other assigned

agents were silent. However, to fully take wireless conges-

tion into account, we would require a more sophisticated

communication model than the rcomm-geometric graph. •

C. Ideas behind main GRID ASSGMT results

In this section we give some intuition into the proofs of

the theorems in Section IV-B.

First, the proof of Theorem 4.4 utilizes the fact that in

the worst-case an agent will have to visit every cell once.

Second, the proof of Theorem 4.6 requires that the estimates

maintained by the leaders of each cell converge to the true

values. To discuss convergence, let ∆(r, c)(t) denote the

difference between the number of targets in C(r, c) and the

number of agents in C(r, c) at time t > 0 (recall that leader

i’s estimate of ∆(r, c)(t) is denoted ∆[i](r, c)). In our model,

communication round k occurs instantaneously at time tk so

t−k denotes start of the round, and t+k , its completion. With

this notation, the convergence of the estimates can be stated

as follows. If agent i ∈ I is the leader of cell C(r, c), then

for each communication time tk, k ∈ N:

(i) ∆[i](r, c)(t+k) = ∆(r, c)(tk);

(ii) ∆
[i]
blw(r, c)(t+k) ≥

b
∑

r∗=r+1
∆(r∗, c)(tk);

(iii) if k > b and each cell in column c contains a leader,

then ∆
[i]
blw(r, c)(t+k) =

b
∑

r∗=r+1
∆(r∗, c)(tk).

Thus, the ∆blw estimates are never underestimates, and if

there is a leader in every cell, the estimates converge after

b := ⌈
√

5|E(n)|/rcomm⌉ communication rounds. We have an

(a) Initial agent-target positions. (b) Role assignment in each cell.

(c) Final agent reaching target.

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

C
o
m

p
le

ti
o
n

ti
m

e

Number of agents

completion time

2.5
√

|E(n)|

1.5
√

|E(n)|

(d) Monte Carlo simulations.

Fig. 4. A simulation of 65 agents (blue squares) and targets (black disks)
in a dense environment is shown in (a-c). Red lines are drawn when two
agents are communicating. A Monte Carlo simulation is shown in (d).

analogous result for the convergence of ∆
[i]
rght(r, c). These

two results, combined with Theorem 2.1(ii), are used to

prove Theorem 4.6. Finally, Theorem 4.8 is proved using

the occupancy result in Theorem 2.1(iv).

V. SIMULATIONS

Fig. 4 contains a representative simulation of the GRID

ASSGMT algorithm for 65 agents and targets uniformly

randomly distributed in a dense environment. Fig. 4(c) shows

the communication between the leaders of each cell (solid

red lines), and the trajectory of the final agent (dashed blue

line) as it approaches its target in cell C(1, 1). Fig. 4(d)

contains the numerical outcomes of Monte Carlo simulations.

In the simulations rcomm = 10, vmax = 1, |E(n)| =
r2

commn/(6 logn), and each data point is the mean completion

time of 30 trials, where each trial was performed at ran-

domly generated agent and target positions. For simplicity

of implementation we discard trials in which there exist a

cell without targets. This is justified by the fact that w.h.p.

every cell contains at least one target, and thus the number of

discarded trails tends to zero as n increases. Error bars show

plus/minus one standard deviation. The simulation suggests

that asymptotically, the expected completion time is bounded

below by 1.5
√

|E(n)| and above by 2.5
√

|E(n)|.

VI. DISCUSSION AND EXTENSIONS

A. A sensor based version

In describing the GRID ASSGMT algorithm, we assumed

that each agent knows the position of all targets. The algo-

rithm also works when each agent does not know the position

of any targets, but has a sensing range rsense , with which it

can sense the positions of targets in range. If each agent can

partition the environment as in Fig. 1, and if rsense ≥
√

2/5r
so that each agent can sense the position of all targets in its

current cell, then GRID ASSGMT (with minor modifications)

solves the target assignment problem, and the completion

time results still hold.

B. Conclusions

We have developed the GRID ASSGMT algorithm for

solving the target assignment problem in dense environ-

ments. We showed that in the worst-case the time com-

plexity is proportional to the area of the environment, and

for uniformly randomly distributed agents and targets the

complexity is proportional to diameter of the environment.

There are many future research directions such as extensions

to nonholonomic vehicles, to the case when targets are

dynamically appearing and disappearing, or to dealing with

collisions between agents. Another area of future research is

to develop a communication framework which adequately

models congestion and media access problems that are

inherently present in wireless communications.

REFERENCES

[1] J. E. Hopcroft and R. M. Karp, “An n5/2 algorithm for maximum
matchings in bipartite graphs,” SIAM Journal on Computing, vol. 2,
no. 4, pp. 225–231, 1973.

[2] H. W. Kuhn, “The Hungarian method for the assignment problem,”
Naval Research Logistics, vol. 2, pp. 83–97, 1955.

[3] R. Burkard, “Selected topics on assignment problems,” Discrete Ap-

plied Mathematics, vol. 123, pp. 257–302, 2002.
[4] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compu-

tation: Numerical Methods. Belmont, MA: Athena Scientific, 1997.
[5] B. P. Gerkey and M. J. Mataric, “A formal analysis and taxonomy

of task allocation in multi-robot systems,” International Journal of

Robotics Research, vol. 23, no. 9, pp. 939–954, 2004.
[6] M. F. Godwin, S. Spry, and J. K. Hedrick, “Distributed collaboration

with limited communication using mission state estimates,” in Ameri-

can Control Conference, Minneapolis, MN, June 2006, pp. 2040–2046.
[7] M. Alighanbari and J. P. How, “Robust decentralized task assignment

for cooperative UAVs,” in AIAA Conf. on Guidance, Navigation and

Control, Keystone, CO, Aug. 2006.
[8] C. Schumacher, P. R. Chandler, S. J. Rasmussen, and D. Walker, “Task

allocation for wide area search munitions with variable path length,”
in American Control Conference, Denver, CO, 2003, pp. 3472–3477.

[9] B. J. Moore and K. M. Passino, “Distributed task assignment for
mobile agents,” IEEE Transactions on Automatic Control, vol. 52,
no. 4, pp. 749–753, 2007.

[10] G. Arslan, J. R. Marden, and J. S. Shamma, “Autonomous vehicle-
target assignment: A game theoretic formulation,” ASME Journal on

Dynamic Systems, Measurement, and Control, 2007, to appear.
[11] M. Zavlanos and G. Pappas, “Dynamic assignment in distributed

motion planning with local information,” in American Control Con-

ference, New York, July 2007, pp. 1173–1178.
[12] S. L. Smith and F. Bullo, “Target assignment for robotic networks:

Asymptotic performance under limited communication,” in American

Control Conference, New York, July 2007, pp. 1155–1160.
[13] ——, “Monotonic target assignment for robotic networks,” Center for

Control, Dynamical Systems and Computation. University of Cali-
fornia at Santa Barbara, Tech. Rep. CCDC-07-0817, 2007, available
electronically at http://ccdc.mee.ucsb.edu.

[14] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge,
UK: Cambridge University Press, 1995.

[15] F. Xue and P. R. Kumar, “The number of neighbors needed for
connectivity of wireless networks,” Wireless Networks, vol. 10, no. 2,
pp. 169–181, 2004.

[16] M. Penrose, Random Geometric Graphs, ser. Oxford Studies in
Probability. Oxford, UK: Oxford University Press, 2003.

