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Abstract— In this paper we focus on problems in which tasks and [7]. In the dynamic pickup delivery problem (DPDP)
(demands for service) arrive in an environment sequentia}f  [8] the task consists of a source-destination pair. A messag
over time. A task is completed when a robot (or team of robots) st pe picked up from the source, and delivered to the

provides the required service, and the goal is to minimize ta _ .
expected delay between a task’s arrival, and its completion destination. In [8] the message must be picked up and

We develop a general framework in which these problems can delivered by the same robot, and in [9] the message can
be described, and propose a set of scaling laws for studying be relayed to between robots. For both the DTRP and the
the relationship between the number of robots, the expected DPDP, lower bounds are found on the expected task delay

task delay, and the task arrival rate. We describe two existig  hich depend on quantities such as the task arrival rate
problems in our framework, namely the dynamic traveling re- ’

pairperson problem, and the dynamic pickup delivery problem, environment size, and th.e number of_ rc_>bots), and policies
and present their asymptotic performance. We then introdue ~ are proposed which provide delays within a constant factor
the dynamic team forming problem, in which tasks require of this lower bound. In dynamic task allocation problems
services that can be provided only through complex teams the expected delay depends on the task arrival rate; if tasks
of heterogeneous robots. We determine a lower bound on the 5rrjye more rapidly, then the expected delay increases Thi
problem’s achievable performance, and propose three polies . . .

for solving the problem. We show that for each policy, there tradeoff is We_” known in ad hoc W|_reless networks [10],

is a broad class of tasks for which the policy’s performances  [11]; If nodes increase the rate at which they send messages

within a constant factor the optimal. (i.e., the throughput), then this increases the expecté de
a message will incur before arriving at its destination.
|. INTRODUCTION In this paper we introduce a framework for describing

Consider a heterogeneous fleet of mobile robotic agen@ynamic task allocation problems. As in the work on wireless
deployed in an environmerf C R2. Each robot in the nhetworks, we propose scaling laws which allow us to study
fleet is capable of providing certain services. Tasks, whicthe expected task delay as a function of the throughput of the
consist of a set of required services, arrive in the enviremm robotic network (i.e., the rate at which tasks are servicét)
sequentially over time. The fleet is notified of each task upoi¢Visit the DTRP and DPDP, and present the existing results
its arrival, and a task is completed once the fleet providé¥1 expected delay under our scaling laws. We then introduce
the required services. The goal is to minimize the expectdfie dynamic team forming problerithe problem consists of
delay between a task’s arrival and its completion. Thus it i@ heterogeneous group ef robots in which each robot is
a dynamic task allocation problem; determine which robotgapable of providing one of services. Tasks appear in the
should service which tasks, and in what order. environment which require some subset of theervices.

In static task allocation problems, a set of tasks is givehhus, for each task, a team of robots must be formed which is
a priori and the goal is to assign vehicles in order teeapable of providing the required services. We derive a towe
maximize the “score” of the mission. In [1] a taxonomyPound on the expected delay of the dynamic team forming
of task allocation problems is given, dividing problemsoint Problem, and propose three policies; Complete team, Task-
groups based on criteria such as the number of tasks a ro§@gcific team, and Scheduled task-specific team. We show
can execute, and the number of robots required for a tadkat for each policy there is a broad class of tasks for which
In papers such as [2], [3], advanced heuristic methods afiée policy performs within a constant factor the optimaleDu
developed, and their effectiveness is demonstrated throutp space constraints all proofs are omitted.
extensive simulation or real world implementation.

In dynamic task allocation problems, tasks arrive sequen- ) ) ) ) )
tially over a period of time. Only once a task has arrived In this section we review results on the Euclidean traveling
can the robots determine the method in which they will pros@lesperson problem (ETSP), queueing theory, and vertex
vide service. In the dynamic traveling repairperson pnable coloring in graphs. We leRR, R, and N denote the
(DTRP) [4], [5], the robots are homogeneous, and each ta§?t of real numbers, posmv_e _real numbers, and positive
consists of a location which requires on-site service.igjpat integers, respectively. For a finite sdt we let |A| denote

distributed algorithms for the DTRP were developed in [6jts cardinality, and for an infinite set ¢ R* we let |A]
denote its area. For two function§g : N — R-(, we
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a) The Euclidean Traveling Salesperson Problefar b) Task model:A task 7; is described by the tuple
a setQ of n points inRR?, let ETSP(Q) denote the length {Q;, R;,L;,S;}. The setQ; C & contains locations and
of the shortest closed path through all pointsdh The the mapR; : Q; — 2% gives the services required at
following result characterizes the length of this path wheeach location. We assume all services at a location must
Q C &, wheref is a square environment with areg. be provided simultaneously (if this is not the case, then the
Theorem 2.1 (ETSP tour length, [12]fhere exists3 >  location will appear more than once i@;). The setL;
0 such that for every se® of n points in&, ETSP(Q) < contains rules, or logical connectives, which describe the
m/ﬁ, task. Possible rules are: (i) A partial ordering @). For
The problem of computing an optimal ETSP touN§- 41,92 € Q;, wWe write q1 < q2 if g must be serviced
hard. However, there exist many efficient approximatioReforeqz, andq; = q if the locations must be serviced
algorithms such as th€hristofides’ algorithm{13]. simultane_ousl_y. (i) An equivalence relation on QJ where
b) Queueing TheoryConsider a queueing system withd: ~ dz implies thatq, andq, must be serviced by the
Poisson arrivals at rate, and a single server which providesSa@me set of agents. (i) The temporal operawr(unti).
bulk service. As customers arrive they form a queue and®" €x@mple,the statemeniy(is unknownd(q is serviced)
are served in batches. Evety seconds a batch is servedMPlies that locationy; is unknown until service?;(q.) is
containing either the firsfi/ customers in the queue, or Provided at locatiory;.

the entire queue, whichever is smaller. In [14] the follagin  Finally, the random variablé; : Q; — R>o gives the
result is established. on-site service time required at each location. Us#jgve

Theorem 2.2 (Mean waiting time, [14]if M > M, can also define the total on-site service timjeof task 7;.

then the expected waiting timié” satisfies The partial orderingg pa.\rt-ltlons- the setQ; into disjoint .
subsets), . .., @, containing simultaneous tasks. That is,

M—1 ts if q1 € Q1, thenqy € @, if and only if q1 = q». Thus, the
i 1 1 1 — P
Ws——+ S50 — M)’ (1) total on-site service time; is s; := Y7, maxqeq, S;(q)-
c) Task arrival model:We assume that tasks enter the
environment according to a Poisson process with intensity
. We defines := lim;_., o, E[s;] to be the expected total

c) Vertex Coloring: An undirected graphG = (V, E)
consists of a set of verticd$ and a set of edgels C V x V.

An edge{v,w} € E is incident tov and w, and v and . A . .
w are neighbors. Thelegreeof v € V is the number of on-site service time for a task. Consider a polieyy which

edges incident ta. A vertex-coloringof G is a mapping agents service tasks. This policy induces a controli&iyt)
f:V — Nwith f(v) # f(w) for all {v,w} € E. The for each agent. For policy’, let D; denote the difference
nuﬁ\berf(v) is the color of v. Finding the ;”ninimum'vertex between the service completion time and the arrival time
coloring isNP-hard, and no approximation algorithms exist®f sk Z;. This time consists of a waiting tim#’;, and

However, the following theorem gives an upper bound 0@ service times;. Then, we letDp := lim; o0 E[D;],
the number of colors required. enote theexpected delaylLittle’s result [16] states that if

Theorem 2.3 (Vertex coloring [15])Let G be an undi- Dp exists, then the expected number of tagks in the

rected graph witt nodes and wih maximum degree SRR T PESE B L ecessar
ThenG has a vertex coloring with at most+ 1 colors, and 9 9 9 y

such a coloring can be found ifi(n) computation time. cond|_t|on fo_r there to exist a s’gable_ EOI'Cy is thiat/n, < 1.
. That is, during an on-site service timefewer thann tasks
An a + 1 coloring can be found as follows.

must arrive.
Greedy coloring heuristic of G = (V, E). With the task arrival model described above, we define
1LetV ={v,...,on} the following quantities: thdotal throughputis A, and the
2 for i=1ton do per-agent throughput’(n) is A/n.We let D*(n) denote the
3 | Setf(v;) to the minimum colork € N such that optimal (least achievable) delay, aftt(n) the maximum
k # f(v;) for all neighboring vertice®;, j < i. achievable throughput (capacity).

IV. ANALYZING THROUGHPUT AND DELAY

1. NETWORK AND TASK MODEL In this section we introduce scaling laws for studying the
expected delay as a function of the per-agent throughput and
a) Robot model:Considern robotic agents contained look at two existing dynamic task allocation problems.
in a square environmedt C R2. The position of agent € .
{1,...,n}, is denoted byl! € &, and we assume the first A- Scaling laws
order dynamicpl’! = ul, where|[ul!l| < vnax for some ~ We are interested in studying the expected task delay
vmax > 0. Each agent is capable of providing services (0D(n) as a function of the per-agent throughplitn). In
resources) in the s&® := {ry,...,r}. For agenti, Cl// :  particular we look at the case where the number of agents
R — {0,1} records its capabilities, i.e., agehtprovides becomes large and the arrival ratescales (increases) with
servicer; only if Cll(r;) = 1. We assume that computationsn. We assume that, the expected on-site service time of a
are centralized, and leave the problem of decentralizing otask, remains constant. Also, asncreases, the environment
policies to future work. must grow to accommodate the increase in agents. In [17]



it was shown that in order to maintain a reasonable safey. Dynamic pickup delivery problem
distance between agents, the ra&wﬁ/vmax must scale | the dynamic pickup delivery problem (DPDP) [8] there
critical environment These scaling laws can be summarizg,ss the capability of providing both services, and so foheac

as follows. agenti, Cl1(pi ckup) = Cli(del i ver) = 1. The tasks

Definition 4.1 (Asymptotic regime)n the asymptotic gare of the form7 := {{qi,qz}, R, £, S}, where the set

regime (i) the number of agents — +oc; (i) 5 is  of rules £ indicates thaiq; < q2, qi ~ qo, and @1, qe
independent ofy; (iii) |£(n)|/(nvpax(n)) — const € Rxo.  are unknowrlY(7 arrives)! The service requirements are

B. Multiple dynamic traveling repairperson problem

R(q1) = pi ckup and R(q2) = del i ver. Thus, when a
task arrives, a message must be picked up from a known
In the multiple dynamic traveling repairperson problemsource locationg; and delivered to known destination lo-

(DTRP), there is a single servicg, := {r1}, andCl!/(r;) = cation q; by the same agent. A fixed on-site service time

1

for each agenti. The tasks are of the forn¥ := of s := S(q;) = S(qq) is incurred at each location. Tasks

{a,,71,L, s}, where an agent must visif, which is known arrive according to a Poisson process with rateand for

upon task arrival (i.e.,d is unknown}/(7 arrives)), and each taskg; andq. are uniformly randomly distributed in

provide servicer; for time s. Tasks arrive according to £, In [8] it is shown that for this problem

a Poisson process with rat® , and the locationqg is )

independently and uniformly distributed . The on-site s« < max{’Y_ A€ VIEL )’S} @
p

service times are independent with mean

presented. The first states that

4 3203 (1 = p)? " 20max(1 —

In [5], two lower bounds on the expected delay ar?/vherep := As/n. In addition, a policyP is introduced which

yields a delayD p within a constant factor of the lower bound
) _ in (4). Thus, we have the following result.

E L{gg* lla— q0|] +5 @ Theorem 4.3 (DPDP delay, [8])in  the  asymptotic

regime, if T'(n) — const< 1/(2s), then the optimal delay

D* >

Umax

where D* is the set ofn locations that minimizes the j¢ihe DPDP is inO (/). If T(n) — const> 1/(2s), then

expected distance to the uniformly distributed locatipn
The second bound states that there exjsts 0 such that

D*>72

the optimal delay is infinite.
This result implies that a delay of ordeyn must be

AE| _5(1=2p) . Dore(n). (3) incurred regardless of the per-agent throughput.
n2vda(1 = p)? 2p 7 V. DYNAMIC TEAM FORMING PROBLEM

where p := \5s/n. In the asymptotic regime (2) becomes We now introduce thedynamic team forming problem
D*(n) € Q(1), and (3) become®*(n) € Q(T'(n)). Note (DTFP) and present a lower bound on the optimal delay. In
that for stability \s/n < 1, and thusT'(n) < 1/s. the DTFP there is a heterogeneous group of vehicles in which

In [5] several policies are developed. Wheiin) — 0T  each vehicle provides one &fservices. Tasks appear in the

asn — oo, an optimal policy is to place the vehicles atenvironment which require some subset of theservices.
locations D* and service tasks first-come, first-served, byrhus, teams of agents must be formed in order to provide
the closest vehicle, which returns to its locationI¥ after the services required for each task. This type of problem
each service is completed. Whéi{n) — conste R., as could arise in UAV surveillance [19] where the services
n — 400, the TSP partitioning policy is developed. represent waveforms for interrogation of a target/regsoich

The TSP partitioning policy

as electro-optical, infra-red, synthetic aperture raftdiage

1
2

Optimize over 17 penetrating radar, and moving target indication radar.

Partition £ into n regions and assign a vehicle to each region. o pProblem statement
foreach region-vehicle paido

3 | As tasks arrive in the region, form sets of sié. In the DTFP, there is a set of servicBs:= {ry,..., 7.}
4 As sets are formed, deposit them in a queue. In addition, there are: different types of agents, and an
5 Service the queue first-come, first-served, following an  agent of type; e {1,...,k}, can provide only service

optimal TSP tour on each set of tasks. r;. We assume that the total number of agemtsatisfies

orem 2.1 one can show that in the asymptotic regime, t%rvicer

n/k € N, and thus we say that for agentCli(r;) = 1
only if i(modk) = j. That is, agent can provide only
i(modk)- 1he task we consider is of the forfh :=

By combining the analysis in [5] , combined with The-

delay of this TSP partitioning policy is i@ (max{7T(n),1}) {q, R, L, S}, whereR(q) C R, £ dictates thatq, R(q) are

whenT'(n) < 1/5. Thus, we have the following.

regime, if T'(n) — const< 1/s, then the optimal delay of
the DTRP is in©(1). If T(n) — const> 1/s, then the
optimal delay is infinite.

unknown}{(7 arrives). Tasks arrive according to a Poisson
process with rateé\, and the locatiory is independently and
uniformly distributed in€. For each task, the sdt(q) is
independently and uniformly randomly selected from a set

. . of subsets ofR of cardinality X < 2¥ — 1 (at this time,
Thus, in the DTRP we can achieve a per-agent throughput

Theorem 4.2 (DTRP delay, [5])in  the  asymptotic

of ©(1), while incurring a delay of only¥(1). 1The case whereqgf is unknownd{(q: is serviced) is also considered.



D* TABLE |
+oo+ —_— PARAMETERS USED IN THE DYNAMIC TEAM FORMING PROBLEM

Parameter | Definition

expected per-agent throughput

expected task delay

number of different services

number of different task types; 2~ — 1

fraction of tasks requiring an individual service
expected on-site service time

S =
SR OES

‘ ‘ Smax maximum on-site service time
1 1 T L number of time slots in service schedule
fck? Tk w fractional length of service schedul&,/K
b maximum number of services required for a task
Fig. 1. Dynamic team forming lower bound: Delay versus tigiquut. H
CT,
+00 -

we leave the set of subsets unspecified). The on-site service
time is independent of the number of services required for L
a task, has mean, and is upper bounded by, € R<p.

Thus for a task withR(q) = {r1, 74}, the task is completed /
when agentd (modk) and 4(modk) simultaneously spend Vi

an on-site service time df(q) = s at locationg.

B. Lower bound on optimal delay |

| 7
i K32 k
In total there areC different task types. Leff; denote
the fraction of task types that require service In order Fig. 2. Complete team policy: Delay versus throughput.

to derive a lower bounds, and analyze proposed policies we

make two simplifications. First, we assume thfat=--- =

fx =: fx. This implies that the required services are spread With this policy, the problem is simply a DTRP with

evenly over the task types, and thus, each service appeard: vehicles, and an arrival rate of Hence, we have the

in ficK task types. Since the service set for each task f§llowing result.

chosen uniformly and randomly, this also implies thfat Theorem 6.1 (Complete team delay: the asymptotic

is the probability that a task requires servige Notice that regime, if K7'(n) — const< 1/s, then the expected delay

1/k < fx < 1. Second, we only considéask-type unbiased Of the Complete team policy i®(max{k*T(n), Vk}). If

policies. These are policies for which the delay for eack tagi’ () — const> 1/5, then the delay is infinite.

type is equa”imj*)+oo E[Dj|taskj is of typeR(q)] — D, Notice that if f](: (S Q(l), then.the pOllcy is within a

for each task typeR(q) € R. constant factor of the optimal. Fig. 2 shows the order of
With these assumptions we can lower bound the optim#te delay as a function of the per-agent throughput.

delay. Note, that all parameters are potentially a function Thus, when each service is required in a constant fraction

of n and we should be writing:(n), K(n), fx(n), and so ©f the tasks, or wherk(n) — conste N asn — +oo,

on. However, to simplify the notation we omit the explicitthe Complete team policy is within a constant factor of the

dependence. For convenience, Table | contains a list 8ptimal. However, in certain instances the above policy may

parameters and their definitions. be inefficient as each agent visits every task, not just tles on
Theorem 5.1 (Optimal delay)n the asymptotic regime, which require its service. This manifests itself as a limmit o

if kfcT'(n) — const< 1/s, then the optimal delay of the dy- the per-agent throughput /%, independent offc.

namic team forming problem is @(max{ fck*T'(n), Vk}). g Task-specific team policy

If kfxT(n) — const> 1/3, then the delay is infinite. . 5
Fig. 1 shows the order of the optimal delay as a functioo. Notice that there are/k agents of each type, and each ser

: ice appears inficKC service sets. Thus, ificC < n/k there
of the per-agent throughput are enough agents of each type to creatélaflervice sets.
VI. POLICIES FOR DYNAMIC TEAM FORMING More specifically, we could creat®/copy := [n/(kfcK)]
copies of each of th& service sets. Thus, whefx C < n/k

i we have the following policy.
Here we propose a policy that has good performance wheg

each service is required in a constant fraction of the tasks Task-specific team policy

C lote 1 i Assumes fx K < n/k.
omplete team policy 1 For each of theC different service sets, create

1 Formn/k teams ofk agents, where each team contains one Neopy := |n/(kfcK)| teams of agents, where the number of

A. Complete team policy

agent of each type. agents in each team is equal to the number of required
2 Have each team meet and move as a single entity. services, and each agent provides a required service.
3 As tasks arrive, service them by one of thék teams 2 Service each task by one of if$py corresponding teams,

according to the TSP partitioning policy. according to the TSP partitioning policy.
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Fig. 3. Task-specific team policy: Delay versus throughput.
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In the following theorem we characterize the delay of
Task-specific team policy.

Theorem 6.2 (Task-specific policy delayy: the asymp- Fig. 4. Creating a service schedule using the greedy vertéariag
totic regime, If kf;cT(n) —  const < 1/(25)’ heuristic. In this figurek = 6, K = 18, fxx = 6/18, and the resulting

hedule has length = 6.
then the expected delay of the Task-specific policy jg e s e

O(max{f2k*KT(n), VfickK}). If kfcT(n) — const > o
1/5, then the delay is infinite. )

Fig. 3 shows the order of the delay as a function of the )
per-agent throughput for the Task-specific team policy. | oy o

{5} {3,4} | {2,5} |{1,2,3}|{1,3,5}| {1,4,6}

B4 {25

C. Scheduled task-specific team policy {6} | {56} | {3,6} |{4,5,6}|{2,4,6}|{2,3,5}
[ D e
The Task-specific team policy can only be applied when 0 g 2g  Blp dp 5ty Gfg time

- )
fek < n/k H.ere We propose a pc_)llcy for all parameteng. 5. Service schedule created by the coloring in Fig. 4 fHsk types
values which divides th(‘_:‘ _taSk types into several groups, aligriced during each time slot are shown (e.g., in time[$iat2ts |, agents
then runs the Task-specific policy on each group sequentialli(modk) and 2(modk) meet to service tasks with service et 2}).
We begin by defining a&ervice schedule

Definition 6.3 (Service schedule} service scheduls is _ :
a partition of the service sets intal time slots, such _Scheduled task-specific team policy
that each service set appears in exactly one time slot, andAssumes A service schedule with time slot duratiog.
the service sets in each time slot are pairwise disjoint. The OPtimize: overtg and M.

. _7 1 Partition€ into n/k regions and assign one agent of each
schedule hatength L, andfractional lengthw := L/K. type to each region.

The following lemma lower bounds the length of a service> foreach regiondo
schedule by using the fact that for each {1,...,k}, fxkK 3 Form a queue for each of the€ task types.
contain service-;. foreach time slot in the scheduldo

4
. . 5 Divide agents into teams to form required task types.
Lemma 6.4 (Schedule length II. S is a service sched- ¢ For each team, service the fidf tasks in the queue,

ule, then it contains at leagic K time slots (i.e.w > fx). or as many as can be served in time(whichever
From Lemma 6.4, every service schedule must contain comes first), by following an optimal TSP tour.

at least fickC slots. We now give a method for creating a; when the end of the service schedule is reached, repeat.
schedule. Consider the graph consistingkofvertices, one
for each service set, and edges connecting any two verticesBy applying the results on the Euclidean traveling sales-
whose service sets have a non-empty intersection. This gerson tour and on batch queues in Section Il, we are able to
known as an intersection graph. A service schedule, is théound the delay of the Scheduled task-specific team policy.
simply a vertex coloring of this graph. From Section Il the Theorem 6.6 (Scheduled task-specific team dellmy}he
problem of determining the optimal (minimal) coloring isasymptotic regime, ikwT'(n) — const< 1/snyax, then the
NP-hard. However, we can color the graph using the greed3xpected delay of the Scheduled task-specific team policy is

heuristic in Section Il. An example is shown in Fig. 4. UsingD (max w?k?KT (n), wIC\/E}) . f kwT(n) — const>
Theorem 2.3 we arrive at the following result. 1/5, then the delay is infinite.

Lemma 6.5 (Schedule length II) each task requires no  Fig. 6 shows delay as a function of the per-agent through-
more thanh < k services, then a service schedule with<  put for the Scheduled task-specific team policy.
min{bfi, 1} can be found inO(K) computation time. Remark 6.7 (Comments on Theorem 6¥hen bfx <

We are now ready to present the Scheduled task-specific the greedy vertex coloring scheme creates a service
team policy. schedule withw < bfx. In this case, one can achieve
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Fig. 6. Scheduled task-specific team policy: Delay versusutihput.

TABLE Il
POLICY COMPARISONWITHK = bk, AND fic € O(b/k).

O(1), then the per-agent throughput of the Complete team
policy cannot be raised abouve'k, whereas the Scheduled
task-specific and Task-specific policies provide capaaitg
delay, within a constant factor of the optimal.

VII. CONCLUSIONS

In this paper we presented a model for dynamic task
allocation problems, and a framework within which they
can be studied. We introduced the dynamic team forming
problem, and proposed three team forming policies. There
are many areas for future work. We would like to look
into creating distributed versions of our policies, andeext
our dynamic team forming analysis to nonuniform task type
distributions, task-type biased policies, and the caseravhe

services are not evenly spread among task types.

Policy Capacity | Delay at capacity
Optimal O(1/b) Q(k)
Complete team O(1/k) O(k) [1]
Task-specific team O(1/b) O(b%k)
Scheduled task-specific (greedy) ©(1/b%) O(b%k)
Scheduled task-specific (optimal) ©(1/b) O(b%k) [2

(3]
a per-agent throughput o®(1/(bfxk)), with a delay of
O(bfxckK). Thus, if b is small compared td, the service
schedule can provide a near optimal maximum per-agent
throughput (i.e., capacity). However, the delay depends on
the number of different task type&;, and thus could be
significantly larger than the optimal delay.

When the per-agent throughput is “high,” the delay of[6]
the Task-specific team policy i©(max{k?fZKT(n)). In
comparison, the delay of the Scheduled task-specific tean
policy is O(max{w?k?KT(n)). By Lemma 6.4w > fx,
and thus the Task-specific policy performs at least as well,
as the Scheduled task-specific policy. However, we can only
use the policy wherfx K < n/k. Also, the policy does not
easily adapt to situations where new tasks types are adde@]
and old task types are removed, since the entire partitipnimo
of the agents into teams must be recalculated. °

D. Policy comparison (11]

To compare the performance of the policies, consideHz]
the specific case where, for eagh € {1,...,b}, with
b < k, there arek service sets with cardinality. That is,
k task types require one servick,task types require two [13]
services, and so on. Thuk, = bk. Further, assume that
each individual service appears jrof the k service sets of [14]

cardinality j, for eachj € {1,...,b}. From this, we obtain
b [15]
fe = Xjod _bb+1)/2 c O(b/k).
K bk
[16]

An example of service sets satisfying these assumptions is
shown in Fig. 4 and Fig. 5. Using these values, we cai’]
compare the maximum achievable throughput (or capacity)

for each of the policies, and the delay at capacity. Theges]
results are summarized in Table Il, where Scheduled task-

specific team bounds assurie< k. In Table Il we see that [;q;
if b € ©(k) whenn is large, then the Complete team policy

is within a constant factor of the optimal. However bife

REFERENCES

B. P. Gerkey and M. J. Mataric, “A formal analysis and tagmy
of task allocation in multi-robot systemslit J Robotic Research
vol. 23, no. 9, pp. 939-954, 2004.

M. F. Godwin, S. Spry, and J. K. Hedrick, “Distributed tzdoration
with limited communication using mission state estimat@s, Proc
ACC, Minneapolis, MN, Jun. 2006, pp. 2040—2046.

M. Alighanbari and J. P. How, “Robust decentralized taskignment
for cooperative UAVs,” inProc AIAA GN&G Keystone, CO, Aug.
2006.

D. J. Bertsimas and G. J. van Ryzin, “A stochastic and dyinavehicle
routing problem in the Euclidean plan&perations Researchol. 39,
pp. 601-615, 1991.

] ——, “Stochastic and dynamic vehicle routing in the Edeln plane

with multiple capacitated vehiclesOperations Researchvol. 41,
no. 1, pp. 60-76, 1993.

E. Frazzoli and F. Bullo, “Decentralized algorithms faghicle routing
in a stochastic time-varying environment,” iroc CDC Paradise
Island, Bahamas, Dec. 2004, pp. 3357—3363.

M. Pavone, E. Frazzoli, and F. Bullo, “Decentralized althms for
stochastic and dynamic vehicle routing with general tadjstribu-
tion,” in Proc CDG New Orleans, LA, Dec. 2007, pp. 4869-4874.

] H. A. Waisanen, D. Shah, and M. A. Dahleh, “A dynamic pipkand

delivery problem in mobile networks under information coamts,”
IEEE Trans Automatic CtyINov. 2006, accepted.

——, “Fundamental performance limits for multi-stagehiae routing
problems,”Operations ResearchAug. 2007, submitted.

G. Sharma and R. M. N. Shroff, “Delay and capacity tradfs-
in mobile ad hoc networks: A global perspective,” INFOCOM,
Barcelona, Spain, Apr. 2006, pp. 1-12.

A. E. Gamal, J. Mammen, B. Prabhakar, and D. Shah, “Ogitim
throughput-delay scaling in wireless networks. Part I: Thed
model,” IEEE Trans Inf. Theoryvol. 52, no. 6, pp. 2568—-2592, 2006.
J. M. Steele, “Probabilistic and worst case analyseslassical prob-
lems of combinatorial optimization in Euclidean spaddathematics
of Operations Researchvol. 15, no. 4, p. 749, 1990.

N. Christofides, “Worst-case analysis of a new hewridbr the
traveling salesman problem,” Carnegie-Mellon UniversRittsburgh,
PA, Tech. Rep. 388, Apr. 1976.

N. T. J. Bailey, “On queueing processes with bulk sexyidournal
of the Royal Statistical Society. Series\®l. 16, no. 1, pp. 80-87,
1954.

B. Korte and J. Vygen,Combinatorial Optimization: Theory and
Algorithms 3rd ed., ser. Algorithmics and Combinatorics. New York,
NY: Springer Verlag, 2005, no. 21.

L. Kleinrock, Queueing Systems. Volume |: Theorilew York, NY:
John Wiley and Sons, 1975.

V. Sharma, M. Savchenko, E. Frazzoli, and P. Voulgdiisansfer time
complexity of conflict-free vehicle routing with no commauations,”
Int J Robotic Researghvol. 26, no. 3, pp. 255-272, 2007.

S. L. Smith and F. Bullo, “Target assignment for robotietworks:
Worst-case and stochastic performance in dense envirdafhén
Proc CDC New Orleans, LA, Dec. 2007, pp. 3585-3590.

E. K. P. Chong, C. M. Kreucher, and A. O. Hero I, “Adagisensing
via partially observable Markov decision process appragioms,”
IEEE Proceedings2007, submitted.



