Monotonic Target Assignment

for Robotic Networks

Stephen L. Smith Francesco Bullo

Abstract

Consider an equal number of mobile robotic agents and distarget locations dispersed in an environment.
Each agent has a limited communication range and eithem@yledge of every target position, or (2) a finite-range
sensor capable of acquiring target positions and no a pgamiviedge of target positions. In this paper we study the
following target assignment problem: design a distribuaggbrithm with which the agents divide the targets among
themselves and, simultaneously, move to their unique taVge evaluate an algorithm’s performance by charactegizin
its worst-case asymptotic time to complete the target asségt; that is the task completion time as the number of
agents (and targets) increases, and the size of the envérdrsoales to accommodate them. We introduce the intuitive
class ofmonotonic algorithmsand give a lower bound on its worst-case completion time.dé&gn and analyze
two algorithms within this class: the ETSPsAGMT algorithm which works under assumption (1), and thris
AsscmTalgorithm which works under either assumption (1) or (2)‘dparse environments,” where communication
is infrequent, the ETSP #scMT algorithm is within a constant factor of the optimal monatomlgorithm for
worst-case initial conditions. In “dense environmentsiiene communication is more prevalent, thelG ASSGMT
algorithm is within a constant factor of the optimal monatoalgorithm for worst-case initial conditions. In additio
we characterize the performance of th&l6 AssGMmT algorithm for uniformly distributed targets and agentsd an

for the case when there are more agents than targets.

I. INTRODUCTION

Consider a group ai mobile robotic agents, equipped with wireless transcsif@rlimited range communication,
dispersed in an environmefitC R? which contains: target locations. In addition, consider two scenariose@gh
agent is given a list containing all target positions (theipons may be given as GPS coordinates); or (2) each
agent has no initial target information, but has a finitegeatarget sensor to acquire target positions. The task is for
the agents to divide the targets among themselves so thaihimom time, each target location is occupied by an
agent. Since na priori assignment of target-agent pairs has been given, the ageistssolve the problem through

communication and motion. We call this ti@rget assignment problenThis problem has many applications in

Preliminary versions of this work appeared as [1] and as TBjs material is based upon work supported in part by ARO MWURird
W911NF-05-1-0219 and ONR Award N00014-07-1-0721.

Stephen L. Smith and Francesco Bullo are with Department ethdnical Engineering and the Center for Control, Dynam®&ys-
tems and Computation, University of California, Santa Baah CA 93106-5070, USA. E-maikt ephen@ngi neeri ng. ucsb. edu

bul | o@ngi neeri ng. ucsh. edu

October 21, 2008 DRAFT

UAV surveillance and exploration, or mobile sensor netwgorkhe first scenario could arise when a high-altitude,
sensory-rich aircraft communicates a large number of tgrgsitions to a correspondingly large group of smaller,
slower, autonomous aircraft at lower altitudes. The sedtowhl sensing) scenario could arise in exploration tasks
where a group of UAVs are sent into a region to find, and proglwice to, spatially distributed tasks.

The centralized problem of simply assigning one agent th éaget is known in the combinatorial optimization
literature as themaximum matching problefi3]. To efficiently assign agents to targets, we may be iste in
finding a maximum matching (i.e., an assignment of one ageaath target) that minimizes a cost function. If the
cost function is the sum of distances from each agent to digiasd target, then the problem is known as she
assignment problejror the minimum weight maximum matching probl€i8]. Another choice of cost function is
to minimize the maximum distance between agents and thsigreexd targets. This problem is commonly referred
to as thebottleneck assignment probled]. There exist efficient polynomial time algorithms foretlsolution of
all these problems [5], [6], [4]. Additionally, the sum agsinent problem can be solved in a parallel fashion via
the auction algorithm[7]. However, these solutions do not directly apply to ouslgem where, due to the agents’
limited communication range, the communication topologyime-varying, and possibly disconnected.

The class of problems commonly referred todesentralized task allocatiofor UAVs (or UGVSs), is closely
related to our target assignment problem. In these probtemgoal is generally to assign vehicles to spatially
distributed tasks while maximizing the “score” of the missi In [8] a taxonomy of task allocation problems is
given, dividing problems into groups based on, among othi&gs, the number of tasks a robot can execute,
and the number of robots required for a task. In papers sudB]agl0], [11], advanced heuristic methods are
developed, and their effectiveness is demonstrated thrgigulation or real world implementation. In [12] the
auction algorithm is adapted to solve a task allocation jgrokin the presence of communication delays. In [13]
the authors study the problem of dynamically reassignirentsyas new tasks arrive and old tasks expire. There has
also been prior work on target assignment problems [14]]. [15[14] the authors formulate a target assignment
problem as a multi-player game and seek to optimize a glafiayuln [15] an algorithm based on hybrid systems
tools is developed and its performance is characterizedbmuad on the number of switches of the hybrid system.
Unlike the prior work, in this paper we study the scalabiliyoperties of the minimum-time target assignment
problem. We assume that each agent has limited commumicedipabilities and either (Ifull target knowledge
(i.e., each agent knows the position of every target), old@al target sensindi.e., each agent has a finite-range
target sensor to acquire target positions). We focus onackenizing the completion time as the number of agents
n grows, and the square environméii) grows to accommodate themm.

The contributions of this paper are: a novel and conciserst@ant of the minimum-time target assignment problem
for robotic networks; a broad class of distributed algamishfor solving this problem; lower bounds on the worst-
case performance achievable by any algorithm in this ckass;algorithms which perform within a constant factor

1The size of the square environmeftis a function ofn, and thus we writef (n). If the environment size were independentrofthen the
density of robots would become arbitrarily large as the tsigk n became large, which is not realistic. Thus, either the enwirent should

grow with n (as is assumed here), or the robot’s attributes shouldlshuith » (as is discussed in Section VIII-C).

October 21, 2008 DRAFT

of the optimal monotonic algorithm for worst-case initiandlitions. In Section IV-A we introduce the class of
monotonic algorithmswhich provides an intuitive approach for solving the ta@gsignment problem. We show that
in “sparse environments,” that is whéfi(n)|/n — +oo, for every monotonic algorithm there exists a (worst-case)
set of initial target and agent positions such that the cetigsl time is inQ(,/|£(n)|n).2 In “dense environments,”
that is when|/&(n)|/n — 07, every algorithm in the class has worst-case completioe fimf2(|€(n)|). In Section

V, we assume full target knowledge and present a monotogari#thm, called the ETSP #sGmMT algorithm, with
worst-case completion time i@(/|€(n)|n). In this algorithm, each agent computes an ETSP tour throigh
targets, turning the cloud of target points into an ordeird.rAgents then move along the ring, looking for the
next available target. When agents communicate, they exghmformation on the location of the next available
target along the ring. Then, in Section VI we present a mamotalgorithm, called the &b AssGMT algorithm,
which operates under either the full target knowledge apsiom, or the local target sensing assumption as long as
the sensing range is at Iea@ times the communication range. Under either assumpti@anGkiD ASSGMT
algorithm has worst-case completion time Gi|E(n)|). In this algorithm, the agents partition the environment
into cells, and determine local maximum assignments in #iewhich they occupy. A leader is elected in each
cell, and through communication between leaders of adfacelts, local assignments are merged into a global
and complete assignment. These two algorithms are comptanyan terms of worst-case performance: in “sparse
environments,” the ETSP gsGeMT algorithm is within a constant factor of the optimal monatoalgorithm, and is
“dense environments,” thef@D AssGMT algorithm is within a constant factor of the optimal monatoagorithm.

We also characterize the stochastic properties of tReD@\SSGMT algorithm in “dense environments.” If the
agents and targets are uniformly distributed, then the ¢etiop time belongs t@(\/m) with high probability.
Additionally, if there aren agents and only:/ logn targets, then the completion time belongs(¢l) with high
probability. In Section VIII we discuss extensions of the T ASsGMT and GRID ASSGMT algorithms to higher

dimensional spaces and to the casevagents andn targets,n # m.

II. COMBINATORIC, GEOMETRIC AND STOCHASTIC PRELIMINARIES

In this section we review a few useful results on the cerztealimatching problem, the Euclidean traveling
salesperson problem, occupancy problems, and random ggographs. We lelR, R>, andN denote the set of
real numbers, the set of non-negative real numbers, andethaf positive integers, respectively. Given a finite set
A, we let|A| denote its cardinality, and given an infinite sétc R? we let|A| denote its area. For two functions
fig : N — Ryg, we write f(n) € O(g) (respectively,f(n) € Q(g)) if there existN € N andc¢ € R. such
that f(n) < cg(n) for all n > N (respectively,f(n) > cg(n) for all n > N). If f(n) € O(g) and f(n) € Q(g),
then we sayf(n) € O(g). We say that eventi(n) occurswith high probability(w.h.p.) if the probability ofA(n)

occurring tends to one as — +oo.

2|&(n)| denotes the area @ (n), andQ(-) is the asymptotic notation for lower bounds as reviewed ictiSe II.

October 21, 2008 DRAFT

A. Centralized Matching

Considern persons and the problem of dividing them amongasks. For each persanthere is a nonempty
set QI of tasks thati can be assigned to, and casf > 0 associated to each tagke Q. An assignment
or matchingM is a set of person-task paifs, j) such thatj € Q) for all (i,) € M, and such that for each
person: (likewise, taskj) there is at most one palii, j) € M. The matchingM is a maximummatching if for
every matching/, we have|M| < |M]|. If |M| = n, then the matching isomplete The matching}/ is maximal
if there does not exist a matchiny/, such that)/ is a strict superset ol/. There are several polynomial time
algorithms for determining a maximum matching. Weightedkimaim matching problems are those of finding the
maximum matching)/ that minimizes a cost function. Two common cost functiorestae sumy_ ; ;< ¢ij, or
the bottlenecknax; ;s cij, and polynomial time algorithms exist for the solution ottbof these problems [3].

In this paper we will require a standard algorithm, calledX¥wAL MATCH, for computing a maximal matching.
The algorithm chooses the person-task pair with lowest, @ukds it to the matching, removes the person and task
from the problem, and repeats. In the case when each persobecassigned to any of thetasks (i.e., for each

personi, the setQl! contains alln tasks), this algorithm determines a complete, and thus rmami, matching.

MAXIMAL MATCH, outputs a maximal matchingy/

1 Initialize M := 0, andZ; := {1,...,n}.
2 while there exists ani € Z; with |Q"| # 0 do
3 Compute the indicesi*, j*) := argmin;cz, jcou Cij

4 | SetM := MU (i*,j*), Z; := Z; \ {i*}, and for each € Z;, QI .= Qlil\ {j*}

B. The Euclidean Traveling Salesperson Problem

For a setQ of n points inR?, let ETSP(Q) denote the length of the shortest closed path through afitpoi
in Q. The following result characterizes the length of this patren Q C £(n), where (for consistency with the
remainder of this papeg(n) is a square environment that is compact for each

Theorem 2.1 (ETSP tour length, [16])f Q is a set ofn points in€(n), thenETSP(Q) € O(y/n|E(n)|).

The problem of computing an optimal ETSP tour is known to beddmplete. However, there exist polynomial
time approximation schemes. For example, it is shown in {ti&@} a tour no longer thafl + ¢) times the shortest

one can be found im(logn)©(/<) computation time.

C. Occupancy Problems

Occupancy problems, or “bins and balls” problems, are coreckwith randomly distributingn balls inton
equally sized bins. The two results we present here will lefulisn our analysis.
Theorem 2.2 (Bins and balls properties, [18], [19]€onsider uniformly randomly distributing: balls inton

bins and lety be any function such that(n) — +occ asn — +oo. The following statements hold:

October 21, 2008 DRAFT

(i) if m =n, then w.h.p. each bin contair@(lolg‘)ign) balls;

(i) if m =nlogn + v(n)n, then w.h.p. there exist no empty bins;

(i) if m =nlogn — v(n)n, then w.h.p. there exists an empty bin;

(iv) if m = Knlogn, whereK > 1/log(4/e), then w.h.p. every bin contair3(logn) balls.

We will be interested in partitioning a square environmenob iequally sized and openly disjoint square bins
such that the area of each bin is “small.” To do this, we regthe following simple fact.

Lemma 2.3 (Dividing the environmentBiven n € N and r¢omm > 0, consider a square environmeftn). If
&(n) is partitioned intoh? equally sized and openly disjoint square bins, where

bie {MW , (1)
Tcomm

then the area of each bin is no more thép,,/5. Moreover, ifz,y € £(n) are in the same bin or in adjacent

bins, then||z — y|| < rcomm

D. Random Geometric Graphs

Forn € N andreomm € R+, @ planargeometric graphG (n, rcomm) CONsists ofn vertices inR?, and undirected
edges connecting all vertex paifs, y} with ||z — y|| < rcomm We also refer to this as theommrgeometric graph.
If the vertices are randomly distributed in some subseR®fthen we call the graph eandom geometric graph

Theorem 2.4 (Connectivity of random geometric graphs,)[2@onsider the random geometric gra@tv, rcomm)

obtained by uniformly randomly distributing points in the square environmefitn) with

7TTgomm _ logn +v(n)

()] n

ThenG(n, rcomm) is connected w.h.p. if and only #(n) — +oo asn — +oo.

This theorem will be important for understanding some of msults, as it provides a bound on the environment

size necessary for the communication grapmafindomly deployed agents to be asymptotically connected.

IIl. NETWORK MODEL AND PROBLEM STATEMENT

In this section we formalize our agent and target models aiithel the sparse and dense environments.

A. Robotic Network Model

Considern agents in an environmeigt(n) := [0,4(n)]*> C R?, where/(n) > 0 (that is,£(n) is a square with
side length/(n)). The environmenE(n) is compact for each but its size depends om. A robotic agent, A",

i€Z:={1,...,n}, is described by the tuple
A[i] = {U|D[i] , p[i] > Tcomm, Tsensél[i] s M[i] }7

where the quantities are as follows: Its unique identifielD(Uis uiD!”, taken from the sef,, C N. Note that

each agent does not know the set of UIDs being used and thgsnddeénitially know the magnitude of its UID

October 21, 2008 DRAFT

relative to those of other agents. Its positiorpi§ € &(n). Its communication range isomm > 0, i.e., two agents,
Al and Al i k € Z, can communicate if and only jfp!? — p*!|| < 7comm Its target sensing range igense With

this sensor agentcan determine the relative position of targets within dis&rsense0f pll. Its continuous time
velocity input isul”, corresponding to the kinematic modgl! = ul!, where||ul”|| < vmax for somevmax > 0.

Finally, its memory isM ! and is of cardinality (size)M!"|. From now on, we simply refer to agent!! as
agent.

The agents move in continuous time and communicate acaptdia synchronous discrete time schedule consist-
ing of an increasing sequen¢g, }ren Of time instants with no accumulation points. We assuitpe; — ti| < tmax
forall k € N, wheretmax € R~ . We also assume that the time between communication raypgds much smaller
than rcomm/vmax the amount of time taken to travel the distamggnm At each communication round, agents can
exchange messages of lengilog n).> Communication round occurs at time;,, and all messages are sent and
received instantaneously gf. Motion then occurs from; until ¢,4. It should be noted that in this setup we are

emphasizing the time complexity due to the motion of the &gen

B. The Target Assignment Problem
LetQ :={qi,...,qa,} C £(n) be a set of distinct target locations. In this paper we maledaitwo assumptions:
Full target knowledge: Each agent knows the position of every target. Thus, agemhemory, M, contains a
copy of Q, which we denoteQ!”. To storeQl” the size of each agents’ memoty/”)|, must be inQ(n).
Local target sensing: Each agent has no initial target information (i.@[! = (), but can acquire target positions
through its target sensor of rang&nse
Our goal is to solve théarget assignment problem
Determine an algorithm fon € N agents, with attributes as described above, satisfyingahawing
requirement; there exists a tinf¥e > 0 such that for each targef; € Q, there is a unique agente Z,
with pli(t) = q; for all t > T.
If the task begins at timé = 0, then thecompletion timeof the target assignment task is the minimiih® 0, such
that for eachq; € Q, there is a uniqueé € Z, with plil(¢) = q; for all ¢ > T'. In this paper we seek algorithms
that minimize this completion time. Note that in the locaiget sensing assumption the agents have less target
information than in the full target knowledge assumptioec8use of this, an algorithm’s performance under the
local target sensing assumption can be no better than iferpeance under the full target knowledge assumption.
Remark 3.1 (Consistent target knowledgénother possible assumption on the target s@§!, which still
ensures the existence of a complete matching, isctiresistent target knowledgessumption: For eackl C Z,
|Uk€,CQ[k]| > |K|. In fact, it was proved by Frobenius in 1917 and by Hall in 1934t this is the necessary and

sufficient condition for the existence of a complete matgHi3i. .

3The number of bits required to represent an ID, unique amoigents, is directly proportional to the logarithm of

October 21, 2008 DRAFT

C. Sparse, Dense, and Critical Environments

We wish to study the scalability of a particular approachte target assignment problem; that is, how the
completion time increases as we increase the number of @genthe velocity vmax and communication range
rcomm Of €ach agent are independentrofHowever, we assume that the size of the environment ineseaghn
in order to accommodate an increase in agents. Borrowimgst&rom the random geometric graph literature [20],
we say that the environment &parseif, as we increase the number of agents, the environmentsyoickly
enough that the density of agents (as measured by the suneiofcdmmunication footprints) decreases; we say
the environment igritical, if the density is constant, and we say the environmedeissef the density increases.
Formally, we have the following definition.

Definition 3.2 (Dense, critical and sparse environmeniBjie environmen€(n) is

(i) sparseif |E(n)|/n — 400 asn — +oo;

(i) critical if |€£(n)|/n — conste Rsy asn — +oo;

(i) denseif |E(n)|/n — 0T, asn — +oo.

It should be emphasized that a dense environment does nbt thgt the communication graph between agents

is dense. On the contrary, from Theorem 2.4 we see that thencmiigation graph at random agent positions in a

dense environment may not even be connected.

IV. CLASSES OFALGORITHMS

In this section we introduce a class of algorithms for thgeamassignment problem that provides the structure
for algorithms developed in this paper. We will provide a ésvbound on the classes performance using the full
target knowledge assumption. Necessarily this also pesval lower bound for the problem using the local target

sensing assumption.

A. Monotonic Algorithms

We introduce a class of algorithms which provides an inteitipproach to target assignment.

Definition 4.1 (Monotonic algorithms)A target assignment algorithm monotonidf it is deterministic and has
the following property: If a subset of agentg C Z are all located at targeq; at timet; (i.e., p/(t;) = qj,
Vi€ J), then at least one agent {fi remains located adj; for all ¢t > ¢; (i.e., 34 € J such thatpl® (t) = q;,

YVt > th).

We call these algorithms “monotonic” since occupied tasgetmain occupied for all time, and thus the number
of occupied targets monotonically increases throughaaitetkecution. We focus on monotonic algorithms for two
reasons: First, monotonicity is natural constraint fogétrassignment problems since in many scenarios it the agent
will begin servicing a target immediately upon arriving & location—in non-monotonic algorithms, service will
be halted as agents leave their targets. Second, monotgoittlams provide a broad class of algorithms for which

rigorous analysis remains tractable.

October 21, 2008 DRAFT

We are now ready to lower bound the worst-case asymptotigtion time of the target assignment problem
for any monotonic algorithm. This bound holds under both fihié target knowledge and local target sensing
assumptions.

Theorem 4.2 (Time complexity of target assignme@dnsidern agents, with communication ranggymm > 0,
andn targets in€(n). For all monotonic algorithms the worst-case completioretdf the target assignment problem
is lower bounded as follows:

(i) if £(n) is sparse, then the completion time is¥i/n|€(n)]);

(i) if £(n) is critical, then the completion time is ®(n);

(i) if £(n) is dense, then the completion time is@{|E(n))).

Proof: The proof proceeds by constructing a set of agent and tammtigns such that the lower bound is
achieved. To do this, we place the targets€im) such that thercommrgeometric graph, generated by the target
positions, has a maximum number of disconnected compandai$ we place agenty ..., n so that they occupy
targetsqo, . . ., q,. We then place ageritin £(n) \ Q. If the agents run a monotonic algorithm to solve the target
assignment problem, then agefits. ., n will not move, and thus the assignment will not be completél agent
1 reaches targetj;. In the best case, when agehtcomes within distance.,mm of a connected component, it
immediately determines whether or not there is a free targétat component (i.e., whether or ngt is in that
component). However, agentwill not receive information about the availability of angrgets outside of that
component. So, agent must come within distance.omm Of the connected component containigg, before the
assignment can be completed. Since the algorithm is deiestioi we can place the targets, and agents such that
the connected component containigg is the last connected component that agemtill visit.

To create the maximum number of disconnected componentpawigion the environment(n) into P equally
sized, and openly disjoint squares, as shown in Fig. 1(a)ctvesider two cases, based on whether or not there
exists ane > 0 such that€(n)| > (2rcomm+ €)*n.

Case 1: [there exists> 0 such thal&(n)| > (2rcomm+€)?n] In this case we seP := [/n]? and place a target
at the center of each square until there are no targets rergaifhe area of each square is given|6yn)|/ P, and

thus the distance between any two targets is lower boundeg/l8(n)|/P > +/(2rcomm+ €)21/[y/n]2, which

for sufficiently largen, is greater thar2rcomm Thus, we have created disconnected components, as depicted in
Fig. 1(a). The distance betweegmq-disks centered at any two targets is lower bounded 8¢ (n)|/[/7]2 —
2rcomm and we can place the agents and targets such that one agsintravel this distance — 1 times. Thus,

the worst-case travel distance is lower bounded by

[v/n]?
Since the robots travel at constant speed, the completioa i also inQ(+/|E(n)|n).

Case 2: [for every > 0, |€(n)| < (2rcomm+ €)?n] In this case we fix any > 0 and set
2
()]
Pi= | —"0
’7 (27’comm+ 6)2

October 21, 2008 DRAFT

(n—1) (() —2rc0mm> € Qv I€(n)In).

”””””””””””””””””””””””” JIEm)] > 2rcomm + %6‘ @
B
N B
(a) Partitioning the environment to construct target pos# that (b) Thee/4-disk located at the center of one of the squares in
generate amcomnrgeometric graph with a maximum number of the partition. Targets are shown in the disk, along with aeilow
disconnected components. bound on the size of the square.

Fig. 1. Partitioning the environmerst(n) for the proof of Theorem 4.2.

We define a disk of radiug/4 at the center of each of the squares. We then plade /P] targets in each/4-disk,
until there are no targets remaining, as shown in Fig. 1(lsteNhat for any« € |0, 1[, we can findN € N such

that

€(n)]
(27‘c0mm+ 046)2 ’
Letting o = 3/4, we find that for large:, the distance between the centers of any two squares is looverded by
\/L;)‘ > 2rcomm+ 3€/4, as shown in Fig. 1(b). So, the distance between anyefitedisks is lower bounded by

2rcomm+ €/4. Thus, we have created(P) disconnected components. The distance betwegh-disks centered

P< for all n > N.

at any two targets in different squares is lower bounded My Again, we can place the agents and targets such

that one agent will have to travel this distarfeéP) times. Thus, the worst-case distance is lower bounded by
€
~Q(P) € Q(Em))).

Since the robots travel at constant speed, the completioa i also inQ(|€(n))).

Thus, if |E(n)|/n — +o00 asn — +o0, then we are in Case 1 and the completion time iS2{R/|E(n)|n). If
|E(n)|/n — conste R~y asn — +oo, then we may be in either Case 1 or Case 2, depending on the wélu
const, but in either case the completion time istw). Finally, if |£(n)|/n — 07 asn — +o0, then we are in
Case 2 and the completion time is(|E(n)]). [|

Remark 4.3 (Interpretation of lower boundn Theorem 4.2 we provided a worst-case lower bound. Thislsho
be interpreted as follows. For every monotonic algorithereéhexists a set of initial target and agent position for

which the completion time is no smaller than the lower boumdhould be noted that there are many initial

October 21, 2008 DRAFT

10

positions for which the completion time is less than this stimase lower bound (indeed, there are initial positions
for which the completion time is zero).

Also note that for a critical environment, the agent anddgampsitions used in the proof of Theorem 4.2 give a
completion time of2(n) for every monotonic algorithm. However, if a centralizedveo were used to assign agents
to targets from the same initial positions, then the motiometwould beO(1). Hence the distributed solutions
given by a monotonic algorithm may severely under-perforhemvcompared to solutions given by the optimal

centralized solver. °

B. TheRENDEZVOUSSTRATEGY and its Drawbacks

In this section we discuss another approach to solving thgetaassignment problem that we call th&eNR
DEZVOUS STRATEGY. The strategy, which works only under the full target kna¥ge assumption, can be described

as follows.

RENDEZVOUS STRATEGY (for agents)

1 Compute a common meeting point, such as the centroid of tigetta@ositions.

2 Move to the meeting point and wait for all other agents tovarri

3 Once all agents have arrived, broadoasi(!! andpl’, and receivasin!* andp!* from all other agents.
4 Compute a complete assignment of target-agent pairs usedIaxXIMAL MATCH algorithm and move to

your assigned target.

Since every agent knows the position of all targets, the @gesm compute a common meeting point. The time
for an agent to reach any meeting point is bounded/BY€ (n)|/vmax, and thus each agent can determine when all
other agents have arrived at the meeting point. Once alltageach the meeting point the communication graph
is complete and each agent can broadcast its UID and posdiatl other agents in one communication round.
Then, each agent can useAMIMAL MATCH to solve a centralized assignment, and all agents end up théth
same complete assignment. In addition, since the agentodoeated, this assignment is optimal. Each agent then
moves to the target to which it has been assigned. Essgntiait approach turns the distributed problem into a
centralized one.

Theorem 4.4 (Time complexity fRENDEZVOUS STRATEGY): Considern agents anch targets in the environ-
ment&(n). In the worst-case, the BNDEZVOUS STRATEGY solves the target assignment problen&iny /€ (n)|)
time. Moreover, if the targets and agents are uniformly canlgt distributed in€(n), the completion time is in
CIVIEDDE

Proof: Since all information can be exchanged in one round, and wenat considering computation time,
the completion time is given by the time to reach the meetioigtpplus the time to go from the meeting point to

the assigned target.

October 21, 2008 DRAFT

11

To see the worst-case, place all targets at one side of theoement, and all agents at the other side. Then
each agent must travel a distar@(e\/m). The distance from the meeting point back to any assignegtés
also bounded by)(,/|€(n)[). Thus, the worst-case completion time@g./|E(n)]).

If we uniformly randomly distribute: agents in€(n), then it is a well known fact (see, for example [21]) that
w.h.p., the maximum distance between agentsy; ez ||[pl! —pl!||, is in ©(y/]€(n)|). Thus, one agent must travel
a distance of at leagfmax; jez [|pl! — pUl|| € ©(,/]€(n)]). Hence, w.h.p., the completion time is@(+/|€(n)]).

[|

Remark 4.5 (Drawbacks dRENDEZVOUS STRATEGY): From Theorem 4.4 we see that theNDEZVOUSSTRAT-
EGY has better worst-case performance than any monotonicitgorThus, there may be applications in which
this is the best algorithm for solving the target assignnymatlem. However, there are several drawbacks to
the algorithm. First, this approach is not a distributedi8oh in the sense that it requires each agent to acquire
information about all other agents in the group, and to saleentralized assignment problem. Second, the process
of meeting to exchange information creates a single poirfaitfre for the system. Third, if we consider an initial
configuration wheren targets are occupied, then in theeROEZzVOUS STRATEGY all of these targets become
unoccupied as the agents travel to the meeting point. Thiss,ig not a monotonic algorithm. In fact, if every
target is occupied and we run theeRDEZVOUS STRATEGY, all agents leave their targets, move to the meeting
point, compute a complete assignment, and move to a newt.tdigie is obviously not the desired behavior in this
instance. Fourth, the BNDEZVOUS STRATEGY is ill-suited for heterogeneous situations where agenis adely
distinct speeds, or become active at different instantdnog;tin these situations the HRDEZVOUS STRATEGY
essentially reduces the performance of every agent to fhheslowest agent. Fifth, theERIDEZVOUS STRATEGY
does not work under the local target sensing assumptionrealene will provide an algorithm later that does.
Finally, in settings where more agent are available thagetar there is hope to complete the target assignment
problem in time that is independent af The RENDEzvVOUS STRATEGY never achieves this time complexity,
whereas we will prove this property for one of our proposeagbathms below. °

Because of the drawbacks mentioned in the previous renmatkeiremainder of this paper, we look at distributed

monotonic algorithms and their performance in solving tuget assignment problem.

V. A CONSTANT FACTOR MONOTONIC ALGORITHM IN SPARSEENVIRONMENTS

We begin by introducing a monotonic algorithm, called theSPTAssGMT algorithm, for solving the target
assignment problem. This algorithm operates only underfuhdarget knowledge assumption. In this algorithm,
each agent precomputes an optimal tour throughttergets, turning the cloud of target points into an ordenegl.r
Agents then move along the ring, looking for the next avd@ahrget. When agents communicate, they exchange
information on the next available target along the ring. \Wevg that in sparse or critical environments, the ETSP

AsscMmT algorithm is within a constant factor of the optimal monatoalgorithm for worst-case initial conditions.

October 21, 2008 DRAFT

12

4 L]
® ‘5 9 currll = 7 i
tour 4] IZ((
L[] —_— p
3
0o 6 previl = 6
*2
ey 4 4
(a) The maptour, creating an ETSP tour of seven targets. (b) The initialization for agent.

Fig. 2. The initialization process for the ETSBAGMTalgorithm.

A. TheETSP AssgMT Algorithm

The ETSP AscMmTalgorithm is designed under the full target knowledge aggian. In the following description
it will be convenient to assume that the target positionsstoeed in each agents memory as an array, rather than as
an unordered set. That is, we replace the targe©setth the target:-tupleq := (q1, - . ., q,), and the local target
set QI with the n-tuple q/”! := q.* The algorithm can be described as follows. For eaehZ, agenti computes
a constant factor approximation of the optimal ETSP tourhefst targets inq[!! (as discussed in Section II-B),
denotedtour(q). We can think oftour as a permutation that reorders the entriesyf. This permutation is
independent of since all agents use the same method. An example is showmyir2).

Agenti then replaces its-tuple g/ with tour(q!”!). Next, ageni computes the index of the closest targetjif,
and calls it curf!. Agent: also maintains the index of the next target in the tour thag beavailable, ne¥t, and
first target in the tour before clifrthat may be available, prév Thus, next! is initialized to curf! + 1 (mod n)
and preV! to curt!! — 1 (mod n). This is depicted in Fig. 2(b). Ageritalso maintains the-tuple, statud, which
records whether a target is occupied by (assigned to) anatient or not. Letting statliY;j) denote thejth entry

in the n-tuple, the entries are given by

0, if agenti: knOWng.i] is assigned to another agent

status! () = 2)
1, otherwise

Thus, statu$ is initialized as the:-tuple (1, ..., 1). The initialization is summarized in Algorithm 1 of ApperdA.

Agenti then moves toward the target déirat constant speethay > 0:

(3 lil
q 7P . i i
) Umax” f?]"[] o]’ if q([:l]m[i] # p[]7

plil = Byyti) P ®3)

0, otherwise

It is possible that the order of the targets in the local sgts may initially be different. However, given a set of distimmints inR2, it is

always possible to create a unique ordering.

October 21, 2008 DRAFT

13

Finally, at each communication round agenexecutes the algorithncomm-RD displayed in Algorithm 2 of
Appendix A. The comm-RD algorithm operates as follows: Agent which is heading toward target clify
communicates with its neighbors to determine if any otheznés) are heading toward clirr If another agent

is heading to cuff, then the agent closer to clifrcontinues moving toward the target, while the farther agent
selects a new target along the tour (ties are broken using). The agents also exchange information on targets
that are occupied using the prev, and next variables. Thewfinlg is a more formal description that omits a few

minor technicalities.

Description ofcoMmm-RD for agenti

1 Broadcast ms§, consisting ofuip!”, the target indices pré, curl, and nexf!, and the distance to the
current target, diét.

2 for messagemsd”!, receiveddo

3 | Set statud(y) to assigned (‘0’) for each targgtfrom prev¥! + 1 (mod n) to next®) — 1 (mod n) not

equal to curf!.

a | if curd? = curd*! and dist’ > dist®! then Set the status of cuft to assigned (‘0).

5 | if curddl = cur® anddist?! < dist! then Leave curf! unchanged. However, agehtwill set curf*! to a

new target. This target will be at least as far along the teutha farther of ne¥ and next!. So, set the

status of nextl and next! to assigned (‘0").

6 Update curf to the next target in the tour with status available (*1)xtie to the next available target in the

tour after curf!, and pre¥! to the first available target in the tour before &lirr

Fig. 3 gives an example afoMM-RD resolving a conflict between agentsand k, over curf! = curr®!. In
this figure, all other agents are omitted. In summary, the ERSSGMT algorithm is the triplet consisting of the
initialization of each agent (see Algorithm 1), the motiawlin Eqg. (3), andcoMMm-RD (see Algorithm 2), which

is executed at each communication round.

B. Correctness and Time Complexity of th& SP AssGMT Algorithm

We now present our main result on the ETSBs&MT algorithm. Section V-C contains its proof. Recall that
the ETSP AsGMT algorithm requires the full target knowledge assumption.

Theorem 5.1 (Correctness and worst-case bound&66P AssGmT): For any initial positions of. agents and
n targets in€(n), ETSP AssGMT solves the target assignment problemdry/n|E(n)[) time. In addition, if
E(n) is sparse or critical, then ETSPsAGMT is within a constant factor of the optimal monotonic algwmit for

worst-case initial positions.

October 21, 2008 DRAFT

14

next® = nextll = 1 currl® = 1

curr = curtll = 7

2 = next!*! = nextl

prevll = prevll = 5

4 4

(a) Setup before the conflict over target 7. (b) Setup after resolution of the conflict.

Fig. 3. The resolution of a conflict between ageh@nd k over target7. Since agentk is closer to target than agent, agentk wins the
conflict.

C. Proof s for Statements about tBE SP ASSGMT Algorithm

To prove Theorem 5.1 we introduce a few definitions. We say dganti € 7 is assignedo targetqgi], jeT,
when curf! = j. In this case, we also say targeis assigned to agerit We say that agente 7 enters a conflict
over the target culf, when ageni receives a message, mM8gwith curf’ = curr®l. Agenti loses the conflicif
agenti is farther from curf! than agent, andwins the conflicif agenti is closer to curff! than agent:;, where
ties are broken by comparing UIDs.

The following lemma is a direct result of the facts that theiemment is bounded for eache N, and that the
agents move at constant speggh > 0.

Lemma 5.2 (Conflict in finite time)Consider any communication ranggmm > 0, and any fixed number of
agentsn € N. If, for two agentsi andk, curfl = curr*l at some timet; > 0, then agent (and likewise, agent
k) will enter a conflict over cuft in finite time.

In order to prove correctness, we require a few propertigh®fETSP ASGMT algorithm.

Lemma 5.3 ETSP AssGMT properties): During an execution of the ETSPS&GMT algorithm, the following
statements hold for agente Z:

(i) the current target culfr satisfies stati$(curr’) = 1;

(i) status’!(j) = 0 for eachj € {prev + 1,prev +2,... next! — 1} \ {curt?} (mod n);

(i) statud”(j) = 0 only if target; is assigned to some ageht~ i;

(iv) if status’(j) = 0 at some timet1, then statud(j) = 0 for all t > ty;

(v) if agenti receives ms§ during a communication round, then agenwill set statu§!(j) = 0 for each
j € {prev®l +1,... nexttl — 11\ {curfd} (mod n).
Proof: Statements (i) and (iv) and (v) follow directly from the iaitzation andcomm-RD.

Statement (ii) is initially satisfied since ptév-1 = curt’) = next’ —1 implies that{prev? +1, ... next! —1}\

October 21, 2008 DRAFT

15

{currl} = (. Assume that statement (ii) is satisfied before the execuifacomm-RD. At the end ofcOMM-RD,
previl is updated to the first target before diirin the tour with status available (‘1’). If statégcurr’)) = 1, then
curt’) remains unchanged. If stattiécurr) = 0, then curf! is increased to the first target with status available
(‘1'). Finally, next’ is set to the first target after clitrthat is available. Thus, at the end ©dMM-RD the status

of prev!, curt’ and next! are available, and statfig;j) = 0 for each targe € {prev? +1,... nextd —1}\
{curt} (mod n).

Statement (iii) is also initially satisfied since stdtus- 1,, for eachi € Z. Assume Statement (iii) is satisfied
before the execution afoMM-RD and that during this communication round agéchanges the status of a target
j to assigned (‘0"). We show that Statement (iii) is still s&&d upon completion of the execution@bMMm-RD. In
order for statud(j) to be changed, agentmust have received a message, fisgor which one of the following
cases is satisfied: (1) Target# cur’ lies between prét and next! on the tour; (2) There is a conflict between
agentsi and k over target; that agent loses; or, (3) There is a conflict between agengsmd k& that agent wins
and next! = j or next*! = j.

In Case (1) either statli$(j) = 0 or curf® = j, and thus targej is assigned. In Case (2) agehtwon the
conflict implying curf*! = j entering the communication round. Thus after the commtioicaound, curf! # j
and targetj is assigned to another agent. In Case (3),leufrcurt®! # j, and agentk loses the conflict. In this
case, agent will change curt*! to the next available target on its tour. All targets fromydfe+ 1 to next* — 1
have been assigned. Also, during the communication rougehta will receive msg! and determine that all targets
from prev’! + 1 to next] — 1 are assigned. Thus, the next available target is at leasiraasdng the tour as the
farther of next! and next!. Thus, after the communication round, both féxnd next! are assigned. []

With these properties we are now ready to prove Theorem 5.1.

Theorem 5.1: We begin by proving the correctness of the ETSBsAMT algorithm. Assume by way of
contradiction that at some timg > 0 there areJ € {1,...,n — 1} targets unassigned, and for all time> ¢4,
J targets remain unassigned. Since the algorithm is mongttime same: — J assigned targets remain assigned
for all time, and thus it must be the sardetargets that remain unassigned foraalk ¢,. Let 7 denote the index
set of theJ unassigned targets. From our assumption, and by Lemma if,¥di every ¢ > t; and for every
i € T, status! (j) = 1 for eachj € 7. Now, among the: — .J assigned targets there is at least one target to which
two or more agents are assigned. Consider one such targjet, ¢a and consider an agent with curr! = j;.
By Lemma 5.2, agent; will enter a conflict overj; in finite time. Let us follow the loser of this conflict. The
losing agent, call itiy, will set statu€2!(j;) = 0 and will move to the next target in the tour it believes may be
available, call itj>. Now, we knowjs is not in 7, for if it were J — 1 targets would be unassigned contradicting
our assumption. Moreover, by Lemma 5.3 (j),# j1. Thus, agent., will enter a conflict overjs in finite time.
After this conflict the losing agent, call it;, will set statu&s!(j,) = 0 (because it lost the conflict), and from
Lemma 5.3 (v), statlis!(j;) = 0. Again, agents’s next targetj; must not be in7, for if it were we would have a
contradiction. Thus, repeating this argument J times we have that ageiy_ ; loses a conflict ovey,, ;. After

this conflict, we have statlis-"!(j;,) = 0 for eachk € {1,...,n — J}, wherej,, = j, if and only if k; = ko.

October 21, 2008 DRAFT

16

In other words, agent,_; knows that alln — J assigned targets have indeed been assigned. Also, by diaf ini
assumption, statlis-/!(j) = 1 for eachj € 7. By Lemma 5.3 (i), agent,_,'s new current target must have
status available (‘1’). Therefore, it must be that agint; will set curfi=—! to a target in7. Thus, after a finite
amount of timeJ — 1 targets are unassigned, a contradiction.

We now prove the upper bound on the performance of the ETS&GMT algorithm. First notice the following:
Consider the optimal ETSP tour through altargets. This provides an ordering in which theargets are visited.
Now, supposek targets are removed from the tour, and the- & remaining targets are visited in the order they
appeared in thei-target tour. In general, this is not the optimal tour thrieubge n — & points. However, by the
triangle inequality, the length of the tour is no longer thhat of the tour through alk points. Because of this, in
the worst-case some agent must travel to its nearest tang@tthen around its entire ETSP tour, losing a conflict
at each of the firsh — 1 targets in the tour. For any initial agent and target pas#jche distance to the nearest
target isO(/|€(n)|). Since the length of each agent's tour is a constant factoroagmation of the optimal, the
tour length isO(\/W) (see Theorem 2.1). The agent will not follow the ETSP tourcdyebecause it may
enter conflicts before actually reaching the targets; hewdw the triangle inequality, the resulting path cannot
be longer than the ETSP tour. Hence, the total distancelé@ve in O(y/n€(n)), and since the agents move at
constant speed, the completion time isalo\/m). Combining this with Theorem 4.2 we see that in critical or
sparse environments the completion time isify/nE(n)).

VI. AN CONSTANT FACTOR MONOTONIC ALGORITHM IN DENSEENVIRONMENTS

In the previous section we presented the ET S @MTalgorithm which operates only with full target knowledge
but has provably good performance in sparse and criticat@mwents. In this section we introduce a monotonic
algorithm called the @D AssGMT algorithm which operates under both full target knowledgd &ocal target
sensing withrsense > \/%rcomm. In this algorithm, the agents partition the environmeno inells. Agents then
determine local maximum assignments, and elect a leadéreirdll which they occupy. Through communication
between leaders of adjacent cells, each leader obtainmatet of the location of free targets, and uses this
information to guide unassigned agents to free targets. My shat in critical or dense environments, th&lG
AsscMT algorithm is within a constant factor of the optimal monatoalgorithm for worst-case initial conditions.

In addition, we characterize the stochastic performandb@fGrID ASSGMT algorithm.

A. TheGRID AsSsSGMT Algorithm

In the GRID ASSGMT algorithm we make either the full target knowledge assuamp(i.e., Q' := Q), or the
local target sensing assumption withnse> \/%rcomm. In addition we assume each agent knows the environment
&(n). Each agent partitions the environment intoequally sized square cells, wheres N. It then labels the cells
like entries in a matrix, so cell'(r, ¢) resides in theth row andcth column, as shown in Fig. 4. Since the agents

started with the same information, they all create the saamtitipn. The quantityp is chosen so that an agent in

October 21, 2008 DRAFT

17

a1y w2’ c(1,3)

‘ « C(2.1) ' C('Z,Z) C(2:)

c@3,1) 32 | c(33)

Fig. 4. Partitioning the environmeii(n), containing 35 targets, intt?> = 9 cells.

cell C(r,c) is within communication range of any agent in cell§r,c), C(r — 1,¢), C(r + 1,¢), C(r,c — 1),
andC(r,c + 1). In light of Lemma 2.3, we see that this is satisfied wiben [\/5|€(n)|/rcomm|. Note that with
rsense>> /2/5rcomm @n agent in cellC'(r, ¢) can sense the position of all targets in that cell. We nowirmeithe

GRID AssGMT algorithm.
Outline of the GRID ASsSGMT algorithm

Initialization and role assignment: Each agent partitions the environment as described aboveadh
cell, agents find a maximum assignment between agents agetsasccupying the cell, and assigned
agents elect a leader among them. Accordingly, agents aedelh leader, unassigned, or assigned
non-leader. According to their role, agents allocate @enariables describing their location and their
knowledge about target assignments.

Assigned non-leader agents. Each assigned non-leader agent move to its assigned tadjgoas silent.

Cell leaders: Each cell leader estimates the number of available targeth cells below it in its column.
The leader: of cell C(r,¢) stores this estimate in the variatzk{fﬂ,v(r, ¢); to maintain the estimates,
cell leaders communicate to the cell leader in the cell diyeabove it. Additionally, each cell leader
in the top row communicates to the cell leader in the celldiyeto the right, to obtain an estimate
of the number of available targets in all columns to the ri@iﬂnotedAth(l,c) for leader; of cell
C(1,¢)).

Unassigned agents: Each unassigned agent seeks a free target by entering cellsj@erying their
respective leaders. The motion of unassigned agentsssrdted in Fig. 5. Assuming no communication
with the leaders, the nominal order in which an unassigneahiagsits all cells of the grid is shown in
the left-hand figure. The way in which this path is shortengthe unassigned agent receives available

target estimates from cell leaders is shown on the rightiiayure.

Remark 6.1 (Computations performed by cell leadettjigenti is the leader of cell’(r, c), it computesA®l (7, ¢),
which is (# of target3 — (# of agent$ in C(r, ¢). In addition, leadei maintainsAglN(r, ¢), which is an estimate

of (# of target$ — (# of agent$ in cells C(r + 1, ¢) to C(b,c). This quantity must be estimated because agent

October 21, 2008 DRAFT

18

B Al (1,2 <0 o
[A 1 AL (13 <0
M M b
\\ | \ |
v : i 1

|
o o
A A A 4 ' A v A
Y Y y y ‘ | : :
B o
| ‘ l |

|

I A I
G
.—J U U .—J ' /‘ 1‘ /‘ .‘ /'

Fig. 5. The figure on the left shows the nominal order in whichagent, depicted as a blue square, searches the cells irbskace of
communication. The blue lines on the right-hand figure show this path is shortened by the non-positive estimates teader: of C(3, 3),
leader;j of C(1,3) and leadeik of C(1,2).

does not initially know the number of agents in c&ll§r + 1, ¢) to C(b, c). The variabl%ﬁ,}w(r, c) is initialized to
+oo (i.e., a very large positive number) for the leaders in rawe b — 1, and to0 for the leaders in rovb. Then,
at each communication round agenipdates its estimate by communicating with the leaderslis ¢§r — 1, ¢)
andC(r +1,¢):
1 Send msf§l := All (r,¢) + All(r,¢) to leader in cellC(r — 1,c) and receive msf from
agentk, the leader ofC(r + 1, c).
2 SetAERN(T, ¢) :=msgkl = ALITJV(T +1,¢) + AF(r 41, ¢).
This update procedure is depicted in Fig. 6. A leagef cell C(1,c¢) in the top row uses a similar method to
maintain the estimatég]m(l, ¢). It should be noted that as unassigned agents enter andedigjttbe actual values
of Apw and Agn change. Thus, there is a procedure whereby agents eehdr andexit messages to cell
leaders, so that they can maintain their estimates. Thietisildd in the algorithms of Appendix B. °
Remark 6.2 (Motion performed by unassigned agerits): us describe the unassigned agents motion in more
detail. First, each unassigned agent seeks a free targest @olumn as follows. It queries the leader of its current
cell about free targets in its column, below its current.célthe leaders estimaté;m(r, c) is positive, then the
agent moves down the column. Otherwise, the agent moveseupolamn. While moving down, upon entering a
new cell the agent first queries the cell leader on free tangethe cell, and then on free targets in cells below. If
the agent starts moving up the column, then it only queridslezders on free targets in the cell (since it knows
no targets are free in the cells below).
Second, if the agent reaches the top cell of its column, thencblumn contains no free targets. To transfer

to a new column, the agent queries the leader of the top celitdibee targets in all columns to the right. If the

October 21, 2008 DRAFT

19

o o All(1,¢)| —2 -2 -2 -2
- A1) |00 +00 +00 +1
o AP,) | 41 +1 +1 +1
° AL 2.0 [+ oo o o0
o ; # A3,)| 41| comm. ? comin. ? comin. j
¢t [T 7~ 7| round [~"7| round 7| round ["7°
- o Afi(3,¢) [+00 -1 - -1
° e All(a,0)| -1 = . =
Lo Ao o o o o
Example column ¢ Initialization o o Fixed point

Fig. 6. In the example columa, blue squares depict agents, and black disks depict tarfle¢sfigure shows how the estimatésand Apy
are initialized and updated by leadéref C'(1, ¢), j of C(2, ¢), k of C (3, ¢), andl of C(4, ¢). After three communication rounds the estimates

have converged to the true values.

leaders estimatﬁmv(l,c) is positive, then the agent moves to the right; otherwise,abent moves to the left.
Upon reaching the cell to the left or right, the agent recomees the column procedure. °

In summary, a detailed description of the components of tReb@ SSGMT algorithm is given in Appendix B:
all variables maintained by the agents are listed in Tabtéd;initialization and role assignment is performed by
the ROLE AssGMT algorithm, see Algorithm 3; the behavior of the cell leadansl of the unassigned agents are
described by the EADER and by the WASSIGNED algorithm, see Algorithms 4 and 5, respectively.

Remark 6.3 (Using a single transfer rowln our description of the &b AssGMT algorithm, agents use the
top row to transfer to a new column. This choice of “transf@w't is arbitrary and the top row was chosen for
simplicity of presentation. Intuitively, it seems the mieldow is a more efficient choice. The upcoming analysis
shows that such a choice does not affect the algorithm'’s p&ytin performance. The reason we require unassigned
agents to use a single transfer row is because it allows fiblezalers to easily maintain up-to-date estimates of
unassigned agent and free target locations. To underst@émdstippose that there were two transfer rows, tow
and rowbd, and that two unassigned agents simultaneously trangfer iolumnc — 1 to columne, one using row
1, and the other using row. Then, it would takeb € ©(1/|£(n)|) communication rounds for the leader in cell
C(1,c) to become aware that an unassigned agent transferred wsinly implying that leader estimates are not
up-to-date. To overcome this, one would need to halt unasdigaggent motion until leader estimates have been
updated; a process which would require more leader commatioc In addition, using more transfer rows does not
appear to change the asymptotic performance (althoughothgtant factor could be significantly reduced since the
algorithm would rely more heavily on communication thang®otion). Thus, we have utilized a single transfer
row to minimize excess communication, and avoid introdggimore complexity in the algorithm. In addition this

helps to avoid wireless congestion issues, which can bea@nesignificant as the number of agents becomes

large [22].

October 21, 2008 DRAFT

20

Remark 6.4 (Details of th&RrID AssGMT algorithm): (1) Agents move at speeghax, and to transfer between
cells agents move toward the center of the new cell. (2) If ggnaor target lies on the boundary between cells,
a simple tie breaking scheme is used assign it to a cell. (Jumpresentation, we implicitly assumed that every
cell initially contains at least one agent and one targead ¢ell has no targets, then any agents initially in the cell
leave, and the empty cell is then ignored. If a cell initiatigntains targets but no agents, then the first agents to

enter the cell run the MXIMAL MATCH algorithm and a leader is elected. °

B. Correctness and Time Complexity of #BeiD AssGMT Algorithm

We now present our main results on th&G AssGMT algorithm. Section VI-C contains their proofs. Recall
that the QRID AssGMT algorithm operates under the full target knowledge assiompand the local target sensing
assumption withrsense> 1/2/57comm-

Theorem 6.5 (Correctness and worst-case bounddRerp AssGMmT): For any initial positions of, agents and
n targets in€(n), the GRID AssGMT algorithm solves the target assignment probler®{hE (n)|) time. In addition,
if £(n) is dense or critical, then therdD AssGMT algorithm is within a constant factor of the optimal monaton
algorithm for worst-case initial conditions.

Remark 6.6 GRID AsSGMT algorithm vs.ETSP AssGeMT algorithm): The worst-case bound forthe ETSB &
GMT algorithm in Theorem 5.1 wa®(+/|€(n)n). Thus, in sparse environments the ETSBs&MT algorithm
performs better, where as in dense environments tRe> @ SSGMT algorithm performs better. In critical environ-
ments, the bounds are equal. Thus, the two algorithms argleamentary. In practice, a robot can determine which
algorithm to run by comparing the area of the environmn|€ift)| to the area of. disks of radiusrcomm. That is,
givenn, £(n) and r¢comm, @ robot could use a rule such as the following|dfn)| > 7rZ,,w. then execute the
ETSP AsseMT algorithm, else ifi€(n)| < mré ., then execute the @D AssGMT algorithm. o

In the following theorem we will see that for randomly pladedgets and agents, the performance of theoG
AsSsGMT algorithm is considerably better than in the worst-case.

Theorem 6.7 (Stochastic time complexit@onsidern agents and: targets, uniformly randomly distributed in
E(n). Then the @ID ASsSGMT algorithm solves the target assignment problen()in/m) time with high
probability if

r2 n
5‘ < comm
[En)] < 5 logn+~v(n)’

where~ is any function such that(n) — +o0o0 asn — +oc.

Remark 6.8 (Generalization of Theorem 6.7he bound in Theorem 6.7 holds not only for uniformly randgmi
generated initial positions, but for any initial positiosisch that every cell contains at least one target and at least
one agent.

Theorem 6.9 (Stochastic time complexity, cont@pnsidern agents anc/logn targets, uniformly randomly

distributed in€(n). Then the @ID ASSGMT algorithm solves the target assignment problen®ifi) time with

October 21, 2008 DRAFT

21

high probability if there existd{ > 1/log(4/e), such that

r2 n
5 < comm .
€l < 5 Klogn

C. Proofs for Statements about tBRID ASSGMT Algorithm

In this section we prove the results presented in SectiolB.VIhe leaders of each cell maintain estimates
of the difference between the number of targets and agenwsrious parts of the grid. In order to talk about
the convergence of these estimates we introduce a few t¢jeantiet tafr,c) denote the number of targets in
C(r,c). Let A(r, ¢)(t) denote the difference between (tar:) and the number of agents with curréli= C(r, ¢)
at time¢ > 0. (Notice the lack of superscript oA(r, ¢)(t), when compared to ageiis estimate of the quantity,
All(r,¢c).) Recall that in our model, communication rouhdoccurs instantaneously at ting. Thus, we lett,
denote start of the round, anl, its completion, and sa\l!l(r, ¢)(¢;") denotes value oAl (r, c) at the completion
of communication round:.

Lemma 6.10 (Convergence of estimatd3jring an execution of the @b AssGMT algorithm, if agenti € 7

is the leader of celC(r, ¢) then for each communication tintg, k& € N:
@) Al e)(tf) = Alr, o) (te):

@) AR > 3 Al o)

. b
(iii) if &> b and each cell in column contains a leader, theﬁt[jﬂw(n At = Y AT, c)(ty).
r*=r+1

Proof: To see part (i) notice that each agent 7 initially sets currcelf! to the cell it occupies. The leader
of cell C(r,¢), call it agenti, can communicate with all agents in its cell, and it knows mtuenber of targets
in C(r,c). Thus, att; agenti counts the agents in its cell, and correctly calcula®é$(r, c)(tf) = A(r,c)(t1).
Assume thaiAlll (7, ¢) is correct at;_,. We will show that it is correct at/ . If at ¢, agentj changes currcell to
C(r,c), then it must either be i0'(r — 1,¢) or C(r+1,¢), or if r = 1, possiblyC(r,c—1) andC(r,c+ 1). Upon
changing currcell! to C(r, ¢), agentj sends arent er message to the leader 6f(r,c), and by Lemma 2.3 the
leader will receive it at;. Likewise, if an agent changes curréelfrom C(r,c) to another cell, the agent must be
in cell C(r,c¢). Thus, when this agent sends teri t message, the leader 6f(r, ¢) will receive it att;. Hence,
after the leader updates(i(r, c) (Step 8 of LEADER), it will have All(r, ¢)(t}) = A(r, ¢)(ty,).

A(r*,c)(tx) as

The proof of (i) is as follows. Notice that we can write thGTSIZi*:T_H

b

> (AG o) (tk-1)) + entefty_ 1, tx) — exit(ty 1, tx). (4)
r*=r+1

where entet;,_1, ;) is the number of agents that entered céll§g + 1,c¢),...,C(b,c) between timel;,_, and
time ¢, and exitt;_1, tx) is the number that exited.

Let agenti be the leader of celC(r,c). Agenti initializes ALﬂN(r, ¢) to +o0, so the inequality is satisfied
initially. Assume (ii) is satisfied at; ,. We will show that it is satisfied af . If there is no leader it(r + 1, ¢),
then agent will not receive a message. In this case one of two updategrsct) If an unassigned agent enters

cell C(r,c) from cell C(r + 1, ¢) then agent setsAEﬂW(r, ¢) := 0 (Step 10 of [EADER). But, from UNASSIGNED,

October 21, 2008 DRAFT

22

an agent moves up a column only if there are no available teiggow, and thus the inequality is satisfiedt;?t
Alternatively, 2) agent IeavesALﬂN(r, ¢) unchanged, and thus the inequality will be satisfied,at

The other case is that leadgiis in cell C(r + 1, ¢), and agent receives the message
AR+ 1,0) + AU + 1,005, (5)

But by assumption
b

AR+ 100) > Y (A,) (tr-1))
r*=r4+2

and from (), AUl(r +1,¢)(t}) = A(r + 1,¢)(tx—1). Thus, Eq. (5) is no smaller tha\Ei’*:Nrl A(r*, e)(tgp—1)-
But, when agent receives the message in Eq. (5), it aéad er (¢x_1,) and subtractexi t (tx—1,%;) (See Step
9 of LEADER). Thus, from Eq. (4), the inequality is satisfiedtgt

In light of the proof for (ii), we see that to prove (iii) we ngéenly show that for alk > b, the message in Eq. (5)
equalszlr’*:rﬂ A(r*, ¢)(ty—1). We do this by induction. Notice that in cell(b, c), AL{\]N(b+ L)t ,)=0,and
so (iii) holds trivially for & > 0. In cell C(b — 1,¢), for k > 1, the message in Eq. (5) becom&§! (b, c)(t}),
which by (i) equalsA(b, ¢)(tx—1). Thus (iii) holds for cellC(b — 1,¢) andC(b, ¢) for all k£ > 1. Assume that (iii)
holds for C(r + 1,¢),...,C(b,c) at timet; |, wherek > b —r. We will show it holds forC(r,c) at time ¢}
Since (iii) holds for cellC'(r + 1,¢) attx—1, the first term in Eq. (5) i§:i*:ﬂr2 A(r*, ¢)(tk—1), and from (i), the
second term is\(r + 1, ¢)(tx,—1). Thus, the message Ei*:r+1 A(r*,e)(tr—1). [|

We have an analogous result for the convergen%%ﬁt(r, c). It follows directly from Lemma 6.10 (i) and (iii)
and the fact thaﬁ%]ht
Lemma 6.11 (Convergence of estimates, confifllagenti € 7 is the leader of cellC(1,¢), then for each

(¢) is initially overestimated.

communication timé,, k € N,

() AL@OE) > ¥ 5 AW))

c*=c+1r*=1

. b b
(i) if each cell contains a leader and&f> 20, Ag]m(c)(tg) = > > AF*) (k).
c*=c+1lr*=1

With these lemmas we will now prove theorems 6.5, 6.7, and 6.9
Theorem 6.5: We begin by proving the correctness of th&i6 AssGMT algorithm. Assume by way of

contradiction that/ € {1,...,n — 1} targets remain unassigned for all time and tius {1,...,J} cells contain
unassigned targets. By construction of thrRIGASSGMT algorithm, an assigned target never becomes unassigned.
Thus, the same targets remain unassigned for all timeCLeégnote the set of cells containing these unassigned
targets.

Consider a cellC(r,c) € C. If C(r,c) does not contain a leader, then it has never been entered bgeant.
If it does contain a leader, then taraVafl, ¢) contains the available targets. Thus if there is an unasdigigent
in cell C(r,c) € C, then upon querying the leader (or if there is no leader tielg@ leader), at least one of the
targets inC(r, ¢) will become assigned, contradicting our assumption. Likewfor each cellC(r,c) ¢ C, either

there is a leader and taravailr, ¢) =), or there are no targets in the cell.

October 21, 2008 DRAFT

23

Now, consider an unassigned agenin cell C(r,c¢) ¢ C. Agenti must never enter a cell i@, for if it did
an unassigned target would become assigned, a contradigé® will show this is not possible. According to the
UNASSIGNED algorithm, agent travels down its current column, querying the leader of eaglh for available
targets in the cell and in cells below. By Lemma 6.10(ii) agenill only travel back up the column if all targets in
cells below have been assigned. After traveling back up thentn, if there are no available targets in the top cell
in the column, agent will set colstatu&! (¢) = 0 and will never enter column again. By Lemmas 6.10 and 6.11,
agent; will travel down each column that may possibly have a fregaarThus, at some point agenhecessarily
will enter a column containing a cell ii. Hence, either agerit or another assigned agent will enter the celCin
at which point the number of assigned targets will increasatbeast one, a contradiction.

We now prove the upper bound on the performance of tleDGASSGMT algorithm. In the worst case, the
targets are positioned such that leaders cannot exchaygafarmation about availability of targets. Then, in the
worst case an agent, call4t must visit allb? cells before reaching an unassigned target. In the worst agsnt
+ will travel up and down once in every column in the grid, angkand forth once along the top of the grid. In
each cell, agent will query the leader for available targets. If there is nader in the cell, then agentwill solve
a maximum matching among agents that entered at the sameasiiteand one of them will become the leader.
In either case, the time spent in each celDigl). The length of each column ig/|€(n)|, and thus the worst-case
travel distance is bounded B /]€(n)|(b + 2) € O(|€(n)|). Since the agent moves at constant spegg, the
time for the last agent to reach its final target is(|E(n)]). [|

Theorem 6.7: From Lemma 2.3p < [y/n/(logn+~v(n))], wherey(n) — 400 asn — +oo. From
Theorem 2.2 when we uniformly randomly distributeargets anch agents intah? cells, w.h.p. each cell contains
at least one agent, and one target. The maximum matchingeauH election in the ® E ASSGMT algorithm
can be performed i©(1) time. Thus inO(1) time there will be a leader in every cell. By Lemma 6.10(iir),

b € O(y/]€(n)| communication rounds, every leader will know the differefetween the number of agents and
the number of targets in the cells below it. Thus afté,/|€(n)|) time, the leader of each cell will only let
an agent move further down the column if it knows the agent fivid an assignment. Also, by Lemma 6.11(ii)
after O(\/|€(n)|) time, each leader in the top row will only send agents righth#re are available targets to
the right. Thus, in the worst case, an agent may have to t@vebf its own column, across the top column,
and then down a new column in order to find its target. Thisadis¢ is inO(,/|€(n)|), and since the agent
spendsO(1) time in each cell, the time complexity is i®(y/|€(n)|). Thus the total time complexity is in
OWIEM) + O(/IEM) € O(/IEm)]) time. ¥

Theorem 6.9: From Lemma 2.3, there ar@ < [/(n/K logn)]? cells, whereK is a constant satisfying
K > 1/log(4/e). Equivalently, we can writé? = —-[/(n/K logn)]?, wherec(n) > 1 for all n € N. From

c(n)
Theorem 2.2(i), when we distribute/ log n targets intob? cells, w.h.p. there are at mostn)O (logn) targets

loglogn
in any given cell. From Theorem 2.2(iv), w.h.p. there areeastc(n)2(logn) agents in each cell. Thus, w.h.p,

there are more agents than targets in every cell. Thus aftering the RLE ASSGMT algorithm, every target in

each cell will be assigned. The maximum matching can be faurd2(1) time. Since each cells areadsrZ /5,

October 21, 2008 DRAFT

24

(a) Initial agent and target positions. (b) Agent positions mid execution. (c) Final agent reaching its target.

Fig. 7. Simulation of the ETSP #sGMTalgorithm for 20 agents in a sparse environment. Targetblask dots and agents are blue squares.

The ETSP tour is shown connecting the targets, and a reddideawn agents within communication range.

and the agents move at constant speed, the assignment witirbplete inO(1) time, with high probability. =

VII. SIMULATIONS

We have performed extensive simulations of the ETS$5@&MT and GRID ASSGMT algorithms. The ETSP
AssGMT algorithm has been simulated in both two and three dimeasienvironments. To compute the ETSP
tour we have used theoncor de TSP solveP. A representative simulation for 20 agents and targets tmifo
randomly placed in a sparse environment is shown in Fig. & ERSP tour is shown connecting the target
positions. Dashed blue trails in Fig. 7(b) and Fig. 7(c),egitae trajectories of agents that have yet to reach a
target. A representative simulation of the&kr® AssGMT algorithm for 65 agents and targets uniformly randomly
distributed in a dense environment is shown in Fig. 8. In Big) the communication between the leaders of each
cell is shown with red lines, and a dashed blue trail showdrdjectory for the final agent, as it is about to reach
its target in cellC(1,1).

Fig. 9 contains the numerical outcomes of Monte Carlo sitiara for the ETSP AsgMTand QRID ASSGMT
algorithms with uniformly randomly generated target andragositions. Both sets of simulations were performed
for agents withreomm = 10 and vmax = 1. Each data point is the mean completion time of 30 trials, reteach
trial was performed at randomly generated agent and targgtigns. Error bars show plus/minus one standard
deviation. The simulation for the ETSPsAGMTalgorithm in Fig 9(a) was performed in a square environmetit w
areadr2,,n, and suggests that even for uniformly randomly generatsttipns, ETSP AsGMT solves the target
assignment problem in time proportionalm. The Monte Carlo simulation for the®@D AssGMTalgorithm
is shown in Fig. 9(b). These simulations were performed iguaee environment with ared, .7/ (6 logn), which

satisfies the bound in Theorem 6.7. For simplicity of implatagon we discard trials in which there exists a cell
5The concor de TSP solver is available for research usehait p: / / www. t sp. gat ech. edu/ concor de

October 21, 2008 DRAFT

25

. [m] | . ‘u O . mu
.. T olioroL., 0o ‘
d:‘ e] 1. |
L R A O | .
.. CoOg i . | .
A= T = R = i
[m] . ! [|
=
o _— | o |
. | 1o e |
N [m]
0o 0 ! | g |
77777777 e el il el S -
o oS D! . |
. 0 - | |
| | Oe | |
,,,,,, S A = R Bl :
g - | | b P 1
DDl = |) :
o : o b oo © :
o % 0 O, [y
| . | |
(a) Initial agent and target positions. (b) Role assignment in each cell. (c) Final agent reaching target.

Fig. 8. A simulation of 65 agents in a dense environment. &targre black disks and agents are blue squares. The paditi(n) is shown

in dashed lines, and red lines are drawn between commurgcatents.

4000 140
3500 120t il
o 30007 © 100f 1
E E
= 2500(c
2 S 8or 1
@ @
© 20001 E.
g o 60F 1
O 1500} ©
40+ |
1000 0
—e— mean completion time
500} —e— mean completion time { 20 - - —-25[EM)]]
- =~ \/n[E()]/20 - - - 15y/[E(m)]
0 : : ! 0 . . \ \ \
0 100 200 300 400 0 200 400 600 800 1000
Number of agents Number of agents
(a) ETSP AsscmTalgorithm in a spars€(n). (b) GrRID AssGMTalgorithm in a dense environment.

Fig. 9. Monte Carlo simulations for uniformly randomly geaed agent and target positions. Each point is the mean letoptime of 30

independent trials. Error bars show plus-minus one standeviation.

without targets. This is justified by the fact that w.h.p.mveell contains at least one target, and thus the number of
discarded trials tends to zero asncreases. The simulation suggests that asymptotichlyekpected completion
time is bounded below by.5./|£(n)| and above by2.5,/|E(n)|. This agrees with the(\/|€(n)|) bound in

Theorem 6.7 and gives some idea as to the constant in fromisobound.

October 21, 2008 DRAFT

26

VIII. EXTENSIONS AND CONCLUSIONS

In this paper we have attempted to present the ETSBeMTand GrID AsSsGMT algorithms in their most basic

forms. In this section we discuss some extensions to thegeithims.

A. Higher Dimensional Spaces

We have presented our algorithms for the environm@&nt) := [0,4(n)]> C R?. However, these algorithms
can be generalized to subsets®f, d > 1. The ETSP AscMT algorithm we have presented is valid for any
environment(n) C RY, d > 1. In [1], we have presented time complexity bounds for envinents inR<. In this
case, the length of the ETSP tour is boundeddy.(*~1)/?|£(n)[*/?) and thus the ETSP $scMT algorithm has
time complexity inO(n(4=1/4|&(n)|1/4).

The GRID AsscMTalgorithm we have presented is only valid for environmentR3. This was done in an effort
to simplify the presentation. However, the extensiofRtois straightforward. For example, iR? the environment
is partitioned into small cubes. Agents first try to find a ftegget in their own cube, then in their own column,
then in their own plane, and then finally, they transfer intoesv plane that has an available target. The worst-case
bound is then given by)(|€(n)|), and for uniformly randomly generated target and agenttioos, when the

environment satisfies the bound

r2 n
5 < comm
£l < K(d+3)logn’

where K > 1, is O(|€(n)[*/?), with high probability.

B. The Case ofi Agents andn Targets

It should be noted that both the ETSRB#$GMT and GRID AssGMT algorithms work, without any modification,
when there ares agents andn targets. Ifm > n, at completion, them targets are assigned and— n targets are
not. Whenm < n, at completion, alin targets are assigned, and the- m unassigned agents come to a stop after
losing a conflict at each of thex targets. By modifying the algorithms so that the- m unassigned agents revisit
assigned targets to check for failed agents, the robustfdhse algorithms can be increased. It is a straightforward
exercise to alter the upper bounds when# n. For example, the worst-case upper bound on the ETS&GMT
algorithm become® (/€ (n)|N), where N := min{n, m}, and holds for any. andm. Similarly, the worst-case
upper bound on the &b AssGMT algorithm remaing)(|€(n)|) and holds for any: andm. In addition the lower
bound on the monotonic class can be easily extended whenn. However, the extension fon < n appears to

require a different construction of worst-case agent angetgpositions.

C. Alternate Scaling Laws

We have given complexity bounds for the case whgpm andvmax are fixed constants, arft{n) grows withn.

We allow the environmenf (n) to grow withn so that, as more agents are involved in the task, their wadesp
SHere |£(n)| denotes thei-dimensional volume oF (n).

October 21, 2008 DRAFT

27

is larger. An equivalent setup would be to consider a fixed sizvironment, and allowgomm andvmax to decrease
with increasingn. Scaling the communication radius inversely with the numifeagents arises in the study of
wireless networks [22]. As the density of wireless nodes fixed area increase, the effects of wireless congestion
and media access problems become more prevalent. To reldese éffects, the nodes reduce their transmission
radius, thus reducing their interference footprint. Theaidf scaling the agents’ maximum speed inversely with
occurs due to physical congestion [21]. As the density obtelincreases, it necessarily takes longer for the robots
to travel across their environment. Motivated by this déston, we introduce a new set of parametérsﬁcomm(n),
and Omax(n) satisfying|5~ | € Ry and tmax(n) = O (Fecomm(n)). SinCemax(n) andrcomm(n) scale at the same rate,
the amount of time required to travel a distarggnm(n) is independent of.. Then, analogous to the definition of
environment size, we define the communication range tesparseif 7comm(n)y/n — 07, asn — +oo; critical if
Teomm(n)y/n — conste Ry asn — +oo; denseif 7eomm(n)y/n — +oo, asn — +oo.
With these definitions we can summarize the worst-casetseaslfollows.
Corollary 8.1 (Scaling radius and speedEonsider any initial positions of agents, with communication range
Tcomm(n) @and maximum speetnax(n) = O (Fecomm(n)), andn targets in the fixed environme#t Then:
(i) the ETSP AssGmMmT algorithm solves the target assignment problen®iR/n/7comm(n)) time;
(i) if 7comm(n) is sparse or critical, then ETSPSAGMT is within a constant factor of the optimal monotonic
algorithm for worst-case initial conditions;
(iii) the GRID AssGMT algorithm solves the target assignment problen®ifl /7comm(n2)?) time; and
(iv) if 7comm(n) is dense or critical, then the KBD AssGMT algorithm is within a constant factor of the optimal

monotonic algorithm for worst-case initial conditions.

D. Conclusions

In this paper we have studied a version of the target assighpneblem in which each agent has a list of the target
positions, but has only limited communication capab#iti&Ve introduced the class of monotonic algorithms for
approaching these problems and gave a lower bound on itspasticnperformance. We introduced two algorithms
in this class, the ETSP #sGMT algorithm and the @&ID AsSsSGMT algorithm. We have shown that in sparse
environments, where communication between agents isjaénet, the ETSP AscMTalgorithm is within a constant
factor of the optimal monotonic algorithm for worst-casiia conditions. On the other hand, in dense environments,
where communication is more prevalent, theliG ASsSGMT algorithm is within a constant factor of the optimal
monotonic algorithm for worst-case initial conditions.tBalgorithms extend to higher dimensional spaces and to
problems where the number of agents and targets differ, lmm@tiD AssGMT algorithm can be implemented in
a sensor based version, where each agent has no knowledgget positions, but has a limited range sensor.

There are many future research directions such as extenworehicles with motion constraints, or to the case
when targets are dynamically appearing and disappearilsg, &ve believe it is possible to extend our algorithms

and analysis from the synchronous communication model tasgnchronous, or event-based, model. Another area

October 21, 2008 DRAFT

28

of future research is to develop a communication frameworkdbotic networks that adequately models congestion

and media access problems that are inherently present @less communications.

(1]

(2]

(3]

(4]
(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]
[19]

[20]
[21]

[22]

REFERENCES

S. L. Smith and F. Bullo, “Target assignment for robotietworks: Asymptotic performance under limited commundeat in American
Control ConferenceNew York, Jul. 2007, pp. 1155-1160.

——, “Target assignment for robotic networks: Worsteasd stochastic performance in dense environmentsZkf Conf. on Decision
and Contro] New Orleans, LA, Dec. 2007, pp. 3585—-3590.

B. Korte and J. VygenCombinatorial Optimization: Theory and Algorithm3rd ed., ser. Algorithmics and Combinatorics. Springer,
2005, no. 21.

R. Burkard, “Selected topics on assignment problerbsscrete Applied Mathematicyol. 123, pp. 257-302, 2002.

J. E. Hopcroft and R. M. Karp, “Am®/2 algorithm for maximum matchings in bipartite graphSfAM Journal on Computingvol. 2,
no. 4, pp. 225-231, 1973.

H. W. Kuhn, “The Hungarian method for the assignment peoly” Naval Research Logisticyol. 2, pp. 83-97, 1955.

D. P. Bertsekas and J. N. TsitsikliBarallel and Distributed Computation: Numerical MethodsAthena Scientific, 1997.

B. P. Gerkey and M. J. Mataric, “A formal analysis and tagmy of task allocation in multi-robot systemdriternational Journal of
Robotics Researctvol. 23, no. 9, pp. 939-954, 2004.

M. F. Godwin, S. Spry, and J. K. Hedrick, “Distributed tadioration with limited communication using mission stagimates,” in
American Control ConferencéMinneapolis, MN, Jun. 2006, pp. 2040-2046.

M. Alighanbari and J. P. How, “Robust decentralizedktassignment for cooperative UAVs,” IRIAA Conf. on Guidance, Navigation and
Control, Keystone, CO, Aug. 2006.

C. Schumacher, P. R. Chandler, S. J. Rasmussen, and IRenWdask allocation for wide area search munitions wittiable path length,”
in American Control Conferenc®enver, CO, 2003, pp. 3472-3477.

B. J. Moore and K. M. Passino, “Distributed task assigninfor mobile agents,[EEE Transactions on Automatic Contralol. 52, no. 4,
pp. 749-753, 2007.

D. A. Castafion and C. Wu, “Distributed algorithms fiynamic reassignment,” itEEE Conf. on Decision and ContfoMaui, HI, Dec.
2003, pp. 13-18.

G. Arslan, J. R. Marden, and J. S. Shamma, “Autonomouncletarget assignment: A game theoretic formulatichSME Journal on
Dynamic Systems, Measurement, and Control. 129, no. 5, pp. 584-596, 2007.

M. M. Zavlanos and G. J. Pappas, “Dynamic assignmentistriduted motion planning with local coordinationEEE Transactions on
Robotics vol. 24, no. 1, pp. 232-242, Feb. 2008.

K. J. Supowit, E. M. Reingold, and D. A. Plaisted, “Thaveling salesman problem and minimum matching in the uniaisg” SIAM
Journal on Computingvol. 12, pp. 144-156, 1983.

S. Arora, “Polynomial-time approximation schemes floe Euclidean TSP and other geometric problendstirnal of the ACMvol. 45,
no. 5, pp. 753-782, 1998.

R. Motwani and P. RaghavaRandomized Algorithms Cambridge University Press, 1995.

F. Xue and P. R. Kumar, “The number of neighbors neededdonectivity of wireless networksWireless Networksvol. 10, no. 2, pp.
169-181, 2004.

M. PenroseRandom Geometric Graphser. Oxford Studies in Probability. Oxford University Bsg2003.

V. Sharma, M. Savchenko, E. Frazzoli, and P. Voulgdiisansfer time complexity of conflict-free vehicle routingth no communications,”
International Journal of Robotics Reseayalol. 26, no. 3, pp. 255-272, 2007.

P. Gupta and P. R. Kumar, “The capacity of wireless net&® IEEE Transactions on Information Theoryol. 46, no. 2, pp. 388-404,
2000.

October 21, 2008 DRAFT

29

APPENDIXA

FORMAL DESCRIPTION THEETSP ASSGMTALGORITHM

Algorithm 1. Initialization of agenti in ETSP ASSGMT.

N

Assumes; Agenti has the target arrag(? := q, stored in its memory.

Compute a TSP tour af!”, tour(q'), and setq'’! := tour(q'").

Compute the closest target &i”, and set cuff! equal to its index: culf := argminjez{||lq}" — pl’|}.
Set next! := cur + 1 (mod n).

Set pre¥? := curf! — 1 (mod n).

Set statud := 1,, (i.e., ann-tuple containingn ones).

Algorithm 2. comM-RD, executed at each communication round.

10

11
12

13
14
15
16
17

Assumes: Agent: has been initialized as in Algorithm 1.
(i] I
currdél 11

Broadcast ms§ := (prev?, curt”) next’ i, dist))
Receive ms§!, from eachk # i satisfying||p!! — p!*/|| < r.

Compute dist! := ||pll — q

foreach msd*! receiveddo
for s = prev*l + 1 to next®! — 1 (mod n) do
L if s # curr’ then Set statud!(s) := 0

if prev®! = next®! = curt®! £ curr®! then Set statud (currt*l) := 0
if curr! = cur® then

if (dist? > dist*!) OR (ist’ = dist®! AND i < k) then

L Set statud (currt’) := 0.
if next”) # curf then Set statud (next’) := 0.
if next* # curt’! then Set statud) (next!) := 0.

if statu§!(j) = 0 for every targetj then Exit ETSP AssGMT and stop motion.
while statu$’ (curr?)=0 do curt® := curt’ + 1 (mod n).

Set next! := curt! + 1 (mod n).

while statu$’! (next’)=0 do next’ := next’! + 1 (mod n).

while statu$’! (prev?)=0 do prev? := previ!! — 1 (mod n).

APPENDIXB

FORMAL DESCRIPTION OF THEGRID ASSGMTALGORITHM

As noted in Remark 6.4, we have simplified the presentatioth@fUNASSIGNED algorithm by assuming that

every cell initially contains at least one agent and oneetarg is straightforward to relax this assumption. If a cell

has no targets, then any agents initially in the cell moveh® dell below, and the empty cell is ignored for the

October 21, 2008 DRAFT

30

rest of the algorithm. If there is a cell that contains tasdait no agents, then the first agents to enter the cell run

the ROLE AssGMT algorithm and one becomes the leader. Agents move at spegd

TABLE |
VARIABLES FOR THEGRID ASSGMT ALGORITHM.

Agent role Variable Description Value
currcell?] cell currently occupied by agerit acellC(r,c)
all leadef?! cell for which agent: is leader acellC(r,c) ornul |
currl agent:'s assigned target at target inQ, or nul |
dircoll? direction of travel in column. up or down.
) dirrow(?! direction of travel when in rowt left orright
unassigned) .
colstatu$’! (c) records whether or not there are free targets in colemn full ornotfull
prevcelll previous cell occupied by agent acellC(r,c)
taravail’l (r, ¢) | set of available targets i6(r, c) a subset 0fQ
C(r,c) leader | All(r,¢) (# of target — (# of agent in C(r, c) an integer
Ak[j‘],v(r,) est. of (# of target§ — (# of agent$ in C(r + 1,¢) to C(b,c) | an integer or-oco
C(1,c) leader Al;]m(l, c) est. of (# of target$ — (# of agent$ in columnsc+ 1 to b an integer or+-oco

Algorithm 3. ROLE ASSGMT, executed at the start of therR® AssGMT algorithm to assign roles, and initialize agent

Assumes: Agenti is in C(r,c), knows & (n), and either (1) knows all target positions, or (2) hasse> 1/2/57comm.
1 Computeb as in Lemma 2.3, partitio (n) into theb® square cells.
2 Set currcel!l := C(r,¢), leadel! := nul | and curk! := nul I .
3 Broadcast msg containinguinl, p!, and currcelf! to agents in currceli.
Receive ms§’ from, all agents inC(r, c).
Use the MaxIMAL MATCH algorithm to find a maximum matching between agents and ta(gér, c).
6 Elect a leader among assigned agentg&'im, c).
7 case unassigned
8 | Set dircol’ := down, dirrow’ := ri ght, and colstatUd(c) to not f ul | for eachc € {1,...,b}.
9 Run UNASSIGNED algorithm.
10 case assigned tag € C(r,c) and not elected leader
1n ‘ Set curf! := q, and move to cuff at speedmax
12 case assigned and elected leader
13 Set leadéf! := currcelf?, curt’ := q, and move to cuff at speetmax
14 SetAl(r, ¢) to number of targets i!(r, ¢) minus number of agents i@'(r, c).
15 Set taravall! (r, ¢) to the collection of unassigned targetscifr, c).
16 | SetAll (r,c)to+ooif re{1,...,b—1} and to0 if r = b.
w7 | ifr=1then SetAl}(c)to+ooif ce{1,...,b—1} and to0 if ¢ =b.
18 Run LEADER algorithm.

October 21, 2008 DRAFT

31

Algorithm 4. LEADER, executed at each communication round.

w N

10
11
12
13
14

15
16

Assumes: Agent: is the leader ofC(r, c).

send msgf := Al (r,¢) + Al (r, ¢) to leader in cellC(r — 1, ¢).

if =1 then

Send msl == Al () + Al (1,¢) + Al1(1,¢) to leader ofC(1,c - 1).

Receive msﬁl from leaderk of C'(1,c+ 1) and setAlgm(c) = msdzk].

For eachent er msg from an agent coming frof'(1,c+ 1), add 1 toAEé]m(l, ¢) and for eactexi t msg from an
agent going toC'(1, ¢ + 1) subtract 1 fromAfg]m(l, c).

If Al

(1,¢) > 0 and anent er msg was received from an agent coming fréfl, ¢ + 1), then setAlé]m(L c):=0.

Receive msﬁl from leaderk of C(r + 1, ¢), and setAEj]W(r, c) = msdk].
Subtract 1 fromA“](n c) for eachent er msg received, and add 1 for eaeki t msg received.

For eachent er msg from an agent coming fro@'(r + 1, ¢), add 1 toA[

ow (7, ¢) and for eackexi t msg from an agent

going to C(r + 1, ¢) subtract 1 fromAll (r, ¢).
It Al

pw(7€) > 0 and anent er msg was received from an agent coming fréfr + 1, ¢), then setAEﬂW(n c):=0.

forall queries on availability of target ir’(r, ¢) do
if taravail’l # () then
‘ Select a target in taravéil assign it requesting agent, and remove it from tar&lail
else if taravail= 0 then Reply no.

forall queries on availability of target below'(r, c) do
L Respondyes to A{jlw(r, c) requests, ando to all others.

if »=1 then
forall queries on availability of target to right of columnhdo
L Respondyes to Al;]ht(c) requests, ando to all others.

October 21, 2008 DRAFT

32

Algorithm 5: UNASSIGNED, executed each time a new cell is entered.

[y

10
11
12
13
14
15
16
17
18
19
20
21

2
23
24

25

Assumes: Agenti has run RLE AsseMT, and currcelfl = C(r,¢).
Query leader of”(r, ¢) on free targets in currcéil.
if leader returns a targeyy € C(r,c) then Set curf! := q, and move to target.
else if leader returnsno then
case dircoll = down
Query leader on availability of target bela@(r, ¢).
if leader returnsyes then
‘ Set prevcelll := currcell!) and currcelt! := C(r +1,¢)
else if leader returnsno then

L Set dircol’ := up, prevcell’l := currcell’) and currcelf! := C(r — 1,¢).

case (dircoll’) = up) and (r > 1)
‘ Set prevcelll := currcell, currcell’! := C(r — 1,¢), and dircol’ := up
case (dircol”) = up) and (r = 1) and (dirrow!) = ri ght)
Set colstatud(c) :=ful | .
Query leader on availability to the right of colunan
if leader returnsyes then
Set prevcelll := currcell”), currcell’! .= C(1,¢+ 1)
if colstatu§!(c +1) = not ful | then dircoll’l := down.
else if leader returnsno then
Set prevcelll := currcell, currcell’! := C(1,¢ — 1), dirrow!’ := | ef t.
Set colstatud (c¢*) := ful | for eachc* € {c+1,...,b}.
if colstatu§!(c — 1) = not ful | then dircoll” := down.

case (dircoll’) = up) and (r = 1) and (dirrow!) = | ef t)
Set prevcell! := currcell’! and currcelf! := C(1,¢ - 1).
if colstatu§!(c — 1) = not ful | then dircoll’ := down.

Sendexi t to leader in prevcell, ent er to leader in currcelfl, and move to currcéli.

October 21, 2008 DRAFT

