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Abstract— In this paper we study a dynamic vehicle routing
problem in which there are multiple vehicles and multiple
classes of demands. Demands of each class arrive in the
environment randomly over time and require a random amount
of on-site service that is characteristic of the class. To service
a demand, one of the vehicles must travel to the demand
location and remain there for the required on-site service time.
The quality of service provided to each class is given by the
expected delay between the arrival of a demand in the class,
and that demand’s service completion. The goal is to design
a routing policy for the service vehicles which minimizes a
convex combination of the delays for each class. First, we
provide a lower bound on the achievable values of the convex
combination of delays. Then, we propose a novel routing policy
and analyze its performance under heavy load conditions (i.e.,
when the fraction of time the service vehicles spend performing
on-site service approaches one). The policy performs within a
constant factor of the lower bound (and thus the optimal),
where the constant depends only on the number of classes, and
is independent of the number of vehicles, the arrival rates of
demands, the on-site service times, and the convex combination
coefficients.

I. INTRODUCTION

Consider a bounded environment E in the plane which
contains n service vehicles. Demands for service arrive in E
sequentially over time and each demand is a member of one
of m classes. Upon arrival, a demand assumes a location in
E , and requires a class dependent amount of on-site service
time. To service a demand, one of the n vehicles must travel
to the demand location and perform the on-site service. If we
specify a policy by which the vehicles serve demands, then
the expected delay for demands of class α, denoted Dα, is the
expected amount of time between a demands arrival and its
service completion. Then, given coefficients c1, . . . , cm > 0,
the goal is to find the vehicle routing policy that minimizes

c1D1 + · · ·+ cmDm.

By increasing the coefficients for certain classes, a higher
priority level can be given to their demands. This problem,
which we call dynamic vehicle routing with priority classes,
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has important applications in areas such as UAV surveillance,
where targets are given different priority levels based on their
urgency or potential importance.

In classical queuing theory (i.e., queuing systems in which
the demands are not spatially distributed), the problem of
priority queues has received much attention, [1]. In [2] the
authors characterize the region of delays that are realizable
by a single server. This analysis is performed under the
assumption that the customer (demand) interarrival times
and service times are distributed exponentially. In [3] the
achievable delays are studied in more a general setting known
as queuing networks.

If service demands are spatially distributed, then providing
service becomes a problem in dynamic vehicle routing
(DVR). One of the first DVR problems was the dynamic
traveling repairperson problem (DTRP) [4], [5]. The DTRP
is the single class version of the dynamic vehicle routing with
priority classes problem studied in this paper. In [4], [5], the
authors study the expected delay of demands and propose
optimal policies in both heavy load (i.e., when the fraction
of time the service vehicles spend performing on-site service
approaches one), and in light load (i.e., when the fraction of
time the service vehicles spends performing on-site service
approaches zero). In [6], and [7], decentralized policies are
developed for the DTRP. Spatial queuing problems have also
been studied in the context of urban operations research [8],
where approximations are used to cast the problems in the
traditional queuing framework. In our previous paper [9], we
introduced and studied dynamic vehicle routing with priority
classes for the case of two classes and one vehicle. For
this case we derived a lower bound on the achievable delay
values and proposed the Randomized Priority policy, which
performed within a constant factor of the lower bound, for
all convex combination coefficients.

The contributions of this paper are as follows. We extend
the dynamic vehicle routing with priority classes problem to
n service vehicles and m classes of demands. The extension
of our previous analysis to multiple classes of demands
is very nontrivial. We derive a new lower bound on the
achievable values of the convex combination of delays, and
propose a new policy in which each class of demands is
served separately from the others. We show that the policy
performs with a constant factor of 2m2 of the optimal. Thus,
the constant factor is independent of the number of vehicles,
the arrival rates of demands, the on-site service times, and
the convex combination coefficients. We also comment on
the source of the gap between the upper and lower bounds.

The paper is organized as follows. In Section II we give
some asymptotic properties of the traveling salesperson tour.



In Section II-B we formalize the problem and in Section III
we derive a lower bound, and in Section IV we introduce and
analyze the Separate Queues policy. Finally, in Section V we
present simulation results.

II. BACKGROUND AND PROBLEM STATEMENT

In this section we summarize the asymptotic properties
of the Euclidean traveling salesperson tour, and formalize
dynamic vehicle routing with priority classes.

A. The Euclidean Traveling Salesperson Problem

Given a set Q of N points in R2, the Euclidean traveling
salesperson problem (TSP) is to find the minimum-length
tour of Q (i.e., the shortest closed path through all points).
Let TSP(Q) denote the minimum length of a tour through all
the points in Q. Assume that the locations of the N points are
random variables independently and identically distributed,
uniformly in a compact set E with area |E|; in [10] it is
shown that there exists a constant βTSP such that, almost
surely,

lim
N→+∞

TSP(Q)√
N

= βTSP

√
|E|. (1)

The constant βTSP has been estimated numerically as
βTSP ≈ 0.7120 ± 0.0002, [11]. The bound in equation (1)
holds for all compact sets E , and the shape of E only affects
the convergence rate to the limit. In [8], the authors note
that if E is “fairly compact [square] and fairly convex”, then
equation (1) provides an adequate estimate of the optimal
TSP tour length for values of N as low as 15.

B. Problem Statement

Consider a compact environment E in the plane with
area |E|. The environment contains n vehicles, each with
maximum speed v. Demands of type α ∈ {1, . . . ,m} (also
called α-demands) arrive in the environment according to a
Poisson process with rate λα. Upon arrival, demands assume
an independently and uniformly distributed location in E .
An α-demand is serviced when the vehicle spends an on-
site service time at the demand location, which is generally
distributed with finite mean s̄α.

Consider the arrival of the ith α-demand. The service
delay for the ith demand, Dα(i), is the time elapsed between
its arrival and its service completion. The wait time is defined
as Wα(i) := Dα(i)−sα(i), where sα(i) is the on-site service
time required by demand i. A policy for routing the vehicles
is said to be stable if the expected number of demands in
the system for each class is bounded uniformly at all times.
A necessary condition for the existence of a stable policy is

% :=
1
n

m∑
α=1

λαs̄α < 1. (2)

The load factor % is a standard quantity in queueing the-
ory [1], and is used to capture the fraction of time the
n servers (vehicles) must be busy in any stable policy. In
general, it is difficult to study a queueing system for all
values of % ∈ [0, 1), and a common technique is to focus on

the limiting regimes of %→ 1−, referred to as the heavy-load
regime, and %→ 0+, referred to as the light-load regime.

Given a stable policy P the steady-state service delay
for α-demands is defined as Dα(P ) := limi→+∞ E [Dα(i)],
and the steady-state wait time for α-demands is Wα(P ) :=
Dα(P )− s̄α. Thus, for a stable policy P , the average delay
per demand is

D(P ) =
1
Λ

m∑
α=1

λαDα(P ),

where Λ :=
∑m
α=1 λα. The average delay per demand is the

standard cost functional for queueing systems with multiple
classes of demands. Notice that we can write D(P ) =∑m
α=1 cαDα(P ) with cα = λα/Λ. Thus, we can model

priority among classes by allowing any convex combination
of D1, . . . , Dm. If cα > λα/Λ, then the delay of α-demands
is being weighted more heavily than in the average case.
Thus, the quantity cαΛ/λα gives the priority of α-demands
compared to that given in the average delay case. Without
loss of generality we can assume that priority classes are
labeled so that

c1
λ1
≥ c2
λ2
≥ · · · ≥ cm

λm
, (3)

implying that if α < β for some α, β ∈ {1, . . . ,m}, then
the priority of α-demands is at least as high as that of β-
demands. With these definitions, we are now ready to state
our problem.

Problem Statement: Let Π be the set of all
causal, stable and stationary policies for dynamic
vehicle routing with priority classes. Given the
coefficients cα > 0, α ∈ {1, . . . ,m}, with∑m
α=1 cα = 1, and satisfying equation (3), let

D(P ) :=
∑m
α=1 cαDα(P ) be the cost of a policy

P ∈ Π. Then, the problem is to determine a vehicle
routing policy P ∗, if one exists, such that

D(P ∗) = inf
P∈Π

D(P ). (4)

We let D∗ denote the right-hand side of equation (4). A
policy P for which D(P )/D∗ is bounded has a constant-
factor guarantee. If lim sup%→1− D(P )/D∗ = κ < +∞,
then the policy P has a heavy-load constant-factor guarantee
of κ. In this paper we focus on the heavy-load regime, and
look for policies with a heavy-load constant-factor guarantee
that is independent of the number of vehicles, the arrival
rates of demands, the on-site service times, and the convex
combination coefficients.

III. LOWER BOUND IN HEAVY LOAD

In this section we present a heavy-load lower bound on
the delay in Eq. (4).

Theorem III.1 (Heavy load lower bound) In heavy load
(%→ 1−), for every routing policy P ,

D(P ) ≥ β2
TSP|E|

2n2v2(1− %)2

m∑
α=1

cα + 2
m∑

j=α+1

cj

λα. (5)



where c1, . . . , cm satisfy Eq. (3).

Proof: Consider a tagged demand i of type α, and
let us quantify its total service requirement. The demand
requires on-site service time sα(i). Let us denote by dα(i)
the distance from the location of the demand served prior
to i, to i’s location. In order to compute a lower bound on
the wait time, we will allow “remote” servicing of some
of the demands. For an α-demand i that can be serviced
remotely, the travel distance dα(i) is zero (i.e., a service
vehicle can service the ith α-demand from any location by
simply stopping for the on-site service time sα(i)). Thus,
the wait time for the modified remote servicing problem
provides a lower bound on the wait time for the problem of
interest. To formalize this idea, we introduce the variables
rα ∈ {0, 1} for each α ∈ {1, . . . ,m}. If rα = 0, then
α-demands can be serviced remotely. If rα = 1, then α-
demands must be serviced on location. We assume that rα =
1 for at least one α ∈ {1, . . . ,m}. Thus, the total service
requirement of α-demand i is rαdα(i) + sα(i). The steady-
state expected service requirement is rαd̄α + sα, where
d̄α := limi→+∞ E [dα(i)]. In order to maintain stability of
the system we must require

1
n

m∑
α=1

λα

(
rαd̄α
v

+ s̄α

)
< 1. (6)

Applying the definition of % in Eq. (2), we write Eq. (6) as
m∑
α=1

rαλαd̄α < (1− %)nv. (7)

For a stable policy P , let N̄α represent the steady-
state expected number of unserviced α-demands. Then, the
expected total number of outstanding demands that require
on-site service (i.e., cannot be serviced remotely) is given by∑m
j=1 rjN̄j . We now apply a result from the dynamic trav-

eling repairperson problem (see [12], page 23) which states
that in heavy load (% → 1−), if the steady-state number of
outstanding demands is N , then a lower bound on expected
travel distance between demands is (βTSP/

√
2)
√
|E|/N .

Applying this result we have that

d̄α ≥
βTSP√

2

√
|E|∑
j rjN̄j

=: d̄, (8)

for each α ∈ {1, . . . ,m}. Combining with Eq. (7), squaring
both sides, and rearranging we obtain

β2
TSP

2
|E|(
∑
α rαλα)2

n2v2(1− %)2
<
∑
α

rαN̄α.

From Little’s law, N̄α = λαWα for each α ∈ {1, . . . ,m},
and thus∑

α

rαλαWα >
β2

TSP

2
|E|

n2v2(1− %)2

(∑
α

rαλα

)2

. (9)

Recalling that Wα = Dα− s̄α and rα ∈ {0, 1} for each α ∈
{1, . . . ,m}, we see that Eq. (9) gives us 2m − 1 constraints

on the feasible values of D1(P ), . . . , Dm(P ). Hence, a lower
bound on D∗ can be found by minimizing

∑m
α=1Wα subject

to the constraints in Eq. (9). By considering the dual of
this problem, one can verify that under the class labeling
in Eq. (3), the problem is equivalent to:

minimize
m∑
α=1

cαWα,

subject to
λ1 0 0 · · · 0
λ1 λ2 0 · · · 0
...

...
. . . 0

λ1 λ2 λ3 · · · λm



W1

W2

...
Wm

≥Ψ


λ2

1

(λ1 + λ2)2

...
(λ1 + · · ·+ λm)2

 ,
where

Ψ :=
β2

TSP

2
|E|

n2v2(1− %)2
.

Under the class labeling in Eq. (3) the above linear program
is feasible and bounded, and its solution (W ∗1 , . . . ,W

∗
m) is

given by

W ∗α = Ψ

λα + 2
α−1∑
j=1

λj

 .

After rearranging, the optimal value of the cost function, and
thus the lower bound on D∗, is given by

m∑
α=1

cαW
∗
α = Ψ

m∑
α=1

cα + 2
m∑

j=α+1

cj

λα.

Applying the definition of Ψ we obtain the desired result.

IV. SEPARATE QUEUES POLICY

In this section we introduce and analyze the Separate
Queues (SQ) policy. We show that this policy is within a
factor of 2m2 of the lower bound in heavy load.

To present the SQ policy we need some notation. We
assume vehicle k ∈ {1, . . . , n} has a service region R[k] ⊂
E , such that {R[1], . . . , R[n]} form a partition of the environ-
ment E . In general, the partition could be time varying, but
for the description of the SQ policy this will not be required.
We assume that information on outstanding demands of type
α ∈ {1, . . . ,m} in region R[k] at time t is summarized as
a finite set of demand positions Q

[k]
α (t) with N

[k]
α (t) :=

card(Q[k]
α (t)) . Demands of type α with location in R[k]

are inserted in the set Q[k]
α as soon as they are generated.

Removal from the set Q[k]
α requires that service vehicle k

moves to the demand location, and provides the on-site
service. With this notation the policy is given as Algorithm 1.

A. Stability Analysis of the SQ Policy in Heavy Load

In this section we analyze the SQ policy in heavy load, i.e.,
as %→ 1−. In the SQ policy each region R[k] has equal area,
and contains a single vehicle. Thus, the n vehicle problem
in a region of area |E| has been turned into n independent
single-vehicle problems, each in a region of area |E|/n, with
arrival rates λα/n. To determine the performance of the



Algorithm 1: Separate Queues (SQ) Policy
Assumes: A probability distribution p = [p1, . . . , pm].
Partition E into n equal area regions and assign one1

vehicle to each region.
foreach vehicle-region pair k do2

if the set ∪αQ[k]
α is empty then3

Move vehicle toward the median of its own4

region until a demand arrives.
else5

Select Q ∈ {Q[k]
1 , . . . , Q

[k]
m } according to p.6

if Q is empty then7

Reselect until Q is nonempty.8

Compute TSP tour through all demands in Q.9

Service Q following the TSP tour, starting at the10

demand closest to the vehicle’s current position.
Repeat.11

Optimize over p.12

policy we need only study the performance in a single region
k. For simplicity of notation we omit the label k. We refer to
the time instant ti in which the vehicle computes a new TSP
tour as the epoch i of the policy; we refer to the time interval
between epoch i and epoch i+ 1 as the ith iteration and we
will refer to its length as Ti. Finally, let Nα(ti) := Nα,i,
α ∈ {1, . . . ,m}, be the number of outstanding α-demands
at beginning of iteration i.

The following straightforward lemma, proved in [9], will
be essential in deriving our main results.

Lemma IV.1 (Number of outstanding demands) In
heavy load (i.e., % → 1−), after a transient, the number of
demands serviced in a single tour of the vehicle in the SQ
policy is very large with high probability (i.e., the number
of demands tends to +∞ with probability that tends to 1,
as % approaches 1−).

Let TSj be the event that Qj is selected for service at
iteration i of the SQ policy. By the law of total probability

E [Nα,i+1] =
m∑
j=1

pjE (Nα,i+1|TSj), α ∈ {1, . . . ,m},

where the conditioning is with respect to the task being
performed during iteration i. During iteration i of the policy,
demands arrive according to independent Poisson processes.
Call N new

α,i the α-demands (α ∈ {1, . . . ,m}) newly arrived
during iteration i; then, by definition of the SQ policy

E (Nα,i+1|TSj)

=

{
E
(
N new
α,i |TSj

)
, if α = j

E (Nα,i|TSj) + E
(
N new
α,i |TSj

)
, o.w.

By the law of iterated expectation, we have
E
(
N new
α,i |TSj

)
= (λα/n)E (Ti|TSj). Moreover, since

the number of demands outstanding at the beginning of

iteration i is independent of the task that will be chosen, we
have E (Nα,i|TSj) = E [Nα,i]. Thus we obtain

E (Nα,i+1|TSj) =

{
λα
n E (Ti|TSj), if α = j

E [Nα,i] + λα
n E (Ti|TSj), o.w.

Therefore, we are left with computing the conditional
expected values of Ti. The length of Ti is given by the time
needed by the vehicle to travel along the TSP tour plus the
time spent to service demands. Assuming i large enough,
Lemma (IV.1) holds, and we can apply Eq. (1) to estimate
from the quantities Nα,i, α ∈ {1, . . . ,m}, the length of the
TSP tour at iteration i. Conditioning on TSj (when only
demands of type j are serviced), we have

E (Ti|TSj) =
βTSP

√
|E|/n

v
E
(√

Nj,i|TSj
)

+ E
(∑Nj,i

k=1 sj,k|TSj
)

≤
βTSP

√
|E|/n

v

√
E [Nj,i] + E [Nj,i]s̄j ,

where we have: (i) applied Eq. (1), (ii) applied Jensen’s
inequality for concave functions, in the form E

[√
X
]
≤√

E [X], (iii) removed the conditioning on TSj , since the
random variables Nα,i are independent from future events,
and in particular from the choice of the task at iteration
i, and (iv) used the fact that the on-site service times are
independent from the number of outstanding demands.

Collecting the above results (and using the shorthand X̄
to indicate E [X], where X is any random variable), we have

N̄α,i+1 ≤(1− pα)N̄α,i

+
m∑
j=1

pj
λα
n

[
βTSP

√
|E|/n

v

√
N̄j,i + N̄j,is̄j

]
,

(10)

for each α ∈ {1, . . . ,m}. The m inequalities above give a
system of recursive relations that describe an upper bound
on N̄α,i, α ∈ {1, . . . ,m}. The following theorem bounds the
values to which they converge.

Theorem IV.2 (Queue length) In heavy load, for every set
of initial conditions {N̄α,0}α∈{1,...,m}, the trajectories i 7→
N̄α,i, α ∈ {1, . . . ,m}, resulting from Eqs. (10), satisfy

lim sup
i→+∞

N̄α,i ≤
β2

TSP|E|
n3v2(1− %)2

λα
pα

 m∑
j=1

√
λjpj

2

.

Due to space constraints, the proof is omitted and can be
found in [13].

B. Delay of the SQ Policy in Heavy Load
From Theorem IV.2, and using Little’s law, the delay of

α-demands is

Dα(SQ) ≤ n

λα
lim sup
i→+∞

N̄α,i + s̄α

=
β2

TSP|E|
n2v2(1− %)2

1
pα

 m∑
j=1

√
λjpj

2

,



where we neglected s̄α because of the heavy-load assump-
tion.

Thus, the delay (as defined in Eq. (4)) of the SQ policy,
satisfies in heavy load

D(SQ) ≤ β2
TSP|E|

n2v2(1− %)2

m∑
α=1

cα
pα

(
m∑
i=1

√
λipi

)2

. (11)

With this expression we prove our main result on the
performance of the SQ policy.

Theorem IV.3 (SQ policy performance) In heavy load,
the delay of the SQ policy is within a factor 2m2 of
the optimal, independent of the arrival rates λ1, . . . , λm,
coefficients c1, . . . , cm, service times s̄1, . . . , s̄m, and the
number of vehicles n.

Proof: We would like to compare the performance
of this policy with the lower bound. To do this, consider
setting pα := cα for each α ∈ {1, . . . ,m}. Defining B :=
β2

TSP|E|/(n2v2(1− %)2), Eq. (11) can be written as

D(SQ) ≤ Bm

(
m∑
i=1

√
ciλi

)2

.

Next, the lower bound in Eq. (5) is

D∗ ≥ B

2

m∑
i=1

ci + 2
m∑

j=i+1

cj

λi ≥
B

2

m∑
i=1

(ciλi) .

Thus, comparing the upper and lower bounds

D(SQ)
D∗

≤ 2m

(∑m
i=1

√
ciλi

)2∑m
i=1 (ciλi)

. (12)

Letting xi :=
√
ciλi, and x := [x1, . . . , xm], the numerator

of the fraction in Eq. (12) is ‖x‖21, and the denominator
is ‖x‖22. But the one- and two-norms of a vector x ∈ Rm
satisfy ‖x‖1 ≤

√
m‖x‖2. Thus, in heavy load we obtain

D(SQ)
D∗

≤ 2m
(
‖x‖1
‖x‖2

)2

≤ 2m2,

and the policy is a 2m2-factor approximation.

Remark IV.4 (Relation to RP policy in [9]) For m = 2
the SQ policy is within a factor of 8 of the optimal. This
improves on the factor of 12 obtained for the Randomized
Priority (RP) policy in [9]. However, it appears that the RP
policy bound is not tight, since for two classes, simulations
indicate it performs no worse than the SQ policy. �

V. SIMULATIONS AND DISCUSSION

In this section we discuss, through the use of simulations,
the performance of the SQ policy with the probability
assignment pα := cα, α ∈ {1, . . . ,m}. In particular, we
study (i) conditions for which the gap between lower bound
in Eq. (5) and upper bound in Eq. (11) is maximized, (ii) the
suboptimality of the probability assignment pα = cα, and,
finally, (iii) how different the cost function in Eq. (4) may
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Fig. 1. Experimental results for the SQ policy in worst-case conditions;
% = 0.85 and λ1 = 1.

be, in general, for the SQ policy and a policy that services
demands all together irrespective of priorities. Simulations of
the SQ policy were performed using linkern 1 as a solver
to generate approximations to the optimal TSP tour.

A. Unfavorable Conditions for the SQ Policy

One may question if for some sets {λα} and {cα}, α ∈
{1, . . . ,m}, the ratio between upper bound (11) and lower
bound (5) is indeed close to 2m2. The answer is affirmative:
consider, e.g., the case λ1 � λ2 � · · · � λm and c1 �
c2 � · · · � cm, with λαcα = a, for some positive constant
a. Then, the upper bound is equal to Bm3a and the lower
bound is approximately equal to Bma/2, thus their ratio is
(arbitrarily) close to 2m2. Then, we simulated the SQ policy
for the case λm = bλm−1 = b2λm−1 = · · · = bm−1λ1 and
c1 = bc2 = · · · = bm−1cm with b = 2. Fig. 1 shows that
the experimental value of the cost function (averaged over
10 simulation runs) indeed increases proportionally to m2.

B. Suboptimality of the Approximate Probability Assignment

To prove Theorem IV.3 we used the probability assignment

pα := cα for each α ∈ {1, . . . ,m}. (13)

However, one would like to select [p1, . . . , pm] =: p that
minimizes the right-hand side of Eq. (11). The minimization
of the right-hand side of Eq. (11) is a constrained multi-
variable nonlinear optimization problem over p, that is, in
m dimensions. However, for two classes of demands the
optimization is over a single variable p1, and it can be readily
solved. A comparison of optimized upper bound, denoted
upbdopt, with the upper bound obtained using the probability
assignment in Eq. (13), denoted upbdc, is shown in Fig. 2.

For m > 2 we approximate the solution of the optimiza-
tion problem as follows. For each value of m we perform
1000 runs. In each run we randomly generate λ1, . . . , λm,
c1, . . . , cm, and five sets of initial probability assignments
p1, . . . ,p5. From each initial probability assignment we use
a line search to locally optimize the probability assignment.
We take the ratio between upbdc and the least upper bound
upbdlocal opt obtained from the five locally optimized proba-
bility assignments. We also record the maximum variation in

1linkern is written in ANSI C and is freely available for academic
research use at http://www.tsp.gatech.edu//concorde.html.
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Fig. 2. The ratios upbdc/upbdopt for 2 classes of demands.

Number of classes (m) max upbdc/upbdopt Max. % variation

3 1.60 0.12
4 1.51 0.04
5 1.51 0.08
6 1.74 0.02
7 1.88 0.08
8 1.63 0.15

TABLE I
RATIO OF UPPER BOUND WITH pα = cα AND UPPER BOUND WITH

OPTIMIZED p.

the five locally optimized upper bounds. This is summarized
in Table I. The second column shows the largest ratio
obtained over the 1000 runs. The third column shows the
largest % variation in the 1000 runs. The assignment in
Eq. (13) performs within a factor of two of the optimized
assignment. In addition, the optimization appears to converge
to values close to a global optimum since all five random
conditions converge to values that are within ∼ 0.1% of
each other on every run.

C. The Merge Policy

The simplest possible policy for our problem would be
to ignore priorities and service demands all together, by
repeatedly forming TSP tours of outstanding demands (i.e.,
by using the SQ policy as though there were only one class).
We call such a policy the Merge policy. However, the per-
formance of the SQ and the Merge policy can be arbitrarily
far apart. Indeed, by defining the overall arrival rate Λ :=∑m
α=1 λα and overall mean on-site service S̄ :=

∑m
α=1 s̄α,

and by using the upper bounds in [4], we immediately obtain
as an upper bound for the Merge policy: D(Merge) ≤
β2
TSP|E|Λ

n2v2(1−%)2 . Then, we see that D(Merge)/D(SQ) can be
arbitrarily large by choosing λm � λα and cm � cα,
with α ∈ {1, . . . ,m − 1}. This behavior is confirmed by
experimental results, as depicted in Fig. 3 where we show the
experimental ratios of delays between Merge and SQ policy
(the ratios are averaged values over 10 simulation runs).

VI. CONCLUSIONS

In this paper we studied a dynamic multi-vehicle routing
problem with multiple classes of demands. For every set of
coefficients, we determined a lower bound on the achievable
convex combination of the class delays. We presented the
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Fig. 3. Ratio of experimental delays between Merge policy and SQ policy
as a function of λ2, with m = 2, λ1 = 1, c = 0.995 and % = 0.9.

Separate Queues (SQ) policy and showed that its deviation
from the lower bound depends only on the number of the
classes. We believe that there is room for improvement in
the lower bound, and thus the SQ policy’s performance may
be significantly better than is indicated by its deviation from
the current lower bound. Thus, our main thrust of future
work will be in trying to raise the lower bound. We are also
interested in combining the aspects of multi-class vehicle
routing with problems in which demands require teams of
vehicles for their service, and in extending our results to
the case of non-uniform demand densities (possibly class
dependent).
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