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High speed demands or low arrival rates
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Abstract—In the companion paper we introduced a vehicle
routing problem in which service demands arrive stochastially
on a line segment. Upon arrival, the demands translate per- 1
pendicular to the line with a fixed speed. A vehicle, with spek
greater than that of the demands, seeks to provide service by ﬁ
reaching each mobile demand. In this paper we study a first-
come-first-served (FCFS) policy in which the service vehiel
serves demands in the order in which they arrive. When the
demand arrival rate is very low, we show that the FCFS policy
can be used to minimize the expected time, or the worst-
case time, to service a demand. We determine necessary and
sufficient conditions on the arrival rate of the demands (as a
function of the problem parameters) for the stability of the
FCFS policy. When the demands are much slower than the in classical queuing theory [2], [3]. In our proposed palicy

service vehicle, the necessary and sufficient conditions t@me  the service vehicle also seeks to optimize its position to
equal. We also show that in the limiing regime when the oqnqnq 1o the arrival of new demands. Determining the
demands move nearly as fast as the service vehicle; (i) the : e

demand arrival rate must tend to zero; (ii) every stabilizing F’P“ma' position S a coverage problem, and related works
policy must service the demands in the order in which they include geometric location problems such as [4], and [5],
arrive, and; (i) the FCFS policy minimizes the expected tne  and robotic sensor coverage and deployment problems [6].
to service a demand. The contributions of this paper can be summarized as
|. INTRODUCTION follows. We study a first-come-first-served (FCFS) policy

In companion paper [1] we introduced a vehicle routinén Wh'Ch demands are S‘?f"ed in the or_der in-which they
problem in which demands arrive via a temporal Poissogmve' and when the environment contains no outstanding
arrival process with rata at a uniformly distributed location emands, the vehicle moves to a Iocgnon which minimizes
on a line segment of length’, see Fig. 1. The demandsthe expected (c_>r worst-case) travel t|me_to a demand. We
move in a fixed direction perpendicular to the line with fixedShOW tha:] for fixedo, ?s the r(]jemar.ld allrrlv('l;\_l ra_ue tends ¢
speedv < 1. A service vehicle, modeled as a unit speed ﬁrstt_o.z-erp,-t e FCFS policy is the optimal policy in terms o
order integrator, seeks to serve these mobile demands ByiMizing the expected (or worst-case) delay between a

reaching each demands location. The goal is to determi mands arrival ar!d_ its servit_:g completion. We .o.letermine
conditions on the arrival rate, which ensure stability of Necessary and sufficient conditions arfor the stability of

the system (i.e., ensure a finite expected time spent byﬂ&e F_(_:FS policy. As» — 07, the necessary and sufficient
demand in the environment). We refer the reader to [1 ond|t!ons bec_ome equal. Wh@’r‘?‘PProaCh?S one, we show
for related work and motivation. In [1] we showed that to at: (i) for existence of a sta_1_b|llzmg pohc;_lx_ ’.““St te_nd
ensure the existence of a stabilizing policy, we must ha/@ 2€ro asl/y/—log(1 —v), (i) every stabilizing policy

A < 4/uW. We proposed a service policy which relied onMust service the dema_nds in t.he. order in which they arrive,
the computation of the translational minimum Hamiltoniar?"d (ili) the FCFS policy minimizes the expected time to

path (TMHP) through unserviced demands, and showed th%(—{:ryice_ a demanq. When gompared to the TMHP'ba}SGd
for small v the policy ensures stability for all arrival rates policy introduced in companion paper [1], the FCFS policy

up to a constant factor of the necessary condition. has a Iarge_r stability_region whgn_is large, b.Ut a_smgller
In this paper we focus on the case when the arrival rate %abll_ny reglon_when; |s.small. This is summarized in Fl_g. 2.

low (if v is close to one we will see that this is a necessary NS paper is organized as follows: the problem is for-

condition for stability). For this case we propose a firstinalized in Section Il. The FCFS policy is introduced in

come-first-served (FCFS) policy; such policies are commonection II-B. In Section Ill we determine the optimal place-
ment for minimizing the expected and worst-case travel

w

Fig. 1. The problem setup. The line segment is the generdtarobile
demands. The dark circle denotes a demand and the squatesianehicle.
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time. In Section IV we determine a necessary condition for
stability asv tends to one, and in Section V we determine
a sufficient condition for the stability of the FCFS policy.
In Section VI, we present simulation results. Due to space
constraints, we limit the presentation of some proofs to a
sketch. The complete proofs are presented in [7].
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that is, if the vehicle is able to service demands at a rate tha
is—on average—at least as fast as the rate at which new

Demand speed : demands arrive. In what follows, our goal isdesign stable
control policies for the system.
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Demand speed

Fig. 2. A summary of stability regions for the TMHP-basedippland

the FCFS policy. Stable service policies exist only for thgion under the ;

solid black curve. In the top and the bottom right figures, réaé curve is A. Constant Bearing Control

due to Theorem V.1. The solid black curve and the dashed hineedn The vehicle uses the following motion, referred to as

the top figure are described in [1]. In the asymptotic regimens in the . .
bottom right, the solid black curve is due to Theorem V.3 & different constant bea”ng control, to reach a moving demand.

from the solid black curve in the top figure. In the asymptogigime shown

in the bottom left, the dashed blue curve is described indadl is different Proposition 1.1 (Constant bearing control [8]) Given

than the one in the top figure. . ’ ! .
the locations p := (X,Y) € £ and q := (z,y) € £ at time

t of the vehicle and a demand, respectively, then the motion

of the vehicle towards the point (x,y + vT'), where

We consider a single service vehicle that seeks to servicg(p, q) := V(- ) (X — I); YV —y)2? oY —Qy)’
mobile demands that arrive via a spatio-temporal process L—w L=w
on a segment with lengthl” along thez-axis, termed the minimizes the time taken by the vehicle to reach the demand.
generator. The vehicle is modeled as a first-order integrator
with speed upper bounded by one. The demands arrie@nstant bearing control is illustrated in Fig. 3.
uniformly distributed on the generator via a temporal Rmiss . . .
process with intensity\ > 0, and move with constant B. The First-Come-First-Served (FCFS) Policy
speedv € ]0,1[ along the positivej-axis. We assume that \We are now ready introduce the FCFS policy, which will
once the vehicle reaches a demand, the demand is serlagdthe focus of this paper. In this policy the service vehicle
instantaneously. The vehicle is assumed to have unlimitétses constant bearing control and services the demands in th
fuel and demand servicing capacity. order in which they arrive. If the environment contains no
We define the environment &&:= [0, W] x R, C R?, demands, the vehicle moves to the locatigq*, Y*) which
and letp(t) = [X(¢),Y(t)]T € &£ denote the |5osition of Minimizes the expected, or worst-case, time to catch the nex

the service vehicle at time Let Q(t) c £ denote the set demand to arrive. We can state this policy as follows.

of all demand locations at timg andn(t) the cardinality =~ The FCFS policy

of Q(t). Servicing of a demand;; € Q and removing it Assumes Given the optimal locatiofiX*,Y ") € &.

from the setQ occurs when the service vehicle reaches the it 1o unserviced demands & then

location of the demand. A static feedback control policy for, Move toward(X*, Y*) until the next demand

the system is a map : £ x FIN(E) — R?, whereFIN(¢) ‘ arrives.

is the set of finite subsets &f, assigning a commanded 3 else

velocity to the service vehicle as a function of the current Move using the constant bearing control to service
state of the systemp(t) = P(p(t), Q(t)). Let D; denote L the furthest demand from the generator.

the time that theith demand spends within the st i.e., 5 Repeat.

the delay between the generation of ttie demand and the
time it is serviced. The policf is stable if under its action, Fig. 4 illustrates an instance of the FCFS policy. The
limsup;_,, . E[D;] < +00, i.e., the steady state expectedirst question is, how do we compute the optimal position
delay is finite. Equivalently, the policp is stable if under (X*,Y™*)? This will be answered in the following section.

Il. PROBLEM FORMULATION AND SERVICE PoLICY
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Fig. 4. The FCFS policy. The vehicle services the demandfenotder

of their arrival in the environment, using the constant lmepcontrol. 0 01 02 03 04 05 06 07 08 09 1
Demand velocity

Fig. 5. TheY position of the service vehicle which minimizes the expécte
I1l. OPTIMAL VEHICLE PLACEMENT (Ij/li/stani:g to a demand, as a functiorvofn this plot the generator has length
In this section we study the FCFS policy when< 1 is
fixed and)\ — 0T. In this regime stability is not an issue, as ) .
demands arrive very rarely, and the problem becomes offfM expression fory™™ does not appear to be possible.
of optimally placing the service vehicle (ie., determining® [7'(P,@)] with X = WW/2, yields
(X*,Y™*) in the statement of the FCFS policy). We determine

2
placements that minimize the expected time and the worst-E [T'(p, q)] = Y (b A log (b -/ ﬂ) — 20),
case time. 2a vaWw >

o wherea = 1—v?, andb = /1 + aW?2/4Y 2. For each value
A. Minimizing the Expected Time of v andW, this convex expression can be easily numerically
We seek to place the vehicle at location that minimizeminimized overY’, to obtainY*. A plot of Y* as a function

the expected time to service a demand once it appeaysv for W = 10 is shown in Fig. 5.

on the generator. Demands appear at uniformly random For the optimal positiop*, the expected delay between
positions on the generator and the vehicle uses the constanlemand’s arrival and its service completion is

bearing control to reach the demand. Thus, the expected .

time E [T'(p,q)] to reach a demand generated at position D*:=E[T(p", (0, 2))].

q = (,0) from vehicle positionp = (X, Y) is given by Thus, a lower bound on the steady-state expected delay

1 w of any policy is D*. We now characterize the steady-state
WA =) / (\/(1 —v?)(X —x)24+Y2 - vY) dx. expected delay of the FCFS polidecrs, as) tends to zero.
- 0

The following lemma characterizes the way in which thistheorem 1.2 (FCFS optimality for low arrival rates)

expectation varies with the positign Fix any v < 1. Then as A — 0T, Dgcrs — D*, and
the FCFS policy minimizes the expected time to service a

Lemma lIl.1 (Properties of the expected time) (i) demand.

The expected time E[T(p,q)] is convex in p, for all N

p € [0,W] x Rug. (ii) There exists a unique point Proof: We haye sh_ov_vn_how to compute the _posmon

p* = (W/2,Y*) € R? that minimizes E [T'(p, q)- p* = (X*,Y*) which minimizesE [T'(p, q)]. Thus, if the

vehicle is located ap*, then the expected time to service the
Proof: [Sketch] Part (i) follows from the fact that the demand is minimized. But, as — 0", the probability that
Hessian ofT'((X,Y), (0,z)) with respect toX andY, is demand + 1 arrives before the vehicle completes service of
positive semi-definite. Furthef;(p, q) is strictly convex for demandi and returns tgp* tends to zero. Thus, the FCFS
all  # W/2. But, lettingp = (W/2,Y) andq = (0,z) we  policy is optimal as\ — 07. u
can write o
) B. Minimizing the Worst-Case Time
m/ T(p,q)dz. The e_xpected time t_o service a demgnd was the metric
2€[0,WIN{W/2} studied in the companion paper, and will be the metric of
The integrand is strictly convex for all € [0, W]\ {W/2}, interest in Section V when we study the FCFS policy for
implying E [T'(p, q)] is strictly convex on the lin&l = 1W/2, A > 0. However, another metric that can be used to determine
and the existence of a unique minimiz&¥/2,Y*), and part (X*,Y™) is the worst-case time to service a demand.
(ii) is proven. |
Lemma .1 tells us that there exists a unique pointemma Ill.3 (Optimal placement for worst-case) The
p* := (X*,Y*) which minimizes the expected travel time.location (X*,Y*) that minimizes the worst-case time to
In addition, we know thatX* = 1¥//2. Obtaining a closed service the demand is (W/2,0vW/2).

E[T(p,q)] =



Proof: [Sketch] The fact thatX* = W/2 follows from Proof: [Sketch] The travel time between consecutive
symmetry. We then substitute this value f&irin Eq. (1l.1), demands is given by
along withy = 0, to obtain the worst-case time expression 1
as a function ofy". Performing a standard minimization of T=1—23 (\/(1 —v?)Ax? + Ay? — UA?J) ;
the worst-case time, we gé&t* = v1V/2.

Using an argument identical to that in the proof Ofwhere_ Az and Ay are the d|ﬁerenqes n t_he:_- and y-
Theorem II1.2 we have the following: For fixad< 1, and as poordmates of the demands resp’ec.tlvely. S.'WCB convex
A — 0%, the FCFS policy, with X+, Y*) = (W/2, vIV/2), in A:c_ and Ay, we apply Jgnsens inequality, followed by
minimizes the worst-case time to service a demand. substitution of the expressions for the expected values of
Az and Ay, and obtain

w
E([T] > 5 —~— tw3

In this section, we considen > 0, and determine l1—v 9 A A
necessary conditions oh to ensure that the FCFS policy Using the necessary condition for stability,
remains stable. To establish these conditions we utilize a 3
standard result in queueing theory (cf. [2]) which stated & A< W 1)
necessary condition for the existence of a stabilizingqyas
that \E [T'] < 1, whereE [T] is the expected time to service
a demand (i.e., the travel time between demands). We al
determine a necessary condition difior the stability of any
policy asv — 1, and establish the optimality of the FCFS

IV. NECESSARYCONDITIONS FORSTABILITY 1 (\/(1 2) 2 2 v2)
—v

This provides a good necessary condition for lowbut we
w(i)ll be able to obtain a much better necessary condition for
argew.

SinceT is convex inAxz, applying Jensen’s inequality,

policy. We begin with the following. > %775 7 _

E[T|Ay] > Tz (\/(1 v2)W2/9 4+ Ay UAy) (,2)
Proposition IV.1 (Special case of equal speeddjor v =  whereE [Az] = W/3. Now, the random variabldy is dis-
1 there does not exist a stabilizing policy. tributed exponentially with parametey/v, un-conditioning

Eqg. (2) onAy we obtain thafE [T] is lower bounded by
Proof: [Sketch] Ifv = 1, then a demand can be reached

only if the service vehicle is above the demand. Note thatthe v Feo \/(1 —v2)IW?2
only policy that ensures that a demang-goordinate never  \(1 —v2) J, 9
exceeds that of the service vehicle is the FCFS policy. The

+ 92 — vy) e_’\y/vdy.

travel time between demaricandi + 1 is given by Using the software Mapf&, this simplifies to
Ax? + Ay? 1/ Ax? W AWAV1 — 02
T(inqurl) = 7y =z |-+ Ay 3 o o Hl I —
24y 2\ Ay 2-3v1— 0?2 3v
where Az and Ay are the differences between their v AWV — 0?2 v?
andy-coordinates respectively. Taking expectation, and mak- -t 30 N A1 —22)’
ing use of the independence @&z and Ay, we obtain _ _ _
E[T(qi,qir1)] = +oo. This implies for every > 0, WwhereH;(-) is the 1st order Struve function and(-) is
AE [T(q;,qi+1)] = +oco. This means that the necessarylst order Bessel function of thend kind. A Taylor series
condition for stability, i.e.\E [T'(q;, qi+1)] < 1, is violated. —€xpansion offf; (z) — Y (z) aboutz = 0 yields
Thus, there does not exist a stabilizing policy. | 172
Next we look at the FCFS policy and give a necessary ~ Hi(z) = Yi(z) = — (; + Checz — Zlog(z)) ;

condition for its stability.
whereChec = 1/2 + log(2) — v ~ 0.62. Thus,

Theorem IV.2 (Necessary stability condition for FCFS) v AW AWV — 0?2
A necessary condition for the stability of the FCFS policyis =[] = A1+ v) T 1z0 Chec — log 30 ’
3 for v < v* Using the necessary condition for stability, and simptifyi
w’ ~ "™ using the fact thah1¥’/3 < 1, we have for stability,
A< 3V otherwise Nor
. ’ 3v/2
W (14 0) (Creo—tog (42 A< - @

W [(1+0) (Ches— o (122
where Chec = 0.5+1og(2) —y, where «y is the Euler constant;
and v} is the solution to the equation when Chec > log(v1 —v?/v), i.e., whenv > v/, Where
20 — (1 4+ v)(Chec — 0.5 - log(1 — v?) + logwv) = 0, and is v} is obtained when we set the RHS of Eq. (1) equal to the
approximately equal to 4/5. RHS of Eqg. (3), and is approximately equal 4¢5. Thus,



the necessary condition for stability is given by Eq. (1) whe Theorem V.1 (Sufficient stability condition for FCFS)

v < vhe and by Eq. (3) whem > v B The FCFSpolicy is stable if
The necessary condition states that in the limitas 17, 3 M—»
A goes to zero ag/+/—log(1 — v), which is slower than A for v < vl

any polynomial in(1 — v). The following result shows that )\ ~ NGvr

asv — 17, that the condition in Theorem IV.2 is necessary
for every policy. W\/(l +0) (Csut — log (+52))

v

, otherwise,

where Csyt = 7/2—10g(0.5-1/3/1/2), and vZ,; is the solution
to v120* — 3/(1 — v*)(Csut — log(1 — v*) + logv*) = 0,
and is approximately equal to 2/3.

Theorem IV.3 (Policy independent necessary condition)
For the limiting regime as v — 1—, every stabilizing policy
must serve the demands in the order in which they arrive

and hence, Proof: We first upper bound the time takéh by the
3v2 . vehicle from position(X,Y"), coinciding with a demand,
T W/—log(l —v) to reach the next demand &t,y), using the inequality

Va2 + b2 < .
Proof: [Sketch] Suppose there is a poli¢y that is not a® + 6% < |af + [b]. Thus,

does not serve demands FCFS, but stabilizes the system with T < [ X — x| + Y —y) (4)
T V1=02 1—02’
A= B(1-v), !

Taking expectation, and using the sufficient condition for
for somep > 0, and B > 0. As per P, suppose the vehicle stability,

g ; 3 /11—
serves demand+y before demand+1_. The time to travel AE[T] <16 A< — v (5)
to demand + 1 from any demand + j, wherej > 1 is WV1l+w
Ay vAy Ay Eq. (4) gives a very conservative upper bound except for
T(Qitjs i+1) > 1 _'Ug + T2 1-u the case wherv is very small. Alternatively, taking ex-

pected value of’ conditioned oAy, and applying Jensen’s
inequality to the square-root part, and on following steps
similar to those in the proof of Theorem IV.2, we obtain

where Az and Ay are now the minimum of the- andy-
distances frony;; to theq; ;. The random variabldy is
Erlang distributed with shapg—1 > 1 and rate)\, implying

1 — 12
P[Ay < ¢ <1—e 2" for eachc > 0. E[T] < aall H, AWV Z v
T 2.6V1 — 02 NG,
Now, sincel = B(1 —v)? asv — 1—, almost surelyAy >
(1- v)1/2-p, Thu(s : - Y AW V1 — 02 B 02 ©)
! V6u A1 —v?)

Y _ )P (1 — o)~ (p+1/2)

AT (@i Qi) 2 B =) (1 =) - We use upper bounds on the Struve and Bessel functions
asv — 1-, making P unstable. Thus, a necessary conditiorfrom [9] whenw is sufficiently large, i.e., when the argument
for a policy to stabilize withA = B(1 — v)P, is that as of H;(-) andY(-) is small. It can be shown that
v — 17, the policy must serve demands in the order in which

z
they arrive. This holds for every, and by lettingp go to Hi(z) < 9’
infinity, B(1 —v)P converges to zero for all € (0, 1]. Thus, 2 (2 s 1
a non-FCFS policy cannot stabilize the system no matter how ~ Y1(2) = p (5 log 5 — ;) , foro<z<2, (7)

quickly A — 0™ asv — 17. The bound om follows from

Theorem IV.2. m Wherez := AW+/1—v2/(/6v). Substituting into Eq. (6),
The following result is a consequence of Theorem V.3 ang@"d upon simplification we obtain

the fact that the FCFS policy uses constant bearing control-E 7 < A2 (f “log AW log 7\@@)

Corollary IV.4 (FCFS Optimality for high speed) In the o120 (2 3 2v2v

limiting regime as v — 1—, the FCFS policy minimizes the _ 1 ®)

expected time to service a demand. A1 +wv)’

Now, let A\* be the least upper bound onfor which the

FCFS policy is unstable, i.e., for evety < \*, the FCFS
In this section, we derive a sufficient condition on theygjicy is stable. To obtain*, we need to solve*E [T] = 1.

arrival rate that ensures stability for the FCFS policy. $o e Using Eq. (8) along with Eq. (5), we can obtain a lower

tablish this condition, we utilize a standard result in qgieg  pound on\*. Since A < A\* implies stability, a sufficient
theory (cf. [2]) which states that a sufficient conditionfbe  condition for stability is

existence of a stabilizing policy is thaE [T] < 1, where
E [T] is the expected time to service a demand. A<

V. A SUFFICIENT CONDITION FORFCFSSTABILITY

12v
W, /(1+0) (C - log (152))

; 9)




whereCegyt := 7/2 —10g(0.5-1/3/v/2) ~ 2.06. To determine
the value of the speed* beyond which this is a less
conservative condition than Eq. (5), we solve

vV 12v* _i 1 —w*
W) (€ —log () WV

which givesvg ~ 2/3. It can be verified that for > v,
the argument of the Struve and Bessel functions is less th
2, and hence the bounds in Eq. (7) are valid.Thus, a sufficie
condition for FCFS stability is given by Eq. (5) fer< v

suf
and by Eq. (9) forv > vl |

N

Arrival rate

{ 1 I I
Q 0.1 0.2 0.3 0.7 0.8 0.9

0.4 0.5 0.6
Demand speed

o . . Fig. 6. Numerically determined region of stability for th€FS policy.
Remark V.2 (Limiting regimes) Asv — 0T, the sufficient A lightly shaded (green-coloured) dot represents stgbikihile a darkiy
condition for FCES stability becomes < 3/W which shaded (blue-coloured) dot represents instability. Theeto(red) curve is
. tl | to th diti J b t&e sufficient stability condition in Theorem V.1. The upgletack) curve is
I§ exaclly equal 1o the necessary co_n_ ion g'Ven. - y pa( e necessary stability condition in Theorem IV.2. The enunent width
(i) of Theorem IV.2. Thus, the condition for stability is is w = 1.
asymptotically tight in this limiting regime.
As v — 17, the sufficient condition for FCFS stability
becomes
V6

Wy/=log(1—v)’
In comparison the necessary condition scales as

first-come-first-served policy and gave necessary and suffi-
cient conditions on the arrival rate for its stability. Wesal
determined the optimal placement of the vehicle so as to
minimize the worst-case, and the expected delay in segyicin
a demand. We showed that for fixed as the arrival rate
3v2 tends to zero, the FCFS policy minimizes the worst-case
< W G . service delay, and the expected service delay. Finally we
v —log(l —v) showed that as tends to one, FCFS minimizes the expected
Thus, the necessary and sufficient conditions for the #abil delay and that every stabilizing policy must service densand
of the FCFS policy (and by Theorem IV.3, for any policy)in the order in which arrive.
differ by a factory/3. It should be noted that can converge ~ We have recently considered the case in which demands
to zero extremely slowly as — 17, and still satisfy the are approaching a deadline and the service vehicle seeks to
sufficient stability condition in Theorem V.1. For examplestop them [10]. Future directions include studying the case
with v = 1 — 1075, the FCFS policy stabilizes the systemwhen demands are generated according to a nonuniform dis-

A<

for an arrival rate of3/(51). O

VI. SIMULATIONS

In this section, we present a numerical study to determinéll
stability of the FCFS policy. We numerically determine the
region of stability of the FCFS policy, and compare it with
the theoretical results from the previous sections. Forvargi
value of (v, \), we begin with1000 demands in the envi-
ronment and determine the vehicle’s averggeordinate at
the end of the iteration. If it exceeds thecoordinate at the
beginning of the iteration, then that particular data paiht [5]
(v, A) is classified as being unstable; otherwise, it is stable.

The results of this numerical experiment are presented
in Figure 6. For the purpose of comparison, we overlay[ﬁ]
the plots for the necessary and the sufficient conditions for
FCFS stability, which were established in Theorems IV.2 and’]
V.1 respectively. We observe that the numerically obtained
stability boundary for the FCFS policy falls between the two
theoretically established curves.

(2]

(4

8]
[9]
[10]
This two part paper has introduced a dynamic vehicle
routing problem with moving demands. In this paper we
studied the cases where the demands have high speed and
where the arrival rate of demands is low. We introduced a

VIl. CONCLUSIONS ANDFUTURE DIRECTIONS

3] ——, Queueing Systems. Volume I1: Computer Applications.

tribution on the generator, and the case of multiple vehicle
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