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Summary. In this chapter we look at a geometric target assignmentl@nmolconsisting of
an equal number of mobile robotic agents and distinct tdaptions. Each agent has a
fixed communication range, a maximum speed, and knowledgeeny target’s position. The
problem is to devise a distributed algorithm that allowsabgents to divide the target locations
among themselves and, simultaneously, leads each agestuiigue target. We summarize
two algorithms for this problem; one designed for “sparse/i@nments, in which commu-
nication between robots is sparse, and one for “dense” @mvients, where communication
is more prevalent. We characterize the asymptotic perfocemaf these algorithms as the
number of agents increases and the environment grows tonacodate them.

1 Introduction

Consider a group ofi mobile robotic agents, equipped with wireless transcsiver
for limited range communication, dispersed in an environtfeC R2. Suppose the
environment also containstarget locations, and each agent s given a list containing
their positions (these positions may be given as GPS caoateh We would like
each target location to be occupied be an agent as quicklpssilple. Since no
a priori assignment of target-agent pairs has been given, the agestssolve the
problem through communication and motion. We call this tdaget assignment
problem Such a problem could arise in several applications, sucb/és on
a surveillance mission, where the targets are the centettseofdesired loitering
patterns.

The centralized problem of simply assigning one agent th ¢éaget is known
in the combinatorial optimization literature as tm@aximum matching problefd].
There are several polynomial time algorithms for solving throblem, the best
known being [2] by Hopcroft and Karp. To efficiently assigreats to targets, we
may be interested in finding a maximum matching (i.e., argasséent of one agent
to each target) which minimizes a cost function. If the caostction is the sum of
distances from each agent to its assigned target, then tidepn is known as the
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assignment problepor theminimum weight maximum matching probldd. This
problem can be written as an integer linear program and @btimlutions can be
computed in polynomial time [3]. Another choice of cost ftian is to minimize
the maximum distance between agents and their assigneztdarthis problem is
commonly referred to as theottleneck assignment problegd, and although the
cost function is not linear, there still exist several payrial time algorithms for

its solution. There has also been work on developing algmstfor the assignment
problem which can be implemented on parallel computingesygst One example is
the auction algorithm[5], which can be implemented with one processor for each
agent.

There is set of problems, commonly referred talasentralized task allocation
that are closely related to our target assignment problemfar example [6-8]. In
these problems the goal is generally to assign vehiclesatiadly distributed tasks
while maximizing the “score” of the mission. Most works oristiproblem develop
advanced heuristic methods, and demonstrate their effaess through simulation
or real world implementation. In [9] the auction algorithrassadapted to solve a task
allocation problem in the presence of communication deldysere has also been
prior work on the target assignment problem [10-14]. Fomgxa, an algorithm
based on hybrid systems tools is developed in [10]. The dlgorperformance is
characterized by a bound on the number of switches of theidgipstem; however,
no analysis of the time complexity is provided.

In this chapter we summarize our recent investigationsf3jdnto the minimum-
time task assignment problem and its scalability propertid/e are interested in
characterizing the completion time as the number of agentgows, and the envi-
ronment&(n) := [0, ¢(n)]?, grows to accommodate them. In Section 4 we describe
the ETSP AscMmTalgorithm with worst-case completion time @(y/nf(n)). In
addition, in “sparse” environments, i.e., wh&m)/\/nfy + oo, the ETSP ASGMT
algorithm is asymptotically optimal among a broad classlgbiathms in terms of
its worst-case completion time. Then, in Section 5 we dbedtie RID ASSGMT
algorithm with worst-case completion time @(¢(n)?). We also characterize the
stochastic properties of theRED AssGMTalgorithm in “dense” environments, i.e.,
when/(n)/\/ndy0. If the agents and targets are uniformly randomly distedyt
then the completion time belongs@d¢(»)) with high probability. Also, if there are
n agents and only/ log n targets, then the completion time belongsX(l) with
high probability.

The two algorithms are complementary: ETSBS&MThas better performance
in sparse environments, whileR@® AssGMThas better performance in dense envi-
ronments.

2 Geometric and stochastic preliminaries

In this section we review a few useful results on the Euclideaveling salesperson
problem, occupancy problems, and random geometric grafihdo this, we must
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first briefly review some notation. We |& denote the set of real numbeks,. de-
note the set of positive real numbers, &hdenote the set of positive integers. Given
a finite setd, we let| A| denote its cardinality. For two functiorfsg : NyR-, we
write f(n) € O(g) (respectivelyf(n) € 2(g)) if there existV € N andc € R+
such thatf(n) < cg(n) forall n > N (respectivelyf(n) > cg(n) for all n > N).

If f(n) € O(g) andf(n) € 2(g) we sayf(n) € O(g). We say that eventi(n)
occurswith high probability(w.h.p.) if the probability ofA(n) occurring tends to
one asnfy + oo.

2.1 The Euclidean traveling salesperson problem

For a set ofn points, @ € R?, we letETSP(Q) denote the length of the shortest
closed path through all points @. The following result characterizes the length of
this path wher@ c [0, ¢(n)]?.

Theorem 1 (ETSP tour length, [15]).For every set ofi pointsQ c [0, £(n)]?, we
haveETSP(Q) € O(y/nl(n)).

The problem of computing an optimal ETSP tour is known to bedgmplete.
However, there exist many efficient approximation algaenith For example, the
Christofides’ algorithn{16], computes a tour that is no longer thay2 times the
optimal inO(n?) computation time.

2.2 Bins and balls

Occupancy problems, or bins and balls problems, are coedeavith randomly dis-
tributing m balls inton equally sized bins. The two results we present here will be
useful in our analysis.

Theorem 2 (Bins and balls properties, [17, 18])Consider uniformly randomly dis-
tributing m balls into n bins and lety,, be any function such that,0y + oo as
nfy + oco. The following statements hold:

1. if m = n, then w.h.p. each bin contaiﬁs(log’ign) balls;

2. ifm = nlogn+~,n, thenw.h.p. there are no empty bins, and each bin contains
O(logn) balls;

3. ifm = nlogn — v,n, then w.h.p. there exists an empty bin;

4.if m = Knlogn, whereK > 1/log(4/e), then w.h.p. every bin contains

O(logn) balls.

We will be interested in dividing a square environment intpaly sized and
openly disjoint square bins, such that the side lergih), of each bin is small in
some sense. To do this, we require the following simple fact.
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Lemma 1 (Dividing the environment).Givenn € N andr > 0, consider an envi-
ronment€(n) := [0,4(n)]?. If £(n) is partitioned intob? equally sized and openly
disjoint square bins, where

b= [V5e(n)/r], ()

thent(B) < r/+/5. Moreover, ifz, y € £(n) are in the same bin or in adjacent bins,
then||z — y|| <.
2.3 Random geometric graphs

Forn € Nandr € R+, a planageometric graptG(n, r) consists of: vertices in
R?2, and undirected edges connecting all vertex pfirg/} with ||z — y|| < r. If the
vertices are randomly distributed in some subsékfwe call the graph aandom
geometric graph

Theorem 3 (Connectivity of random geometric graphs, [19])Consider the ran-
dom geometric grapli(n, r) obtained by uniformly randomly distributingpoints

in [0,£(n)]?. If
7r< r >210gn+c(n)
£(n) n ’

thenG(n, r) is connected w.h.p. if and onlydfn)6, + oo asnby + oc.

This theorem will be important for understanding some of msults. If we
randomly deployn agents with communication range > 0 in an environment
[0, £(n)]?, then the communication graph is connectedif) < r/n/logn.

3 Network model and problem statement

In this section we formalize our agent and target models afite the sparse and
dense environments.

3.1 Robotic network model

Considern agents in an environme#t(n) := [0,¢(n)]> C R?, wherel(n) > 0
(that is,&(n) is a square with side lengttin)). The environmen€ (n) is compact
for eachn but its size depends an A robotic agentAll, i € 7 := {1,...,n}, is
described by the tuple

Al = {uipl] plil . ulil, A1y,

where the quantities are as follows: Its unique identifidiX(ls uip[!, taken from

the set/,, C N. Note that, each agent does not know the set of UIDs being used
and thus does not know the order. Its positiopi8 € £(n). Its communication
range is > 0, i.e., two agentsAl” and Al i, k € Z, can communicate if and only
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if |pl — p!*J|| < r. Its continuous time velocity input isl?, corresponding to the
kinematic modep[? = ull, where|[ul?|| < vmax for somevmax > 0. Finally, its
memory isM [l and is of siz¢ M [l|. From now on, we simply refer to agedt’ as
agenti. We assume the agents move in continuous time and commeiaicedrding

to a discrete time schedu{ey, } ey, We assuméty. 1 — ti| < tmax forallk € N,
wheretmax € R~g. At each communication round, agents can exchange messages
of lengthO(log n).

3.2 The target assignment problem

Let Q := {a1,...,q,} be a set of distinct target locationg; € £(n) for each

j € Z. Agenti’s memory,M 7, contains a copy of, which we denot@!"). To store

0l we must assume the size of each agents’ memdfy!|, is in 2(n). We refer

to the assumption that each agent knows all target positisrteefull knowledge

assumption (for a more detailed discussion of this assumgte [12]). Our goal is
to solve theg(full knowledge) target assignment problem

Determine an algorithm for. € N agents, with attributes as described
above, satisfying the following requirement. There exastisneT’ > 0 such
that for each targei; € Q, there is a unique agent Z, with pli(t) = q;
forallt > T.

3.3 Sparse and dense environments

We wish to study the scalability of a particular approachhte target assignment
problem; that is, how the completion time increases as wease the number of
agentsp. The velocityvmax and communication rangeof each agent are indepen-
dent ofn. However, we assume that the size of the environment ineseaihn in
order to accommodate an increase in agents. Borrowing tieomsthe random ge-
ometric graph literature [19], we say the environment igsp#, as we increase the
number of agents, the environment grows quickly enoughttieatiensity of agents
(as measured by the sum of their communication footprirdsyehses; we say the
environmentis critical, if the density is constant, and g the environmentis dense
if the density increases. Formally, we have the followinjrdgon.

Definition 1 (Dense, critical and sparse environments)lhe environmenf (n) :=
[0,4(n))? is sparséf £(n)/\/nby + oo asnby + oo, critical if £(n)//nb,C € Rxq
asnby + oo, anddensef E(n)/\/ﬁ&)o, asnby + oo.

It should be emphasized that a dense environment does niyt ihgt the com-
munication graph between agents is dense. On the contramy,fheorem 3 we see
that the communication graph at random agent positions @naglenvironment may
not even be connected.

1 2(n) bits are required to represent an ID, unique amormgents.
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4 Sparse environments

We begin by studying the case when the environment is spargkthus there is
very little communication between agents. We introducetamapproach to the
problem in the form of a class of distributed algorithms |edhhssignment-based
motion We give a worst-case lower bound performance of the assgtivased
motion class. Next, we introduce a control and communicagilgorithm, called

ETSP AssGMmT. In this algorithm, each agent precomputes an optimal tmaugh

then targets, turning the cloud of target points into an ordered.r Agents then
move along the ring, looking for the next available targetheff agents commu-
nicate, they exchange information on the next availablgetaalong the ring. We
show that in sparse or critical environments, the ETS$5AMT algorithm is an

asymptotically optimal among all algorithms in the assigmirbased motion class.

4.1 Assignment-based algorithms with lower bound analysis

Here we introduce and analyze a class of deterministic ifgos for the target as-
signment problem. The assignment-based motion class cdedoeibed as follows.

Outline of assignment-based motion class

Initialization: In this class of algorithms agentnitially selects the closest
target inQl!, and sets the variable clitr(agenti’s current target), to
the index of that target.

Motion: Agent: moves toward the target clifrat speedina.

Communication:If agent: communicates with an agehtthat is moving
toward curt®! = curtll, and if agent: is closer to cuff! than agent,
then agent “removes” curf! from Q[ and selects a new target.

For this class of algorithms it is convenient to adopt théofeing conventions: we
say that agent € 7 is assignedo targetq; € Q, when curfl = j. We say that
agenti € 7 enters a conflicover the target cuff, when agent receives a message,
msd®!, with curt? = curf®l. Agenti loses the conflicif agenti is farther from
curtt) than agent:, andwins the conflictf agent: is closer to curf! than agent:,
where ties are broken by comparing UIDs. Note that if an ageassigned to the
same target as another agent, it will enter a conflict in fitiite.

Theorem 4 (Time complexity lower bound for target assignmet). Considern
agents, with communication range> 0, in an environmenfo, £(n)]?. If (n) >
r+/n, then for all algorithms in the assignment-based motiorssdahe time com-
plexity of the target assignment problem isf\/nt(n)).

In other words, the target assignment time complexity iselolounded when
the environment grows faster than some critical value,ithathen the environment
is sparse or critical.
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4.2 The ETSP AssGMT algorithm with upper bound analysis

In this section we introduce the ETSFsAGMTalgorithm—an algorithm within the
assignment-based motion class. We will show that when thieamment is sparse
or critical, this algorithm is asymptotically optimal. Ihe following description of
ETSP AsscmTit will be convenient to assume that the target positionsareed in
each agents memory as an array, rather than as an unorderétads, we replace
the target set with the target-tupleq := (qi,...,q,), and the local target set
ol with then-tupleql’. The algorithm can be described as follows.
For each € Z, agenti computes a constant factor approximation of the optimal

ETSP tour of the: targets inq!’l, denotedour(q!¥). We can think ofour as a map
which reorders the indices af; tour(ql?) = (qL’]1 ,...,qg‘](n)), whereo : 70T

is a bijection. This map is independentidfince all agents use the same method. An
example is shown in Fig. 1(a). Agenthen replaces ita-tupleq(® with tour(q!?).

nextl! = 1

o

curtll =7

o

tour p

previl = 6

*7 4
(@) The mapgour orders the given targets (b) Initialization of agent

Fig. 1. Initialization of ETSP ASSGMT

Next, agenti computes the index of the closest targeigifl, and calls it curf!.
Agent; also maintains the index of the next target in the tour whiely bve available,
next’l, and first target in the tour before clirwhich may be available, pré\ Thus,
next! is initialized to curf! +1 (mod n) and pre¥! to curf’) —1 (mod ). In order
to “remove” assigned targets from the tupé, agent; also maintains the-tuple,
statu§!. Letting statull(j) denote thejth entry in then-tuple, the entries are given

by

statudl (j) = 0, fif agenti knowsq! is assigned to another agent, @
1, otherwise
Thus, statu$ is initialized as thex-tuple(1, . . ., 1). The initialization is depicted in

Fig. 1(b).
Finally, at each communication round agéeiecutes the algorith@omMm-RD
described below.

Outline of comm -RD algorithm for agent 4
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1: Broadcast ms§, consisting of the targets, préy curft’, and next!,
the distance to the current targét, anduip!?.
2: for all messages, m&g, receiveddo
3:  Set statué(j) to assigned (‘0") for each target from prev*! +
1 (mod n) to next*! — 1 (mod n) not equal to cuft.
4: if pre¥*] = next?! = curt®l £ curf’, then set the status of cuft
to 0 because it was missed in the previous step.
5. if curdd = curf*! but agent is farther from curf! than agent: (ties
broken with UIDs)then
Set the status of cufrto assigned (‘0").
if curi! = currt*! and agent is closer than ageritthen
Set the status of néktand next! to assigned (‘0").
. Update curf! to the next target in the tour with status available (‘1),
next’! to the next available target in the tour after élirand pre¥! to
the first available target in the tour before étirr

© 0N

In summary, the ETSP #sGMTalgorithm is the triplet consisting of the initial-
ization of each agent, the motion law (move toward Euat speedinay), and the
COMM-RD algorithm executed at each communication round.

Fig. 2 gives an example afomM-RD resolving a conflict between ageritand
k, over curk! = curf®!, The proposed algorithm enjoys plenty of useful properties

next* = nextl! = 1 curr®l =1

currl! =7

pli o

curr® = currl =7

ol ot

2 = next = nextl

prevll = 6

previ = 5 previ?l = prevll = 5

4 4
(a) Setup prior to a conflict. (b) Setup after resolution of the conflict.

Fig. 2. The resolution of a conflict between agentand k& over target7. Agent: wins the
conflict since it is closer to targ&tthan agent:.

which are valid for any communication graph which contalms geometric graph
with parameter as a subgraph. A complete discussion is contained in [13e@&a
on a careful application of Theorem 1, one can derive thewotig key result.

Theorem 5 (Correctness and time complexity for ETSP AsGmMmT). For anyn €

N, ETSP AssGMT solves the target assignment problem. Furthermore, censid
an environmenfo, £(n)]2. If tmax < 7/vmax, thenETSP AssGMT solves the target
assignment problem i®(y/nf(n) + n) time. If, in addition,f(n) > r+/n, then
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the time complexity is i®(y/nf(n)), andETSP AssGMTis asymptotically optimal
among algorithms in the assignment-based motion class.

The above theorem gives a complexity bound for the case wiaed vy are
fixed constants, ané(n) grows withn. An equivalent setup is to considéfixed
and allow the robots’ attributes,andvmax, to vary inversely with the:, specifically,
r andv proportional to,/n.

Corollary 1 (Complexity with congestion). Considern agents moving with speed
Tmax(n) = n~/? and communication radiu&(n) = ron~'/2, withrq < 1, in the
environmenio, 1]2. ThenETSP AssGMTsolves the target assignment problem with
time complexity ir@(n).

For simplicity we have presented our time complexity resinltthe planar envi-
ronment|0, £(n)?]. However, in [12] we derive bounds for the more general envi-
ronment[0, /(n)]¢, d > 1. A simulation in[0, 100]*> C R? with » = 15 andv = 1
is shown in Fig. 3. To compute the ETSP tour we have used¢dheorde TSP
solver? The initial configuration shown in Fig. 3(a) consists of wnifily randomly
generated target and agent positions.

(a) Initial configuration (b) Positions at tim&0 (c) Complete assignment

Fig. 3. Simulation for 15 agentsmax = 1, 7 = 15 in £ = [0, 100]*. The targets are spheres.
The agents are cubes. An edge is drawn when two agents areuwrdoating.

5 Dense environments

In the previous section we presented the ET S#@mTalgorithm which has prov-
ably good performance in sparse environments. In this @eatie introduce the
GRID AssGmTalgorithm for dense environments in which communicatiomare
prevalent. We will show that it has better worst-case pentorce than ETSP #s
GMT in dense environments, and that it possesses very goodastacherformance.

2 The concorde TSP solver is available for research use hatp://www.tsp.
gatech.edu/concorde/index.html
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5.1 The GRID AssGMT algorithm with complexity analysis

In the GRID AssGMmT algorithm we assume that each agent knows the target posi-
tions, Q, and the quantity(n) which describes the size of the environment. With
this information, each agent partitions the environmetat i3 equally sized square
cells, whereb € N. It then labels the cells like entries in a matrix, so kv, c¢)
resides in thevth row andcth column. This is shown in Fig. 4(b). Since the agents
started with the same information, they all create the saantiipn.

C(1,1) c(,2) C(1,3)

cey CLocRy L oces

c(3.1) C(3,2) C(3.3)
(a) 35 targets inf (n). (b) £(n) divided intob? = 9 cells.

Fig. 4. Dividing the environment into 9 cells.

In light of Lemma 1, we see that whenis given by [v/5¢(n)/r], as in equa-
tion (1), the communication graph between agents in a celbisplete, and com-
munication between agents in adjacent cells is also pa@sslth this in mind, an
outline of the QRID AssGmTalgorithm is as follows.

Outline of the GRID AssSGMT algorithm

Initialization: Each agent partitions the environment intoequally sized
square cells, wherkis given in Lemma 1, and the cells are labeled as
in Fig. 4(b).

All agents In each cell, all agents in the cell find a maximum matching
between agents and targets occupying the cell. Accordiaghnts are
labeled assigned or unassigned.

Assigned agentstn each cell, all assigned agents elect a leader among
them. All assigned agents, except the leaders, send trsgnasent
information to their respective leader and then go silent.

Cell leaders: The leader in each cell communicates to leader in the cell di-
rectly above. As a result, each leader obtains an estimakeafumber
of available targets in all cells below it, in its column.
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Unassigned agentsEirst, each unassigned agent seeks a free target in its
column by entering cells and querying the correspondinddea
Second, if all targets in the unassigned agent’'s column ssiy@ed,
then the agent moves to the top of its column and along theotepThe
agent gathers from each leader in the top row the number dabia
targets in the leader’'s column. When the agent finds a coluitin w
available targets, it travels down that column to find the figrget.

To implement this algorithm agefimaintains the following variables in its mem-
ory. The variable currcell keeps track of the cell which agenturrently occupies.
The setQ!" (w, ¢) which contains the targets in céll(w, ¢). The variable leadé&k
which is set toC(w, ¢) if agenti is the leader ofC(w, ¢), andnull  otherwise.
The array colstatli$, where colstatu8(c) is set tofull  if column ¢ contains no
available targets, anmabtfull if agenti thinks columrne may contain an available
target. The variable dirchl € {down, up} which contains the direction of travel in
a column and dirrof € {left ,right } which contains the direction in the first
row. Finally, the variable cuff which contains agerits assigned target, or the entry
null

After initializing these variables, each agent runs an @tigm which allows the
agents to compute a local maximum matching, and elect algad=ch cell. Since
the communication graph in each cell is complete, this caddoe in one commu-
nication round by receiving the UIDs of each agent in the [d&].

After the maximum matching and leader election the agents haen separated
into three roles; assigned leader agents, assigned ndarlagents, and unassigned
agents. The unassigned agents run an algorithm in whichttietp find a free
target. The leader of each cell runs an algorithm in whicly thedate their estimates
of available targets in various parts of the grid, and assigrassigned targets in its
cell. The leader of cell’(w, ¢), agent, maintains the following quantities to assign
targets in its cell, and estimate the number of availabtgetarin cells below. Agerit
maintains: diff! (w, ¢), which records the difference between the number of targets
and agents in cell’(w, ¢); diffoelow’” (w, ¢) which records agerits estimate of the
difference between the number of agents and targets in€elist-1, ¢), ..., C(b, ¢);
and taravaill (w, ¢) which contains the available targetsiijw, c). Finally, if agent
i is the leader of’(1, ¢) in the first row, it maintains diffright (¢) which is agent’s
estimate of the number of available targets in colum#sl, . . ., b.

In summary, The @D AssGMTalgorithmis thel-tuple consisting of the initial-
ization, the maximum matching and leader election algorjttihe unassigned agent
algorithm, and the leader algorithm.

We can now state the main results on thRiIGAssGmTalgorithm.

Theorem 6 (Correctness and worst-case upper boundor any initial positions
of n targets andn agents in[0, £(n)]?, GRID ASSGMTsolves the target assignment
problem inO((¢(n))?) time.

Remark 1 GRID ASsGMTVs. ETSP AssGMT). The worst-case bound for ETSP
AssGMTIin Theorem 5 wa®(y/nf(n)). Thus, in sparse environments, wh&n)
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grows faster thaR/n, ETSP AssGMT performs better, and in dense environments
GRID AssGMT performs better. In critical environments, the bounds apeaé
Thus, the two algorithms are complementary. In practice, é{n) andr are known,
each robot in the network can determine which algorithm tobvased on the fol-
lowing test: ETSP AsGMTis run if £(n)/y/n > r and QRID ASSGMT s run if

U(n)/v/m <. .

In the following theorem we will see that for randomly pladarhets and agents,
the performance of 8D ASSGMT is considerably better than in the worst-case.
The proofs of the following theorems utilize the results amskand balls problems
in Section 2.

Theorem 7 (Stochastic time complexity) Considern agents and. targets, uni-
formly randomly distributed ir0, £(n)]2. If £(n) < r/v/5\/(n/K logn), where
K > 1, thenGRID AssGMTsolves the target assignment problenUi(¥(n)) time
with high probability.

Remark 2 (Generalization of Theorem The bound in Theorem 7 holds for any
initial positions such that every cell contains at leasttamget and at least one agent.
[ ]

Theorem 8 (Stochastic time complexity: More agents than tagets).Considern
agents and:/ log n targets, uniformly randomly distributed i, £(n)]2. If £(n) <

r/v/5+/(n/K logn), whereK > 1/log(4/e), then w.h.p.GRID ASSGMT solves
the target assignment problemd@(1) time.

A representative of simulation of 8D ASsSGMT for 65 agents and targets uni-
formly randomly distributed in a dense environment is shawfig. 5(a)—(c). In
Fig. 5(c) a dashed blue trail shows the trajectory for thel faggent as it is about
to reach its target in cell’(1,1). Fig. 5.1 contains a Monte Carlo simulation for
uniformly randomly generated agents and targets. The sitgh/(n) satisfies the
bound in Theorem 7, and the agents move at unit speed. Eazpaiat is the mean
completion time of 30 trials, where each trial was perforraechndomly generated
agent and target positions. Error bars show plus/minus tamelard deviation. The
mean completion time lies betwee@f(n) and3/(n). This agrees with th&(¢(n))
bound in Theorem 7 and gives some idea as to the constantnindfthis bound.

5.2 A sensor based version

In describing the @ID AssGMmTalgorithm, we assumed that each agent knows the
position of all targets. The algorithm also works when eagéna does not know
the position of any targets, but has a sensing raRgge with which it can sense
the positions of targets in range. If each agent can partttie environment as in
Fig. 4, and ifrsense> 1/2/5r so that each agent can sense the position of all targets
in its current cell, then & D AssGMT (with minor modifications) solves the target
assignment problem, and the completion time results stitl.h
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Fig. 5. A simulation of 65 agents in a dense environment. Targetblack disks and agents
are blue squares. Red lines are drawn when two agents arelwgoating.
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Fig. 6. A Monte Carlo simulation. Each data point is the mean of 34gri

5.3 Congestion issues

Since wireless communication is a shared medium, simutaneessages sent in
close proximity will collide, resulting in dropped packets fact, clear reception
of a signal requires that no other signals are present atatme goint in time and
space. As the density of agents increases (as measuredixotimenunication foot-
prints), so does wireless communication congestion. Tinudense environments,
one would ideally account for the effects of congestionhimdesign of @D Ass
GMT we have tried to limit the amount of simultaneous commuinecatTo this end
we introduced a leader in each cell, who sent messages éP$iag n)) only to its
adjacent cells, and all other assigned agents were silentetr, to fully take wire-
less congestion into account, we would require a more stpdiisd communication
model than the geometric graph.
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6 Conclusion and extensions

In this chapter we have discussed two complementary afgositfor the target as-
signment problem, ETSP#sGMTand GRID ASSGMT. We have shown that ETSP
AssGMThas better performance in sparse environments, whereras, £&SSGMT
has better performance in dense environments. There arg fuiame research di-
rections such as extensions to vehicles with motion coingsreor to the case when
targets are dynamically appearing and disappearing. Anattea of future research
is to develop a communication framework which adequatelgelocongestion and
media access problems that are inherently present in s&el@mmunications.
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