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~ Abstract— We introduce a dynamic vehicle routing problem In [3], a single policy is proposed which is optimal for the
in which demands arrive uniformly on a segment and via a case of low arrival rate and performs within a constant facto
temporal Poisson process. Upon arrival, the demands tranate  ,t the pest known policy for the case of high arrival rate.

perpendicular to the segment in a given direction and with a . 2 .
fixed speed. A service vehicle, with speed greater than thatf o In [4], decentralized policies are developed for the midtip

the demands, seeks to serve these translating demands. Foet ~ Service vehicle versions of the DTRP.

existence of any stabilizing policy, we determine a necesya The Euclidean Traveling Salesperson Problem (ETSP)
condition on the arriva_l rate of the de_rnands in terms of the consists of determining the minimum length tour through
problem parameters: (i) the speed ratio between the demand 5 given set of static points in a region [5]. Vehicle routing
and service vehicle, and (ii) the length of the segment on . . . . . . .
which demands arrive. Next, we propose a novel policy for the W'th queCtS rnovmg on straight _I'nes was 'nFrOduced in [6],
vehicle that involves servicing the outstanding demands aser  In which a fixed number of objects move in the negative
a translational minimum Hamiltonian path (TMHP) through y-direction with fixed speed, and the motion of the service
the moving demands. We derive a sufficient condition on the vehicle is constrained to be parallel to either theor the
arrival rate of the demands for stability of the TMHP-based | _ayis For a version of this problem wherein the vehicle has

policy, in terms of the problem parameters. We show that in . . . -
the limiting case in which the demands move much slower than arbitrary motion, termed as the translational Travelinge$a

the service vehicle, the necessary and the sufficient conidins  P€rson Problem, a polynomial-time approximation scheme
on the arrival rate are within a constant factor. was presented in [7] to catch all objects in minimum time. [8]

and [9] address other versions of ETSP with moving objects.

We introduce a dynamic vehicle routing problem in which

Vehicle routing is concerned with planning optimal vehicledemands arrive uniformly on a segment of length via
routes for providing service to a given set of customers. la temporal Poisson process with rate Upon arrival, the
contrast, Dynamic Vehicle Routing (DVR) considers scedemands translate in a fixed direction perpendicular to the
narios in which not all customer information is knoven line and with a fixed speed < 1. A service vehicle, modeled
priori, and thus routes must be re-planned as new custon®s a first-order integrator with unit speed, seeks to seeaeth
information becomes available. An early DVR problem isnobile demands. Our contributions are as follows. First,
the Dynamic Traveling Repairperson Problem (DTRP) [1]we derive a necessary condition on the arrival rate for the
in which service requests, or demands arrive sequentialy i existence of a stabilizing policy, i.e., a finite expecteddi
region and a service vehicle seeks to serve them by reachisigent by a demand in the environment. Second, we propose a
each demand location. In this two-part paper, we introducersvel policy which involves servicing all of the outstanglin
DVR problem in which the demands move with a specifiedemands as per a translational minimum Hamiltonian path
velocity upon arrival. This problem has applications inagre (TMHP) through them. We derive a sufficient condition for
such as perimeter defense, wherein the demands are movitigbility of this TMHP-based policy, and also obtain an
targets trying to cross a region under surveillance by a UAVIpper bound on the steady-state expected time a demand
Another application is in the automation industry where thepends in the environment. As the arrival rate— +o0,
demands are objects arriving on a conveyor belt and a robotlee necessary stability condition implies that the demands
arm seeks to perform a pick-and-place operation on themmust havev — 07. This regime of low demand speed is the

The goal in the DTRP [1] is to minimize the expected timgocus of this paper. In this regime, we show that the sufficien
spent by each demand before being served. In [1], the authstability condition for the TMHP-based policy is within a
propose a policy that is optimal in the case of low arrivatrat constant factor of the necessary condition for stability.
and several policies within a constant factor of the optimal In companion paper [10], we analyze a first-come-first-
in the case of high arrival rate. In [2], they study multipleserved (FCFS) policy in which the demands are served in the
service vehicles, and vehicles with finite service capacitprder of their arrival. We show that in the regime)of- 07,

the FCFS policy minimizes the expected time spent by a

This material is based upon work supported in part by ARO-MBRard  demand before being served: ila i i -
W911NF-05-1-0219, ONR Award N00014-07-1-0721 and by thstitinte 9 : while in the regime o6 17,

for Collaborative Biotechnologies through the grant DAAIQ3-D-0004 we show that every stable pO”Cy _mUSt _Serve demands in
from the U.S. Army Research Office. the FCFS order, and hence FCFS is optimal. Thus, for low

The authors are with the Center for Control, Dynamical Systend  demand speeds the TMHP-based policy can stabilize higher
Computation, University of California at Santa Barbarapt@aBarbara, CA

93106, USA {shaunak, st ephen, bul | o} @ngi neer i ng. ucsb. arriv.all rates, while. for high demand speeds the FCFS can
edu, hespanha@sce. ucsh. edu stabilize higher arrival rates. This is summarized in Fig. 1
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minimum Hamiltonian path (EMHP) is a Euclidean Hamil-
tonian path that has minimum length. In this paper, we also
consider the problem of determining a constrained EMHP
which starts at a specified start point, visits a set of points
and terminates at a specified end point.

: More specifically, the EMHP problem is as follows.

Fo 1l A ¢ stability regions for the TMHP-basedipond th Given n, static points placed ifR?, determine the
ig. 1. A summary of stability regions for the -basedipobnd the . ‘e .
FCFS policy. Stable service policies exist only for the eegiinder the solid length of the shortest path which visits each point
black curve. In the top figure, the solid black curve is due hedrem IV.1, exactly once.

the dashed blue curve is due to part (i) of Theorem V.1, anddbtecurve ; ;
is described in [10]. In the asymptotic regime shown in th&dmo left, the AN upper bound on the length of such a path for points in

dashed blue curve is due to Theorem V.2, and is different tharone in & UNit square was given by Few [13]. By mimicking the
the top figure. In the asymptotic regime shown in the bottahtyithe solid  technique of Few, we can extend the bound to the case of

ﬂiﬁiﬁgg";;r‘fscribed in [10], and is different from thédsblack curve  pnints jn a rectangular region, which is described in the
’ following lemma (cf. [11] for proof).
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This paper is organized as follows: we begin with backLemma 1.2 (EMHP length) Given n points in al x h
ground results on the traveling salesperson problems fgctangle in the plane, where € R, there exists a path
Section Il. The problem formulation is presented in Secthat starts from a unit length edge of the rectangle, passes
tion Ill. The necessary condition for stability is deriveu i through each of the: points exactly once, and terminates on
Section IV. The TMHP-based policy and its stability resultghe opposite unit length edge, having length upper bounded
are presented in Section V. Simulation results are predent@y
in Section VI. Due to space constraints, we include only a V2hn +h+5/2.

sketch of proofs for some intermediate results. The coraplet . . .
proofs are presented in [11]. We will also require the following result on the length of a

path through a large number of points. Given a Qebf n

Il. PRELIMINARY RESULTS points inR?, the Euclidean Traveling Salesperson Problem
(ETSP) is to determine the shortest tour, i.e., a closed path
that visits each point exactly once. LEII'SP(Q) denote

the length of the ETSP tour throudgh. The following is the
classic result by Beardwood, Halton, and Hammersly [14].

We use the following motion to reach a demand.

Proposition 1.1 (Constant bearing control, [12]) Given
the locationsp := (X,Y) € £ andq := (z,y) € £ at time

t of the vehicle and a demand, respectively, then the motion )
of the vehicle towards the poiltt:;,  + vT'), where Theorem 11.3 (Asymptotic ETSP length, [14]) If a setQ
of n points are distributed independently and uniformly in a

VI =02)(X —2)2+ (Y —y)? oY —y) compact region of areal, then there exists a constafitsp

T(p,q):= 1_ 02 1—v2 ' such that, almost surely,
minimizes the time taken by the vehicle to reach the demand. ETSP
y nlirfoo 7\/5(@ = BrspVA.

Constant bearing control is illustrated in Fig. 2.
We now review several results on determining shortedthe constantgrsp has been estimated numerically as
paths through sets of points. Brsp ~ 0.7120 4+ 0.0002, [15].

A. The Euclidean Minimum Hamiltonian Path (EMHP) B. The Translational Minimum Hamiltonian Path (TMHP)

Given a set of points in the plane, a Euclidean Hamiltonian Next, we describe the TMHP problem which was proposed
path is a path that visits each point exactly once. A Euchideaand solved in [7]. This problem is posed as follows.



Given initial coordinatess of a start point,Q := service vehicle at time. Let Q(¢) C £ denote the set of all
{ai,...,q,} of a set of points, and of a finish demand locations at time andn(t) the cardinality ofQ(¢).
point, all translating with the same constant speed  Servicing of a demand; € Q and removing it from the set

v and in the same direction, determine a path that Q occurs when the service vehicle reaches the location of

starts at time zero from point visits all points in the demand. A static feedback control policy for the system
the setQ exactly once and ends at the finish point, is a mapP : £ x FIN(£) — R2%, where FIN(E) is the
and the lengthCr, (s, Q, f) of which is minimum. set of finite subsets of, assigning a commanded velocity

In what follows, we wish to determine the TMHP throughto the service vehicle as a function of the current state of
points which translate in the positive direction. We also the systemp(t) = P(p(t), Q(t)). Let D; denote the time
assume the speed of the service vehicle to be normalizedttw®t theith demand spends within the sgf i.e., the delay
unity, and hence consider the speed of the paings]0,1[.  between the generation of tith demand and the time it is
A solution for the TMHP problem is: (i) foo € ]0, 1], define  serviced. The policyP is stableif under its action,
the mapg, : R? — R? by

Yy ) i——+00

X
v 'r7 - T — . . P H
9ol=:v) (\/1 —v2 1 —0? i.e., the steady state expected delay is finite. Equiv-
(i) Compute the EMHP that starts gt(s), passes through alently, the policy 7 is stable if under its action,
the set of points given byg,(qi).....gu(dn)} = g(Q) limsup,_ K [n(t)] < +oo, that |s,.|f the vehicle is able
and ends a4, (f). (i) Move between any two demands usingto service demands at a rate that is—on average—at least

constant bearing control. The following result is estatgis.  as fast as the rate at which new demands arrive. In what
follows, our goal is todesign stable policiefor the system.

limsup E [D;] < 400,

Lemma 1.4 (TMHP length, [7]) Let the initial coordi-

IV. A NECESSARY CONDITION FOR STABILITY
natess = (xs,ys) and f = (z¢,y¢), and the speed of the

pointsw € )0, 1[. The length of the TMHP is I_n this section, we provide a necessary copdition on the
arrival rate for the existence of a stabilizing policy. Weyime
Lr.(5,0,8) = L5(90(5), 95(Q), gu(f)) + w7 by stating 'Fhe mair_l result of_ the section, with the remainder
—v of the section dedicated to its proof.

where Lg(g.(s), g,(9), g»(f)) denotes the length of the
EMHP with starting pointg,(s), passing through the set Theorem IV.1 (Necessary condition for stability) A nec-

of points{g,(q1),--.,9.(as)}, and ending at, (f). essary condition for the existence of a stabilizing polisy i
that
I1l. PROBLEM FORMULATION )\ < i
We consider a single service vehicle that seeks to service oW

mobile demands that arrive via a spatio-temporal processTo prove Theorem IV.1, we begin by looking at the
on a segment with lengthl” along thex-axis, termed the distribution of demands in the service region.
generator The vehicle is modeled as a first-order integrator
with speed upper bounded by one. The demands arritemma IV.2 (Poisson point process)Suppose the genera-
uniformly distributed on the generator via a temporal Rmiss tion of demands commences at tithand no demands are
process with intensitys > 0, and translate with constant serviced in the interval0,¢]. Let Q denote the set of all
speedv € ]0,1[ along the positivey-axis, as shown in demands if0, W] x [0, vt] at timet. Then, given a compact
Figure 3. We assume that once the vehicle reaches a demaregjon R of area A contained in[0, W] x [0, vt],
the demand is served instantaneously. The vehicle is assume e M(3A)
to have unlimited fuel and demand servicing capacity. P[[RNQ|=n] = — where\ := \/(vWV).
(X(®),Y(1) Proof: [Sketch] This proof requires the calculation of
1 o the probability that at timeg, |[R N Q] = n, whereR =
1 1 [0, 0+ AL x [h, h+AR] (that is, the probability that the region
v R containsn points in Q). Since the generation process is
i temporally Poisson and spatially uniform, this is equahie t
(0,0) probability that the regiofD, A¢] x [0, Ah] containsn points
in Q. After some simplifications, we obtain that the result
W is true for the above considered rectangular region. Binall
since every measurable, compact region can be written as a

Fig. 3. The problem setup. The thick line segment is the geoerof i i i
mobile demands. The dark circle denotes a demand and theesdeiaotes countable union of reCtangleS’ the result is establishell.

the service vehicle.

Remark V.3 (Uniformly distributed demands)
We define the environment &:= [0, W] x R>o C R?, Lemma IV.2 shows us that the number of demands in
and letp(t) = [X(t),Y(¢)]T € &€ denote the position of the an unserviced region is Poisson distributed with rate



A/(vW), and conditioned on this number, the demands areAlgorithm 1: TMHP-based policy

distributed uniformly. 0 Assumes Service vehicle has initial positiofX,Y),
We now establish a result on the expected time to travel . and _aII demands have Iong_coordmates.
from a demand to its nearest neighbor. L if no outstanding demands |n.the .enwronm'e.krm_
2 Move towards the generating line for a time interval
of Y/(1+ v).
else
Let V' be a “virtual” demand located &fX, 0)
translating with speed in the positivey-direction.
Service all the outstanding demands by following a
1 oW TMHP starting from(X,Y"), and terminating at
EfTa] 2 51/~ virtual demandy’. Use the constant bearing control

-2
. . ) L to move between demands.
Proof: Using Proposition 1.1, we can write the travel 6 Repeat.

time 7' from ana priori vehicle positionp := (X,Y) to a
demand locatiory := (z,y) implicitly as

Lemma V.4 (Travel time bound) Consider the seQ of
demands ir€ at timet. Let Ty be a random variable giving
the minimum amount of time required to travel to a demané
in @ from a vehicle positiorf.X,Y’), selecteda priori. Then

(X,Y)
T(p,a)® = (X -2’ + (Y —y) —vT(p,q)). (1) L o
Thus, any demand i, where 4 J.
Sti={(0,y) € €5 (X —a)? + (¥ —T) = y)? < 7%}, ’ B
can be reached froniX,Y") in T time units. In general, LT »»»»»»» 1#
the area ofSy satisfies|Sr| < #72. By Lemma IV.2 the e [V
demands in an unserviced region are uniformly randomly W

distributed with densityh = \/(vW). Thus, for every
vehicle positionp chosen before the generation of demandssig 4. The TMHP-based policy. The vehicle serves all ontitey

3 - 2 demands inside the shaded rectangular re@qiX, Y) as per the TMHP
PTy>T]=P|SrnQl=0]>¢ AST] > o=AnT™/ (W), that begins at X, Y) and terminates at the virtual demahd

Therefore,

+00 too w Theorem V.1 (Stability of TMHP-based policy) (i) The
E[Ty] > / P[Ty > T)dT > / e /W gr TMHP-based policy is stable if
0 0

_.2)\3/2
__ v _ L[ A< LT ang,
2/ A /(W) 2V A 20W (1 +v)
(i) assuming that the TMHP-based policy is stable, the

steady state expected time spent by a demand in the environ-

We can now prove Theorem IV.1. ment is upper bounded by

Proof: [Proof of Theorem IV.1] A necessary condition
for the stability of any policy (see, for example [1]) is that 5W

1
AE[T] <1, 2v1—v? <1/(1+v)—\/2WUA/(1—U2)3/2>'

whereRE [T] is the steady-state expected travel time betweeél G Pré)og: Itft R(X_:[_Y) ;e;ote fthti regior{(_x W] Xh'[ol’ Y]
demandsi and i + 1. For every policyE [T] > E[T,] > efined by the positior(X,Y) of the service vehicle, as

1 fow . S shown in Fig. 4. Observe that at the end of every iteration of
21/ %+ Thus a necessary condition for stability is that g olicy, all outstanding demands have their y-coorttisa

less than or equal to that of the vehicle, and hence would be
Ao — <1 & A< —. contained iNR(X,Y). Let the vehicle be located at(¢;) =
2V A 7 W (X (t;),Y (t;)) at time instant;. If there are no outstanding
B demands iMR(X(t;),Y (t;)), then% is the distance that
the vehicle moves towards the generator. Thus, we have

Y(ti) o ’UY(ti)

V. THE TMHP-BASED POLICY AND ITS STABILITY

In this section, we present the TMHP-based policy for the Y(tiy1) =Y (t;) — Top =1
vehicle along with the sufficient condition for its stabilit T Tv

The TMHP-based policy is summarized in Algorithm 1, andf there are no unserviced demands (X (t:), Y (#:))
an instance of the policy is illustrated in Fig. 4. at time ;. Otherwise, for any unserviced demands

The TMHP-based policy gives the following result. {ai,...,an, } wheren; > 1, in R(X(t:), Y (L)),
Y(tiv1) = vLrw(P(ti), {ar, - an, }, V(L)

)



whereLr, (p(t:),{qi,-..,an, }, V(L)) is the time taken for
the vehicle as per the TMHP that beginspdt;), serves all
n; demands and ends at the virtual demdng,). Since
the distribution of the demands inside(X (¢;),Y (¢;)) is

spatially Poisson (cf. Lemma IV.2 from Section V),

Y(tip1) =

and so on, whereA WY (t;) is the area of

R(X (t;),Y (t;)). We now seek an upper bound for the lengt

Lr,(p(ti),{d1,--.,dn,},V(t;)) of the TMHP for which
we use the method from Section II-B. Far = k£ > 1,
invoking Lemma 11.4 and writingy; := Y (¢;) and Q :=

{q17"'7qk}:
vY;
L10(P: Q0 V) = L(90(P). 90(Q),90(V)) = 7
2WYik Y; N 5W
(1—v2)32 " 140 21— o2

where the second equality is due $@,) = 0, and the
inequality is obtained using Lemma 11.2. Thus, we have

Y;

E[Yisa]Vi] € oo™
> 2WY;k Y, W\ A 54
“;( (1—v2)3/2+1+v+2«/—1_02) MoC

where A = \/vW from Lemma IV.2. Collecting the terms
with vY;/(1 + v) together, we obtain

vY; - (/\A)k —)A
]E[Yz'+1|Yi]§1+vZ A +
k=0
i( 202WYik 5uW )()\A) oA
SN @ =02)32 2y —92/ K
vY; 202W 50W
VYE [ JailY] + ——
STeo T\ T VIEVEM =
vY; 202W 50W
VY, W|Yil + ——
STro T\ a_epr Vil S =
vY; 21}2W
“Tro " —p2pzV \/ 1—1;2
vY; 202W \/’
pu— Y
14+ (1 —v2)3/2 * 1—1)2’

law of iterated expectation, we have

E[Yip1] = E[E [Yig|Yi]]
v 20\W 5104
< E[Y; ————E[V; —, (2
S T BN Gt Nl v = @)
which is a linear recurrence i [Y;]. Thus,lim;_, ; - E [Y;]
is finite if
v 2WoA (1 —v?)3/2
1 —_— .
1o T2 <1< s rop

Thus, if \ satisfies the condition above, then expected
number of demands in the environment is finite and the

hI'MHP based policy is stable.

The upper bound in part (ii) follows since the recurrence
Eq. (2) is linear. [ |

A. Limiting Case of Low Speed Demands

In this section, we focus on the case when- 400 and,
by the necessary stability condition in Theorem M~
07. Recall that for this case, the sufficient stability corutiti
for the TMHP-based policy is thak < 1/(20W). This
differs by a factor o8 from the policy independent necessary
stability condition of A < 4/(vW). By utilizing the tight
asymptotic expression for the length of the TSP path, given
in Theorem 11.3, in place of the bound in Lemma 1.2, we
can reduce this factor to approximatey

To begin, consider an iteration of the TMHP-based
policy, and letY; > 0 be the position of the service vehicle.
In the limit asv — 0T, the length of the TMHP at the
ith iteration equals the length of the corresponding static
EMHP as described in Lemma Il.4. Further, in the limit
as A\ — +oo, the number of outstanding demands in that
iterationn; — +o00, and hence the length of the EMHP tends
to the length of the ETSP through all outstanding demands
at the end of the iteration. Thus, applying Theorem I1.3, the
position of the vehicle at the end of the iteration is given by

Yiy1 = vBrsp vV niA = vBrspv/ni YW,

where A := Y;W is the area of the region below the vehicle
at the<th iteration. Conditioned on;,

E[Yit1] = vBrspE [VIWn;Y;] < vfrsp vV WYE [n4],

where we have applied Jensen’s inequality. Using
Lemma IV.2,E [n;] = WY;\/(vWW) and thus

E[Yit1]Yi] < vBrspy/ WQY2 = frspVAWY;.
Thus, we arrive at the followmg result.

Theorem V.2 (TMHP stability for low speeds) In the
limit as v — 0T, a sufficient condition for stability of the

where the inequality in the third step follows by applyingrpmHP-based policy is
Jensen’s inequality to the conditional expectation and the

equality in the fourth step is due to the arrival process is

Poisson with rate\ and for a time interval; /v. Using the

1 L 9726

A<
ﬁTSPvW vW




VI. SIMULATIONS

In this section, we present a numerical study to dete
mine stability of the TMHP-based policy. We numerically
determine the region of stability of the TMHP-based polic
and compare it with the theoretical results from the previ
ous sections. Théi nker n! solver was used to generate
approximations to the TMHP at every iteration of the policy;-
The linkern solver takes as an input an instance of thiim
Euclidean Traveling salesperson problem. To transform tH}

condition on the arrival rate of the demands as a function
p_f the speed ratio between the demands and the vehicle, and
the length of the line segment. Then, we proposed a novel
y’service policy for the vehicle which involves servicing thlé
outstanding demands as per a TMHP through the translating
demands. We derived a sufficient condition on the arriva rat
of the demands for stability of the TMHP-based policy. In the
iting case of the relative speed tending to zero, we stibwe
pat the necessary and the sufficient conditions for stgbili

constrained EMHP problem into an ETSP, we replaced tHe within a constant factor. In the companion paper [10], we

distance between the start and end points with a lar
negative number, ensuring that this edge was included
the linkern output. For a given value @b, \), we begin
with 1000 demands in the environment and determine th
vehicle’s average coordinate at the end of the iteration.
it exceeds the coordinate at the beginning of the iteration,
then that particular data point ¢f, \) is classified as being
unstable; otherwise, it is stable.

alyze the first-come-first-served (FCFS) policy and show
Rat in the regimes of high demand speeds, the policy is
stable for higher arrival rates than the TMHP-based policy.
Eurther, we show that in the high demand speed regime, the
if FCFS is an optimal policy.

In future, we plan to address versions of the present
problem involving multiple service vehicles, and also with
non-uniform spatial arrival of the demands. This extension

The results of this numerical experiment are presented WF‘S been completed for the placement problem.

Figure 5. For the purpose of comparison, we overlay the
plots for the theoretical curves, which were presented irh]
Figure 1. We observe that the numerically obtained stabilit
boundary for the TMHP-based policy falls between the
necessary and the sufficient conditions for stability, asd i 2]
well approximated by the curve established by Theorem V.2
for almost the entire interval g, 1]. 3]

(4

(5]

(6]

Arrival rate

(7]

(8]

05
Demand speed

[0l
Fig. 5. Numerically determined region of stability for théVilHP-based
policy. A lightly shaded (green-coloured) dot represertbitity while a

darkly shaded (blue-coloured) dot represents instabilltige uppermost [10]
(thick solid) curve is the necessary condition for stapilior any policy
as derived in Theorem IV.1. The lowest (dashed) curve is tificient
condition for stability of the TMHP-based policy as estabéd by part (i)
of Theorem V.1. The broken curve between the two curves istifficient — [11]
stability condition of the TMHP-based policy in the low sgeeegime as
established in Theorem V.2. The environment widthlis= 1.
[12]
V1. CONCLUSIONS ANDFUTURE DIRECTIONS [13]

We introduced a vehicle routing problem in which all4]
service vehicle seeks to serve demands that arrive via a
Poisson process on a line segment and that translate wijth)
a fixed speed in a direction perpendicular to the line. For the
existence of a stabilizing policy, we first derived a necgssa

1The TSP solvet i nker n is freely available for academic research use
athttp://ww. tsp. gat ech. edu/ concorde. ht m .
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