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Monotonic Target Assignment

for Robotic Networks
Stephen L. Smith Francesco Bullo

Abstract

Consider an equal number of mobile robotic agents and distinct target locations dispersed in an environment.

Each agent has a limited communication range and either (1) knowledge of every target position, or (2) a finite-range

sensor capable of acquiring target positions and no a prioriknowledge of target positions. In this paper we study the

following target assignment problem: design a distributedalgorithm with which the agents divide the targets among

themselves and, simultaneously, move to their unique target. We evaluate an algorithm’s performance by characterizing

its worst-case asymptotic time to complete the target assignment; that is the task completion time as the number of

agents (and targets) increases, and the size of the environment scales to accommodate them. We introduce the intuitive

class ofmonotonic algorithms, and give a lower bound on its worst-case completion time. Wedesign and analyze

two algorithms within this class: the ETSP ASSGMT algorithm which works under assumption (1), and the GRID

ASSGMT algorithm which works under either assumption (1) or (2). In“sparse environments,” where communication

is infrequent, the ETSP ASSGMT algorithm is within a constant factor of the optimal monotonic algorithm for

worst-case initial conditions. In “dense environments,” where communication is more prevalent, the GRID ASSGMT

algorithm is within a constant factor of the optimal monotonic algorithm for worst-case initial conditions. In addition

we characterize the performance of the GRID ASSGMT algorithm for uniformly distributed targets and agents, and

for the case when there are more agents than targets.

I. I NTRODUCTION

Consider a group ofn mobile robotic agents, equipped with wireless transceivers for limited range communication,

dispersed in an environmentE ⊂ R
2 which containsn target locations. In addition, consider two scenarios: (1)each

agent is given a list containing all target positions (the positions may be given as GPS coordinates); or (2) each

agent has no initial target information, but has a finite-range target sensor to acquire target positions. The task is for

the agents to divide the targets among themselves so that in minimum time, each target location is occupied by an

agent. Since noa priori assignment of target-agent pairs has been given, the agentsmust solve the problem through

communication and motion. We call this thetarget assignment problem. This problem has many applications in
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UAV surveillance and exploration, or mobile sensor networks. The first scenario could arise when a high-altitude,

sensory-rich aircraft communicates a large number of target positions to a correspondingly large group of smaller,

slower, autonomous aircraft at lower altitudes. The second(local sensing) scenario could arise in exploration tasks

where a group of UAVs are sent into a region to find, and provideservice to, spatially distributed tasks.

The centralized problem of simply assigning one agent to each target is known in the combinatorial optimization

literature as themaximum matching problem[3]. To efficiently assign agents to targets, we may be interested in

finding a maximum matching (i.e., an assignment of one agent to each target) that minimizes a cost function. If the

cost function is the sum of distances from each agent to its assigned target, then the problem is known as thesum

assignment problem, or theminimum weight maximum matching problem, [3]. Another choice of cost function is

to minimize the maximum distance between agents and their assigned targets. This problem is commonly referred

to as thebottleneck assignment problem[4]. There exist efficient polynomial time algorithms for the solution of

all these problems [5], [6], [4]. Additionally, the sum assignment problem can be solved in a parallel fashion via

the auction algorithm[7]. However, these solutions do not directly apply to our problem where, due to the agents’

limited communication range, the communication topology is time-varying, and possibly disconnected.

The class of problems commonly referred to asdecentralized task allocationfor UAVs (or UGVs), is closely

related to our target assignment problem. In these problemsthe goal is generally to assign vehicles to spatially

distributed tasks while maximizing the “score” of the mission. In [8] a taxonomy of task allocation problems is

given, dividing problems into groups based on, among other things, the number of tasks a robot can execute,

and the number of robots required for a task. In papers such as[9], [10], [11], advanced heuristic methods are

developed, and their effectiveness is demonstrated through simulation or real world implementation. In [12] the

auction algorithm is adapted to solve a task allocation problem in the presence of communication delays. In [13]

the authors study the problem of dynamically reassigning agents as new tasks arrive and old tasks expire. There has

also been prior work on target assignment problems [14], [15]. In [14] the authors formulate a target assignment

problem as a multi-player game and seek to optimize a global utility. In [15] an algorithm based on hybrid systems

tools is developed and its performance is characterized by abound on the number of switches of the hybrid system.

Unlike the prior work, in this paper we study the scalabilityproperties of the minimum-time target assignment

problem. We assume that each agent has limited communication capabilities and either (1)full target knowledge

(i.e., each agent knows the position of every target), or (2)local target sensing(i.e., each agent has a finite-range

target sensor to acquire target positions). We focus on characterizing the completion time as the number of agents

n grows, and the square environmentE(n) grows to accommodate them.1

The contributions of this paper are: a novel and concise statement of the minimum-time target assignment problem

for robotic networks; a broad class of distributed algorithms for solving this problem; lower bounds on the worst-

case performance achievable by any algorithm in this class;and algorithms which perform within a constant factor

1The size of the square environmentE is a function ofn, and thus we writeE(n). If the environment size were independent ofn, then the

density of robots would become arbitrarily large as the tasksize n became large, which is not realistic. Thus, either the environment should

grow with n (as is assumed here), or the robot’s attributes should shrink with n (as is discussed in Section VIII-C).
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of the optimal monotonic algorithm for worst-case initial conditions. In Section IV-A we introduce the class of

monotonic algorithms, which provides an intuitive approach for solving the target assignment problem. We show that

in “sparse environments,” that is when|E(n)|/n → +∞, for every monotonic algorithm there exists a (worst-case)

set of initial target and agent positions such that the completion time is inΩ(
√

|E(n)|n).2 In “dense environments,”

that is when|E(n)|/n → 0+, every algorithm in the class has worst-case completion time in Ω(|E(n)|). In Section

V, we assume full target knowledge and present a monotonic algorithm, called the ETSP ASSGMT algorithm, with

worst-case completion time inO(
√

|E(n)|n). In this algorithm, each agent computes an ETSP tour throughthe n

targets, turning the cloud of target points into an ordered ring. Agents then move along the ring, looking for the

next available target. When agents communicate, they exchange information on the location of the next available

target along the ring. Then, in Section VI we present a monotonic algorithm, called the GRID ASSGMT algorithm,

which operates under either the full target knowledge assumption, or the local target sensing assumption as long as

the sensing range is at least
√

2/5 times the communication range. Under either assumption, the GRID ASSGMT

algorithm has worst-case completion time inO(|E(n)|). In this algorithm, the agents partition the environment

into cells, and determine local maximum assignments in the cell which they occupy. A leader is elected in each

cell, and through communication between leaders of adjacent cells, local assignments are merged into a global

and complete assignment. These two algorithms are complementary in terms of worst-case performance: in “sparse

environments,” the ETSP ASSGMT algorithm is within a constant factor of the optimal monotonic algorithm, and is

“dense environments,” the GRID ASSGMT algorithm is within a constant factor of the optimal monotonic algorithm.

We also characterize the stochastic properties of the GRID ASSGMT algorithm in “dense environments.” If the

agents and targets are uniformly distributed, then the completion time belongs toO(
√

|E(n)|) with high probability.

Additionally, if there aren agents and onlyn/ logn targets, then the completion time belongs toO(1) with high

probability. In Section VIII we discuss extensions of the ETSP ASSGMT and GRID ASSGMT algorithms to higher

dimensional spaces and to the case ofn agents andm targets,n 6= m.

II. COMBINATORIC, GEOMETRIC AND STOCHASTIC PRELIMINARIES

In this section we review a few useful results on the centralized matching problem, the Euclidean traveling

salesperson problem, occupancy problems, and random geometric graphs. We letR, R≥0 andN denote the set of

real numbers, the set of non-negative real numbers, and the set of positive integers, respectively. Given a finite set

A, we let |A| denote its cardinality, and given an infinite setA ⊂ R
2 we let |A| denote its area. For two functions

f, g : N → R>0, we write f(n) ∈ O(g) (respectively,f(n) ∈ Ω(g)) if there existN ∈ N and c ∈ R>0 such

that f(n) ≤ cg(n) for all n ≥ N (respectively,f(n) ≥ cg(n) for all n ≥ N ). If f(n) ∈ O(g) andf(n) ∈ Ω(g),

then we sayf(n) ∈ Θ(g). We say that eventA(n) occurswith high probability(w.h.p.) if the probability ofA(n)

occurring tends to one asn → +∞.

2|E(n)| denotes the area ofE(n), andΩ(·) is the asymptotic notation for lower bounds as reviewed in Section II.
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A. Centralized Matching

Considern persons and the problem of dividing them amongn tasks. For each personi, there is a nonempty

set Q[i] of tasks thati can be assigned to, and costcij ≥ 0 associated to each taskj ∈ Q[i]. An assignment

or matchingM is a set of person-task pairs(i, j) such thatj ∈ Q[i] for all (i, j) ∈ M , and such that for each

personi (likewise, taskj) there is at most one pair(i, j) ∈ M . The matchingM is a maximummatching if for

every matchingM̃ , we have|M̃ | ≤ |M |. If |M | = n, then the matching iscomplete. The matchingM is maximal

if there does not exist a matching̃M , such thatM̃ is a strict superset ofM . There are several polynomial time

algorithms for determining a maximum matching. Weighted maximum matching problems are those of finding the

maximum matchingM that minimizes a cost function. Two common cost functions are the sum,
∑

(i,j)∈M cij , or

the bottleneckmax(i,j)∈M cij , and polynomial time algorithms exist for the solution of both of these problems [3].

In this paper we will require a standard algorithm, called MAXIMAL MATCH, for computing a maximal matching.

The algorithm chooses the person-task pair with lowest cost, adds it to the matching, removes the person and task

from the problem, and repeats. In the case when each person can be assigned to any of then tasks (i.e., for each

personi, the setQ[i] contains alln tasks), this algorithm determines a complete, and thus maximum, matching.

MAXIMAL MATCH, outputs a maximal matchingM

Initialize M := ∅, andIi := {1, . . . , n}.1

while there exists ani ∈ Ii with |Q[i]| 6= 0 do2

Compute the indices(i∗, j∗) := arg mini∈Ii,j∈Q[i] cij3

SetM := M ∪ (i∗, j∗), Ii := Ii \ {i∗}, and for eachi ∈ Ii, Q[i] := Q[i] \ {j∗}4

B. The Euclidean Traveling Salesperson Problem

For a setQ of n points in R
2, let ETSP(Q) denote the length of the shortest closed path through all points

in Q. The following result characterizes the length of this pathwhenQ ⊂ E(n), where (for consistency with the

remainder of this paper)E(n) is a square environment that is compact for eachn.

Theorem 2.1 (ETSP tour length, [16]):If Q is a set ofn points inE(n), thenETSP(Q) ∈ O(
√

n|E(n)|).
The problem of computing an optimal ETSP tour is known to be NP-complete. However, there exist polynomial

time approximation schemes. For example, it is shown in [17]that a tour no longer than(1 + ǫ) times the shortest

one can be found inn(log n)O(1/ǫ) computation time.

C. Occupancy Problems

Occupancy problems, or “bins and balls” problems, are concerned with randomly distributingm balls into n

equally sized bins. The two results we present here will be useful in our analysis.

Theorem 2.2 (Bins and balls properties, [18], [19]):Consider uniformly randomly distributingm balls into n

bins and letγ be any function such thatγ(n) → +∞ asn → +∞. The following statements hold:
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(i) if m = n, then w.h.p. each bin containsO
(

log n
log log n

)

balls;

(ii) if m = n log n + γ(n)n, then w.h.p. there exist no empty bins;

(iii) if m = n log n − γ(n)n, then w.h.p. there exists an empty bin;

(iv) if m = Kn log n, whereK > 1/ log(4/e), then w.h.p. every bin containsΘ(log n) balls.

We will be interested in partitioning a square environment into equally sized and openly disjoint square bins

such that the area of each bin is “small.” To do this, we require the following simple fact.

Lemma 2.3 (Dividing the environment):Given n ∈ N and rcomm > 0, consider a square environmentE(n). If

E(n) is partitioned intob2 equally sized and openly disjoint square bins, where

b :=

⌈

√

5|E(n)|
rcomm

⌉

, (1)

then the area of each bin is no more thanr2
comm/5. Moreover, if x, y ∈ E(n) are in the same bin or in adjacent

bins, then‖x − y‖ ≤ rcomm.

D. Random Geometric Graphs

For n ∈ N andrcomm ∈ R>0, a planargeometric graphG(n, rcomm) consists ofn vertices inR
2, and undirected

edges connecting all vertex pairs{x, y} with ‖x− y‖ ≤ rcomm. We also refer to this as thercomm-geometric graph.

If the vertices are randomly distributed in some subset ofR
2, then we call the graph arandom geometric graph.

Theorem 2.4 (Connectivity of random geometric graphs, [20]): Consider the random geometric graphG(n, rcomm)

obtained by uniformly randomly distributingn points in the square environmentE(n) with

πr2
comm

|E(n)| =
log n + γ(n)

n
.

ThenG(n, rcomm) is connected w.h.p. if and only ifγ(n) → +∞ asn → +∞.

This theorem will be important for understanding some of ourresults, as it provides a bound on the environment

size necessary for the communication graph ofn randomly deployed agents to be asymptotically connected.

III. N ETWORK MODEL AND PROBLEM STATEMENT

In this section we formalize our agent and target models and define the sparse and dense environments.

A. Robotic Network Model

Considern agents in an environmentE(n) := [0, ℓ(n)]2 ⊂ R
2, whereℓ(n) > 0 (that is,E(n) is a square with

side lengthℓ(n)). The environmentE(n) is compact for eachn but its size depends onn. A robotic agent,A[i],

i ∈ I := {1, . . . , n}, is described by the tuple

A[i] := {UID [i],p[i], rcomm, rsenseu
[i], M [i]},

where the quantities are as follows: Its unique identifier (UID) is UID [i], taken from the setIUID ⊂ N. Note that

each agent does not know the set of UIDs being used and thus does not initially know the magnitude of its UID
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relative to those of other agents. Its position isp[i] ∈ E(n). Its communication range isrcomm > 0, i.e., two agents,

A[i] andA[k], i, k ∈ I, can communicate if and only if‖p[i]−p[k]‖ ≤ rcomm. Its target sensing range isrsense. With

this sensor agenti can determine the relative position of targets within distance rsenseof p[i]. Its continuous time

velocity input isu[i], corresponding to the kinematic modelṗ[i] = u[i], where‖u[i]‖ ≤ vmax for somevmax > 0.

Finally, its memory isM [i] and is of cardinality (size)|M [i]|. From now on, we simply refer to agentA[i] as

agenti.

The agents move in continuous time and communicate according to a synchronous discrete time schedule consist-

ing of an increasing sequence{tk}k∈N of time instants with no accumulation points. We assume|tk+1− tk| ≤ tmax,

for all k ∈ N, wheretmax ∈ R>0. We also assume that the time between communication roundstmax is much smaller

thanrcomm/vmax, the amount of time taken to travel the distancercomm. At each communication round, agents can

exchange messages of lengthO(log n).3 Communication roundk occurs at timetk, and all messages are sent and

received instantaneously attk. Motion then occurs fromtk until tk+1. It should be noted that in this setup we are

emphasizing the time complexity due to the motion of the agents.

B. The Target Assignment Problem

LetQ := {q1, . . . ,qn} ⊂ E(n) be a set of distinct target locations. In this paper we make one of two assumptions:

Full target knowledge: Each agent knows the position of every target. Thus, agenti’s memory,M [i], contains a

copy ofQ, which we denoteQ[i]. To storeQ[i] the size of each agents’ memory,|M [i]|, must be inΩ(n).

Local target sensing: Each agent has no initial target information (i.e.,Q[i] = ∅), but can acquire target positions

through its target sensor of rangersense.

Our goal is to solve thetarget assignment problem:

Determine an algorithm forn ∈ N agents, with attributes as described above, satisfying thefollowing

requirement; there exists a timeT ≥ 0 such that for each targetqj ∈ Q, there is a unique agenti ∈ I,

with p[i](t) = qj for all t ≥ T .

If the task begins at timet = 0, then thecompletion timeof the target assignment task is the minimumT ≥ 0, such

that for eachqj ∈ Q, there is a uniquei ∈ I, with p[i](t) = qj for all t ≥ T . In this paper we seek algorithms

that minimize this completion time. Note that in the local target sensing assumption the agents have less target

information than in the full target knowledge assumption. Because of this, an algorithm’s performance under the

local target sensing assumption can be no better than its performance under the full target knowledge assumption.

Remark 3.1 (Consistent target knowledge):Another possible assumption on the target sets,Q[i], which still

ensures the existence of a complete matching, is theconsistent target knowledgeassumption: For eachK ⊆ I,
∣

∣∪k∈KQ[k]
∣

∣ ≥ |K|. In fact, it was proved by Frobenius in 1917 and by Hall in 1935that this is the necessary and

sufficient condition for the existence of a complete matching [3]. •

3The number of bits required to represent an ID, unique amongn agents, is directly proportional to the logarithm ofn.
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C. Sparse, Dense, and Critical Environments

We wish to study the scalability of a particular approach to the target assignment problem; that is, how the

completion time increases as we increase the number of agents, n. The velocityvmax and communication range

rcomm of each agent are independent ofn. However, we assume that the size of the environment increases withn

in order to accommodate an increase in agents. Borrowing terms from the random geometric graph literature [20],

we say that the environment issparseif, as we increase the number of agents, the environment grows quickly

enough that the density of agents (as measured by the sum of their communication footprints) decreases; we say

the environment iscritical, if the density is constant, and we say the environment isdenseif the density increases.

Formally, we have the following definition.

Definition 3.2 (Dense, critical and sparse environments):The environmentE(n) is

(i) sparseif |E(n)|/n → +∞ asn → +∞;

(ii) critical if |E(n)|/n → const∈ R>0 asn → +∞;

(iii) denseif |E(n)|/n → 0+, asn → +∞.

It should be emphasized that a dense environment does not imply that the communication graph between agents

is dense. On the contrary, from Theorem 2.4 we see that the communication graph at random agent positions in a

dense environment may not even be connected.

IV. CLASSES OFALGORITHMS

In this section we introduce a class of algorithms for the target assignment problem that provides the structure

for algorithms developed in this paper. We will provide a lower bound on the classes performance using the full

target knowledge assumption. Necessarily this also provides a lower bound for the problem using the local target

sensing assumption.

A. Monotonic Algorithms

We introduce a class of algorithms which provides an intuitive approach to target assignment.

Definition 4.1 (Monotonic algorithms):A target assignment algorithm ismonotonicif it is deterministic and has

the following property: If a subset of agentsJ ⊂ I are all located at targetqj at time t1 (i.e., p[i](t1) = qj ,

∀ i ∈ J ), then at least one agent inJ remains located atqj for all t > t1 (i.e., ∃ i ∈ J such thatp[i](t) = qj ,

∀ t > t1).

We call these algorithms “monotonic” since occupied targets remain occupied for all time, and thus the number

of occupied targets monotonically increases throughout the execution. We focus on monotonic algorithms for two

reasons: First, monotonicity is natural constraint for target assignment problems since in many scenarios it the agents

will begin servicing a target immediately upon arriving at its location—in non-monotonic algorithms, service will

be halted as agents leave their targets. Second, monotonic algorithms provide a broad class of algorithms for which

rigorous analysis remains tractable.
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We are now ready to lower bound the worst-case asymptotic completion time of the target assignment problem

for any monotonic algorithm. This bound holds under both thefull target knowledge and local target sensing

assumptions.

Theorem 4.2 (Time complexity of target assignment):Considern agents, with communication rangercomm > 0,

andn targets inE(n). For all monotonic algorithms the worst-case completion time of the target assignment problem

is lower bounded as follows:

(i) if E(n) is sparse, then the completion time is inΩ(
√

n|E(n)|);
(ii) if E(n) is critical, then the completion time is inΩ(n);

(iii) if E(n) is dense, then the completion time is inΩ(|E(n)|).
Proof: The proof proceeds by constructing a set of agent and target positions such that the lower bound is

achieved. To do this, we place the targets inE(n) such that thercomm-geometric graph, generated by the target

positions, has a maximum number of disconnected components. Next we place agents2, . . . , n so that they occupy

targetsq2, . . . ,qn. We then place agent1 in E(n) \ Q. If the agents run a monotonic algorithm to solve the target

assignment problem, then agents2, . . . , n will not move, and thus the assignment will not be complete until agent

1 reaches targetq1. In the best case, when agent1 comes within distancercomm of a connected component, it

immediately determines whether or not there is a free targetin that component (i.e., whether or notq1 is in that

component). However, agent1 will not receive information about the availability of any targets outside of that

component. So, agent1 must come within distancercomm of the connected component containingq1, before the

assignment can be completed. Since the algorithm is deterministic, we can place the targets, and agents such that

the connected component containingq1 is the last connected component that agent1 will visit.

To create the maximum number of disconnected components, wepartition the environment,E(n) into P equally

sized, and openly disjoint squares, as shown in Fig. 1(a). Weconsider two cases, based on whether or not there

exists anǫ > 0 such that|E(n)| ≥ (2rcomm+ ǫ)2n.

Case 1: [there existsǫ > 0 such that|E(n)| ≥ (2rcomm+ǫ)2n] In this case we setP := ⌈√n⌉2 and place a target

at the center of each square until there are no targets remaining. The area of each square is given by|E(n)|/P , and

thus the distance between any two targets is lower bounded by
√

|E(n)|/P ≥
√

(2rcomm+ ǫ)2n/⌈√n⌉2, which

for sufficiently largen, is greater than2rcomm. Thus, we have createdn disconnected components, as depicted in

Fig. 1(a). The distance betweenrcomm-disks centered at any two targets is lower bounded by
√

|E(n)|/⌈√n⌉2 −
2rcomm, and we can place the agents and targets such that one agent must travel this distancen − 1 times. Thus,

the worst-case travel distance is lower bounded by

(n − 1)

(
√

|E(n)|
⌈√n⌉2 − 2rcomm

)

∈ Ω(
√

|E(n)|n).

Since the robots travel at constant speed, the completion time is also inΩ(
√

|E(n)|n).

Case 2: [for everyǫ > 0, |E(n)| < (2rcomm+ ǫ)2n] In this case we fix anyǫ > 0 and set

P :=

⌈
√

|E(n)|
(2rcomm+ ǫ)2

⌉2

.
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√

√

√

√

√

|E(n)|
P

rcomm

rcomm

√

|E(n)|

(a) Partitioning the environment to construct target positions that

generate anrcomm-geometric graph with a maximum number of

disconnected components.

rcomm

ǫ/4> 2rcomm +
3
4
ǫ

(b) The ǫ/4-disk located at the center of one of the squares in

the partition. Targets are shown in the disk, along with a lower

bound on the size of the square.

Fig. 1. Partitioning the environmentE(n) for the proof of Theorem 4.2.

We define a disk of radiusǫ/4 at the center of each of theP squares. We then place⌈n/P ⌉ targets in eachǫ/4-disk,

until there are no targets remaining, as shown in Fig. 1(b). Note that for anyα ∈ ]0, 1[, we can findN ∈ N such

that

P <
|E(n)|

(2rcomm+ αǫ)2
, for all n ≥ N.

Letting α = 3/4, we find that for largen, the distance between the centers of any two squares is lowerbounded by
√

|E(n)|
P ≥ 2rcomm+ 3ǫ/4, as shown in Fig. 1(b). So, the distance between any twoǫ/4-disks is lower bounded by

2rcomm+ ǫ/4. Thus, we have createdΩ(P ) disconnected components. The distance betweenrcomm-disks centered

at any two targets in different squares is lower bounded byǫ/4. Again, we can place the agents and targets such

that one agent will have to travel this distanceΩ(P ) times. Thus, the worst-case distance is lower bounded by

ǫ

4
Ω(P ) ∈ Ω(|E(n)|).

Since the robots travel at constant speed, the completion time is also inΩ(|E(n)|).
Thus, if |E(n)|/n → +∞ asn → +∞, then we are in Case 1 and the completion time is inΩ(

√

|E(n)|n). If

|E(n)|/n → const∈ R>0 as n → +∞, then we may be in either Case 1 or Case 2, depending on the value of

const, but in either case the completion time is inΩ(n). Finally, if |E(n)|/n → 0+ as n → +∞, then we are in

Case 2 and the completion time is inΩ(|E(n)|).
Remark 4.3 (Interpretation of lower bound):In Theorem 4.2 we provided a worst-case lower bound. This should

be interpreted as follows. For every monotonic algorithm there exists a set of initial target and agent position for

which the completion time is no smaller than the lower bound.It should be noted that there are many initial
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positions for which the completion time is less than this worst-case lower bound (indeed, there are initial positions

for which the completion time is zero).

Also note that for a critical environment, the agent and target positions used in the proof of Theorem 4.2 give a

completion time ofΩ(n) for every monotonic algorithm. However, if a centralized solver were used to assign agents

to targets from the same initial positions, then the motion time would beO(1). Hence the distributed solutions

given by a monotonic algorithm may severely under-perform when compared to solutions given by the optimal

centralized solver. •

B. TheRENDEZVOUSSTRATEGY and its Drawbacks

In this section we discuss another approach to solving the target assignment problem that we call the REN-

DEZVOUS STRATEGY. The strategy, which works only under the full target knowledge assumption, can be described

as follows.

RENDEZVOUSSTRATEGY (for agenti)

Compute a common meeting point, such as the centroid of the target positions.1

Move to the meeting point and wait for all other agents to arrive.2

Once all agents have arrived, broadcastUID [i] andp[i], and receiveUID [k] andp[k] from all other agents.3

Compute a complete assignment of target-agent pairs using the MAXIMAL MATCH algorithm and move to4

your assigned target.

Since every agent knows the position of all targets, the agents can compute a common meeting point. The time

for an agent to reach any meeting point is bounded by
√

2|E(n)|/vmax, and thus each agent can determine when all

other agents have arrived at the meeting point. Once all agents reach the meeting point the communication graph

is complete and each agent can broadcast its UID and positionto all other agents in one communication round.

Then, each agent can use MAXIMAL MATCH to solve a centralized assignment, and all agents end up withthe

same complete assignment. In addition, since the agents areco-located, this assignment is optimal. Each agent then

moves to the target to which it has been assigned. Essentially, this approach turns the distributed problem into a

centralized one.

Theorem 4.4 (Time complexity forRENDEZVOUSSTRATEGY): Considern agents andn targets in the environ-

mentE(n). In the worst-case, the RENDEZVOUSSTRATEGY solves the target assignment problem inΘ(
√

|E(n)|)
time. Moreover, if the targets and agents are uniformly randomly distributed inE(n), the completion time is in

Θ(
√

|E(n)|).
Proof: Since all information can be exchanged in one round, and we are not considering computation time,

the completion time is given by the time to reach the meeting point plus the time to go from the meeting point to

the assigned target.
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To see the worst-case, place all targets at one side of the environment, and all agents at the other side. Then

each agent must travel a distanceΘ(
√

|E(n)|). The distance from the meeting point back to any assigned target is

also bounded byO(
√

|E(n)|). Thus, the worst-case completion time isΘ(
√

|E(n)|).
If we uniformly randomly distributen agents inE(n), then it is a well known fact (see, for example [21]) that

w.h.p., the maximum distance between agents,maxi,j∈I ‖p[i]−p[j]‖, is in Θ(
√

|E(n)|). Thus, one agent must travel

a distance of at least12 maxi,j∈I ‖p[i]−p[j]‖ ∈ Θ(
√

|E(n)|). Hence, w.h.p., the completion time is inΘ(
√

|E(n)|).

Remark 4.5 (Drawbacks ofRENDEZVOUSSTRATEGY): From Theorem 4.4 we see that the RENDEZVOUSSTRAT-

EGY has better worst-case performance than any monotonic algorithm. Thus, there may be applications in which

this is the best algorithm for solving the target assignmentproblem. However, there are several drawbacks to

the algorithm. First, this approach is not a distributed solution in the sense that it requires each agent to acquire

information about all other agents in the group, and to solvea centralized assignment problem. Second, the process

of meeting to exchange information creates a single point offailure for the system. Third, if we consider an initial

configuration wherem targets are occupied, then in the RENDEZVOUS STRATEGY all of these targets become

unoccupied as the agents travel to the meeting point. Thus, this is not a monotonic algorithm. In fact, if every

target is occupied and we run the RENDEZVOUS STRATEGY, all agents leave their targets, move to the meeting

point, compute a complete assignment, and move to a new target. This is obviously not the desired behavior in this

instance. Fourth, the RENDEZVOUSSTRATEGY is ill-suited for heterogeneous situations where agents have widely

distinct speeds, or become active at different instants of time; in these situations the RENDEZVOUS STRATEGY

essentially reduces the performance of every agent to that of the slowest agent. Fifth, the RENDEZVOUSSTRATEGY

does not work under the local target sensing assumption, whereas we will provide an algorithm later that does.

Finally, in settings where more agent are available than targets, there is hope to complete the target assignment

problem in time that is independent ofn. The RENDEZVOUS STRATEGY never achieves this time complexity,

whereas we will prove this property for one of our proposed algorithms below. •
Because of the drawbacks mentioned in the previous remark, in the remainder of this paper, we look at distributed

monotonic algorithms and their performance in solving the target assignment problem.

V. A CONSTANT FACTOR MONOTONIC ALGORITHM IN SPARSEENVIRONMENTS

We begin by introducing a monotonic algorithm, called the ETSP ASSGMT algorithm, for solving the target

assignment problem. This algorithm operates only under thefull target knowledge assumption. In this algorithm,

each agent precomputes an optimal tour through then targets, turning the cloud of target points into an ordered ring.

Agents then move along the ring, looking for the next available target. When agents communicate, they exchange

information on the next available target along the ring. We show that in sparse or critical environments, the ETSP

ASSGMT algorithm is within a constant factor of the optimal monotonic algorithm for worst-case initial conditions.
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(a) The maptour, creating an ETSP tour of seven targets.

curr[i] = 7

next[i] = 1

prev[i] = 6

p
[i]

5

3

2

4

(b) The initialization for agenti.

Fig. 2. The initialization process for the ETSP ASSGMT algorithm.

A. TheETSP ASSGMT Algorithm

The ETSP ASSGMTalgorithm is designed under the full target knowledge assumption. In the following description

it will be convenient to assume that the target positions arestored in each agents memory as an array, rather than as

an unordered set. That is, we replace the target setQ with the targetn-tupleq := (q1, . . . ,qn), and the local target

setQ[i] with the n-tuple q[i] := q.4 The algorithm can be described as follows. For eachi ∈ I, agenti computes

a constant factor approximation of the optimal ETSP tour of the n targets inq[i] (as discussed in Section II-B),

denotedtour(q[i]). We can think oftour as a permutation that reorders the entries ofq[i]. This permutation is

independent ofi since all agents use the same method. An example is shown in Fig. 2(a).

Agenti then replaces itsn-tupleq[i] with tour(q[i]). Next, agenti computes the index of the closest target inq[i],

and calls it curr[i]. Agenti also maintains the index of the next target in the tour that may be available, next[i], and

first target in the tour before curr[i] that may be available, prev[i]. Thus, next[i] is initialized to curr[i] + 1 (mod n)

and prev[i] to curr[i] − 1 (mod n). This is depicted in Fig. 2(b). Agenti also maintains then-tuple, status[i], which

records whether a target is occupied by (assigned to) another agent or not. Letting status[i](j) denote thejth entry

in the n-tuple, the entries are given by

status[i](j) =











0, if agent i knowsq
[i]
j is assigned to another agent,

1, otherwise.
(2)

Thus, status[i] is initialized as then-tuple(1, . . . , 1). The initialization is summarized in Algorithm 1 of Appendix A.

Agent i then moves toward the target curr[i] at constant speedvmax > 0:

ṗ[i] =















vmax
q

[i]

curr[i]
−p

[i]

‖q
[i]

curr[i]
−p[i]‖

, if q
[i]

curr[i] 6= p[i],

0, otherwise,

(3)

4It is possible that the order of the targets in the local setsq
[i] may initially be different. However, given a set of distinctpoints inR

2, it is

always possible to create a unique ordering.
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Finally, at each communication round agenti executes the algorithmCOMM-RD displayed in Algorithm 2 of

Appendix A. The COMM-RD algorithm operates as follows: Agenti, which is heading toward target curr[i],

communicates with its neighbors to determine if any other agents are heading toward curr[i]. If another agent

is heading to curr[i], then the agent closer to curr[i] continues moving toward the target, while the farther agent

selects a new target along the tour (ties are broken usingUID ’s). The agents also exchange information on targets

that are occupied using the prev, and next variables. The following is a more formal description that omits a few

minor technicalities.

Description ofCOMM-RD for agenti

Broadcast msg[i], consisting ofUID [i], the target indices prev[i], curr[i], and next[i], and the distance to the1

current target, dist[i].

for message,msg[k], receiveddo2

Set status[i](j) to assigned (‘0’) for each targetj from prev[k] + 1 (mod n) to next[k] − 1 (mod n) not3

equal to curr[i].

if curr[i] = curr[k] and dist[i] > dist[k] then Set the status of curr[i] to assigned (‘0’).4

if curr[i] = curr[k] and dist[i] < dist[k] then Leave curr[i] unchanged. However, agentk will set curr[k] to a5

new target. This target will be at least as far along the tour as the farther of next[i] and next[k]. So, set the

status of next[i] and next[k] to assigned (‘0’).

Update curr[i] to the next target in the tour with status available (‘1’), next[i] to the next available target in the6

tour after curr[i], and prev[i] to the first available target in the tour before curr[i].

Fig. 3 gives an example ofCOMM-RD resolving a conflict between agentsi and k, over curr[i] = curr[k]. In

this figure, all other agents are omitted. In summary, the ETSP ASSGMT algorithm is the triplet consisting of the

initialization of each agent (see Algorithm 1), the motion law in Eq. (3), andCOMM-RD (see Algorithm 2), which

is executed at each communication round.

B. Correctness and Time Complexity of theETSP ASSGMT Algorithm

We now present our main result on the ETSP ASSGMT algorithm. Section V-C contains its proof. Recall that

the ETSP ASSGMT algorithm requires the full target knowledge assumption.

Theorem 5.1 (Correctness and worst-case bound forETSP ASSGMT): For any initial positions ofn agents and

n targets inE(n), ETSP ASSGMT solves the target assignment problem inO(
√

n|E(n)|) time. In addition, if

E(n) is sparse or critical, then ETSP ASSGMT is within a constant factor of the optimal monotonic algorithm for

worst-case initial positions.
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curr[k] = curr[i] = 7
2

prev[k] = 5

next[k] = next[i] = 1

prev[i] = 6

p
[k]

3

4

p
[i]

(a) Setup before the conflict over target 7.

curr[i] = 7

2 = next[k] = next[i]

prev[k] = prev[i] = 5

curr[k] = 1

6

3

4

p
[k]

p
[i]

(b) Setup after resolution of the conflict.

Fig. 3. The resolution of a conflict between agentsi and k over target7. Since agentk is closer to target7 than agenti, agentk wins the

conflict.

C. Proof s for Statements about theETSP ASSGMT Algorithm

To prove Theorem 5.1 we introduce a few definitions. We say that agenti ∈ I is assignedto targetq[i]
j , j ∈ I,

when curr[i] = j. In this case, we also say targetj is assigned to agenti. We say that agenti ∈ I enters a conflict

over the target curr[i], when agenti receives a message, msg[k], with curr[i] = curr[k]. Agent i loses the conflictif

agenti is farther from curr[i] than agentk, andwins the conflictif agent i is closer to curr[i] than agentk, where

ties are broken by comparing UIDs.

The following lemma is a direct result of the facts that the environment is bounded for eachn ∈ N, and that the

agents move at constant speedvmax > 0.

Lemma 5.2 (Conflict in finite time):Consider any communication rangercomm > 0, and any fixed number of

agentsn ∈ N. If, for two agentsi andk, curr[i] = curr[k] at some timet1 ≥ 0, then agenti (and likewise, agent

k) will enter a conflict over curr[i] in finite time.

In order to prove correctness, we require a few properties ofthe ETSP ASSGMT algorithm.

Lemma 5.3 (ETSP ASSGMT properties): During an execution of the ETSP ASSGMT algorithm, the following

statements hold for agenti ∈ I:

(i) the current target curr[i] satisfies status[i](curr[i]) = 1;

(ii) status[i](j) = 0 for eachj ∈ {prev[i] + 1, prev[i] + 2, . . . , next[i] − 1} \ {curr[i]} (mod n);

(iii) status[i](j) = 0 only if targetj is assigned to some agentk 6= i;

(iv) if status[i](j) = 0 at some timet1, then status[i](j) = 0 for all t ≥ t1;

(v) if agent i receives msg[k] during a communication round, then agenti will set status[i](j) = 0 for each

j ∈ {prev[k] + 1, . . . , next[k] − 1} \ {curr[i]} (mod n).

Proof: Statements (i) and (iv) and (v) follow directly from the initialization andCOMM-RD.

Statement (ii) is initially satisfied since prev[i]+1 = curr[i] = next[i]−1 implies that{prev[i]+1, . . . , next[i]−1}\
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{curr[i]} = ∅. Assume that statement (ii) is satisfied before the execution of COMM-RD. At the end ofCOMM-RD,

prev[i] is updated to the first target before curr[i] in the tour with status available (‘1’). If status[i](curr[i]) = 1, then

curr[i] remains unchanged. If status[i](curr[i]) = 0, then curr[i] is increased to the first target with status available

(‘1’). Finally, next[i] is set to the first target after curr[i] that is available. Thus, at the end ofCOMM-RD the status

of prev[i], curr[i] and next[i] are available, and status[i](j) = 0 for each targetj ∈ {prev[i] + 1, . . . , next[i] − 1} \
{curr[i]} (mod n).

Statement (iii) is also initially satisfied since status[i] = 1n for eachi ∈ I. Assume Statement (iii) is satisfied

before the execution ofCOMM-RD and that during this communication round agenti changes the status of a target

j to assigned (‘0’). We show that Statement (iii) is still satisfied upon completion of the execution ofCOMM-RD. In

order for status[i](j) to be changed, agenti must have received a message, msg[k], for which one of the following

cases is satisfied: (1) Targetj 6= curr[i] lies between prev[k] and next[k] on the tour; (2) There is a conflict between

agentsi andk over targetj that agenti loses; or, (3) There is a conflict between agentsi andk that agenti wins

and next[i] = j or next[k] = j.

In Case (1) either status[k](j) = 0 or curr[k] = j, and thus targetj is assigned. In Case (2) agentk won the

conflict implying curr[k] = j entering the communication round. Thus after the communication round, curr[i] 6= j

and targetj is assigned to another agent. In Case (3), curr[i] = curr[k] 6= j, and agentk loses the conflict. In this

case, agentk will change curr[k] to the next available target on its tour. All targets from prev[k] + 1 to next[k] − 1

have been assigned. Also, during the communication round, agentk will receive msg[i] and determine that all targets

from prev[i] + 1 to next[i] − 1 are assigned. Thus, the next available target is at least as far along the tour as the

farther of next[i] and next[k]. Thus, after the communication round, both next[i] and next[k] are assigned.

With these properties we are now ready to prove Theorem 5.1.

Theorem 5.1: We begin by proving the correctness of the ETSP ASSGMT algorithm. Assume by way of

contradiction that at some timet1 ≥ 0 there areJ ∈ {1, . . . , n − 1} targets unassigned, and for all timet ≥ t1,

J targets remain unassigned. Since the algorithm is monotonic, the samen − J assigned targets remain assigned

for all time, and thus it must be the sameJ targets that remain unassigned for allt ≥ t1. Let J denote the index

set of theJ unassigned targets. From our assumption, and by Lemma 5.3 (iii), for every t ≥ t1 and for every

i ∈ I, status[i](j) = 1 for eachj ∈ J . Now, among then− J assigned targets there is at least one target to which

two or more agents are assigned. Consider one such target, call it j1, and consider an agenti1 with curr[i1] = j1.

By Lemma 5.2, agenti1 will enter a conflict overj1 in finite time. Let us follow the loser of this conflict. The

losing agent, call iti2, will set status[i2](j1) = 0 and will move to the next target in the tour it believes may be

available, call itj2. Now, we knowj2 is not inJ , for if it were J − 1 targets would be unassigned contradicting

our assumption. Moreover, by Lemma 5.3 (i),j2 6= j1. Thus, agenti2 will enter a conflict overj2 in finite time.

After this conflict the losing agent, call iti3, will set status[i3](j2) = 0 (because it lost the conflict), and from

Lemma 5.3 (v), status[i3](j1) = 0. Again, agenti3’s next targetj3 must not be inJ , for if it were we would have a

contradiction. Thus, repeating this argumentn− J times we have that agentin−J loses a conflict overjn−J . After

this conflict, we have status[in−J ](jk) = 0 for eachk ∈ {1, . . . , n − J}, wherejk1 = jk2 if and only if k1 = k2.

October 21, 2008 DRAFT



16

In other words, agentin−J knows that alln − J assigned targets have indeed been assigned. Also, by our initial

assumption, status[in−J ](j) = 1 for eachj ∈ J . By Lemma 5.3 (i), agentin−J ’s new current target must have

status available (‘1’). Therefore, it must be that agentin−J will set curr[in−J ] to a target inJ . Thus, after a finite

amount of timeJ − 1 targets are unassigned, a contradiction.

We now prove the upper bound on the performance of the ETSP ASSGMT algorithm. First notice the following:

Consider the optimal ETSP tour through alln targets. This provides an ordering in which then targets are visited.

Now, supposek targets are removed from the tour, and then − k remaining targets are visited in the order they

appeared in then-target tour. In general, this is not the optimal tour through the n − k points. However, by the

triangle inequality, the length of the tour is no longer thanthat of the tour through alln points. Because of this, in

the worst-case some agent must travel to its nearest target,and then around its entire ETSP tour, losing a conflict

at each of the firstn − 1 targets in the tour. For any initial agent and target positions, the distance to the nearest

target isO(
√

|E(n)|). Since the length of each agent’s tour is a constant factor approximation of the optimal, the

tour length isO(
√

nE(n)) (see Theorem 2.1). The agent will not follow the ETSP tour exactly because it may

enter conflicts before actually reaching the targets; however, by the triangle inequality, the resulting path cannot

be longer than the ETSP tour. Hence, the total distance traveled is in O(
√

nE(n)), and since the agents move at

constant speed, the completion time is inO(
√

nE(n)). Combining this with Theorem 4.2 we see that in critical or

sparse environments the completion time is inΘ(
√

nE(n)).

VI. A N CONSTANT FACTOR MONOTONIC ALGORITHM IN DENSEENVIRONMENTS

In the previous section we presented the ETSP ASSGMTalgorithm which operates only with full target knowledge

but has provably good performance in sparse and critical environments. In this section we introduce a monotonic

algorithm called the GRID ASSGMT algorithm which operates under both full target knowledge and local target

sensing withrsense≥
√

2/5rcomm. In this algorithm, the agents partition the environment into cells. Agents then

determine local maximum assignments, and elect a leader in the cell which they occupy. Through communication

between leaders of adjacent cells, each leader obtains estimates of the location of free targets, and uses this

information to guide unassigned agents to free targets. We show that in critical or dense environments, the GRID

ASSGMT algorithm is within a constant factor of the optimal monotonic algorithm for worst-case initial conditions.

In addition, we characterize the stochastic performance ofthe GRID ASSGMT algorithm.

A. TheGRID ASSGMT Algorithm

In the GRID ASSGMT algorithm we make either the full target knowledge assumption (i.e.,Q[i] := Q), or the

local target sensing assumption withrsense≥
√

2/5rcomm. In addition we assume each agent knows the environment

E(n). Each agent partitions the environment intob2 equally sized square cells, whereb ∈ N. It then labels the cells

like entries in a matrix, so cellC(r, c) resides in therth row andcth column, as shown in Fig. 4. Since the agents

started with the same information, they all create the same partition. The quantityb is chosen so that an agent in
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C(1, 1)

C(2, 1)

C(3, 1)

C(1, 2)

C(2, 2)

C(3, 2)

C(1, 3)

C(2, 3)

C(3, 3)

Fig. 4. Partitioning the environmentE(n), containing 35 targets, intob2 = 9 cells.

cell C(r, c) is within communication range of any agent in cellsC(r, c), C(r − 1, c), C(r + 1, c), C(r, c − 1),

andC(r, c + 1). In light of Lemma 2.3, we see that this is satisfied whenb = ⌈
√

5|E(n)|/rcomm⌉. Note that with

rsense≥
√

2/5rcomm an agent in cellC(r, c) can sense the position of all targets in that cell. We now outline the

GRID ASSGMT algorithm.

Outline of the GRID ASSGMT algorithm

Initialization and role assignment: Each agent partitions the environment as described above. In each

cell, agents find a maximum assignment between agents and targets occupying the cell, and assigned

agents elect a leader among them. Accordingly, agents are labeled leader, unassigned, or assigned

non-leader. According to their role, agents allocate certain variables describing their location and their

knowledge about target assignments.

Assigned non-leader agents: Each assigned non-leader agent move to its assigned target and goes silent.

Cell leaders: Each cell leader estimates the number of available targets in all cells below it in its column.

The leaderi of cell C(r, c) stores this estimate in the variable∆[i]
blw(r, c); to maintain the estimates,

cell leaders communicate to the cell leader in the cell directly above it. Additionally, each cell leader

in the top row communicates to the cell leader in the cell directly to the right, to obtain an estimate

of the number of available targets in all columns to the right(denoted∆[j]
rght(1, c) for leaderj of cell

C(1, c)).

Unassigned agents: Each unassigned agent seeks a free target by entering cells and querying their

respective leaders. The motion of unassigned agents is illustrated in Fig. 5. Assuming no communication

with the leaders, the nominal order in which an unassigned agent visits all cells of the grid is shown in

the left-hand figure. The way in which this path is shortened as the unassigned agent receives available

target estimates from cell leaders is shown on the right-hand figure.

Remark 6.1 (Computations performed by cell leaders):If agenti is the leader of cellC(r, c), it computes∆[i](r, c),

which is (# of targets) − (# of agents) in C(r, c). In addition, leaderi maintains∆[i]
blw(r, c), which is an estimate

of (# of targets) − (# of agents) in cells C(r + 1, c) to C(b, c). This quantity must be estimated because agenti
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∆
[j]
rght(1, 3) ≤ 0

∆
[i]
blw(3, 3) ≤ 0

∆
[k]
blw(1, 2) ≤ 0

Fig. 5. The figure on the left shows the nominal order in which an agent, depicted as a blue square, searches the cells in the absence of

communication. The blue lines on the right-hand figure show how this path is shortened by the non-positive estimates fromleaderi of C(3, 3),

leaderj of C(1, 3) and leaderk of C(1, 2).

does not initially know the number of agents in cellsC(r +1, c) to C(b, c). The variable∆[i]
blw(r, c) is initialized to

+∞ (i.e., a very large positive number) for the leaders in rows1 to b− 1, and to0 for the leaders in rowb. Then,

at each communication round agenti updates its estimate by communicating with the leaders in cells C(r − 1, c)

andC(r + 1, c):

1 Send msg[i] := ∆
[i]
blw(r, c) + ∆[i](r, c) to leader in cellC(r − 1, c) and receive msg[k] from

agentk, the leader ofC(r + 1, c).

2 Set∆[i]
blw(r, c) := msg[k] = ∆

[k]
blw(r + 1, c) + ∆[k](r + 1, c).

This update procedure is depicted in Fig. 6. A leaderj of cell C(1, c) in the top row uses a similar method to

maintain the estimate∆[j]
rght(1, c). It should be noted that as unassigned agents enter and exit cells, the actual values

of ∆blw and ∆rght change. Thus, there is a procedure whereby agents sendenter and exit messages to cell

leaders, so that they can maintain their estimates. This is detailed in the algorithms of Appendix B. •
Remark 6.2 (Motion performed by unassigned agents):Let us describe the unassigned agents motion in more

detail. First, each unassigned agent seeks a free target in its column as follows. It queries the leader of its current

cell about free targets in its column, below its current cell. If the leaders estimate∆[i]
blw(r, c) is positive, then the

agent moves down the column. Otherwise, the agent moves up the column. While moving down, upon entering a

new cell the agent first queries the cell leader on free targets in the cell, and then on free targets in cells below. If

the agent starts moving up the column, then it only queries cell leaders on free targets in the cell (since it knows

no targets are free in the cells below).

Second, if the agent reaches the top cell of its column, then the column contains no free targets. To transfer

to a new column, the agent queries the leader of the top cell about free targets in all columns to the right. If the
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Fig. 6. In the example columnc, blue squares depict agents, and black disks depict targets. The figure shows how the estimates∆ and∆blw

are initialized and updated by leadersi of C(1, c), j of C(2, c), k of C(3, c), andl of C(4, c). After three communication rounds the estimates

have converged to the true values.

leaders estimate∆[j]
blw(1, c) is positive, then the agent moves to the right; otherwise, the agent moves to the left.

Upon reaching the cell to the left or right, the agent recommences the column procedure. •
In summary, a detailed description of the components of the GRID ASSGMT algorithm is given in Appendix B:

all variables maintained by the agents are listed in Table I;the initialization and role assignment is performed by

the ROLE ASSGMT algorithm, see Algorithm 3; the behavior of the cell leadersand of the unassigned agents are

described by the LEADER and by the UNASSIGNED algorithm, see Algorithms 4 and 5, respectively.

Remark 6.3 (Using a single transfer row):In our description of the GRID ASSGMT algorithm, agents use the

top row to transfer to a new column. This choice of “transfer row” is arbitrary and the top row was chosen for

simplicity of presentation. Intuitively, it seems the middle row is a more efficient choice. The upcoming analysis

shows that such a choice does not affect the algorithm’s asymptotic performance. The reason we require unassigned

agents to use a single transfer row is because it allows for cell leaders to easily maintain up-to-date estimates of

unassigned agent and free target locations. To understand this, suppose that there were two transfer rows, row1

and rowb, and that two unassigned agents simultaneously transfer from columnc− 1 to columnc, one using row

1, and the other using rowb. Then, it would takeb ∈ Θ(
√

|E(n)|) communication rounds for the leader in cell

C(1, c) to become aware that an unassigned agent transferred using row b, implying that leader estimates are not

up-to-date. To overcome this, one would need to halt unassigned agent motion until leader estimates have been

updated; a process which would require more leader communication. In addition, using more transfer rows does not

appear to change the asymptotic performance (although the constant factor could be significantly reduced since the

algorithm would rely more heavily on communication than agent motion). Thus, we have utilized a single transfer

row to minimize excess communication, and avoid introducing more complexity in the algorithm. In addition this

helps to avoid wireless congestion issues, which can becomevery significant as the number of agents becomes

large [22].

•
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Remark 6.4 (Details of theGRID ASSGMT algorithm): (1) Agents move at speedvmax, and to transfer between

cells agents move toward the center of the new cell. (2) If an agent or target lies on the boundary between cells,

a simple tie breaking scheme is used assign it to a cell. (3) Inour presentation, we implicitly assumed that every

cell initially contains at least one agent and one target. Ifa cell has no targets, then any agents initially in the cell

leave, and the empty cell is then ignored. If a cell initiallycontains targets but no agents, then the first agents to

enter the cell run the MAXIMAL MATCH algorithm and a leader is elected. •

B. Correctness and Time Complexity of theGRID ASSGMT Algorithm

We now present our main results on the GRID ASSGMT algorithm. Section VI-C contains their proofs. Recall

that the GRID ASSGMT algorithm operates under the full target knowledge assumption, and the local target sensing

assumption withrsense≥
√

2/5rcomm.

Theorem 6.5 (Correctness and worst-case bound forGRID ASSGMT): For any initial positions ofn agents and

n targets inE(n), the GRID ASSGMT algorithm solves the target assignment problem inO(|E(n)|) time. In addition,

if E(n) is dense or critical, then the GRID ASSGMT algorithm is within a constant factor of the optimal monotonic

algorithm for worst-case initial conditions.

Remark 6.6 (GRID ASSGMT algorithm vs.ETSP ASSGMT algorithm): The worst-case bound for the ETSP ASS-

GMT algorithm in Theorem 5.1 wasO(
√

|E(n)|n). Thus, in sparse environments the ETSP ASSGMT algorithm

performs better, where as in dense environments the GRID ASSGMT algorithm performs better. In critical environ-

ments, the bounds are equal. Thus, the two algorithms are complementary. In practice, a robot can determine which

algorithm to run by comparing the area of the environment|E(n)| to the area ofn disks of radiusrcomm. That is,

given n, E(n) and rcomm, a robot could use a rule such as the following: if|E(n)| > πr2
commn, then execute the

ETSP ASSGMT algorithm, else if|E(n)| < πr2
commn, then execute the GRID ASSGMT algorithm. •

In the following theorem we will see that for randomly placedtargets and agents, the performance of the GRID

ASSGMT algorithm is considerably better than in the worst-case.

Theorem 6.7 (Stochastic time complexity):Considern agents andn targets, uniformly randomly distributed in

E(n). Then the GRID ASSGMT algorithm solves the target assignment problem inO(
√

|E(n)|) time with high

probability if

|E(n)| ≤ r2
comm

5

n

log n + γ(n)
,

whereγ is any function such thatγ(n) → +∞ asn → +∞.

Remark 6.8 (Generalization of Theorem 6.7):The bound in Theorem 6.7 holds not only for uniformly randomly

generated initial positions, but for any initial positionssuch that every cell contains at least one target and at least

one agent.

Theorem 6.9 (Stochastic time complexity, cont’d):Considern agents andn/ logn targets, uniformly randomly

distributed inE(n). Then the GRID ASSGMT algorithm solves the target assignment problem inO(1) time with
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high probability if there existsK > 1/ log(4/e), such that

|E(n)| ≤ r2
comm

5

n

K log n
.

C. Proofs for Statements about theGRID ASSGMT Algorithm

In this section we prove the results presented in Section VI-B. The leaders of each cell maintain estimates

of the difference between the number of targets and agents invarious parts of the grid. In order to talk about

the convergence of these estimates we introduce a few quantities. Let tar(r, c) denote the number of targets in

C(r, c). Let ∆(r, c)(t) denote the difference between tar(r, c) and the number of agents with currcell[i] = C(r, c)

at time t > 0. (Notice the lack of superscript on∆(r, c)(t), when compared to agenti’s estimate of the quantity,

∆[i](r, c).) Recall that in our model, communication roundk occurs instantaneously at timetk. Thus, we lett−k

denote start of the round, andt+k , its completion, and so∆[i](r, c)(t+k ) denotes value of∆[i](r, c) at the completion

of communication roundk.

Lemma 6.10 (Convergence of estimates):During an execution of the GRID ASSGMT algorithm, if agenti ∈ I
is the leader of cellC(r, c) then for each communication timetk, k ∈ N:

(i) ∆[i](r, c)(t+k ) = ∆(r, c)(tk);

(ii) ∆
[i]
blw(r, c)(t+k ) ≥

b
∑

r∗=r+1
∆(r∗, c)(tk);

(iii) if k > b and each cell in columnc contains a leader, then∆[i]
blw(r, c)(t+k ) =

b
∑

r∗=r+1
∆(r∗, c)(tk).

Proof: To see part (i) notice that each agentj ∈ I initially sets currcell[j] to the cell it occupies. The leader

of cell C(r, c), call it agenti, can communicate with all agents in its cell, and it knows thenumber of targets

in C(r, c). Thus, att1 agenti counts the agents in its cell, and correctly calculates∆[i](r, c)(t+1 ) = ∆(r, c)(t1).

Assume that∆[i](r, c) is correct att+k−1. We will show that it is correct att+k . If at t−k agentj changes currcell[j] to

C(r, c), then it must either be inC(r− 1, c) or C(r +1, c), or if r = 1, possiblyC(r, c− 1) andC(r, c+1). Upon

changing currcell[j] to C(r, c), agentj sends anenter message to the leader ofC(r, c), and by Lemma 2.3 the

leader will receive it attk. Likewise, if an agent changes currcell[j] from C(r, c) to another cell, the agent must be

in cell C(r, c). Thus, when this agent sends theexit message, the leader ofC(r, c) will receive it at tk. Hence,

after the leader updates∆[i](r, c) (Step 8 of LEADER), it will have ∆[i](r, c)(t+k ) = ∆(r, c)(tk).

The proof of (ii) is as follows. Notice that we can write the sum
∑b

r∗=r+1 ∆(r∗, c)(tk) as

b
∑

r∗=r+1

(∆(r∗, c)(tk−1)) + enter(tk−1, tk) − exit(tk−1, tk). (4)

where enter(tk−1, tk) is the number of agents that entered cellsC(r + 1, c), . . . , C(b, c) between timetk−1 and

time tk, and exit(tk−1, tk) is the number that exited.

Let agenti be the leader of cellC(r, c). Agent i initializes ∆
[i]
blw(r, c) to +∞, so the inequality is satisfied

initially. Assume (ii) is satisfied att+k−1. We will show that it is satisfied att+k . If there is no leader inC(r + 1, c),

then agenti will not receive a message. In this case one of two updates occurs: 1) If an unassigned agent enters

cell C(r, c) from cell C(r + 1, c) then agenti sets∆
[i]
blw(r, c) := 0 (Step 10 of LEADER). But, from UNASSIGNED,
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an agent moves up a column only if there are no available targets below, and thus the inequality is satisfied att+k .

Alternatively, 2) agenti leaves∆[i]
blw(r, c) unchanged, and thus the inequality will be satisfied att+k .

The other case is that leaderj is in cell C(r + 1, c), and agenti receives the message

∆
[j]
blw(r + 1, c)(t+k−1) + ∆[j](r + 1, c)(t+k−1), (5)

But by assumption

∆
[j]
blw(r + 1, c)(t+k−1) ≥

b
∑

r∗=r+2

(∆(r∗, c)(tk−1))

and from (i),∆[j](r + 1, c)(t+k−1) = ∆(r + 1, c)(tk−1). Thus, Eq. (5) is no smaller than
∑b

r∗=r+1 ∆(r∗, c)(tk−1).

But, when agenti receives the message in Eq. (5), it addsenter(tk−1, tk) and subtractsexit(tk−1, tk) (see Step

9 of LEADER). Thus, from Eq. (4), the inequality is satisfied att+k .

In light of the proof for (ii), we see that to prove (iii) we need only show that for allk ≥ b, the message in Eq. (5)

equals
∑b

r∗=r+1 ∆(r∗, c)(tk−1). We do this by induction. Notice that in cellC(b, c), ∆
[j]
blw(b+1, c)(t+k−1) = 0, and

so (iii) holds trivially for k > 0. In cell C(b − 1, c), for k > 1, the message in Eq. (5) becomes∆[j](b, c)(t+k−1),

which by (i) equals∆(b, c)(tk−1). Thus (iii) holds for cellC(b − 1, c) andC(b, c) for all k > 1. Assume that (iii)

holds for C(r + 1, c), . . . , C(b, c) at time t+k−1, wherek > b − r. We will show it holds forC(r, c) at time t+k .

Since (iii) holds for cellC(r + 1, c) at tk−1, the first term in Eq. (5) is
∑b

r∗=r+2 ∆(r∗, c)(tk−1), and from (i), the

second term is∆(r + 1, c)(tk−1). Thus, the message is
∑b

r∗=r+1 ∆(r∗, c)(tk−1).

We have an analogous result for the convergence of∆
[i]
rght(r, c). It follows directly from Lemma 6.10 (i) and (iii)

and the fact that∆[i]
rght(c) is initially overestimated.

Lemma 6.11 (Convergence of estimates, cont’d):If agent i ∈ I is the leader of cellC(1, c), then for each

communication timetk, k ∈ N,

(i) ∆
[i]
rght(c)(t

+
k ) ≥

b
∑

c∗=c+1

b
∑

r∗=1
∆(r∗, c∗)(tk);

(ii) if each cell contains a leader and ifk > 2b, ∆
[i]
rght(c)(t

+
k ) =

b
∑

c∗=c+1

b
∑

r∗=1
∆(r∗, c∗)(tk).

With these lemmas we will now prove theorems 6.5, 6.7, and 6.9.

Theorem 6.5: We begin by proving the correctness of the GRID ASSGMT algorithm. Assume by way of

contradiction thatJ ∈ {1, . . . , n− 1} targets remain unassigned for all time and thusB ∈ {1, . . . , J} cells contain

unassigned targets. By construction of the GRID ASSGMT algorithm, an assigned target never becomes unassigned.

Thus, the same targets remain unassigned for all time. LetC denote the set of cells containing these unassigned

targets.

Consider a cellC(r, c) ∈ C. If C(r, c) does not contain a leader, then it has never been entered by anagent.

If it does contain a leader, then taravail[i](r, c) contains the available targets. Thus if there is an unassigned agent

in cell C(r, c) ∈ C, then upon querying the leader (or if there is no leader, electing a leader), at least one of the

targets inC(r, c) will become assigned, contradicting our assumption. Likewise, for each cellC(r, c) /∈ C, either

there is a leader and taravail[i](r, c) = ∅, or there are no targets in the cell.
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Now, consider an unassigned agenti, in cell C(r, c) /∈ C. Agent i must never enter a cell inC, for if it did

an unassigned target would become assigned, a contradiction. We will show this is not possible. According to the

UNASSIGNED algorithm, agenti travels down its current column, querying the leader of eachcell for available

targets in the cell and in cells below. By Lemma 6.10(ii) agent i will only travel back up the column if all targets in

cells below have been assigned. After traveling back up the column, if there are no available targets in the top cell

in the column, agenti will set colstatus[i](c) = 0 and will never enter columnc again. By Lemmas 6.10 and 6.11,

agenti will travel down each column that may possibly have a free target. Thus, at some point agenti necessarily

will enter a column containing a cell inC. Hence, either agenti, or another assigned agent will enter the cell inC
at which point the number of assigned targets will increase by at least one, a contradiction.

We now prove the upper bound on the performance of the GRID ASSGMT algorithm. In the worst case, the

targets are positioned such that leaders cannot exchange any information about availability of targets. Then, in the

worst case an agent, call iti, must visit allb2 cells before reaching an unassigned target. In the worst case agent

i will travel up and down once in every column in the grid, and back and forth once along the top of the grid. In

each cell, agenti will query the leader for available targets. If there is no leader in the cell, then agenti will solve

a maximum matching among agents that entered at the same timeas it, and one of them will become the leader.

In either case, the time spent in each cell isO(1). The length of each column is
√

|E(n)|, and thus the worst-case

travel distance is bounded by2
√

|E(n)|(b + 2) ∈ O(|E(n)|). Since the agent moves at constant speedvmax, the

time for the last agent to reach its final target is inO(|E(n)|).
Theorem 6.7: From Lemma 2.3,b ≤ ⌈

√

n/(log n + γ(n))⌉, where γ(n) → +∞ as n → +∞. From

Theorem 2.2 when we uniformly randomly distributen targets andn agents intob2 cells, w.h.p. each cell contains

at least one agent, and one target. The maximum matching and leader election in the ROLE ASSGMT algorithm

can be performed inO(1) time. Thus inO(1) time there will be a leader in every cell. By Lemma 6.10(iii),in

b ∈ O(
√

|E(n)| communication rounds, every leader will know the difference between the number of agents and

the number of targets in the cells below it. Thus afterO(
√

|E(n)|) time, the leader of each cell will only let

an agent move further down the column if it knows the agent will find an assignment. Also, by Lemma 6.11(ii)

after O(
√

|E(n)|) time, each leader in the top row will only send agents right ifthere are available targets to

the right. Thus, in the worst case, an agent may have to travelout of its own column, across the top column,

and then down a new column in order to find its target. This distance is inO(
√

|E(n)|), and since the agent

spendsO(1) time in each cell, the time complexity is inO(
√

|E(n)|). Thus the total time complexity is in

O(
√

|E(n)|) + O(
√

|E(n)|) ∈ O(
√

|E(n)|) time.

Theorem 6.9: From Lemma 2.3, there areb2 ≤ ⌈
√

(n/K log n)⌉2 cells, whereK is a constant satisfying

K > 1/ log(4/e). Equivalently, we can writeb2 = 1
c(n)⌈

√

(n/K log n)⌉2, wherec(n) ≥ 1 for all n ∈ N. From

Theorem 2.2(i), when we distributen/ log n targets intob2 cells, w.h.p. there are at mostc(n)O
(

log n
log log n

)

targets

in any given cell. From Theorem 2.2(iv), w.h.p. there are at leastc(n)Ω(log n) agents in each cell. Thus, w.h.p,

there are more agents than targets in every cell. Thus after running the ROLE ASSGMT algorithm, every target in

each cell will be assigned. The maximum matching can be foundin O(1) time. Since each cells area is≤ r2
comm/5,
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(a) Initial agent and target positions. (b) Agent positions mid execution. (c) Final agent reaching its target.

Fig. 7. Simulation of the ETSP ASSGMTalgorithm for 20 agents in a sparse environment. Targets areblack dots and agents are blue squares.

The ETSP tour is shown connecting the targets, and a red line is drawn agents within communication range.

and the agents move at constant speed, the assignment will becomplete inO(1) time, with high probability.

VII. S IMULATIONS

We have performed extensive simulations of the ETSP ASSGMT and GRID ASSGMT algorithms. The ETSP

ASSGMT algorithm has been simulated in both two and three dimensional environments. To compute the ETSP

tour we have used theconcorde TSP solver.5 A representative simulation for 20 agents and targets uniformly

randomly placed in a sparse environment is shown in Fig. 7. The ETSP tour is shown connecting the target

positions. Dashed blue trails in Fig. 7(b) and Fig. 7(c), give the trajectories of agents that have yet to reach a

target. A representative simulation of the GRID ASSGMT algorithm for 65 agents and targets uniformly randomly

distributed in a dense environment is shown in Fig. 8. In Fig.8(c) the communication between the leaders of each

cell is shown with red lines, and a dashed blue trail shows thetrajectory for the final agent, as it is about to reach

its target in cellC(1, 1).

Fig. 9 contains the numerical outcomes of Monte Carlo simulations for the ETSP ASSGMT and GRID ASSGMT

algorithms with uniformly randomly generated target and agent positions. Both sets of simulations were performed

for agents withrcomm = 10 and vmax = 1. Each data point is the mean completion time of 30 trials, where each

trial was performed at randomly generated agent and target positions. Error bars show plus/minus one standard

deviation. The simulation for the ETSP ASSGMT algorithm in Fig 9(a) was performed in a square environment with

area4r2
commn, and suggests that even for uniformly randomly generated positions, ETSP ASSGMT solves the target

assignment problem in time proportional to
√

n|E(n)|. The Monte Carlo simulation for the GRID ASSGMTalgorithm

is shown in Fig. 9(b). These simulations were performed in a square environment with arear2
commn/(6 logn), which

satisfies the bound in Theorem 6.7. For simplicity of implementation we discard trials in which there exists a cell

5The concorde TSP solver is available for research use athttp://www.tsp.gatech.edu/concorde
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(a) Initial agent and target positions. (b) Role assignment in each cell. (c) Final agent reaching target.

Fig. 8. A simulation of 65 agents in a dense environment. Targets are black disks and agents are blue squares. The partition of E(n) is shown

in dashed lines, and red lines are drawn between communicating agents.
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(a) ETSP ASSGMT algorithm in a sparseE(n).
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(b) GRID ASSGMT algorithm in a dense environment.

Fig. 9. Monte Carlo simulations for uniformly randomly generated agent and target positions. Each point is the mean completion time of 30

independent trials. Error bars show plus-minus one standard deviation.

without targets. This is justified by the fact that w.h.p. every cell contains at least one target, and thus the number of

discarded trials tends to zero asn increases. The simulation suggests that asymptotically, the expected completion

time is bounded below by1.5
√

|E(n)| and above by2.5
√

|E(n)|. This agrees with theO(
√

|E(n)|) bound in

Theorem 6.7 and gives some idea as to the constant in front of this bound.
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VIII. E XTENSIONS AND CONCLUSIONS

In this paper we have attempted to present the ETSP ASSGMT and GRID ASSGMT algorithms in their most basic

forms. In this section we discuss some extensions to these algorithms.

A. Higher Dimensional Spaces

We have presented our algorithms for the environmentE(n) := [0, ℓ(n)]2 ⊂ R
2. However, these algorithms

can be generalized to subsets ofR
d, d ≥ 1. The ETSP ASSGMT algorithm we have presented is valid for any

environmentE(n) ⊂ R
d, d ≥ 1. In [1], we have presented time complexity bounds for environments inR

d. In this

case, the length of the ETSP tour is bounded byO(n(d−1)/d|E(n)|1/d) and thus the ETSP ASSGMT algorithm has

time complexity inO(n(d−1)/d|E(n)|1/d).6

The GRID ASSGMT algorithm we have presented is only valid for environments in R
2. This was done in an effort

to simplify the presentation. However, the extension toR
d is straightforward. For example, inR3 the environment

is partitioned into small cubes. Agents first try to find a freetarget in their own cube, then in their own column,

then in their own plane, and then finally, they transfer into anew plane that has an available target. The worst-case

bound is then given byO(|E(n)|), and for uniformly randomly generated target and agent positions, when the

environment satisfies the bound

|E(n)| ≤ r2
comm

K(d + 3)

n

log n
,

whereK > 1, is O(|E(n)|1/d), with high probability.

B. The Case ofn Agents andm Targets

It should be noted that both the ETSP ASSGMT and GRID ASSGMT algorithms work, without any modification,

when there aren agents andm targets. Ifm ≥ n, at completion, thenn targets are assigned andm−n targets are

not. Whenm < n, at completion, allm targets are assigned, and then−m unassigned agents come to a stop after

losing a conflict at each of them targets. By modifying the algorithms so that then−m unassigned agents revisit

assigned targets to check for failed agents, the robustnessof the algorithms can be increased. It is a straightforward

exercise to alter the upper bounds whenm 6= n. For example, the worst-case upper bound on the ETSP ASSGMT

algorithm becomesO(
√

|E(n)|N ), whereN := min{n, m}, and holds for anyn andm. Similarly, the worst-case

upper bound on the GRID ASSGMT algorithm remainsO(|E(n)|) and holds for anyn andm. In addition the lower

bound on the monotonic class can be easily extended whenm ≥ n. However, the extension form < n appears to

require a different construction of worst-case agent and target positions.

C. Alternate Scaling Laws

We have given complexity bounds for the case whenrcomm andvmax are fixed constants, andE(n) grows withn.

We allow the environmentE(n) to grow with n so that, as more agents are involved in the task, their workspace

6Here |E(n)| denotes thed-dimensional volume ofE(n).
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is larger. An equivalent setup would be to consider a fixed size environment, and allowrcomm andvmax to decrease

with increasingn. Scaling the communication radius inversely with the number of agents arises in the study of

wireless networks [22]. As the density of wireless nodes in afixed area increase, the effects of wireless congestion

and media access problems become more prevalent. To reduce these effects, the nodes reduce their transmission

radius, thus reducing their interference footprint. The idea of scaling the agents’ maximum speed inversely withn

occurs due to physical congestion [21]. As the density of robots increases, it necessarily takes longer for the robots

to travel across their environment. Motivated by this discussion, we introduce a new set of parameters,Ẽ , r̃comm(n),

and ṽmax(n) satisfying|Ẽ | ∈ R>0 and ṽmax(n) = Θ(r̃comm(n)). Sinceṽmax(n) and r̃comm(n) scale at the same rate,

the amount of time required to travel a distancer̃comm(n) is independent ofn. Then, analogous to the definition of

environment size, we define the communication range to be:sparseif r̃comm(n)
√

n → 0+, asn → +∞; critical if

r̃comm(n)
√

n → const∈ R>0 asn → +∞; denseif r̃comm(n)
√

n → +∞, asn → +∞.

With these definitions we can summarize the worst-case results as follows.

Corollary 8.1 (Scaling radius and speed):Consider any initial positions ofn agents, with communication range

r̃comm(n) and maximum speed̃vmax(n) = Θ(r̃comm(n)), andn targets in the fixed environment̃E . Then:

(i) the ETSP ASSGMT algorithm solves the target assignment problem inO(
√

n/r̃comm(n)) time;

(ii) if r̃comm(n) is sparse or critical, then ETSP ASSGMT is within a constant factor of the optimal monotonic

algorithm for worst-case initial conditions;

(iii) the GRID ASSGMT algorithm solves the target assignment problem inO(1/r̃comm(n)2) time; and

(iv) if r̃comm(n) is dense or critical, then the GRID ASSGMT algorithm is within a constant factor of the optimal

monotonic algorithm for worst-case initial conditions.

D. Conclusions

In this paper we have studied a version of the target assignment problem in which each agent has a list of the target

positions, but has only limited communication capabilities. We introduced the class of monotonic algorithms for

approaching these problems and gave a lower bound on its asymptotic performance. We introduced two algorithms

in this class, the ETSP ASSGMT algorithm and the GRID ASSGMT algorithm. We have shown that in sparse

environments, where communication between agents is infrequent, the ETSP ASSGMTalgorithm is within a constant

factor of the optimal monotonic algorithm for worst-case initial conditions. On the other hand, in dense environments,

where communication is more prevalent, the GRID ASSGMT algorithm is within a constant factor of the optimal

monotonic algorithm for worst-case initial conditions. Both algorithms extend to higher dimensional spaces and to

problems where the number of agents and targets differ, and the GRID ASSGMT algorithm can be implemented in

a sensor based version, where each agent has no knowledge of target positions, but has a limited range sensor.

There are many future research directions such as extensions to vehicles with motion constraints, or to the case

when targets are dynamically appearing and disappearing. Also, we believe it is possible to extend our algorithms

and analysis from the synchronous communication model to anasynchronous, or event-based, model. Another area
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of future research is to develop a communication framework for robotic networks that adequately models congestion

and media access problems that are inherently present in wireless communications.
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APPENDIX A

FORMAL DESCRIPTION THEETSP ASSGMT ALGORITHM

Algorithm 1: Initialization of agenti in ETSP ASSGMT.

Assumes: Agent i has the target arrayq[i] := q, stored in its memory.

Compute a TSP tour ofq[i], tour(q[i]), and setq[i] := tour(q[i]).1

Compute the closest target inq[i], and set curr[i] equal to its index: curr[i] := arg minj∈I{‖q
[i]
j − p

[i]‖}.2

Set next[i] := curr[i] + 1 (mod n).3

Set prev[i] := curr[i] − 1 (mod n).4

Set status[i] := 1n (i.e., ann-tuple containingn ones).5

Algorithm 2: COMM-RD, executed at each communication round.

Assumes: Agent i has been initialized as in Algorithm 1.

Compute dist[i] := ‖p[i] − q
[i]

curr[i]
‖.1

Broadcast msg[i] := (prev[i], curr[i], next[i], i, dist[i])2

Receive msg[k], from eachk 6= i satisfying‖p[i] − p
[k]‖ ≤ r.3

foreach msg[k] receiveddo4

for s = prev[k] + 1 to next[k] − 1 (mod n) do5

if s 6= curr[i] then Set status[i](s) := 06

if prev[k] = next[k] = curr[k] 6= curr[i] then Set status[i](curr[k]) := 07

if curr[i] = curr[k] then8

if (dist[i] > dist[k]) OR (dist[i] = dist[k] AND i < k) then9

Set status[i](curr[i]) := 0.10

if next[i] 6= curr[i] then Set status[i](next[i]) := 0.11

if next[k] 6= curr[i] then Set status[i](next[k]) := 0.12

if status[i](j) = 0 for every targetj then Exit ETSP ASSGMT and stop motion.13

while status[i](curr[i])=0 do curr[i] := curr[i] + 1 (mod n).14

Set next[i] := curr[i] + 1 (mod n).15

while status[i](next[i])=0 do next[i] := next[i] + 1 (mod n).16

while status[i](prev[i])=0 do prev[i] := prev[i] − 1 (mod n).17

APPENDIX B

FORMAL DESCRIPTION OF THEGRID ASSGMT ALGORITHM

As noted in Remark 6.4, we have simplified the presentation ofthe UNASSIGNED algorithm by assuming that

every cell initially contains at least one agent and one target. It is straightforward to relax this assumption. If a cell

has no targets, then any agents initially in the cell move to the cell below, and the empty cell is ignored for the
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rest of the algorithm. If there is a cell that contains targets but no agents, then the first agents to enter the cell run

the ROLE ASSGMT algorithm and one becomes the leader. Agents move at speedvmax.

TABLE I

VARIABLES FOR THEGRID ASSGMT ALGORITHM.

Agent role Variable Description Value

all

currcell[i] cell currently occupied by agenti a cell C(r, c)

leader[i] cell for which agenti is leader a cell C(r, c) or null

curr[i] agenti’s assigned target at target inQ, or null

unassigned

dircol[i] direction of travel in columnc. up or down.

dirrow[i] direction of travel when in row1 left or right

colstatus[i](c) records whether or not there are free targets in columnc full or notfull

prevcell[i] previous cell occupied by agenti a cell C(r, c)

C(r, c) leader

taravail[i](r, c) set of available targets inC(r, c) a subset ofQ

∆[i](r, c) (# of targets) − (# of agents) in C(r, c) an integer

∆
[i]
blw(r, c) est. of(# of targets) − (# of agents) in C(r + 1, c) to C(b, c) an integer or+∞

C(1, c) leader ∆
[i]
rght(1, c) est. of(# of targets) − (# of agents) in columnsc + 1 to b an integer or+∞

Algorithm 3: ROLE ASSGMT, executed at the start of the GRID ASSGMT algorithm to assign roles, and initialize agenti.

Assumes: Agent i is in C(r, c), knowsE(n), and either (1) knows all target positions, or (2) hasrsense≥
p

2/5rcomm.

Computeb as in Lemma 2.3, partitionE(n) into theb2 square cells.1

Set currcell[i] := C(r, c), leader[i] := null and curr[i] := null.2

Broadcast msg[i] containingUID[i], p[i], and currcell[i] to agents in currcell[i].3

Receive msg[k] from, all agents inC(r, c).4

Use the MAXIMAL MATCH algorithm to find a maximum matching between agents and targets C(r, c).5

Elect a leader among assigned agents inC(r, c).6

case unassigned7

Set dircol[i] := down, dirrow[i] := right, and colstatus[i](c) to notfull for eachc ∈ {1, . . . , b}.8

Run UNASSIGNED algorithm.9

case assigned toq ∈ C(r, c) and not elected leader10

Set curr[i] := q, and move to curr[i] at speedvmax11

case assigned and elected leader12

Set leader[i] := currcell[i], curr[i] := q, and move to curr[i] at speedvmax13

Set∆[i](r, c) to number of targets inC(r, c) minus number of agents inC(r, c).14

Set taravail[i](r, c) to the collection of unassigned targets inC(r, c).15

Set∆[i]
blw(r, c) to +∞ if r ∈ {1, . . . , b − 1} and to0 if r = b.16

if r = 1 then Set∆[i]
rght(c) to +∞ if c ∈ {1, . . . , b − 1} and to0 if c = b.17

Run LEADER algorithm.18
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Algorithm 4: LEADER, executed at each communication round.

Assumes: Agent i is the leader ofC(r, c).

Send msg[i]1 := ∆
[i]
blw(r, c) + ∆[i](r, c) to leader in cellC(r − 1, c).1

if r = 1 then2

Send msg[i]2 := ∆
[i]
rght(c) + ∆

[i]
blw(1, c) + ∆[i](1, c) to leader ofC(1, c − 1).3

Receive msg[k]
2 from leaderk of C(1, c + 1) and set∆[i]

rght(c) := msg[k]
2 .4

For eachenter msg from an agent coming fromC(1, c + 1), add 1 to∆
[i]
rght(1, c) and for eachexit msg from an5

agent going toC(1, c + 1) subtract 1 from∆
[i]
rght(1, c).

If ∆
[i]
rght(1, c) > 0 and anenter msg was received from an agent coming fromC(1, c + 1), then set∆[i]

rght(1, c) := 0.6

Receive msg[k]
1 from leaderk of C(r + 1, c), and set∆[i]

blw(r, c) := msg[k]
1 .7

Subtract 1 from∆[i](r, c) for eachenter msg received, and add 1 for eachexit msg received.8

For eachenter msg from an agent coming fromC(r + 1, c), add 1 to∆
[i]
blw(r, c) and for eachexit msg from an agent9

going toC(r + 1, c) subtract 1 from∆
[i]
blw(r, c).

If ∆
[i]
blw(r, c) > 0 and anenter msg was received from an agent coming fromC(r + 1, c), then set∆[i]

blw(r, c) := 0.10

forall queries on availability of target inC(r, c) do11

if taravail[i] 6= ∅ then12

Select a target in taravail[i], assign it requesting agent, and remove it from taravail[i].13

else if taravail= ∅ then Reply no.14

forall queries on availability of target belowC(r, c) do15

Respondyes to ∆
[i]
blw(r, c) requests, andno to all others.16

if r = 1 then17

forall queries on availability of target to right of columnc do18

Respondyes to ∆
[i]
rght(c) requests, andno to all others.19
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Algorithm 5: UNASSIGNED, executed each time a new cell is entered.

Assumes: Agent i has run ROLE ASSGMT, and currcell[i] = C(r, c).

Query leader ofC(r, c) on free targets in currcell[i].1

if leader returns a targetq ∈ C(r, c) then Set curr[i] := q, and move to target.2

else if leader returnsno then3

case dircol[i] = down4

Query leader on availability of target belowC(r, c).5

if leader returnsyes then6

Set prevcell[i] := currcell[i] and currcell[i] := C(r + 1, c)7

else if leader returnsno then8

Set dircol[i] := up, prevcell[i] := currcell[i] and currcell[i] := C(r − 1, c).9

case (dircol[i] = up) and (r > 1)10

Set prevcell[i] := currcell[i], currcell[i] := C(r − 1, c), and dircol[i] := up11

case (dircol[i] = up) and (r = 1) and (dirrow[i] = right)12

Set colstatus[i](c) := full.13

Query leader on availability to the right of columnc.14

if leader returnsyes then15

Set prevcell[i] := currcell[i], currcell[i] := C(1, c + 1)16

if colstatus[i](c + 1) = notfull then dircol[i] := down.17

else if leader returnsno then18

Set prevcell[i] := currcell[i], currcell[i] := C(1, c − 1), dirrow[i] := left.19

Set colstatus[i](c∗) := full for eachc∗ ∈ {c + 1, . . . , b}.20

if colstatus[i](c − 1) = notfull then dircol[i] := down.21

case (dircol[i] = up) and (r = 1) and (dirrow[i] = left)22

Set prevcell[i] := currcell[i] and currcell[i] := C(1, c − 1).23

if colstatus[i](c − 1) = notfull then dircol[i] := down.24

Sendexit to leader in prevcell[i], enter to leader in currcell[i], and move to currcell[i].25
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