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Summary. In this chapter we look at a geometric target assignment problem consisting of
an equal number of mobile robotic agents and distinct targetlocations. Each agent has a
fixed communication range, a maximum speed, and knowledge ofevery target’s position. The
problem is to devise a distributed algorithm that allows theagents to divide the target locations
among themselves and, simultaneously, leads each agent to its unique target. We summarize
two algorithms for this problem; one designed for “sparse” environments, in which commu-
nication between robots is sparse, and one for “dense” environments, where communication
is more prevalent. We characterize the asymptotic performance of these algorithms as the
number of agents increases and the environment grows to accommodate them.

1 Introduction

Consider a group ofn mobile robotic agents, equipped with wireless transceivers
for limited range communication, dispersed in an environmentE ⊂ R2. Suppose the
environment also containsn target locations, and each agent is given a list containing
their positions (these positions may be given as GPS coordinates). We would like
each target location to be occupied be an agent as quickly as possible. Since no
a priori assignment of target-agent pairs has been given, the agentsmust solve the
problem through communication and motion. We call this thetarget assignment
problem. Such a problem could arise in several applications, such asUAV’s on
a surveillance mission, where the targets are the centers oftheir desired loitering
patterns.

The centralized problem of simply assigning one agent to each target is known
in the combinatorial optimization literature as themaximum matching problem[1].
There are several polynomial time algorithms for solving this problem, the best
known being [2] by Hopcroft and Karp. To efficiently assign agents to targets, we
may be interested in finding a maximum matching (i.e., an assignment of one agent
to each target) which minimizes a cost function. If the cost function is the sum of
distances from each agent to its assigned target, then the problem is known as the
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assignment problem, or theminimum weight maximum matching problem, [1]. This
problem can be written as an integer linear program and optimal solutions can be
computed in polynomial time [3]. Another choice of cost function is to minimize
the maximum distance between agents and their assigned targets. This problem is
commonly referred to as thebottleneck assignment problem[4], and although the
cost function is not linear, there still exist several polynomial time algorithms for
its solution. There has also been work on developing algorithms for the assignment
problem which can be implemented on parallel computing systems. One example is
the auction algorithm[5], which can be implemented with one processor for each
agent.

There is set of problems, commonly referred to asdecentralized task allocation,
that are closely related to our target assignment problem, see for example [6–8]. In
these problems the goal is generally to assign vehicles to spatially distributed tasks
while maximizing the “score” of the mission. Most works on this problem develop
advanced heuristic methods, and demonstrate their effectiveness through simulation
or real world implementation. In [9] the auction algorithm was adapted to solve a task
allocation problem in the presence of communication delays. There has also been
prior work on the target assignment problem [10–14]. For example, an algorithm
based on hybrid systems tools is developed in [10]. The algorithm performance is
characterized by a bound on the number of switches of the hybrid system; however,
no analysis of the time complexity is provided.

In this chapter we summarize our recent investigations [12,13] into the minimum-
time task assignment problem and its scalability properties. We are interested in
characterizing the completion time as the number of agents,n, grows, and the envi-
ronment,E(n) := [0, ℓ(n)]2, grows to accommodate them. In Section 4 we describe
the ETSP ASSGMT algorithm with worst-case completion time inO(

√
nℓ(n)). In

addition, in “sparse” environments, i.e., whenℓ(n)/
√
nθ0 +∞, the ETSP ASSGMT

algorithm is asymptotically optimal among a broad class of algorithms in terms of
its worst-case completion time. Then, in Section 5 we describe the GRID ASSGMT

algorithm with worst-case completion time inO(ℓ(n)2). We also characterize the
stochastic properties of the GRID ASSGMTalgorithm in “dense” environments, i.e.,
when ℓ(n)/

√
nθ00. If the agents and targets are uniformly randomly distributed,

then the completion time belongs toO(ℓ(n)) with high probability. Also, if there are
n agents and onlyn/ logn targets, then the completion time belongs toO(1) with
high probability.

The two algorithms are complementary: ETSP ASSGMThas better performance
in sparse environments, while GRID ASSGMThas better performance in dense envi-
ronments.

2 Geometric and stochastic preliminaries

In this section we review a few useful results on the Euclidean traveling salesperson
problem, occupancy problems, and random geometric graphs.To do this, we must
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first briefly review some notation. We letR denote the set of real numbers,R>0 de-
note the set of positive real numbers, andN denote the set of positive integers. Given
a finite setA, we let|A| denote its cardinality. For two functionsf, g : Nθ0R>0, we
write f(n) ∈ O(g) (respectively,f(n) ∈ Ω(g)) if there existN ∈ N andc ∈ R>0

such thatf(n) ≤ cg(n) for all n ≥ N (respectively,f(n) ≥ cg(n) for all n ≥ N ).
If f(n) ∈ O(g) andf(n) ∈ Ω(g) we sayf(n) ∈ Θ(g). We say that eventA(n)
occurswith high probability(w.h.p.) if the probability ofA(n) occurring tends to
one asnθ0 +∞.

2.1 The Euclidean traveling salesperson problem

For a set ofn points,Q ∈ R2, we letETSP(Q) denote the length of the shortest
closed path through all points inQ. The following result characterizes the length of
this path whenQ ⊂ [0, ℓ(n)]2.

Theorem 1 (ETSP tour length, [15]).For every set ofn pointsQ ⊂ [0, ℓ(n)]2, we
haveETSP(Q) ∈ O(

√
nℓ(n)).

The problem of computing an optimal ETSP tour is known to be NP-complete.
However, there exist many efficient approximation algorithms. For example, the
Christofides’ algorithm[16], computes a tour that is no longer than3/2 times the
optimal inO(n3) computation time.

2.2 Bins and balls

Occupancy problems, or bins and balls problems, are concerned with randomly dis-
tributingm balls inton equally sized bins. The two results we present here will be
useful in our analysis.

Theorem 2 (Bins and balls properties, [17,18]).Consider uniformly randomly dis-
tributing m balls into n bins and letγn be any function such thatγnθ0 + ∞ as
nθ0 +∞. The following statements hold:

1. ifm = n, then w.h.p. each bin containsO
(

logn
log log n

)
balls;

2. ifm = n logn+γnn, then w.h.p. there are no empty bins, and each bin contains
O(log n) balls;

3. ifm = n logn− γnn, then w.h.p. there exists an empty bin;
4. if m = Kn logn, whereK > 1/ log(4/e), then w.h.p. every bin contains
Θ(log n) balls.

We will be interested in dividing a square environment into equally sized and
openly disjoint square bins, such that the side lengthℓ(B), of each bin is small in
some sense. To do this, we require the following simple fact.
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Lemma 1 (Dividing the environment).Givenn ∈ N andr > 0, consider an envi-
ronmentE(n) := [0, ℓ(n)]2. If E(n) is partitioned intob2 equally sized and openly
disjoint square bins, where

b := ⌈
√

5ℓ(n)/r⌉, (1)

thenℓ(B) ≤ r/
√

5. Moreover, ifx, y ∈ E(n) are in the same bin or in adjacent bins,
then‖x− y‖ ≤ r.

2.3 Random geometric graphs

Forn ∈ N andr ∈ R>0, a planargeometric graphG(n, r) consists ofn vertices in
R2, and undirected edges connecting all vertex pairs{x, y} with ‖x− y‖ ≤ r. If the
vertices are randomly distributed in some subset ofR2, we call the graph arandom
geometric graph.

Theorem 3 (Connectivity of random geometric graphs, [19]).Consider the ran-
dom geometric graphG(n, r) obtained by uniformly randomly distributingn points
in [0, ℓ(n)]2. If

π

(
r

ℓ(n)

)2

=
logn+ c(n)

n
,

thenG(n, r) is connected w.h.p. if and only ifc(n)θ0 +∞ asnθ0 +∞.

This theorem will be important for understanding some of ourresults. If we
randomly deployn agents with communication ranger > 0 in an environment
[0, ℓ(n)]2, then the communication graph is connected ifℓ(n) ≤ r

√
n/ logn.

3 Network model and problem statement

In this section we formalize our agent and target models and define the sparse and
dense environments.

3.1 Robotic network model

Considern agents in an environmentE(n) := [0, ℓ(n)]2 ⊂ R2, whereℓ(n) > 0
(that is,E(n) is a square with side lengthℓ(n)). The environmentE(n) is compact
for eachn but its size depends onn. A robotic agent,A[i], i ∈ I := {1, . . . , n}, is
described by the tuple

A[i] := {UID[i],p[i], r,u[i],M [i]},

where the quantities are as follows: Its unique identifier (UID) is UID [i], taken from
the setIUID ⊂ N. Note that, each agent does not know the set of UIDs being used
and thus does not know the order. Its position isp[i] ∈ E(n). Its communication
range isr > 0, i.e., two agents,A[i] andA[k], i, k ∈ I, can communicate if and only
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if ‖p[i] − p[k]‖ ≤ r. Its continuous time velocity input isu[i], corresponding to the
kinematic modelṗ[i] = u[i], where‖u[i]‖ ≤ vmax for somevmax > 0. Finally, its
memory isM [i] and is of size|M [i]|. From now on, we simply refer to agentA[i] as
agenti. We assume the agents move in continuous time and communicate according
to a discrete time schedule{tk}k∈N. We assume|tk+1 − tk| ≤ tmax, for all k ∈ N,
wheretmax ∈ R>0. At each communication round, agents can exchange messages
of lengthO(log n).1

3.2 The target assignment problem

Let Q := {q1, . . . ,qn} be a set of distinct target locations,qj ∈ E(n) for each
j ∈ I. Agenti’s memory,M [i], contains a copy ofQ, which we denoteQ[i]. To store
Q[i] we must assume the size of each agents’ memory,|M [i]|, is inΩ(n). We refer
to the assumption that each agent knows all target positionsas thefull knowledge
assumption (for a more detailed discussion of this assumption see [12]). Our goal is
to solve the(full knowledge) target assignment problem:

Determine an algorithm forn ∈ N agents, with attributes as described
above, satisfying the following requirement. There existsa timeT > 0 such
that for each targetqj ∈ Q, there is a unique agenti ∈ I, with p[i](t) = qj
for all t ≥ T .

3.3 Sparse and dense environments

We wish to study the scalability of a particular approach to the target assignment
problem; that is, how the completion time increases as we increase the number of
agents,n. The velocityvmax and communication ranger of each agent are indepen-
dent ofn. However, we assume that the size of the environment increases withn in
order to accommodate an increase in agents. Borrowing termsfrom the random ge-
ometric graph literature [19], we say the environment is sparse if, as we increase the
number of agents, the environment grows quickly enough thatthe density of agents
(as measured by the sum of their communication footprints) decreases; we say the
environment is critical, if the density is constant, and we say the environment is dense
if the density increases. Formally, we have the following definition.

Definition 1 (Dense, critical and sparse environments).The environmentE(n) :=
[0, ℓ(n)]2 is sparseif ℓ(n)/

√
nθ0 +∞ asnθ0 +∞, critical if ℓ(n)/

√
nθ0C ∈ R>0

asnθ0 +∞, anddenseif ℓ(n)/
√
nθ00, asnθ0 +∞.

It should be emphasized that a dense environment does not imply that the com-
munication graph between agents is dense. On the contrary, from Theorem 3 we see
that the communication graph at random agent positions in a dense environment may
not even be connected.

1 Ω(n) bits are required to represent an ID, unique amongn agents.
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4 Sparse environments

We begin by studying the case when the environment is sparse,and thus there is
very little communication between agents. We introduce a natural approach to the
problem in the form of a class of distributed algorithms, called assignment-based
motion. We give a worst-case lower bound performance of the assignment-based
motion class. Next, we introduce a control and communication algorithm, called
ETSP ASSGMT. In this algorithm, each agent precomputes an optimal tour through
then targets, turning the cloud of target points into an ordered ring. Agents then
move along the ring, looking for the next available target. When agents commu-
nicate, they exchange information on the next available target along the ring. We
show that in sparse or critical environments, the ETSP ASSGMT algorithm is an
asymptotically optimal among all algorithms in the assignment-based motion class.

4.1 Assignment-based algorithms with lower bound analysis

Here we introduce and analyze a class of deterministic algorithms for the target as-
signment problem. The assignment-based motion class can bedescribed as follows.

Outline of assignment-based motion class

Initialization: In this class of algorithms agenti initially selects the closest
target inQ[i], and sets the variable curr[i] (agenti’s current target), to
the index of that target.

Motion: Agenti moves toward the target curr[i] at speedvmax.
Communication:If agenti communicates with an agentk that is moving

toward curr[k] = curr[i], and if agentk is closer to curr[i] than agenti,
then agenti “removes” curr[i] fromQ[i] and selects a new target.

For this class of algorithms it is convenient to adopt the following conventions: we
say that agenti ∈ I is assignedto targetqj ∈ Q, when curr[i] = j. We say that
agenti ∈ I enters a conflictover the target curr[i], when agenti receives a message,
msg[k], with curr[i] = curr[k]. Agent i loses the conflictif agenti is farther from
curr[i] than agentk, andwins the conflictif agenti is closer to curr[i] than agentk,
where ties are broken by comparing UIDs. Note that if an agentis assigned to the
same target as another agent, it will enter a conflict in finitetime.

Theorem 4 (Time complexity lower bound for target assignment). Considern
agents, with communication ranger > 0, in an environment[0, ℓ(n)]2. If ℓ(n) ≥
r
√
n, then for all algorithms in the assignment-based motion class, the time com-

plexity of the target assignment problem is inΩ(
√
nℓ(n)).

In other words, the target assignment time complexity is lower bounded when
the environment grows faster than some critical value, thatis, when the environment
is sparse or critical.
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4.2 The ETSP ASSGMT algorithm with upper bound analysis

In this section we introduce the ETSP ASSGMTalgorithm—an algorithm within the
assignment-based motion class. We will show that when the environment is sparse
or critical, this algorithm is asymptotically optimal. In the following description of
ETSP ASSGMT it will be convenient to assume that the target positions arestored in
each agents memory as an array, rather than as an unordered set. That is, we replace
the target setQ with the targetn-tupleq := (q1, . . . ,qn), and the local target set
Q[i] with then-tupleq[i]. The algorithm can be described as follows.

For eachi ∈ I, agenti computes a constant factor approximation of the optimal
ETSP tour of then targets inq[i], denotedtour(q[i]). We can think oftour as a map

which reorders the indices ofq[i]; tour(q[i]) = (q
[i]
σ(1), . . . ,q

[i]
σ(n)), whereσ : Iθ0I

is a bijection. This map is independent ofi since all agents use the same method. An
example is shown in Fig. 1(a). Agenti then replaces itsn-tupleq[i] with tour(q[i]).

1
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(a) The maptour orders the given targets
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[i]

= 1
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p
[i]

5

3

2

4

(b) Initialization of agenti

Fig. 1. Initialization of ETSP ASSGMT

Next, agenti computes the index of the closest target inq[i], and calls it curr[i].
Agenti also maintains the index of the next target in the tour which may be available,
next[i], and first target in the tour before curr[i] which may be available, prev[i]. Thus,
next[i] is initialized to curr[i] +1 (mod n) and prev[i] to curr[i]−1 (mod n). In order
to “remove” assigned targets from the tupleq[i], agenti also maintains then-tuple,
status[i]. Letting status[i](j) denote thejth entry in then-tuple, the entries are given
by

status[i](j) =

{
0, if agenti knowsq[i]

j is assigned to another agent,

1, otherwise.
(2)

Thus, status[i] is initialized as then-tuple(1, . . . , 1). The initialization is depicted in
Fig. 1(b).

Finally, at each communication round agenti executes the algorithmCOMM-RD

described below.

Outline of COMM -RD algorithm for agent i
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1: Broadcast msg[i], consisting of the targets, prev[i], curr[i], and next[i],
the distance to the current targetd[i], andUID [i].

2: for all messages, msg[k], receiveddo
3: Set status[i](j) to assigned (‘0’) for each targetj from prev[k] +

1 (mod n) to next[k] − 1 (mod n) not equal to curr[i].
4: if prev[k] = next[k] = curr[k] 6= curr[i], then set the status of curr[k]

to 0 because it was missed in the previous step.
5: if curr[i] = curr[k] but agenti is farther from curr[i] than agentk (ties

broken with UIDs)then
6: Set the status of curr[i] to assigned (‘0’).
7: if curr[i] = curr[k] and agenti is closer than agentk then
8: Set the status of next[i] and next[k] to assigned (‘0’).
9: Update curr[i] to the next target in the tour with status available (‘1’),

next[i] to the next available target in the tour after curr[i], and prev[i] to
the first available target in the tour before curr[i].

In summary, the ETSP ASSGMTalgorithm is the triplet consisting of the initial-
ization of each agent, the motion law (move toward curr[i] at speedvmax), and the
COMM-RD algorithm executed at each communication round.

Fig. 2 gives an example ofCOMM-RD resolving a conflict between agentsi and
k, over curr[i] = curr[k]. The proposed algorithm enjoys plenty of useful properties,

curr[k] = curr[i] = 7
2

prev[k] = 5

next[k] = next[i] = 1

prev[i] = 6

p
[k]

3

4

p
[i]

(a) Setup prior to a conflict.

curr[i] = 7

2 = next[k] = next[i]

prev[k] = prev[i] = 5

curr[k] = 1

6

3

4

p
[k]

p
[i]

(b) Setup after resolution of the conflict.

Fig. 2. The resolution of a conflict between agentsi andk over target7. Agent i wins the
conflict since it is closer to target7 than agentk.

which are valid for any communication graph which contains the geometric graph
with parameterr as a subgraph. A complete discussion is contained in [12]. Based
on a careful application of Theorem 1, one can derive the following key result.

Theorem 5 (Correctness and time complexity for ETSP ASSGMT). For anyn ∈
N, ETSP ASSGMT solves the target assignment problem. Furthermore, consider
an environment[0, ℓ(n)]2. If tmax < r/vmax, thenETSP ASSGMT solves the target
assignment problem inO(

√
nℓ(n) + n) time. If, in addition,ℓ(n) > r

√
n, then
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the time complexity is inΘ(
√
nℓ(n)), andETSP ASSGMT is asymptotically optimal

among algorithms in the assignment-based motion class.

The above theorem gives a complexity bound for the case whenr andvmax are
fixed constants, andℓ(n) grows withn. An equivalent setup is to considerℓ fixed
and allow the robots’ attributes,r andvmax, to vary inversely with then, specifically,
r andv proportional to

√
n.

Corollary 1 (Complexity with congestion).Considern agents moving with speed
ṽmax(n) = n−1/2 and communication radius̃r(n) = r0n

−1/2, with r0 < 1, in the
environment[0, 1]2. ThenETSP ASSGMTsolves the target assignment problem with
time complexity inΘ(n).

For simplicity we have presented our time complexity results in the planar envi-
ronment[0, ℓ(n)2]. However, in [12] we derive bounds for the more general envi-
ronment[0, ℓ(n)]d, d ≥ 1. A simulation in[0, 100]3 ⊂ R3 with r = 15 andv = 1
is shown in Fig. 3. To compute the ETSP tour we have used theconcorde TSP
solver.2 The initial configuration shown in Fig. 3(a) consists of uniformly randomly
generated target and agent positions.

(a) Initial configuration (b) Positions at time30 (c) Complete assignment

Fig. 3. Simulation for 15 agents,vmax = 1, r = 15 in E = [0, 100]3. The targets are spheres.
The agents are cubes. An edge is drawn when two agents are communicating.

5 Dense environments

In the previous section we presented the ETSP ASSGMTalgorithm which has prov-
ably good performance in sparse environments. In this section we introduce the
GRID ASSGMT algorithm for dense environments in which communication ismore
prevalent. We will show that it has better worst-case performance than ETSP ASS-
GMT in dense environments, and that it possesses very good stochastic performance.
2 The concorde TSP solver is available for research use athttp://www.tsp.

gatech.edu/concorde/index.html
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5.1 The GRID ASSGMT algorithm with complexity analysis

In the GRID ASSGMT algorithm we assume that each agent knows the target posi-
tions,Q, and the quantityℓ(n) which describes the size of the environment. With
this information, each agent partitions the environment into b2 equally sized square
cells, whereb ∈ N. It then labels the cells like entries in a matrix, so cellC(w, c)
resides in thewth row andcth column. This is shown in Fig. 4(b). Since the agents
started with the same information, they all create the same partition.

(a) 35 targets inE(n).

C(1, 1)

C(2, 1)

C(3, 1)

C(1, 2)

C(2, 2)

C(3, 2)

C(1, 3)

C(2, 3)

C(3, 3)

(b) E(n) divided intob2 = 9 cells.

Fig. 4. Dividing the environment into 9 cells.

In light of Lemma 1, we see that whenb is given by⌈
√

5ℓ(n)/r⌉, as in equa-
tion (1), the communication graph between agents in a cell iscomplete, and com-
munication between agents in adjacent cells is also possible. With this in mind, an
outline of the GRID ASSGMTalgorithm is as follows.

Outline of the GRID ASSGMT algorithm

Initialization: Each agent partitions the environment intob2 equally sized
square cells, whereb is given in Lemma 1, and the cells are labeled as
in Fig. 4(b).

All agents: In each cell, all agents in the cell find a maximum matching
between agents and targets occupying the cell. Accordingly, agents are
labeled assigned or unassigned.

Assigned agents:In each cell, all assigned agents elect a leader among
them. All assigned agents, except the leaders, send their assignment
information to their respective leader and then go silent.

Cell leaders: The leader in each cell communicates to leader in the cell di-
rectly above. As a result, each leader obtains an estimate ofthe number
of available targets in all cells below it, in its column.
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Unassigned agents:First, each unassigned agent seeks a free target in its
column by entering cells and querying the corresponding leader.
Second, if all targets in the unassigned agent’s column are assigned,
then the agent moves to the top of its column and along the top row. The
agent gathers from each leader in the top row the number of available
targets in the leader’s column. When the agent finds a column with
available targets, it travels down that column to find the free target.

To implement this algorithm agentimaintains the following variables in its mem-
ory. The variable currcell[i] keeps track of the cell which agenti currently occupies.
The setQ[i](w, c) which contains the targets in cellC(w, c). The variable leader[i]

which is set toC(w, c) if agent i is the leader ofC(w, c), andnull otherwise.
The array colstatus[i], where colstatus[i](c) is set tofull if column c contains no
available targets, andnotfull if agenti thinks columnc may contain an available
target. The variable dircol[i] ∈ {down, up} which contains the direction of travel in
a column and dirrow[i] ∈ {left , right } which contains the direction in the first
row. Finally, the variable curr[i] which contains agenti’s assigned target, or the entry
null .

After initializing these variables, each agent runs an algorithm which allows the
agents to compute a local maximum matching, and elect a leader, in each cell. Since
the communication graph in each cell is complete, this can bedone in one commu-
nication round by receiving the UIDs of each agent in the cell[13].

After the maximum matching and leader election the agents have been separated
into three roles; assigned leader agents, assigned non-leader agents, and unassigned
agents. The unassigned agents run an algorithm in which theytry to find a free
target. The leader of each cell runs an algorithm in which they update their estimates
of available targets in various parts of the grid, and assigns unassigned targets in its
cell. The leader of cellC(w, c), agenti, maintains the following quantities to assign
targets in its cell, and estimate the number of available targets in cells below. Agenti
maintains: diff[i](w, c), which records the difference between the number of targets
and agents in cellC(w, c); diffbelow[i](w, c) which records agenti’s estimate of the
difference between the number of agents and targets in cellsC(w+1, c), . . . , C(b, c);
and taravail[i](w, c) which contains the available targets inC(w, c). Finally, if agent
i is the leader ofC(1, c) in the first row, it maintains diffright[i](c) which is agenti’s
estimate of the number of available targets in columnsc+ 1, . . . , b.

In summary, The GRID ASSGMTalgorithm is the4-tuple consisting of the initial-
ization, the maximum matching and leader election algorithm, the unassigned agent
algorithm, and the leader algorithm.

We can now state the main results on the GRID ASSGMTalgorithm.

Theorem 6 (Correctness and worst-case upper bound).For any initial positions
of n targets andn agents in[0, ℓ(n)]2, GRID ASSGMT solves the target assignment
problem inO((ℓ(n))2) time.

Remark 1 (GRID ASSGMT vs. ETSP ASSGMT). The worst-case bound for ETSP
ASSGMT in Theorem 5 wasO(

√
nℓ(n)). Thus, in sparse environments, whenℓ(n)
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grows faster than
√
n, ETSP ASSGMT performs better, and in dense environments

GRID ASSGMT performs better. In critical environments, the bounds are equal.
Thus, the two algorithms are complementary. In practice, ifn, ℓ(n) andr are known,
each robot in the network can determine which algorithm to run based on the fol-
lowing test: ETSP ASSGMT is run if ℓ(n)/

√
n > r and GRID ASSGMT is run if

ℓ(n)/
√
n < r. •

In the following theorem we will see that for randomly placedtargets and agents,
the performance of GRID ASSGMT is considerably better than in the worst-case.
The proofs of the following theorems utilize the results on bins and balls problems
in Section 2.

Theorem 7 (Stochastic time complexity).Considern agents andn targets, uni-
formly randomly distributed in[0, ℓ(n)]2. If ℓ(n) ≤ r/

√
5
√

(n/K logn), where
K > 1, thenGRID ASSGMT solves the target assignment problem inO(ℓ(n)) time
with high probability.

Remark 2 (Generalization of Theorem 7).The bound in Theorem 7 holds for any
initial positions such that every cell contains at least onetarget and at least one agent.
•

Theorem 8 (Stochastic time complexity: More agents than targets).Considern
agents andn/ logn targets, uniformly randomly distributed in[0, ℓ(n)]2. If ℓ(n) ≤
r/
√

5
√

(n/K logn), whereK > 1/ log(4/e), then w.h.p.,GRID ASSGMT solves
the target assignment problem inO(1) time.

A representative of simulation of GRID ASSGMT for 65 agents and targets uni-
formly randomly distributed in a dense environment is shownin Fig. 5(a)–(c). In
Fig. 5(c) a dashed blue trail shows the trajectory for the final agent as it is about
to reach its target in cellC(1, 1). Fig. 5.1 contains a Monte Carlo simulation for
uniformly randomly generated agents and targets. The side lengthℓ(n) satisfies the
bound in Theorem 7, and the agents move at unit speed. Each data point is the mean
completion time of 30 trials, where each trial was performedat randomly generated
agent and target positions. Error bars show plus/minus one standard deviation. The
mean completion time lies between2ℓ(n) and3ℓ(n). This agrees with theO(ℓ(n))
bound in Theorem 7 and gives some idea as to the constant in front of this bound.

5.2 A sensor based version

In describing the GRID ASSGMT algorithm, we assumed that each agent knows the
position of all targets. The algorithm also works when each agent does not know
the position of any targets, but has a sensing rangersense, with which it can sense
the positions of targets in range. If each agent can partition the environment as in
Fig. 4, and ifrsense≥

√
2/5r so that each agent can sense the position of all targets

in its current cell, then GRID ASSGMT (with minor modifications) solves the target
assignment problem, and the completion time results still hold.
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(a) Initial agent and target po-
sitions, and grid.

(b) Maximum assignment
and leader election.

(c) Final agent reaching tar-
get.

Fig. 5. A simulation of 65 agents in a dense environment. Targets areblack disks and agents
are blue squares. Red lines are drawn when two agents are communicating.
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Fig. 6.A Monte Carlo simulation. Each data point is the mean of 30 trials.

5.3 Congestion issues

Since wireless communication is a shared medium, simultaneous messages sent in
close proximity will collide, resulting in dropped packets. In fact, clear reception
of a signal requires that no other signals are present at the same point in time and
space. As the density of agents increases (as measured by their communication foot-
prints), so does wireless communication congestion. Thus,in dense environments,
one would ideally account for the effects of congestion. In the design of GRID ASS-
GMT we have tried to limit the amount of simultaneous communication. To this end
we introduced a leader in each cell, who sent messages (of sizeO(log n)) only to its
adjacent cells, and all other assigned agents were silent. However, to fully take wire-
less congestion into account, we would require a more sophisticated communication
model than the geometric graph.
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6 Conclusion and extensions

In this chapter we have discussed two complementary algorithms for the target as-
signment problem, ETSP ASSGMTand GRID ASSGMT. We have shown that ETSP
ASSGMT has better performance in sparse environments, where as, GRID ASSGMT

has better performance in dense environments. There are many future research di-
rections such as extensions to vehicles with motion constraints, or to the case when
targets are dynamically appearing and disappearing. Another area of future research
is to develop a communication framework which adequately models congestion and
media access problems that are inherently present in wireless communications.
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