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Persistent Robotic Tasks:
Monitoring and Sweeping in Changing Environments

Stephen L. Smith Mac Schwager Daniela Rus

Abstract—We present controllers that enable mobile robots
to persistently monitor or sweep a changing environment. The
environment is modeled as a field defined over a finite set of
locations. The field grows in locations that are not within range
of a robot, and decreases in locations that are within range of a
robot. We assume that the robots travel on given closed paths.
The speed of each robot along its path is controlled to prevent the
field from growing unbounded at any location. We consider the
space of speed controllers that are parametrized by a finite set of
basis functions. For a single robot, we develop a linear program
that computes a speed controller in this space to keep the field
bounded, if such a controller exists. Another linear program
is derived to compute the speed controller that minimizes the
maximum field value over the environment. We extend our linear
program formulation to develop a multi-robot controller that
keeps the field bounded. We characterize, both theoretically and
in simulation, the robustness of the controllers to modeling errors,
and to stochasticity in the environment.

I. INTRODUCTION

In this paper we treat the problem of controlling robots
to perpetually act in a changing environment, for example to
clean an environment where material is constantly collecting,
or to monitor an environment where uncertainty is continually
growing. Each robot has only a small footprint over which to
act (e.g. to sweep or to sense). The difficulty is in controlling
the robots to move so that their footprints visit all points in the
environment regularly, spending more time in those locations
where the environment changes quickly, without neglecting
the locations where it changes more slowly. This scenario is
distinct from most other sweeping and monitoring scenarios
in the literature because the task cannot be “completed.”
That is to say, the robots must continually move to satisfy
the objective. We consider the situation in which robots are
constrained to move on fixed paths, along which we must
control their speed. We consider both the single robot and
multi-robot cases. Figure 1 shows three robots monitoring an
environment using controllers designed with our method.

We model the changing environment with a scalar valued
function defined over a finite set of points, which we call the
accumulation function. The function behaves analogously to
dust accumulating over a floor. When a robot’s footprint is not
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Fig. 1: A persistent monitoring task using three robots with heterogeneous,
limited range sensors. The surface shows the accumulation function, indicating
the quantity of material to be removed in a cleaning application, or the
uncertainty at each point in a sensing application. The accumulation function
grows when a robot’s footprint is not over it, and decreases when the footprint
is over it. Each robot controls its speed along its prescribed path so as to keep
the surface as low as possible everywhere.

over a point in the environment, the accumulation function
grows at that point at a constant rate, as if the density of
dust were increasing at that point. When a robot’s footprint
is over the point, the accumulation function decreases at a
constant rate, as if the dust were being vacuumed by the
robot, thereby decreasing the density of dust. The rates of
growth and decrease can be different at different points in the
environment. This is a general model of a non-negative scalar
quantity accumulating at a set of points, where the growth and
decrease of the quantity is linear in time.

This model is applicable to situations in which the task
of the robot is to remove material that is collecting in
the environment, for example cleaning up oil in the ocean
around a leaking well [2], vacuuming dirt from the floor
of a building [3], or tending to produce in an agricultural
field [4]. It is also applicable to monitoring scenarios in which
the state of the environment changes at each point, and we
want to maintain up-to-date knowledge of this changing state.
Some examples include monitoring temperature, salinity, or
chlorophyll in the ocean [5], maintaining estimates of coral
reef health [6], or monitoring traffic congestion over a city [7].
These applications are all alike in that they are defined by
the accumulation of a non-negative scalar quantity (oil, dirt,
produce, or uncertainty). While these quantities may accumu-
late in a nonlinear fashion, our model gives a linear-in-time
approximation to their accumulation. We assume that estimates



2

of the parameters of the linear model are known either from
the physics of the environment, from a human expert, or
from an initial survey of the environment. Furthermore we
show analytically and in simulation that our controllers are
robust to significant model errors. These applications also
share the property that they can never be completed, because
the accumulation function is always growing. If the robot
were to stop moving, the oil would collect beyond acceptable
levels, or the knowledge of the ocean temperature would
become unacceptably outdated. For this reason we call these
applications persistent tasks.

Ideally, we would optimize the full trajectory of each robot
to optimally perform for a persistent task. However, obtaining
performance guarantees for this problem is very difficult, as
even the path planning component is NP-hard [8]. For this rea-
son, we consider that each robot’s path is pre-planned, and we
focus on controlling the speed of each robot along its path. The
concept of decoupling path planning from speed control is a
well-established technique for dealing with complex trajectory
planning problems [9]. Methods for computing efficient paths
have been developed in our recent work [10]. Furthermore,
a particular path may be required in certain applications. An
example is ocean sampling, where paths are commonly pre-
specified by oceanographers [5]. In the case of autonomous
aircraft, they may be constrained to fly along a particular path
to stay away from commercial air traffic, or to avoid being
detected by an adversary. Even in the case of vacuuming the
floor of a building, the robots may be required to stay along
a prescribed path so as not to interfere with foot traffic.

A. Contributions

Our approach to the problem is to represent the space of all
possible speed controllers with a finite set of basis functions,
where each possible speed controller is a linear combination of
those basis functions. A rich class of controllers can be repre-
sented in this way. Using this representation as our foundation,
the main contributions of this paper are the following.

(i) We formally introduce the idea of persistent tasks for
robots in changing environments, and propose a tractable
model for designing robot controllers.

(ii) Considering the space of speed controllers parametrized
by a finite set of basis functions, we formulate a linear
program (LP) whose solution is a speed controller which
guarantees that the accumulation function eventually
falls below, and remains below, a known bound every-
where. If the LP is infeasible, then there is no controller
in the space that will keep the accumulation function
bounded.

(iii) We formulate an LP whose solution is the optimal
(within the set spanned by our basis functions) speed
controller—that which eventually minimizes the maxi-
mum of the accumulation function over all locations.

(iv) We generalize to the multi-robot case. We find an LP
whose solution is a set of controllers which guarantee
that the accumulation function falls below, and stays
below, a known bound. Although the LP is solved
in a centralized fashion, the resulting controllers are

decentralized in that they do not require communication
between robots.

We do not find the optimal controller for the multi-robot case,
however, as it appears that this controller cannot be found
as the solution to an LP. We demonstrate the performance
of the controllers in numerical simulations, and show both
theoretically and in simulation that they are robust to stochastic
and deterministic errors in the environment model, and to
unmodeled robot vehicle dynamics.

It is desirable to cast our speed control problem as an
LP since LPs can be solved efficiently with off-the-shelf
solvers [11]. This is enabled by our basis function represen-
tation. The use of basis functions is a common, and powerful
method for function approximation [12], and is frequently
used in areas such as compressive sampling [13], adaptive
control [14], and machine learning [15]. Our LP formulations
also incorporate both maximum and minimum limits on the
robot’s speed, which can be different at different points on
the path. This is important because we may want a robot not
to exceed a certain speed around a sharp turn, for example,
while it can go much faster on a long straightaway. This paper
expands on our preliminary work [1] by providing rigorous
proofs for all results, by considering the multi-robot problem,
and by studying the robustness of the controllers.

Additionally, in [16], we have implemented these speed
controllers for groups of ground robots and for groups of aerial
robots, although we do not discuss the results here.

B. Related Work
Our work is related to the large body of existing research

on environmental monitoring, sensor sweep coverage, lawn
mowing and milling, and patrolling. In the environmental
monitoring literature (also called objective analysis in mete-
orological research [17] and Kriging in geological research
[18]), authors often use a probabilistic model of the environ-
ment, and estimate the state of that model using a Kalman-
like filter. Then robots are controlled so as to maximize a
metric on the quality of the state estimate. For example, the
work in [19] controls robots to move in the direction of the
gradient of mutual information. More recently, the authors of
[20] and [21] control vehicles to decrease the variance of their
estimate of the state of the environment. This is accomplished
in a distributed way by using average consensus estimators
to propagate information among the robots. Similarly, [22]
proposes a gradient based controller to decrease the variance
of the estimate error in a time changing environment. In [23]
sensing robots are coordinated to move in a formation along
level curves of the environmental field. In [24] the authors find
optimal trajectories over a finite horizon if the environmental
model satisfies a certain spatial separation property. Also, in
[25] the authors solve a dynamic program (DP) over a finite
horizon to find the trajectory of a robot to minimize the
variance of the estimate of the environment, and a similar
DP approach was employed in [26] over short time horizons.
Many other works exist in this vein.

Although these works are well-motivated by the uncon-
tested successes of Kalman filtering and Kriging in real-
world estimation applications, they suffer from the fact that
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planning optimal trajectories under these models requires the
solution of an intractable dynamic program, even for a static
environment. One must resort to myopic methods, such as
gradient descent (as in [19], [20], [21], [23], [22]), or solve
the DP approximately over a finite time horizon (as in [24],
[25], [26]). Although these methods have great appeal from
an estimation point of view, little can be proved about the
comparative performance of the control strategies employed in
these works. The approach we take in this paper circumvents
the question of estimation by formulating a new model of
growing uncertainty in the environment. Under this model,
we can solve the speed planning problem over infinite time,
while maintaining guaranteed levels of uncertainty in a time-
changing environment. Thus we have used a less sophisticated
environment model in order to obtain stronger results on the
control strategy. Because our model is based on the analogy
of dust collecting in an environment, we also solve infinite
horizon sweeping problems with the same method.

Our problem in this paper is also related to sweep coverage,
or lawn mowing and milling problems, in which robots with
finite sensor footprints move over an environment so that every
point in the environment is visited at least once by a robot.
Lawn mowing and milling has been treated in [8] and other
works. Sweep coverage has recently been studied in [27],
and in [28] efficient sweep coverage algorithms are proposed
for ant robots. A survey of sweep coverage is given in [29].
Our problem is significantly different from these because our
environment is dynamic, thereby requiring continual re-milling
or re-sweeping. A different notion of persistent surveillance
has been considered in [30] and [31], where a persistent task
is defined as one whose completion takes much longer than the
life of a robot. While the terminology is similar, our problem is
more concerned with the task (sweeping or monitoring) itself
than with power requirements of individual robots.

A problem more closely related to ours is that of pa-
trolling [32], [33], where an environment must be continually
surveyed by a group of robots such that each point is visited
with equal frequency. Similarly, in [34] vehicles must repeat-
edly visit the cells of a gridded environment. Also, continual
perimeter patrolling is addressed in [35]. In another related
work, a region is persistently covered in [36] by controlling
robots to move at constant speed along predefined paths. Our
work is different from these, however, in that we treat the sit-
uation in which different parts of the environment may require
different levels of attention. This is a significant difference as it
induces a difficult resource trade-off problem as one typically
finds in queuing theory [37], or dynamic vehicle routing [38],
[39]. In [40], the authors consider unequal frequency of visits
in a gridded environment, but they control the robots using a
greedy method that does not have performance guarantees.

Indeed, our problem can be seen as a dynamic vehicle
routing problem with some unique features. Most importantly,
we control the speed of the robots along a pre-planned path,
whereas the typical dynamic vehicle routing problem considers
planning a path for vehicles that move at constant speed. Also,
in our case all the points under a robot’s footprint are serviced
simultaneously, whereas typically robots service one point at a
time in dynamic vehicle routing. Finally, in our case servicing

a point takes an amount of time proportional to the size of the
accumulation function at that point, whereas the service time
of points in dynamic vehicle routing is typically independent
of that point’s wait-time.

The paper is organized as follows. In Section II we set up
the problem and define some basic notions. In Section III two
LPs are formulated, one of which gives a stabilizing controller,
and the other one an optimal controller. Multiple robots are
addressed in Section IV. The performance and robustness of
the controllers are illustrated in simulations in Section V.
Finally, Section VI gives conclusions and extensions.

II. PROBLEM FORMULATION AND STABILITY NOTIONS

In this section we formalize persistent tasks, introduce the
notion of a field stabilizing controller, and provide necessary
and sufficient conditions for field stability.

A. Persistent Tasks

Consider a compact environment1 E ⊂ R2, and a finite set of
points of interest Q ⊆ E . The environment contains a closed
curve γ : [0, 1] → R2, where γ(0) = γ(1). (See Figure 2
for an illustration.) The curve is parametrized by θ ∈ [0, 1],
and we assume without loss of generality that θ is the arc-
length parametrization. The environment also contains a single
robot (we will generalize to multiple robots in Section IV)
whose motion is constrained along the path γ. The robot’s
position at a time t can be described by θ(t), its position
along the curve γ. The robot is equipped with a sensor with
finite footprint B(θ) ⊂ E (for example, the footprint could
be a disk of radius r centered at the robot’s position).2 Our
objective is to control the speed v of the robot along the curve.
We assume that for each point θ on the curve, the maximum
possible robot speed is vmax(θ) and the minimum robot speed
is vmin(θ) > 0. This allows us to express constraints on the
robot speed at different points on the curve. For example, for
safety considerations, the robot may be required to move more
slowly in certain areas of the environment, or on highly curved
sections of the path. To summarize, the robot is described by
the triple R := (B, vmin, vmax).

A time-varying field Z : Q × R≥0 → R≥0, which we call
the accumulation function, is defined on the points of interest
Q. This field may describe a physical quantity, such as the
amount of oil on the surface of a body of water. Alternatively,
the field may describe the robot’s uncertainty about the state
of each point of interest. We assume that at each point q ∈ Q,
the field Z increases (or is produced) at a constant rate p(q).
When the robot footprint is covering q, it consumes Z at a
constant rate c(q), so that when a point q is covered, the net
rate of decrease is p(q) − c(q). Thus, Z evolves according
to the following differential equation (with initial conditions

1The results in this paper generalize directly to Rd, d > 0, but we
concentrate on R2 because of its relevance to real-world scenarios.

2For a ground robot or surface vessel, the footprint may be the robot’s field
of view, or its cleaning surface. For a UAV flying at constant altitude over
a 2D environment, the footprint could give the portion of the environment
viewable by the robot.
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Fig. 2: An illustration of a curve γ followed by the robot. The robot is located
at θ and has footprint B(θ). The set F (q) of robot positions θ for which the
footprint covers q are shown as thick grey segments of the curve.

Z(q, 0) and θ(0)):

Ż(q, t) =


p(q), if q /∈ B

(
θ(t)

)
,

p(q)− c(q), if q ∈ B
(
θ(t)

)
and Z(q, t) > 0,

0, if q ∈ B
(
θ(t)

)
and Z(q, t) = 0,

(1)
where for each q ∈ Q, we have c(q) > p(q) > 0. Note
that this is a general equation for the evolution of a non-
negative scalar quantity that can grow or decrease linearly
in time at a set of points. We make no assumptions as to
the relation of the accumulation at different points based on
spatial proximity. In this respect our model is less restrictive
than typical spatial process models such as Gaussian processes,
spatial splines, or basis function representations. The main
limitation of the model is linearity in time; a completely
general process may accumulate in a temporally nonlinear
fashion. However our model can be viewed as a first order
approximation to processes that accumulate nonlinearly in
time. Furthermore, the precision of the model is not critical
because we show both analytically and in simulation that our
controllers are robust to significant modeling errors.

In this paper, we assume that we know the model parameters
p(q) and c(q). It is reasonable to assume knowledge of c(q)
since it pertains to the performance of the robot. For example,
in an oil cleanup application, the consumption rate of oil of the
robot can be measured in a laboratory environment or in field
trials prior to control design. As for the production rate, p(q),
this must be estimated from the physics of the environment,
from a human expert (e.g. an oil mining engineer in the case
of an oil well leak), or it can be measured in a preliminary
survey of the environment. However, as mentioned above, the
accuracy of the model is not crucial due to the robustness of
our method with respect to errors in p(q). With this notation,
we can now formally define a persistent task.

Definition II.1 (Persistent Tasks). A persistent task is a tuple
(R, γ,Q, p, c), where R is the robot model, γ is the curve
followed by the robot, Q is the set of points of interest, and p
and c are the production and consumption rates of the field,
respectively.

In general, for a given persistent task, the commanded
speed v could depend on the current position θ, the field

Z, the initial conditions θ(0) and Z(q, 0), and time t. Thus,
defining the set of initial conditions as IC := (θ(0), Z(q, 0)), a
general controller has the form v(θ, Z, IC, t). For the reader’s
convenience, the notation used in this paper is summarized in
Table I.

B. Field Stability and Feasibility
In this section we formalize the problem of stabilizing the

field in a persistent task. As a first consideration, a suitable
controller should keep the field bounded everywhere, inde-
pendent of the initial conditions. This motivates the following
definition of stability.

Definition II.2 (Field Stabilizing Controller). A speed con-
troller field stabilizes a persistent task if the field is always
eventually bounded, independent of initial conditions. That is,
if there exists a Zmax < +∞ such that for every q ∈ Q and
initial condition Z(q, 0) and θ(0), we have

lim sup
t→+∞

Z(q, t) ≤ Zmax.

Note that in this definition of stability, for every initial
condition, the field eventually enters the interval [0, Zmax].

There are some persistent tasks for which no controller is
field stabilizing. This motivates the notion of feasibility.

Definition II.3 (Feasible Persistent Task). A persistent task is
feasible if there exists a field stabilizing speed controller.

As stated above, for a given persistent task, a general speed
controller can be written as v(θ, Z, IC, t). However, in the
remainder of the paper we will focus on a small subset of
speed controllers which we call periodic position-feedback
controllers. In these controllers, the speed only depends on the
robot’s current position θ ∈ [0, 1]. The controllers are periodic
in the sense that the speed at a point θ is the same on each
cycle of the path. The controller can be written as

v : [0, 1]→ R>0,

where each θ ∈ [0, 1] is mapped to a speed v(θ) satisfying the
bounds vmin(θ) ≤ v(θ) ≤ vmax(θ). These controllers have the
advantage that they do not require information on the current
state of the field Z, only its model parameters p(q) and c(q).
While it may seem restrictive to limit our controllers to this
special form, the following result shows that it is not.

Proposition II.4 (Periodic Position-Feedback Controllers). If
a persistent task can be stabilized by a general controller
v(θ, Z, IC, t), then it can be stabilized by a periodic position-
feedback controller v(θ).

The proof of Proposition II.4 is given in Appendix A, and
relies on the statement and proof of the upcoming result in
Lemma II.5. Therefore, we encourage the reader to postpone
reading the proof until after Lemma II.5.

We will now investigate conditions for a controller to be
field stabilizing and for a persistent task to be feasible. Let us
define a function which maps each point q ∈ Q, to the curve
positions θ for which q is covered by the robot footprint. To
this end, we define

F (q) := {θ ∈ [0, 1] | q ∈ B(θ)}.
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An illustration of the curve, the robot footprint, and the set
F (q) is shown in Figure 2. (In Section V we discuss how this
set can be computed in practice.)

Given a controller θ 7→ v(θ), we define two quantities: 1)
the cycle time, or period, T , and 2) the coverage time per
cycle τ(q). Since v(θ) > 0 for all θ, the robot completes one
full cycle of the closed curve in time

T :=

∫ 1

0

1

v(θ)
dθ. (2)

During each cycle, the robot’s footprint is covering the point
q only when θ(t) ∈ F (q). Thus the point q is covered for

τ(q) :=

∫
F (q)

1

v(θ)
dθ, (3)

time units during each complete cycle.
With these definitions we can give a necessary and sufficient

condition for a controller to stabilize a persistent task. In
Section III, we develop a method for testing if this condition
can be satisfied by a speed controller.

Lemma II.5 (Stability condition). Given a persistent task, a
controller v(θ) is field stabilizing if and only if

c(q)

∫
F (q)

1

v(θ)
dθ > p(q)

∫ 1

0

1

v(θ)
dθ (4)

for every q ∈ Q. Applying the definitions in (2) and (3), the
condition can be expressed as τ(q) >

(
p(q)/c(q)

)
T .

The lemma has a simple intuition. For stability, the field
consumption per cycle must exceed the field production per
cycle, for each point q ∈ Q. We now prove the result.

Proof: Consider a point q ∈ Q, and the set of curve
positions F (q) for which q is covered by the robot footprint.
Given the speed controller v, we can compute the cycle time
T in (2). Then, let us consider the change in the field from
Z(q, t) to Z(q, t+ T ), where t ≥ 0.

Define an indicator function I : [0, 1] × Q → {0, 1} as
I(θ,q) = 1 for θ ∈ F (q) and 0 otherwise. Then, from (1) we
have that

Ż(q, t) ≥ p(q)− c(q)I(θ(t),q),

for all values of Z(q, t), with equality if Z(q, t) > 0.
Integrating the above expression over [t, t+ T ] we see that

Z(q, t+ T )− Z(q, t) ≥ p(q)T − c(q)

∫ t+T

t

I(θ(τ),q)dτ

= p(q)T − c(q)τ(q), (5)

where τ(q) is defined in (3), and the equality follows from the
fact that I(θ(t),q) is simply an indicator function on whether
or not the footprint is covering q at a given time. From (5)
we see that for the field to be eventually bounded by some
Zmax for all initial conditions Z(q, 0), we require that τ(q) >
p(q)/c(q)T for all q ∈ Q.

To see that the condition is also sufficient, suppose that
τ(q) > p(q)/c(q)T . Then there exists ε > 0 such that
p(q)T − c(q)τ(q) = −ε. If Z(q, t) >

(
c(q) − p(q)

)
T , then

the field at the point q ∈ Q is strictly positive over the entire
interval [t, t+ T ], implying that

Z(q, t+ T ) = Z(q, t)− ε.
Thus, from every initial condition, Z(q, t) moves below(
c(q)−p(q)

)
T . Additionally, note that for each t̄ in the inter-

val [t, t+T ], we trivially have that Z(q, t̄) ≤ Z(q, t)+p(q)T .
Thus, we have that there exists a finite time t̄ such that for all
t ≥ t̄,

Z(q, t) ≤
(
c(q)− p(q)

)
T + p(q)T = c(q)T.

Since Q is finite, there exists a single ε > 0 such that for
every point q ∈ Q we have τ(q) − p(q)/c(q)T > ε. Hence,
letting Zmax = maxq∈Q c(q)T , we see that Z is stable for all
q, completing the proof.

In the following sections we will address two problems,
determining a field stabilizing controller, and determining a
minimizing controller, defined as follows:

Problem II.6 (Persistent Task Metrics). Given a persis-
tent task, determine a periodic position-feedback controller
v : [0, 1] → R>0 that satisfies the speed constraints (i.e.,
v(θ) ∈

[
vmin(θ), vmax(θ)

]
for all θ ∈ [0, 1]), and

(i) is field stabilizing; or
(ii) minimizes the maximum steady-state field H(v):

H(v) := max
q∈Q

(
lim sup
t→+∞

Z(q, t)

)
.

In Section III we will show that by writing the speed
controller in terms of a set of basis functions, problems (i)
and (ii) can be solved using linear programs. In Section IV
we will solve problem (i) for multiple robots.

III. SINGLE ROBOT SPEED CONTROLLERS:
STABILITY AND OPTIMALITY

In this section we focus on the case in which the region
of interest Q consists of a finite set {q1, . . . ,qm}. These m
locations could be specific regions of interest, or they could
be a discrete approximation of the continuous space obtained
by, for example, laying a grid down on the environment. In
Section V we will show examples of both scenarios. Our two
main results are given in Theorems III.1 and III.8, which show
that a field stabilizing controller, and a controller minimizing
H(v), can each be found by solving an appropriate linear
program.

To begin, it will be more convenient to consider the recipro-
cal speed controller v−1(θ) := 1/v(θ), with its corresponding
constraints

1

vmax(θ)
≤ v−1(θ) ≤ 1

vmin(θ)
.

Now, our approach is to consider a finite set of basis functions
{β1(θ), . . . , βn(θ)}. Example basis functions include (a finite
subset of) the Fourier basis or Gaussian basis [12]. In what
follows we will use rectangular functions as the basis:

βj(θ) =

{
1, if θ ∈ [(j − 1)/n, j/n)

0, otherwise,
(6)



6

for each j ∈ {1, . . . , n}. This basis, which provides a piece-
wise constant approximation to a curve, has the advantage that
we will easily be able to incorporate the speed constraints
vmin(θ) and vmax(θ) into the controller.

Then let us consider reciprocal speed controllers of the form

v−1(θ) =

n∑
j=1

αjβj(θ), (7)

where α1, . . . , αn ∈ R are free parameters that we will use
to optimize the speed controller. A rich class of functions
can be represented as a finite linear combination of basis
functions, though not all functions can be represented this
way. Limiting our speed controller to a linear parametrization
allows us to find an optimal controller within that class, while
preserving enough generality to give complex solutions that
would be difficult to find in an ad hoc manner. In the following
subsection we will consider the problem of synthesizing a field
stabilizing controller.

A. Synthesis of a Field Stabilizing Controller

In this section we will show that a field stabilizing speed
controller of the form (7) can be found through the solution of
a linear program. This result is summarized in Theorem III.1.
We remind the reader that a summary of the mathematical
symbols and their definitions is shown in Table I.

To begin, let us consider reciprocal speed controllers in
the form of (7). Then for qi ∈ Q, the stability condition in
Lemma II.5 becomes

n∑
j=1

αj

∫
F (qi)

βj(θ)dθ >
p(qi)

c(qi)

n∑
j=1

αj

∫ 1

0

βj(θ)dθ

Rearranging, we get
n∑
j=1

αjK(qi, βj) > 0,

where we have defined

K(qi, βj) :=

∫
F (qi)

βj(θ)dθ −
p(qi)

c(qi)

∫ 1

0

βj(θ)dθ. (8)

Finally, to satisfy the speed constraints we have that

1

vmax(θ)
≤

n∑
j=1

αjβj(θ) ≤
1

vmin(θ)
(9)

For the rectangular basis in (6), the speed constraints become

1

vmax(j)
≤ αj ≤

1

vmin(j)
,

where

vmax(j) = inf
θ∈[(j−1)/n,j/n)

vmax(θ), and

vmin(j) = sup
θ∈[(j−1)/n,j/n)

vmin(θ).

Thus, we obtain the following result.

Theorem III.1 (Existence of a Field Stabilizing Controller).
A persistent task is stabilizable by a speed controller of the
form (7) if and only if the following linear program is feasible:

minimize 0

subject to
n∑
j=1

αjK(qi, βj) > 0 ∀ i ∈ {1, . . . ,m}

1

vmax(j)
≤ αj ≤

1

vmin(j)
, ∀ j ∈ {1, . . . , n},

where K(qi, βj) is defined in (8), and α1, . . . , αn are the
optimization variables.

Hence, we can solve for a field stabilizing controller using
a simple linear program. The program has n variables (one for
each basis function coefficient), and 2n+m constraints (two
for each basis function coefficient, and one for each point
of interest in Q). One can easily solve linear programs with
thousands of variables and constraints [11]. Thus, the problem
of computing a field stabilizing controller can be solved
for finely discretized environments with thousands of basis
functions. Note that in the above lemma, we are only checking
feasibility, and thus the cost function in the optimization is
arbitrary. For simplicity we write the cost as 0.

In Theorem III.1 the cost is set to 0 to highlight the
feasibility constraints. However, in practice, an important
consideration is robustness of the controller to uncertainty
and error in the model of the field evolution, and in the
motion of the robot. Robustness of this type can be achieved
by slightly altering the above optimization to maximize the
stability margin. This is outlined in the following result.

Corollary III.2 (Robustness via Maximum Stability Margin).
The optimization

maximize B
n∑
j=1

αjK(qi, βj) ≥ B ∀ i ∈ {1, . . . ,m}

1

vmax(j)
≤ αj ≤

1

vmin(j)
, ∀ j ∈ {1, . . . , n},

where α1, . . . , αn and B are the optimization variables, yields
a speed controller which maximizes the stability margin,
minqi∈Q

∑n
j=1 αjK(qi, βj). The controller

(i) has the largest decrease in Z(qi, t) per cycle, and thus
achieves steady-state in the minimum number of cycles.

(ii) is robust to errors in estimating the field production rate.
If the robot’s estimate of the production rate at a field
point qi ∈ Q is p̄(qi), and the true value is p(qi) ≤
p̄(qi) + ε, then the field is stable provided that for each
qi ∈ Q

ε < B · c(qi)

 n∑
j=1

αj

∫ 1

0

βj(θ)dθ

−1 .
Proof: The first property follows directly from the fact

that
∑n
j=1 αjK(qi, βj) is the amount of decrease of the field

at point qi in one cycle.
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TABLE I: Table of Symbols

Symbol Definition
E the environment.
Q a set of points of interest in the environment E .
q a point of interest in Q.
γ a curve followed by the robot, and parametrized by θ.
v(θ) the speed of the robot along the curve γ.
R the robot model, consisting of minimum and maximum speeds vmin(θ) and vmax(θ), and a robot footprint B(θ).

B(θ) The set of points in the environment covered by the robot’s footprint when positioned at θ.
F (q) the values of θ ∈ [0, 1] along the curve γ for which the point q is covered by the footprint.
Z(q, t) the field (or accumulation function) at point q ∈ Q at time t.
p(q) the rate of production of the field Z at point q.
c(q) the rate of consumption of the field Z when q is covered by the robot footprint.
β(θ) a basis function.
α a basis function coefficient, or parameter.
T the time to complete one full cycle of the curve.
τ(q) the amount of time the point q ∈ Q is covered per cycle.
H(v) cost function (10) giving the steady-state maximum value of Z(q, t)

To see the second property, suppose that the optimization is
based on a production rate p̄(qi) for each qi ∈ Q, but the true
production rate is given by p(qi) := p̄(qi) + ε, where ε > 0.
In solving the optimization above, we obtain a controller with
a stability margin of B > 0. For the true system to be stable
we require that for each qi ∈ Q,

n∑
j=1

αj

∫
F (qi)

βj(θ)dθ >
p̄(qi) + ε

c(qi)

n∑
j=1

αj

∫ 1

0

βj(θ)dθ.

This can be rewritten as
n∑
j=1

αjK(qi, βj) >
ε

c(qi)

n∑
j=1

αj

∫ 1

0

βj(θ)dθ,

from which we see that the true field is stable provided that
ε < Bc(qi)/

(∑n
j=1 αj

∫ 1

0
βj(θ)dθ

)
for each qi ∈ Q.

Remark III.3 (Alternative Basis Functions). The constraints
on αj in (9) ensure that the robot does not violate the speed
limits. In general, one would have such a speed constraint
at every possible position θ ∈ [0, 1], thereby giving an
infinite number of constraints. We have avoided this problem
by using basis functions that are of constant value over an
interval, thus all the speed constraints over the interval can
be represented by a single constraint. However, for a general
set of basis functions the optimization in Theorem III.1 can
not be solved exactly due to these infinite constraints. In this
case, an effective method is simply to enforce the constraints
in (9) for a finite number of θ values, θ1, . . . , θw. Each θi
generates two constraints in the optimization. Then, we can
tighten each constraint by ξ > 0, yielding 1/vmax(θi) + ξ ≤∑
j αjβj(θi) ≤ 1/vmin(θi) − ξ for each i ∈ {1, . . . , w}.

Choosing the number of θ values w as large as possible given
the available computational resources, we can then increase
ξ until the controller satisfies the original speed constraints.
�

B. Synthesis of an Optimal Controller

In this section we look at Problem II.6 (ii), which is to
minimize the maximum value attained by the field over the

finite region of interest Q. That is, for a given persistent task,
our goal is to minimize the following cost function,

H(v) = max
q∈Q

(
lim sup
t→+∞

Z(q, t)

)
(10)

over all possible speed controllers v. At times we will refer to
the maximum steady-state value for a point q using a speed
controller v as

H(q, v) := lim sup
t→+∞

Z(q, t)

Our main result of this section, Theorem III.8, is that H(v)
can be minimized through a linear program. However, we must
first establish intermediate results. First we show that if v is
a field stabilizing controller, then for every initial condition
there exists a finite time t∗ such that Z(q, t) ≤ H(v) for all
t ≥ t∗.
Proposition III.4 (Steady-State Field). Consider a feasible
persistent task and a field stabilizing speed controller. Then,
there is a steady-state field

Z̄ : Q× [0, 1]→ R≥0,

satisfying the following statements for each q ∈ Q:
(i) for every set of initial conditions θ(0) and Z(q, 0), there

exists a time t∗ ≥ 0 such that

Z(q, t) = Z̄
(
q, θ(t)

)
,

for all t ≥ t∗.
(ii) there exists at least one θ ∈ [0, 1] such that Z̄(q, θ) = 0.

From the above result we see that from every initial condi-
tion, the field converges in finite time to a steady-state Z̄(q, θ).
In steady-state, the field Z(q, t) at time t depends only on θ(t)
(and is independent of Z(q, 0)). Each time the robot is located
at θ, the field is given by Z̄(q, θ). Moreover, the result tells us
that in steady-state there is always a robot position at which
the field is reduced to zero. In order to prove Proposition III.4
we begin with the following lemma. Recall that the cycle-time
for a speed controller v is T :=

∫ 1

0
1/v(θ)dθ.



8

Lemma III.5 (Field Reduced to Zero). Consider a feasible
persistent task and a field stabilizing speed controller. For
every q ∈ Q and every set of initial conditions Z(q, 0) and
θ(0), there exists a time t∗ > T such that

Z(q, t∗ + aT ) = 0, (11)

for all non-negative integers a.

Proof: Consider any q ∈ Q, and initial conditions
Z(q, 0) and θ(0), and suppose by way of contradiction that
the speed controller is stable but Z(q, t) > 0 for all t >
T . From Lemma II.5, if the persistent task is stable, then
c(q)τ(q) > p(q)T for all q. Thus, there exists ε > 0 such
that c(q)τ(q)− p(q)T > ε for all q ∈ Q. From the proof of
Lemma II.5, we have that

Z(q, t+ T )− Z(q, t) = p(q)T − c(q)τ(q) = −ε.
Therefore, given Z(q, 0), we have that Z(q, t∗) = 0 for some
finite t∗ > T , a contradiction.

Next we will verify that if Z(q, t∗) = 0 for some t∗ > T ,
then Z(q, t∗ + T ) = 0. To see this, note that the differential
equation (1) is piecewise constant. Given a speed controller
v(θ), the differential equation is time-invariant, and admits
unique solutions.

Based on this, consider two initial conditions for (1),

Z1(q, 0) := Z(q, t∗ − T ) ≥ 0, θ1(0) := θ(t∗ − T ) = θ(t∗),

and
Z2(q, 0) := Z(q, t∗) = 0, θ2(0) := θ(t∗).

Since (1) is time-invariant, we have that Z1(q, T ) =
Z(q, t∗) = 0, and Z2(q, T ) = Z(q, t∗ + T ). In addition,
by uniqueness of solutions, we also know that Z1(q, 0) ≥
Z2(q, 0) implies that Z1(q, T ) ≥ Z2(q, T ). Thus, we have
that Z(q, t∗) = 0 ≥ Z(q, t∗ + T ), proving the desired result.

The previous lemma shows that from every initial condition
there exists a finite time t∗, after which the field at a point
q is reduced to zero in each cycle. With this lemma we can
prove Proposition III.4.

Proof of Proposition III.4: In Lemma III.5 we have
shown that for every set of initial conditions Z(q, 0), θ(0),
there exists at time t∗ > T such that Z(q, t∗ + aT ) = 0 for
all non-negative integers a. Since T is the cycle-time for the
robot, we also know that θ(t∗+aT ) = θ(t∗) for all a. Since (1)
yields unique solutions, (11) uniquely defines Z(q, t) for all
t ≥ t∗, with

Z(q, t+ T ) = Z(q, t) for all t ≥ t∗.
Hence, we can define the steady-state profile Z̄(q, θ) as

Z̄
(
q, θ(t)

)
:= Z(q, t) for all t ∈ [t∗, t∗ + T ).

Finally, we need to verify that Z̄(q, θ) is independent of
initial conditions. To proceed, suppose by way of contradiction
that there are two sets of initial conditions θ1(0), Z1(q, 0),
and θ2(0), Z2(q, 0) which yield different steady-state fields
Z̄1(q, θ) and Z̄2(q, θ). That is, there exists θ̃ such that
Z̄1(q, θ̃) 6= Z̄2(q, θ̃). Without loss of generality, assume that

Z̄1(q, θ̃) > Z̄2(q, θ̃). To obtain a contradiction, we begin
by showing that this implies Z̄1(q, θ) ≥ Z̄2(q, θ) for all
θ. Note that Z1 and Z2 reach their steady-state profiles Z̄1

and Z̄2 in finite time. Thus, there exist times t1, t2 ≥ 0 for
which θ1(t1) = θ2(t2) = θ̃, and Z1(q, t1) = Z̄1(q, θ̃), and
Z2(q, t2) = Z̄2(q, θ̃). Since Z1(q, t1) > Z2(q, t2), and since
Z is a continuous function of time, either i) Z1(q, t1 + t) >
Z2(q, t2 + t) for all t ≥ 0, or ii) there exists a time t̄ > 0 for
which Z1(q, t1 + t̄) = Z2(q, t2 + t̄), which by uniqueness of
solutions implies Z1(q, t1 + t) = Z2(q, t2 + t) for all t ≥ t̄.
Thus, Z1(q, t1 + t) ≥ Z2(q, t2 + t) for all t ≥ 0, implying
that Z̄1(q, θ) ≥ Z̄2(q, θ) for all θ.

From Lemma III.5, there exists a θ̄ for which Z̄1(q, θ̄) =
0. Since, Z̄1(q, θ) ≥ Z̄2(q, θ) for all θ, we must have that
Z̄2(q, θ̄) = 0. However, the value of Z1 and Z2 at θ̄ uniquely
defines Z̄1 and Z̄2 for all θ, implying that Z̄1(q, θ) = Z̄2(q, θ),
a contradiction.

From Proposition III.4 we have shown the existence of
a steady-state field Z̄(q, θ) that is independent of initial
conditions Z(q, 0) and θ(0).

Now, consider a point q ∈ Q and a field stabilizing speed
controller v(θ), and let us solve for its steady-state field
Z̄(q, θ). To begin, let us write F (q) (the set of θ values for
which the point q is covered by the footprint) as a union of
disjoint intervals

F (q) = [x1, y1] ∪ [x2, y2] ∪ · · · ∪ [x`, y`], (12)

where ` is a positive integer, and yk > xk > yk−1 for each
k ∈ {1, . . . , `}.3 Thus, on the intervals [xk, yk] the point q is
covered by the robot footprint, and on the intervals [yk, xk+1],
the point q in uncovered. As an example, in Figure 2, the set
F (q) consists of two intervals, and thus ` = 2. An example
of a speed controller and an example of a set F (q) are shown
in Figures 3a and 3b.

From differential equation (1) we can write

Z̄(q, xk) = Z̄(q, yk−1) + p(q)

∫ xk

yk−1

dθ

v(θ)
(13)

Z̄(q, yk) =

(
Z̄(q, xk) +

(
p(q)− c(q)

) ∫ yk

xk

dθ

v(θ)

)+

,

(14)

where for z ∈ R, we define (z)+ := max{z, 0}. Combining
equations (13) and (14) we see that

Z̄(q, yk) =

(
Z̄(q, yk−1) + p(q)

∫ yk

yk−1

dθ

v(θ)

− c(q)

∫ yk

xk

dθ

v(θ)

)+

. (15)

For each b ∈ {1, . . . , `}, let us define4

Nk−b,k(q) := p(q)

∫ yk

yk−b

dθ

v(θ)
−c(q)

b−1∑
w=0

∫ yk−w

xk−w

dθ

v(θ)
. (16)

3Note that the number of intervals `, and the points x1, . . . , x` and
y1, . . . , y` are a function of q. However, for simplicity of notation, we will
omit writing the explicit dependence.

4In this definition, and in what follows, addition and subtraction in the
indices is performed modulo `. Therefore, if k = 1, then Nk−1,k = N`,1.
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v(θ)

0

(a) A sample reciprocal speed controller v(θ)

1
θ

0

1

2

0

x1 y1 x2 y2 x3 y3

Z(q, θ)

(b) The steady-state field Z̄(q, θ). The set F (q)
consists of three intervals which are shaded on the
θ-axis. The steady-state profile is increasing outside
of F (q) and decreasing inside F (q).

1
θ

0

1

2

0

x1 y1 x2 y2 x3 y3

N1,2

N2,3N3,1

(c) The calculation of quantities N1,2, N2,3 and
N3,1. The values represent the maximum reduction
from yk−1 to yk . Thus, N1,2, N3,1 < 0 while
N2,3 > 0.

Fig. 3: The steady-state field for a point q ∈ Q. The set of θ values for which q is covered is given by F (q) = [x1, y1] ∪ [x2, y2] ∪ [x3, y3]. The field is
produced at a rate p(q) = 3, and is consumed by the footprint at a rate c(q) = 8.5.

Note that we can write

Z̄(q, yk) =
(
Z̄(q, yk−1) +Nk−1,k(q)

)+
.

and, from (15) we have

Z̄(q, yk) ≥ Z̄(q, yk−b) +Nk−b,k(q). (17)

Moreover,

Z̄(q, yk) = Z̄(q, yk−b) +Nk−b,k(q),

if Z(q, yk−j) > 0 for all j ∈ {1, . . . , b− 1}. (18)

Thus, we see that the quantity Nk−b,k(q) gives the maximum
reduction in the field between θ = yk−b and θ = yk. An
example for b = 1 is shown in Figure 3c. With these definition,
we can characterize the steady-state field at the points yk.

Lemma III.6 (Steady-State Field at Points yk). Given a
feasible persistent task and a field stabilizing speed controller,
consider a point q ∈ Q and the set F (q) = ∪`k=1[xk, yk].
Then, for each k ∈ {1, . . . , `} we have

Z̄(q, yk) = max
b∈{0,...,`−1}

Nk−b,k(q),

where Nk−b,k(q) is defined in (16) and Nk,k(q) := 0.

Proof: Let us fix k ∈ {1, . . . , `}. Given a field stabilizing
controller, Proposition III.4 tells us that there exists θ such
that Z̄(q, θ) = 0. It is clear that this must occur for some
θ ∈ F (q). Therefore,

Z̄(q, yj) = 0 for some j ∈ {1, . . . , `}.

Let b be the smallest non-negative integer such that
Z̄(q, yk−b) = 0. By (18) we have

Z̄(q, yk) = Nk−b,k(q) ≥ 0.

If b = 0, then the previous equation simply states that
Z(q, yk) = 0. Now, if Nk−d,k(q) ≤ Nk−b,k(q) for all
d ∈ {0, . . . , `}, then Z̄(q, yk) = maxb∈{0,...,`−1}Nk−b,k(q),
and we have completed the proof.

Suppose by way of contradiction that there is d ∈
{0, . . . , `− 1} for which Nk−d,k(q) > Nk−b,k(q). From (17)
we have

Z̄(q, yk) ≥ Z̄(q, yk−d) +Nk−d,k(q) ≥ Nk−d,k(q),

where the second inequality comes from the fact that
Z̄(q, yk−d) ≥ 0. However Z̄(q, yk) = Nk−b,k(q), implying
that Nk−d,k(q) ≤ Nk−b,k(q), a contradiction.

The above lemma gives the value of the field in steady-state
at each end point yk. The field decreases from xk to yk (since
these are the θ values over which the point q is covered),
and then increases from yk to xk+1. Therefore, the maximum
steady-state value is attained at an end point xk for some k.
For example, in Figure 3b, the maximum is attained at the
point x1. However, the value at xk can be easily computed
from the value at yk−1 using (13):

Z̄(q, xk+1) = max
b∈{0,...,`−1}

Nk−b,k(q) + p(q)

∫ xk+1

yk

dθ

v(θ)
.

From this we obtain the following result.

Lemma III.7 (Steady-State Upper Bound). Given a field
stabilizing speed controller v, the maximum steady-state field
at q ∈ Q (defined in (10)) satisfies

H(q, v) = max
k∈{1,...,`}
b∈{0,...,`−1}

Xk,b(q),

where

Xk,b(q) = p(q)

∫ xk+1

yk−b

dθ

v(θ)
− c(q)

b−1∑
w=0

∫ yk−w

xk−w

dθ

v(θ)
,

and F (q) = ∪`k=1[xk, yk] with yk > xk > yk−1 for each k.

The above lemma provides a closed form expression (albeit
quite complex) for the largest steady-state value of the field.
Thus, consider speed controllers of the form

v−1(θ) =

n∑
j=1

αjβj(θ),
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where β1, . . . , βn are basis functions (e.g., the rectangular
basis). For a finite field Q = {q1, . . . ,qm}, the terms
Nk−b,k(qi) can be written as

Xk,b(qi) =

n∑
j=1

αjXk,b(qi, βj),

where

Xk,b(qi, βj) :=

p(q)

∫ yk

yk−b

βj(θ)dθ − c(q)

b−1∑
w=0

∫ yk−w

xk−w

βj(θ)dθ. (19)

With these definitions we can define a linear program for
minimizing the maximum of the steady-state field. We will
write `(q) to denote the number of disjoint intervals on the
curve γ over which the point q is covered, as defined in (12).

Theorem III.8 (Minimizing the Steady-State Field). Given a
feasible persistent task, the solution to the following linear
program yields a speed controller v of the form (7) that
minimizes the maximum value of the steady-state field H(v).

minimize B

subject to
n∑
j=1

αjXk,b(qi, βj) ≤ B ∀ i ∈ {1, . . . ,m},

k ∈ {1, . . . , `(qi)},
b ∈ {0, . . . , `(qi)− 1}

n∑
j=1

αjK(qi, βj) > 0 ∀ i ∈ {1, . . . ,m}

1

vmax(j)
≤ αj ≤

1

vmin(j)
, ∀ j ∈ {1, . . . , n}.

The optimization variables are αj and B and the quantities
Xk,b(qi, βj) and K(qi, βj) are defined in (19) and (8).

From the above theorem, we can minimize the maximum
value of the field using a linear program. This optimization has
n + 1 variables (n basis function coefficients, and one upper
bound B). The number of constraints is m

∑m
i=1 `(qi)

2+m+
2n. In practice, `(qi) is small compared to n and m, and is
independent of n and m. Thus, for most instances, the linear
program has O(2n+m) constraints.

IV. MULTI-ROBOT SPEED CONTROLLER

In this section we turn to the multi-robot case. We find
that a field stabilizing controller can again be formulated as
the solution of a linear program. Surprisingly, the resulting
multi-robot controller does not rely on direct communication
between the robots. We also show that the optimal controller
(the one that minimizes the steady state field) for multiple
robots cannot be formulated as an LP as in the single robot
case. Finding the optimal multi-robot controller is a subject of
ongoing work.

The multiple robots travel on fixed paths, but those paths
my be different (or they may be the same) and they may
intersect arbitrarily with one another. The robots may have
different consumption rates, footprints, and speed limits. We

do not explicitly deal with collisions in this section, though the
controller we propose can be augmented with existing collision
avoidance strategies. Please see [16] for an example of our
controller implemented on robotic platforms and augmented
with collision avoidance.

We must first modify our notation to accommodate multiple
robots. Consider N robots with closed paths γr : [0, 1]→ R2,
r ∈ {1, . . . , N} where γr and γr′ may intersect with each
other arbitrarily (e.g., they may be the same path, share
some segments, or be disjoint). We again assume that the
parametrization of each curve is an arc-length parametriza-
tion, normalized to unity. Robot r, which traverses path
γr at position θr(t), has a consumption rate cr(q) over a
footprint Br

(
θr(t)

)
, and has a speed controller vr(θr) with

maximum and minimum speed constraints vr,min(θr) and
vr,max(θr), respectively. Let Rr = (Br, vr,min, vr,max) be
the tuple containing the parameters for robot r and redefine
R := (R1, . . . ,RN ) to be the tuple containing all the robots’
tuples of parameters. Also, the set of points θr from which
q is in robot r’s footprint is denoted Fr(q). Furthermore, we
let γ := (γ1, . . . , γN ) and c := (c1, . . . , cN ) be the tuple
of all robot’s paths and all robots’ consumption functions,
respectively. The persistent task with N robots is now written
(R, γ,Q, p, c) as before, and we seek speed controllers vr(θr)
to keep Z(q, t) bounded everywhere, as in Definition II.2.

We make the assumption that when multiple robots’ foot-
prints are over the same point q, their consumption rates are
additive. Specifically, let Nq(t) be the set of robots whose
footprints are over the point q at time t,

Nq(t) := {r | q ∈ Br
(
θr(t)

)
}.

Then the rate of change of the function Z(q, t) is given by

Ż(q, t) =


p(q)−

∑
r∈Nq(t)

cr(q), if Z(q, t) > 0,(
p(q)−

∑
r∈Nq(t)

cr(q)
)+
, if Z(q, t) = 0.

(20)
We can reformulate a stability condition analogous to Lemma
II.5 to suit the multi-robot setting, but we must first establish
the notion of a common period for the speed controllers of
all the robots. Let Tr =

∫ 1

0
v−1r (θ)dθ be the period of robot

r, and let τr(q) =
∫
Fr(q)

v−1r (θ)dθ be the time in that period
that q is in robot r’s footprint. The existence of a common
period rests on the following technical assumption.

Assumption IV.1 (Rational Periods). We assume that the
periods Tr are rational numbers, so that there exist integers
numr and denr such that Tr = numr /denr.

An immediate consequence of Assumption IV.1 is that there
exists a common period T such that T/Tr ∈ N for all r. That
is, each controller executes a whole number of cycles over
the time interval T . Specifically, letting T = ΠN

r=1 numr, we
have T/Tr = denr ΠN

r′=1,r′ 6=r numr′ . Now, we can state the
necessary and sufficient conditions for a field stabilizing multi-
robot controller.

Lemma IV.2 (Multi-Robot Stability Condition). Given a
multi-robot persistent task, the set of controllers θr 7→ vr(θr),
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r ∈ {1, . . . , N} is field stabilizing if and only if
N∑
r=1

τr(q)

Tr
cr(q) > p(q) (21)

for every q ∈ Q, where Tr =
∫ 1

0
v−1r (θ)dθ and τr(q) =∫

Fr(q)
v−1r (θ)dθ.

The lemma states an intuitive extension of Lemma II.5,
which is that the total consumption per cycle must exceed
the total production per cycle at each point q ∈ Q.

Proof: The proof closely follows the proof of Lemma II.5.
Consider the change of Z(q, t) at a point q over any time
interval T , where T is a common period of all the rational
periods Tr, so that T/Tr ∈ N for all r. By integrating (20)
we have that

Z(q, t+ T )− Z(q, t) ≥ Tp(q)−
N∑
r=1

∫ T

t

Ir(τ,q)cr(q)dτ

= Tp(q)−
∑
r=Nq

T/Tr∑
k=1

∫ t+kTr

t+(k−1)Tr

Ir(τ,q)cr(q)dτ

= T
(
p(q)−

N∑
r=1

cr(q)
τr(q)

Tr

)
,

where Ir(t,q) takes the value 1 when q is in the footprint of
robot r and 0 otherwise. To simplify notation, define C(q) :=∑N
r=1 cr(q) and C̄(q) :=

∑N
r=1 cr(q)τr(q)/Tr.

First we prove necessity. In order to reach a contradiction,
assume that the condition in Lemma IV.2 is false, but the
persistent task is stable. Then T

(
p(q)− C̄(q)

)
≥ 0 for some

q, implying Z(q, t + T ) ≥ Z(q, t) for some q and for all t,
which contradicts stability. In particular, for an initial condition
Z(q, 0) > Zmax, Z(q, Tk) > Zmax for all k = 1, . . ..

Now we prove sufficiency. If the condition is satisfied,
there exists some ε > 0 such that T

(
p(q) − C̄(q)

)
= −ε.

Suppose that at some time t and some point q, Z(q, t) >
T
(
C(q) − p(q)

)
(if no such time and point exists, the

persistent task is stable). Then for all times in the interval
τ ∈ [t, t + T ], Z(q, t + τ) > 0, and by (20) we have that
Z(q, t + T ) − Z(q, t) = T

(
p(q) − C̄(q)

)
= −ε. Therefore,

after finitely many periods T , Z(q, t) will become less than
T
(
C(q) − p(q)

)
. Now for a time t and a point q such that

Z(q, t) < T
(
C(q) − p(q)

)
, for all times τ ∈ [t, t + T ] we

have that Z(q, t+τ) ≤ Z(q, t)+p(q)T < TC(q). Therefore,
once Z(q, t) falls below T

(
C(q) − p(q)

)
(which will occur

in finite time), it will never again exceed TC(q). Therefore
the persistent task is stable with Zmax = maxq∈Q TC(q).

Remark IV.3 (Justification of Rational Periods). Assumption
IV.1 is required only for the sake of simplifying the exposition.
The rational numbers are a dense subset of the real numbers,
so for any ε > 0 we can find numr and denr such that
numr /denr ≤ Tr ≤ numr /denr +ε. One could carry the ε
through the analysis to prove our results in general. �

A. Synthesis of Field Stabilizing Multi-Robot Controllers

A field stabilizing controller for the multi-robot case can
again be formulated as the solution of a linear program,

provided that we parametrize the controller using a finite
number of parameters. Our parametrization will be somewhat
different than for the single robot case, however. Because
there are multiple robots, each with its own period, we must
normalize the speed controllers by their periods. We then
represent the periods (actually, the inverse of the periods) as
separate parameters to be optimized. In this way we maintain
the independent periods of the robots while still writing the
optimization over multiple controllers as a single set of linear
constraints.

Define a normalized speed controller v̄r(θr) := Trvr(θr),
and the associated normalized coverage time τ̄r(qi) :=∫
Fr(qi)

v̄−1r (θ)dθ = τr(qi)/Tr. We parametrize v̄−1i as

v̄−1r (θr) =

nr∑
j=1

αrjβrj(θr),

where nr is the number of basis functions for the rth robot,
and αrj ∈ R and βrj : [0, 1] → R≥0 are robot r’s jth
parameter and basis function, respectively. It is useful to
allow robots to have a different number of basis functions,
since they may have paths of different lengths with different
speed limits. Assuming the basis functions are normalized with∫ 1

0
βrj(θ)dθ = 1 for all r and j, then we can enforce that v̄r

is a normalized speed controller by requiring
nr∑
j=1

αrj = 1 ∀ r ∈ {1, . . . , N}.

As before, we could use any number of different basis func-
tions, but here we specifically consider rectangular functions
of the form (6). We also define the frequency for robot r as
fr := 1/Tr, and allow it to be a free parameter, so that

vr(θr) = frv̄r(θr) =
fr∑nr

j=1 αrjβrj(θr)
. (22)

From (21), for the set of controllers to be field stabilizing, we
require

N∑
r=1

cr(qi)

nr∑
j=1

αrj

∫
Fr(qi)

βrj(θ)dθ > p(qi)

for all r ∈ {1, . . . , N} and qi ∈ Q. Thus, defining

Kr(qi, βj) := cr(qi)

∫
Fr(qi)

βrj(θ)dθ, (23)

the stability constraints become
N∑
r=1

nr∑
j=1

αrjKr(qi, βj) > p(qi).

To satisfy the speed constraints, we also require that
v−1r,max(θr) ≤ v−1r (θr) ≤ v−1r,min(θr), which from (22) leads
to

fr
vr,max(θr)

≤
n∑
j=1

αrjβrj(θr) ≤
fr

vr,min(θr)
,

for all θr ∈ [0, 1]. For the rectangular basis functions in (6),
this specializes to fr/vr,min(j) ≤ αrj ≤ fr/vr,min(j) for all
r and j, where
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vr,max(j) := inf
θ∈[(j−1)/nr,j/nr)

vr,max(θr)

and
vr,min(j) := sup

θ∈[(j−1)/nr,j/nr)

vr,min(θr).

This gives a linear set of constraints for stability, which allows
us to state the following theorem.

Theorem IV.4 (Field Stabilizing Multi-Robot Controller). A
persistent task is stabilizable by a set of multi-robot speed
controllers vr(θr), r ∈ {1, . . . , N}, of the form (22) if and
only if the following linear program is feasible:

minimize 0

subject to
N∑
r=1

nr∑
j=1

αrjKr(qi, βj) > p(qi),

∀ i ∈ {1, . . . ,m}
nr∑
j=1

αrj = 1 ∀ r ∈ {1, . . . , N}

fr > 0 ∀ r ∈ {1, . . . , N}
fr

vr,min(j)
≤ αrj ≤

fr
vr,min(j)

∀ j ∈ {1, . . . , nr},

r ∈ {1, . . . , N},
where each αrj and fr is an optimization variable, and
Kr(qi, βj) is defined in (23).

The above linear program has
∑N
r=1 nr +N variables (one

for each basis function coefficient αrj , and one for each
frequency fr), and m +

∑N
r=1 2(nr + 1) constraints. Thus,

if we use n basis functions for each of the N robot speed
controllers, then the number of variables is (n+ 1)N and the
number of constraints is m+2N(n+1). Therefore, the size of
the linear program grows linearly with the number of robots.

Remark IV.5 (Maximizing Stability Margin). As summa-
rized in Corollary III.2, rather than using the trivial cost
function of 0 in the LP in Theorem IV.4, one may wish
to optimize for a meaningful criterion. For example, the
controller that gives the minimum number of common periods
to steady-state can be obtained by maximizing B subject to∑N
r=1

∑nr

j=1 αrjKr(qi, βj) − p(qi) ≥ B ∀ i ∈ {1, . . . ,m},
in addition to the other constraints of Theorem IV.4. �

Remark IV.6 (Minimizing the Steady State Field). The reader
will note that we do not find the speed controller that mini-
mizes the steady state field for the multi-robot case, as was
done for the single robot case. The reason is that the quantities
called Nk−b,k in the single robot case would depend on the
relative positions of the robots in the multiple robot case.
These quantities would have to be enumerated for all possible
relative positions between the multiple robots and there are
infinite such relative positions. Thus the problem cannot be
posed as an LP in the same way as the single robot case. We
are currently investigating alternative methods for finding the
optimal multi-robot controller, such as convex optimization.�

Remark IV.7 (Decentralization and Robot Additions and
Deletions). The execution of our multi-robot controller is
decentralized in the most extreme sense, because each robot’s
controller requires no communication with any other robot.
However, the design of the multi-robot controller using our LP
formulation is not decentralized in that it must be carried out
by a single processor with all information available to it. For
example, a new LP would have to be solved centrally to obtain
new controllers whenever robots join or leave the group,
or when the environment changes. This is not necessarily a
hinderance, however. LPs with thousands of constraints can
be solved in seconds on modern processors, so it is reasonable
to expect a single “leader” robot to recompute the controllers
for all robots and broadcast them to the group. Also, it may
be possible to decentralize the LP in Theorem IV.4 to be
implemented efficiently across the group of robots. This is an
area of ongoing research. �

V. SIMULATIONS

In this section we present simulation results for the single
robot and multi-robot controllers. The purpose of this section
is threefold: (i) to discuss details needed to implement the
speed control optimizations, (ii) to demonstrate how con-
trollers can be computed for both discrete and continuous
fields, and (iii) to explore robustness to modeling errors,
parameter uncertainty, robot tracking errors, and stochastic
field evolution.

The optimization framework was implemented in
MATLAB R©, and the linear programs were solved using
the freely available SeDuMi (Self-Dual-Minimization)
toolbox. To give the readers some feel for the efficiency of
the approach, we report the time to solve each optimization
on a laptop computer with a 2.66 GHz dual core processor
and 4 GB of RAM. The simulations are performed by
discretizing time, and thus converting the field evolution into
a discrete-time evolution. To perform the optimization, we
need a routine for computing the set F (q) for each field point
q ∈ Q. This is done as follows. We initialize a set F (q) for
each point q, and discretize the robot path into a finite set
{θ1, . . . , θn}. For the rectangular basis, this disretization is
naturally given by the set of basis functions. We iteratively
place the robot footprint at each point θi, oriented with the
desired robot heading at that point on the curve, and then add
θi to each set F (q) for which q is covered by the footprint.
By approximating the robot footprint with a polygon, we can
determine if a point lies in the footprint efficiently (this is a
standard problem in computational geometry).

Figure 4 shows a simulation for one ground robot perform-
ing a persistent monitoring task of 10 points (i.e., |Q| = 10).
The environment is a 70 m by 70 m square, and the closed path
has a length of 300 m. For all points we set the consumption
rate c(q) = 1 (in units of (field height)/s). For each yellow
point q we set p(q) = 0.15, and for the single red point we
set p(q) = 0.35. The robot has a circular footprint with a
radius of 12 m, and for all θ the robot has a minimum speed
of vmin = 0.2 m/s and a maximum speed of vmax = 2 m/s.
If the robot were to simply move at constant speed along the
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Fig. 4: An example with a field consisting of 10 points. The field Z(q, t)
at each point is indicated by the area of the disk centered at the point. The
vehicle footprint is a disk. The time sequence of the three snapshots goes from
left to right. The vehicle is moving counter-clockwise around the top half of
the figure eight and clockwise around the bottom half. The time evolution of
the red field point is shown in Figure 5.

path, then 8 of the 10 field points would be unstable. The speed
controller resulting from the optimization in Section III-B is
shown in Figure 5a. A total of 150 rectangular basis functions
were used. The optimization was solved in less than 1/10
of a second. Using the speed controller, the cycle time was
T = 420 s.

The field Z(q, t) for the red (shaded) point in Figure 4, is
shown as a function of time in Figure 5b. One can see that the
field converges in finite time to a periodic cycle. In addition,
the field goes to zero during each cycle. The periodic cycle is
the steady-state as characterized in Section III-B.

In Figure 5c we compare the performance of the optimized
controller of Figure 5a to a constant speed controller and
a greedy controller. The plot shows the maximum value of
the field to time t as a function of t. If the field is stable
under a controller, then its corresponding curve should become
constant. For constant speed controller, in which the robot
moves at maximum speed around the curve, we see that the
field is highly unstable. In the greedy controller the robot
moves at a speed proportional to Zmax(t) − Zmax,ftprnt(t),
where Zmax(t) is the maximum field value at time t, and
Zmax,ftprnt(t) is the maximum field value in the robot’s
footprint at time t. Thus, the robot moves at its minimum
speed when its footprint is covering the point with maximum
field value, and moves a maximum speed when it is covering
points with low field values. This controller performs much
better, but the field is still unstable.

In Figure 6, a simulation is shown for the case when
the entire continuous environment must be monitored by
two aerial robots. For multiple robots we synthesized a field
stabilizing controller by maximizing the stability margin, as
discussed in Remark IV.5. The continuous field is defined over
a 690 m by 690 m square, and was approximated using a
32 × 32 grid. The error introduced in such a discretization
can be rigorously characterized as a function of the spatial
variation of p(q) and c(q), and the robot footprint. Due to
space limitations we omit a more detailed discussion. For
all points q ∈ Q we set the consumption rate c(q) = 1,
and the production function is shown in Figure 7. Robot 1
followed a figure-eight path which has a length of 2630 m,
while robot 2 followed a four-leaf clover path with a length of
2250 m. The footprint for robot 1, the higher (yellow) robot
had a radius of 100 m, and the speed constraints were given
by vmin,1 = 1.5 m/s and vmax,1 = 15 m/s. The footprint

for robot 2, the lower (red) robot, had a radius of 133 m,
and the speed constraints were given by vmin,2 = 2 m/s and
vmax,2 = 20 m/s. The cycle time for robot 1 was T1 = 519 s,
and the cycle time for robot 2 was T2 = 443 s. A total of 150
rectangular basis functions were used for each robot’s speed
controller. The optimization was solved in approximately 10
seconds. A snapshot for a simulation with three robots is
shown in Figure 1. In this case, the green robot flying at a
higher altitude has a square footprint which is oriented with
the robot’s current heading.

A. A Case Study in Robustness

In this subsection we demonstrate how we can compute
a speed controller that exhibits robustness to motion errors,
modeling uncertainty, or stochastic fluctuations. This is impor-
tant since the speed controller is computed offline. It should
be noted, however, that in practice the controller can be
recomputed periodically during the robot’s execution, taking
into account new information about the field evolution.

As shown in Corollary III.2 we can maximize stability
margin of a speed controller. The corollary showed that in
maximizing this metric we obtain some robustness to error. To
explore the robustness properties of this controller, consider
the single robot example in Figure 8. In this example, the
square 665 m by 665 m environment must be monitored by
an aerial robot. We approximated the continuous field using
a 32 × 32 grid. The consumption rate was set to c(q) = 5,
for each field point q ∈ Q. The production rate of the field
was given by the function shown in Figure 7. The maximum
production rate of the field was 0.74 and the average was 0.21.
The robot had a circular footprint with a radius of 133 m, a
minimum speed of vmin = 1.5 m/s and a maximum speed of
vmax = 15 m/s. The path had a cycle length of 4200 m. If
the robot followed the path at constant speed, then 80 of the
points would be unstable.

For the speed controller, we used 280 rectangular basis
functions, and solved the optimization as described in Corol-
lary III.2, resulting in a stability margin of B = 97.8. The
optimization was solved in approximately 10 seconds. The
time for the robot to complete one cycle of the path using this
controller was T = 439 s.

Stochastic field evolution: Now, suppose that we add zero-
mean noise to the production function. Thus, the robot based
its speed controller on the “nominal” production function
p̄(q) (shown in Figure 7), but the actual production function
is p(q, t) = p̄(q) + n(t,q), where n(t,q) is noise. For
the simulation, at each time instant t, and for each point
q ∈ Q, we independently draw n(t,q) uniformly from the
set [−nmax, nmax], where nmax > 0 is the maximum value of
the noise.

The simulations were carried out as follows. We varied the
magnitude of the noise nmax, and studied the maximum value
reached by the field. For each value nmax, we performed 20 tri-
als, and in each trial we recorded the maximum value reached
by the field on a time horizon of 2500 s. In Figure 9, we
display statistics from the 20 independent trials at each noise
level, namely the mean, minimum, and maximum, as well as
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(b) The field Z(q, t) at the red (dark) point.

0 500 1000 1500 2000 2500
0

50

100

150

200

250

300

350

400

time t

m
ax

im
um

 fi
el

d 
va

lu
e 

up
 to

 ti
m

e 
t

 

 

constant
greedy
optimal

(c) Comparison of three controllers.

Fig. 5: The speed controller which minimizes the maximum field value for the setup shown in Figure 4. The minimum speed is vmin = 0.22 m/s and the
maximum speed is vmax = 2 m/s. The middle figure shows the field Z(q, t) for the red (dark) point in Figure 4. The right figure shows the maximum field
value over all points in the interval [0, t] as a function of t for the optimized controller and compares it to a constant speed and a greedy controller.

Fig. 6: An example of using a discretized approximation of a continuous field for two robots. The grid is 32 × 32, and the field Z(q, t) at each point is
shown as the surface. The footprint of the higher robot (yellow) is 4/3 the radius of the footprint of the lower (red) robot. The snapshot sequence goes from
left to right with the left snapshot showing the initial condition of the robots and field.

Fig. 7: The production function p(q) for the simulations in Figures 8 and 6.

the standard deviation. With zero added noise, one can see that
the mean, minimum, and maximum all coincide. As noise is
added to the evolution, the difference between the minimum
and maximum value grows. However, it is interesting to note
that while the performance degrades (i.e., the mean increases
with increasing noise), the system remains stable. Thus, the
simulation demonstrates some of the robustness properties of
the proposed controller.

Parameter errors: We can also consider robustness to

parameter errors. In particular, consider the case where the
robot bases its optimization on a production rate of p̄(q)
(shown in Figure 7), but the actual production rate is given
by p(q) = p̄(q) + ε, where ε > 0 (note that the field
is trivially stable for any ε ≤ 0). By maximizing the sta-
bility margin, we obtain some level of robustness against
this type of parameter uncertainty. The amount of error that
we can tolerate is directly related to the stability margin
B = 97.8, as shown in Corollary III.2. In particular, we obtain
ε < Bc(qi)/

(∑n
j=1 αj

∫ 1

0
βj(θ)dθ

)
= 0.074. We performed

simulations of monitoring task for successively larger values
of ε. From this data, we verified that the field remains stable
for any ε ≤ 0.07. For this example, the average value of p(q)
over all points q is 0.21, and so we can handle uncertainty in
the magnitude of the production rate on the order of 30%.

Tracking error: After running the speed optimization, a
robot has a desired trajectory, consisting of the pre-specified
path and the optimized speed along the path. In practice, this
trajectory will be the input to a tracking controller, which takes
into account the robot dynamics. Since there are inevitably
tracking errors, the stability margin of the controller is needed
to ensure field stability. As an example, we considered a



15

Fig. 8: An example of using a discretized approximation of a continuous field. The field Z(q, t) at each point is shown as the surface. The footprint of the
vehicle is a disk, and the robot’s trajectory is given by the “six leaf” clover. The time sequence of the three snapshots goes from left to right. In the rightmost
snapshot the vehicle has just finished reducing the large peak that forms in the left and center snapshots.
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Fig. 9: The robustness of the speed controller to noise in the production rate.
For each value of noise nmax, the plot shows statistics on the maximum value
reached by the field over 20 independent trials.

unicycle model for an aerial robot. In this model, the robot’s
configuration is given by a heading φ and a position (x, y). The
control inputs are the linear and angular speeds: ẋ = v cosφ,
ẏ = v sinφ, and φ̇ = ω. The linear speed had bounds of
vmin = 1.5 m/s and vmax = 15 m/s, and the angular speed
was upper bounded by 0.5 rad/s. We used the same speed
controller as in the previous two examples (maximizing the
stability margin). For trajectory tracking, we used a dynamic
feedback linearization controller [41]. We chose conservative
controller gains of 0.5 for the proportional and derivative
control in order to accentuate the tracking error. The results
are shown in Figure 10. Due to the stability margin of 97.8, the
field remains stable, even in the presence of this tracking error.
However, in simulation, the maximum field height increased
by about 13% from 268 (as shown for the zero noise case in
Figure 9) to 305.

VI. CONCLUSIONS, EXTENSIONS, AND OPEN PROBLEMS

In this paper we proposed a model for persistent sweeping
and monitoring tasks and derived controllers for robots to
accomplish those tasks. We specifically considered the case
in which robots are confined to pre-specified, closed paths,
along which their speed must be controlled. We formulated
an LP whose solution gives speed controllers that keep the
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Fig. 10: The robustness of the speed controller to tracking errors. The left
figure shows the absolute tracking error in meters. In the right figure, the
solid line is the desired path, and the dashed line is the path executed by the
unicycle robot.

accumulation bounded everywhere in the environment for
single robots and multiple robots. For single robots, we also
formulated a different LP to give the optimal controller—the
one that keeps the accumulation function as low as possible
everywhere. We see this as a solution to one kind of persistent
task for robots, but many open problems remain.

A. Extensions and Open Problems

We are interested in the general problem of solving per-
sistent tasks, which we broadly define as tasks that require
perpetual attention by a robotic agent. The main objective
of a persistent task is to maintain the accumulation of some
undesirable quantity at as low a value as possible over an en-
vironment using one or multiple robotic agents. The difficulty
of this problem depends on what is known by the robots, and
precisely what the robots’ capabilities are. Let us enumerate
several possible dimensions for extension on this problem.
• Trajectory vs. Path vs. Speed One might consider

controlling only the speed over a prescribed path, as we
have done in this paper, only the path with a prescribed
speed, or complete trajectory planning.

• Single vs. Multiple Robots There may be only one
robot, or there may be a team of robots, potentially with
heterogeneous capabilities and constraints.
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• Known vs. Unknown Production Rate The robot may
know (or be able to sense) the production rate, or it may
have to learn it over time from measurements.

• Constant vs. Time-Varying Production Rate The pro-
duction rate may be constant in time, or it may change
indicating a change in the environment’s dynamics.

• Finite vs. Continuum Points of Interest The points of
interest in the environment may be viewed as a finite set
of discrete points over which to control the accumulation,
or as an infinite continuum in which we would like to
control the accumulation at every point.

In this paper we specifically considered speed control over a
prescribed path of both single and multiple robots in a finite
environment with a known, constant production rate.

One interesting direction in which to expand this work
is to consider planning full trajectories for robots to carry
out persistent tasks. The high dimensionality of the space of
possible trajectories makes this a difficult problem. However,
if the robot’s path is limited by some inherent constraints,
then this problem may admit solutions with guarantees. For
example, underwater gliders are commonly constrained to take
piecewise linear paths, which can be parametrized with a low
number of parameters. Another direction of extension is to
have a robot solve the LP for its controller on-line. This would
be useful if, for example the production rate is not known
before hand, but can be sensed over the sensor footprint of the
robot. Likewise if the production rate changes in time, it would
be useful for a robot to be able to adjust its controller on-line
to accommodate these changes. A promising approach for this
is to repeatedly solve for the LP in a receding horizon fashion,
using newly acquired information to update the model of the
field evolution. We continue to study problems of persistent
tasks for robots in these and other directions.

APPENDIX
PERIODIC POSITION-FEEDBACK CONTROLLERS

In this appendix we will prove Proposition II.4 on periodic
position-feedback controllers.

Consider a general speed controller (Z, IC, t) 7→
v(θ, Z, IC, t) where IC := (Z(q, 0), θ(0)) is the set of initial
conditions. Since vmin(θ) > 0 for all θ ∈ [0, 1], the value
of θ strictly monotonically increases from 0 to 1 for every
valid controller (once it reaches 1 it then wraps around to
0). In addition, the evolution of Z is deterministic and is
uniquely determined by the initial conditions and the speed
controller, as given in (1). Because of this, every controller of
the form v(θ, Z, IC, t) can be written as an infinite sequence of
controllers v1(θ, IC), v2(θ, IC), . . ., where controller vk(θ, IC)
is the controller used during the kth period (or cycle).

With the above discussion in place, we are now ready to
prove Proposition II.4

Proof of Proposition II.4: To begin, consider a feasible
persistent monitoring task and a field stabilizing controller of
the form v(θ, Z, IC, t), where IC := (Z(q, 0), θ(0)). Without
loss of generality, we can assume that θ(0) := 0. From
the discussion above, we can write the general controller
as a sequence of controllers v1(θ, IC), v2(θ, IC), . . ., where

controller vk(θ, IC), k ∈ N is used on the kth period (or
cycle).

Since the controller is stable, there exists a Zmax

such that for every set of initial conditions IC, we have
lim supt→+∞ Z(q, t) ≤ Zmax. Let us fix ε > 0 and fix the
initial conditions to a set of values IC such that Z(q, 0) >
Zmax + ε for all q ∈ Q. Now, we will prove the result by
constructing a periodic position-feedback controller.

Let t1 = 0 and define

tk = tk−1 +

∫ 1

0

1

vk(θ, IC)
dθ,

for each integer k ≥ 2. Thus, controller vk is used during the
time interval [tk, tk+1]. Following the same argument as in the
proof of Lemma II.5, we have that for each q ∈ Q,

Z(q, tk)− Z(q, t1) ≥ p(q)

k∑
`=1

∫ 1

0

1

v`(θ, IC)
dθ

− c(q)

k∑
`=1

∫
F (q)

1

v`(θ, IC)
dθ.

Now, Z(q, t1) > Zmax + ε is the initial condition, and
lim supt→+∞ Z(q, t) ≤ Zmax. Thus, for every fixed δ ∈
(0, ε), there exists a finite k such that Z(q, tk) ≤ Zmax + δ.
Since this must hold for every q ∈ Q, we see that there exists
an integer k such that

p(q)

k∑
`=1

∫ 1

0

1

v`(θ, IC)
dθ − c(q)

k∑
`=1

∫
F (q)

1

v`(θ, IC)
dθ < 0,

for every q ∈ Q. Rearranging the previous equation we obtain

c(q)

∫
F (q)

k∑
`=1

1

v`(θ, IC)
dθ > p(q)

∫ 1

0

k∑
`=1

1

v`(θ, IC)
dθ.

(24)
Therefore, let us define the periodic controller

v(θ) = k

(
k∑
`=1

1

v`(θ, IC)

)−1
,

for each θ ∈ [0, 1]. Note that if vmin(θ) ≤ v`(θ, IC) ≤ vmax(θ)
for all θ ∈ [0, 1] and all ` ∈ N, then

vmin(θ) ≤ v(θ) ≤ vmax(θ).

But, combining the definition of v(θ) with (24), we im-
mediately see that v(θ) satisfies the stability condition in
Lemma II.5, and thus v(θ) is a field stabilizing position-
feedback controller.
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