Persistent Monitoring of Changing Environments
using a Robot with Limited Range Sensing

Stephen L. Smith

Abstract— This paper presents controllers that enable a
mobile robot to persistently monitor or sweep a changing
environment. The changing environment is modeled as an
accumulation function which grows in areas that are not within
range of the robot, and decreases in areas that are within range
of the robot. The robot must continually move through the
environment to prevent the accumulation of any area from
growing unbounded. We consider the case in which a pre-
defined path is given for the robot, and we focus on controlling
the robot’s speed along the path. We characterize necessary
and sufficient conditions on the speed controller of the robot
for keeping the accumulation function bounded. We then search
among the space of speed controllers that are parametrized by
a finite set of basis functions. We develop a linear program to
compute the optimal speed controller; that which minimizes
the accumulation over the environment. Simulation results
illustrate the performance of the controllers.

I. INTRODUCTION

In this paper we treat the problem of controlling a robot
to perpetually act in a changing environment, for example
to clean an environment where material is constantly col-
lecting, or to monitor an environment where uncertainty is
continually growing. Each robot has only a small footprint
over which to act (e.g. to sweep or to sense). The difficulty
is in controlling the robot so that the amount of time it
spends over a location is proportional to that location’s rate
of change. This scenario is distinct from most other sweeping
and monitoring scenarios in the literature because the task
cannot be completed: The robots must continually move to
satisfy the objective. We consider the situation in which a
robot is constrained to move on a fixed path, along which
we must control its speed (see Figure 1 for an example).

We model the changing environment as a scalar valued
function, which we call the accumulation function, The
function captures the uncertainty at each point for a sensing
task, or the quantity of material at each point for a cleaning
task. The accumulation function grows at a constant rate
at points not within range of a robot, and decreases at a
constant rate at points within range of a robot. The rate of
growth and decrease can be different at different points in
the environment. This model is relevant to applications in
which information over a large-scale, changing environment
has to be kept up-to-date using robots with limited senor
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Fig. 1: A persistent monitoring task using a robot with limited range sensing.
The robot follows the flower-shaped path and has a circular footprint. The
surface shows the accumulation function, giving the uncertainty or quantity
of material at each point. The robot controls its speed along the path so as
to minimize the height of the surface.

footprints. Examples include automatically patrolling a city
or a building for suspicious activity, or continually vacuum-
ing the floor of an office building.

Ideally, we would control the path and speed of the robot
for persistent monitoring. However, obtaining performance
guarantees for this problem is very difficult, as even the
path planning component is NP-hard [1]. For this reason,
we consider the robot path to be pre-planned, and we
focus on controlling the speed of the robot along its path.
Computing efficient paths has been addressed in our recent
work [2]. Decoupling path planning from speed control
is a well-established technique for dealing with complex
trajectory planning problems [3]. Furthermore a particular
path may be required in certain applications. An example is
ocean sampling, where paths are commonly pre-specified by
oceanographers [4].

Our main contributions are to formalize the idea of per-
sistent tasks, and to develop speed controllers for a robot
along a prescribed path. The path may be arbitrarily complex
and have self intersections. Our approach to designing a
speed controller is to formulate the controller as the solution
to a linear program (LP) [5]. We consider controllers that
can be parametrized by a finite number of basis functions.
This enables the LP formulation, and also allows us to
incorporate speed and safety constraints on the robots. The
use of basis functions is a common method for function
approximation [6], and is frequently used in areas such as



adaptive control [7], and machine learning [8]. We derive an
LP which produces an optimal controller, in the sense that it
maintains the accumulation function as low as possible. In [9]
we extend these results to multiple robots and we provide
all mathematical details that are omitted in this paper.

Our problem is related to sweep coverage [16], [17],
lawn mowing and milling problems [1], and patrolling prob-
lems [18], [19], [20], [21] where robots with finite sensor
footprints must sweep their sensor over every point in the
environment. However, these works differ from persistent
tasks in that they either consider only the finite time problem,
or consider only the case where each point must be visited
with equal frequency. In [22], [23], the authors define a
different notion of persistent surveillance in which task
completion takes much longer than the life of a robot, and
then tackle the power management issues that arise.

Our work is also related to environmental monitoring. In
this literature, authors often model the environment prob-
abilistically, and estimate the state of that model using a
Kalman-like filter. Then, robots are controlled so as to max-
imize a metric on the quality of the state estimate [10], [11],
[12], [13], [14]. Unfortunately, planning optimal trajectories
under these models typically requires the solution of an
intractable dynamic program, even for a static environment.
One must resort to myopic methods, such as gradient descent
(as in [10], [15], [12], [11]), or solve the dynamic program
approximately (as in [13], [14]). As a result, performance
guarantees are difficult to obtain. The approach we take
in this paper circumvents the question of estimation by
formulating a new model of growing uncertainty in the envi-
ronment. Under this model, we can solve the speed planning
problem over infinite time, while maintaining guaranteed
levels of uncertainty in a time-changing environment. Thus
we have used a less sophisticated environment model in order
to obtain stronger results on the control strategy.

In Section II we formalize the problem, and define per-
sistent tasks. In Section III two LPs are formulated, the
solutions of which give a stabilizing controller and an op-
timal controller, respectively. Finally, numerical simulations
are presented in Section IV.

II. SPEED CONTROL FOR PERSISTENT TASKS

Consider a compact environment £ C R2, and a finite set
of points of interest Q C &£. The environment contains a
closed curve v : [0, 1] — R2, where v(0) = v(1). The curve
is parametrized by 6 € [0, 1], and we assume without loss
of generality that 6 is the arc-length parametrization. The
environment also contains a single robot whose motion is
constrained along the path . The robot’s position at a time
t can be described by (t), its position along the curve . The
robot is equipped with a finite sensor footprint B(#) C & (for
example, the footprint could be a disk of radius r centered
at the robot’s position). Our objective is to control the speed
v of the robot along the curve. We assume that for each
point 6 on the curve, the maximum possible robot speed
is Umax(6) and the minimum robot speed is vpin(6) > 0.
This allows us to express constraints on the robot speed
at different points on the curve. For example, for safety

B(9)
N, N

Fig. 2: An illustration of a curve ~ followed by the robot. The robot is
located at 6 and has footprint B(6). The set F'(q) of robot positions 6 for
which the footprint covers g are shown as thick grey segments of the curve.

considerations, the robot may be required to move more
slowly in certain areas of the environment, or on high curved
sections of the path. To summarize, the robot is described
by the triple R := (B, Umin; Vmax)-

Defined on the points of interest () is a time-varying
field (or accumulation function) Z : @ x R>¢o — Rxo.
We assume that at each point q € @), the field Z increases
(or is produced) at a constant rate p(q). When the robot
footprint is covering q, it consumes Z at a constant rate
¢(q). Thus, when a point q is covered, the net rate of
decrease is p(q) — ¢(q). Additionally, we assume that Z is
non-negative. Thus, Z evolves according to the following
differential equation (with initial conditions Z(q,0) and

6(0)):

_ p(a), if q ¢ B(O(t)),
Z(q,t) = ¢ p(q) —c(a), if q€ B(0(t)) and Z(q,t) > 0,
, if q € B(A(t)) and Z(q,t) =0,
(1
where for each q € Q, we have c¢(q) > p(q) > 0. We
assume that the robot knows the model parameters p(q)
and c(q). It is reasonable to assume knowledge of c(q)
since it pertains to the performance of the robot. As for
the production rate, p(q), this must be estimated from the
physics of the environment, from a human expert (e.g. an oil
mining engineer in the case of an oil well leak), or it can
be measured in a preliminary survey of the environment.
However, the accuracy of the model is not crucial, as we
show that our method has some robustness to errors in p(q).
Next, let us define a function which maps each point q €
@, to the curve positions 6 for which q is covered by the
robot footprint. To this end, we define

F(q):={0<[0,1][qeB(0)}

An illustration of the curve, the robot footprint, and the set
F(q) is shown in Figure 2.

In general, the commanded speed at a point # may depend
on the current position 6, the field Z, the initial conditions
6(0) and Z(q,0), and time. Thus, defining the set of initial
conditions as IC := (0(0), Z(q,0)), a general controller has
the form v(0, Z,1C, t).
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A. Stability and Feasibility

In this section we prove basic properties about the stability
of a persistent task under a given controller and the feasibility
of the problem for any controller. We begin by formalizing
our notion of a persistent task.

Definition II.1 (Persistent Tasks). A persistent task is a tuple
(R,7,Q,p,c), where R is the robot model, v is the curve
Sfollowed by the robot, Q is the set of points of interest, and p
and c are the production and consumption rates of the field,
respectively.

As a first consideration, a suitable controller should keep
the field bounded everywhere, independent of the initial con-
ditions. This motivates the following definition of stability.

Definition IL.2 (Stabilizing Controller). A speed controller
stabilizes a persistent task if the field is always eventually
bounded, independent of initial conditions. That is, if there
exists a Zmax < +00 such that for every q € Q and initial
condition Z(q,0) and 6(0), we have

limsup Z(q,t) < Zmax-

t——+o0o

Note that in this definition of stability, for every initial

condition, the field eventually enters the interval [0, Zpax].
There are some persistent tasks for which no controller is
stabilizing. This motivates the notion of feasibility.

Definition I1.3 (Feasible Persistent Task). A persistent task
is feasible if there exists a stabilizing speed controller.

As stated above, a speed controller in its most general form
can be written as v(6, Z,1C, t). However, in the remainder
of the paper we will focus on specific form of controller
which we call periodic position-feedback controllers. In these
controllers, the speed only depends on the robot’s current
position 6 € [0, 1]:

v:[0,1] = Rso.

where each 6 maps to a speed v(f) satisfying the bounds
Umin(0) < v(0) < vmax(0). These controllers have the
advantage that they do not require information on the current
state of the field Z, only its model parameters p(q) and ¢(q).
While it may seem restrictive to limit our controllers to this
special form, the following result shows that it is not.

Proposition II.4 (Periodic Position-Feedback Controllers).
If a persistent task can be stabilized by a general controller
v(0, Z,1C, t), then it can be stabilized by a periodic position-
feedback controller v(6).

The proof of Theorem I1.4 is given in [9] and relies on the
statement and proof of the upcoming result in Lemma IL.5.

We will now investigate conditions for a controller to be
stabilizing and for a persistent task to be feasible. Given a
controller § — v(#), we define two quantities: 1) the cycle
time, or period, T, and 2) the coverage time per cycle 7(q).
Since v(6) > 0 for all 6, the robot completes one full cycle
of the closed curve in time

L |
T := —d@. 2
/0 o(0) @

During each cycle, the robot’s footprint is covering the point
q only when 6(t) € F(q). Thus the point q is covered for

1
= ——d#, 3
7(q) /F(q) o0 3)

time units during each complete cycle.
With these definitions we can give a necessary and suffi-
cient condition for a controller to stabilize a persistent task.

Lemma IL5 (Stability condition). Given a persistent task,
a controller v(0) is stabilizing if and only if

1 |
c(a) /F “ de > p(q) /0 mdQ 4)

for every q € Q. Applying the definitions in (2) and (3), the
condition can be expressed as T(q) > p(q)/c(q)T.

The lemma has a simple intuition. For stability, the con-
sumption per cycle must exceed the production per cycle for
each point q € (). We now prove the result.

Proof. For a point q € @, let us consider the change in the
field from Z(q,t) to Z(q,t + T), where ¢ > 0. Define an
indicator function I:[0,1] x Q@ — {0,1} as I(#,q) = 1 for
6 € F(q) and 0 otherwise. Then, from (1) we have that

Z(a,t) = p(a) — c(a@)L(9(1), a),
for all values of Z(q,t), with equality if Z(q,t) > O.
Integrating the above expression over [t, ¢ + T'] we see that

t+T
Z(@t+T) - Z(a,) = pl@)T — c(q) / 1(60(r), q)dr

=p(a)T — c(a)7(a), ®))

where 7(q) is defined in (3). From (5) we see that a
necessary condition for the field to be eventually bounded
by some Zy.x for all initial conditions Z(q,0) is that
7(q) > p(q)/c(q)T for all q € Q.

To see that the condition is also sufficient, suppose that
7(q) > p(q)/c(q)T. Then there exists ¢ > 0 such that
p@T = c(@)r(q) = —e If Z(q,t) > (c(a) — p(a))T,
then the field at the point q € @ is strictly positive over
the entire interval [¢,¢ + T, implying that Z(q,t +T) =
Z(q,t)—e. Thus, from every initial condition, Z(q, t) moves
below (c(q) — p(q))7. Additionally, note that for each ¢
in the interval [¢,t + T, we trivially have that Z(q,t) <
Z(q,t) + p(q)T. Thus, we have that there exists a finite
time ¢ such that for all ¢t > ¢,

Z(q,t) < (c(q) = p(q))T + p(q)T = ¢(q)T.

Since @ is compact, there exists a single € > 0 such that for
every point q €  we have 7(q) — p(q)/c(q)T > €. Hence,
letting Znax = maxqeq c(q)T, we see that Z is stable for
all q, completing the proof. O

In the following sections we will address two problems,
determining a stabilizing controller, and determining a min-
imizing controller.

Problem I1.6 (Persistent Task Metrics). Given a persistent
task, determine a periodic position-feedback controller v :



[0,1] — Rsq that satisfies the speed constraints (i.e., v(0) €
[Vmin (0), Vmax(0)] for all 6 € [0,1]), and

(1) is stabilizing, or

(ii) minimizes the maximum steady-state field H(v):

H(v) := max (lim sup Z(q, t)) .
qeQ \ t—+oo
In Section III we will show that by writing the speed
controller in terms of a set of basis functions, problems (i)
and (ii) can be solved using linear programs.

III. SPEED CONTROLLERS: STABILITY AND OPTIMALITY

We consider a finite number of points of interest @@ =
{41,--.,%m}. These m locations could be specific regions
of interest, or they could be a discrete approximation of
the continuous space obtained by, for example, laying a
grid down on the environment. In the Section IV we show
examples of both scenarios. Our two main results are given
in Theorems III.1 and III.7, which show that a stabilizing
controller, and a controller minimizing #(v), can each be
found by solving linear programs.

To begin, it will be more convenient to talk about the
reciprocal speed controller v=1(6) := 1/v(6), with its cor-
responding constraints 1/vmax(0) < v71(0) < 1/vmin(0).
Now, our approach is to consider a finite set of basis func-
tions {51 (0), ..., 5,(0)}. Example basis functions include (a
finite subset of) the Fourier basis or Gaussian basis [6]. In
what follows we will use rectangular functions as the basis:

o JL 0 —1)/n,j/n)
Bi(6) = {0, otherwise,

for each j € {1,...,n}.
Then consider reciprocal speed controllers of the form

(6)

vTHO) = 85(0), (7)
j=1

where aq,...,q, are free parameters that we will use to
optimize the speed controller. A rich class of functions
can be represented as a finite linear combination of basis
functions, though not all functions can be represented this
way. Limiting our speed controller to a linear parametrization
allows us to find an optimal controller within that class,
while preserving enough generality to give complex solutions
that would be difficult to find in an ad hoc manner. In
the following subsection we will consider the problem of
synthesizing a stabilizing controller.

A. Synthesis of a Stabilizing Controller

In this section we will show that a stabilizing speed con-
troller of the form (7) can be found through the solution of a
linear program. This result is summarized in Theorem III.1.
To begin, let us consider reciprocal speed controllers in the
form of (7). Then for q; € @, the stability condition in
Lemma II.5 becomes

g . pla) v~ ',
;om /F(qi)ﬁg(G)d9> (@) ;a]/o 3,(6)d6

Rearranging, we get Z?Zl a; K (q;, ;) > 0, where we have
defined

K(Qnﬂj) 1:/

F(aq;)

Finally, to satisfy the speed constraints we have that

i)~ 22 [ 0000 ®)

1
Umax (6)

- 1
<D aBi(0) < — @ ©)
]:1 min

For the rectangular basis in (6), the speed constraints become
1/vmax(j) S aj S 1/Umin(j)a where

max ) = inf max 0 s d
D) = g B0 gy V() 20
Umin (.]) = sup Umin (0)

0€[(G—1)/n.3/n)

Thus, we obtain the following result.

Theorem IIL.1 (Existence of a Stabilizing Controller). A
persistent task is stabilizable by a speed controller of the
form (7) if and only if the following linear program is
feasible:

minimize 0
n
subject to ZajK(qi,ﬁj) >0 Vie{l,...,m}
j=1
LN Vjie{l,...,n)
— < a; < —, yeo,n),
VUmax (,7) ! Umin (]) J

where K (q;, ;) is defined in (8), and o, ..
optimization variables.

., au, are the

Hence, we can solve for a stabilizing controller using a
simple linear program. The program has n variables (one
for each basis function coefficient), and 2n + m constraints
(two for each basis function coefficient, and one for each
point of interest in (). One can easily solve linear programs
with thousands of variables and constraints [5]. Thus, the
problem of computing a stabilizing controller can be solved
for finely discretized environments with thousands of basis
functions. Note that in the above lemma, we are only check-
ing feasibility, and thus the cost function in the optimization
is arbitrary. For simplicity we write the cost as 0.

Remark IIL.2 (Robustness via Stability Margin). In The-
orem IIl.1 the cost is set to 0 to highlight the feasibility
constraints. However, in practice, an important consideration
is robustness of the controller to errors in the model of
the field evolution. Robustness of this type can be achieved
by slightly altering the above optimization to maximize the
stability margin ming,eq >, ;K (qi, B;). We can do so
by rephrasing the optimization as

maximize B

subject to ZajK(qi,ﬂj) >B Vie{l,...,m}

j=1

1
Vmax(J)

SOéj<

—, Vjie{l,...,n}.
Umin(]) { }



This controller is robust to errors in estimating the field
production rate. If the robot’s estimate of the production rate
at a field point q; € Q is p(q;), and the true value is p(q;) <
p(q;) +€ then it can be easily verified (see [9]) that the field
is stable provided that € < B-c(q;)/(Y]_ @; fol B;(0)de),
for each q; € Q. O

B. Synthesis of an Optimal Controller

In this section we look at Problem II.6 (ii), which is to
minimize the maximum value attained by the field over the
finite region of interest (). That is, for a given persistent task,
our goal is to minimize the following cost function,

H(v) = max (lim sup Z(q, t)) (10)

A€Q \ t—+oco
over all possible speed controllers v. At times we will refer
to the maximum steady-state value for a point q using a
speed controller v as
H(q,v) :=limsup Z(q, 1)
t——+oo
Our main result of this section, Theorem II1.7, is that H(v)
can be minimized through a linear program. However, we
must establish some intermediate results. First we show that
if v is a stabilizing controller, then for every initial condition
there exists a finite time ¢* such that Z(q,t) < #H(v) for all
t > t*. The proof of this result is contained in [9].

Proposition IIL.3 (Steady-State Field). Consider a feasible
persistent task and a stabilizing speed controller. Then, there
is a steady-state field

Z:QX [O,l]—}Rzo,

satisfying the following statements for each q € Q:

(i) for every set of initial conditions 0(0) and Z(q,0),
there exists a time t* > 0 such that Z(q,t) =
Z(q,0(t)), for all t > t*.

(ii) there exists 0 € [0, 1] such that Z(q,0) = 0.

From the above result we see that from every initial
condition, the field converges in finite time to a steady-state
Z(q, ). In steady-state, the field Z(q,t) at time ¢ depends
only on 6(¢) (and is independent of Z(q,0)). Each time
the robot is located at @, the field is given by Z(q,#).
Moreover, the result tells us that in steady-state there is
always a robot position at which the field is reduced to zero.
Proposition II1.3 relies on the following lemma. Recall that

the cycle-time for a speed controller v is T := fol 1/v(0)de.

Lemma II1.4 (Field Reduced to Zero). Consider a feasible
persistent task and a stabilizing speed controller. For every
q € Q and every set of initial conditions Z(q,0) and 6(0),
there exists a time t* > T such that
Z(q,t* +aT) =0, (11)

for all non-negative integers a.

Proof. Consider any q € @, and initial conditions Z(q,0)
and 6(0), and suppose by way of contradiction that the speed
controller is stable but Z(q,t) > 0 for all ¢ > T. From

Lemma IL5, if the persistent task is stable, then ¢(q)7(q) >
p(q)T for all q. Thus, there exists € > 0 such that ¢(q)7(q)—
p(q)T > e for all q € Q. From the proof of Lemma ILS5,
we have that

Z(q,t+T)— Z(q,t) = p(q)T — c(q)7(q) = —e.

Therefore, given Z(q,0), we have that Z(q,t*) = 0 for
some finite t* > T, a contradiction.

Next we will verify that if Z(q,t*) = 0 for some ¢t* > T,
then Z(q,t* +T) = 0. To see this, note that the differential
equation (1) is piecewise constant. Given a speed controller
v(#), the differential equation is time-invariant, and admits
unique solutions.

Based on this, consider two initial conditions for (1),

Z1(q,0) :=Z(q,t"=T) 20, 61(0) :=0(t"=T) =6(t"),

and

Z5(q,0) = Z(q,t") = 0, 62(0) := O(t*).

Since (1) is time-invariant, we have that Z;(q,T) =
Z(q,t*) = 0, and Z5(q,T) = Z(q,t* + T). In addition,
by uniqueness of solutions, we also know that Z1(q,0) >
Z5(q,0) implies that Z;(q,T") > Z3(q,T). Thus, we have
that Z(q,t*) = 0 > Z(q,t* + T), proving the desired
result. O

With this lemma we can prove Proposition III.3.

Proof of Proposition I11.3. In Lemma II1.4 we have shown
that for every set of initial conditions Z(q,0), 6(0), there
exists at time ¢* > T such that Z(q,t*+aT') = 0 for all non-
negative integers a. Since 7' is the cycle-time for the robot,
we also know that 0(t* + aT") = 0(t*) for all a. Since (1)
yields unique solutions, (11) uniquely defines Z(q,t) for all
t > t*, with

Z(q,t+T) = Z(q,t) forall t >t".

Hence, we can define the steady-state profile Z(q, ) as
Z(q,0(t)) :== Z(q,t) forallt e [t*,t*+T).

Finally, we need to verify that Z(q,6) is independent of
initial conditions. To see this, suppose by way of contra-
diction that we have two sets of initial conditions 6;(0),
Z1(q,0), and 62(0), Z2(q,0) which yield different steady-
state fields Z;(q,f) and Z3(q,0). Now, if there exists a
6 such that Z;(q,0) > Zs(q,f), then by uniqueness of
solutions Z;(q,6) > Z»(q, ) for all 6. To see this, suppose
by way of contradiction that there exist times t; > 0
and to > t; such that Zi(q,0(t1)) > Za(q,0(t1)) and
Z1(q,0(t2)) < Za(q,0(t2)). Then, by the continuity of Z,
there exists a time t3 € (t;,t2) such that Z;(q,0(t3)) =
Z5(q,0(t3)). But, by the uniqueness of solutions Z, this
implies that Z;(q,0(t)) = Z2(q,0(t)) for all t > t3, a
contradiction.

Thus, we have Z;(q,0) > Zs(q,f) for all §. From
Lemma II1.4, there exists a § for which Z;(q,0) = 0
implying that Z5(q, ) = 0. However, the value of Z; and
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Fig. 3: The steady-state field Z(q,6) is shown on the left, with the
production rate p(q) = 3 and consumption rate ¢(q) = 8.5. The set F'(q)
consists of three intervals which are shaded on the 6-axis. The steady-state
profile is increasing outside of F'(q) and decreasing inside F'(q). On the
right, the maximum reduction from y values is shown, denoted by N1 2,
N273, and Ng’l.

Zy at 0 uniquely defines Z, and Z, for all 6, implying that
Z1(q,0) = Zs(q,0), a contradiction. O

From Proposition III.3 we have shown the existence of
a steady-state field Z(q,6) that is independent of initial
conditions Z(q,0) and 6(0).

Now, consider a point g € ) and a stabilizing speed
controller v(f), and let us solve for its steady-state field
Z(q,0). To begin, let us write F(q) (the set of @ values
for which the point q is covered by the footprint) as a union
of disjoint intervals

F(q) = 12)

[‘Tlayl] U [‘T%yQ] U---u [xlayf]a
where /¢ is a positive integer, and y; > xj > yi—1 for each
k € {1,...,¢}." Thus, on the intervals [x,yx] the point
q is covered by the robot footprint, and on the intervals
[Yk, Tk+1], the point q in uncovered. As an example, in
Figure 2, the set F(q) consists of two intervals, and thus
¢ = 2. An example of a speed controller and an example of
a set F'(q) are shown in Figure 3.

From differential equation (1) we can write

Z(q,zx) = Z(q, ye-1) + p(q )/Ik ;(lz) (13)
Yk +
Z(q, ) ( Q. k) (q)—C(q))/ iz)) :
(14)

where for 2z € R, we define (2)* := max{z,0}. Combining
equations (13) and (14) we see that

~ c(q) /y U‘fz)y (15)

'Note that the number of intervals ¢, and the points x1,...,z, and
Y1,...,Ye are a function of q. However, for simplicity of notation, we
will omit writing the explicit dependence.

Z(q,yk) = (Z(q7yk1)+p(q) /Jk a0

For each b € {1, ...

Yk Lt T~

k—

.0}, let us define?

- - (16)
We can write Z(q,yx) = (Z(9, yk—1) + Nk—l,k(Q))+, and
thus from (15) we have
Z(a,yk) = Z(d, Yr—b) + Nie—v,x(Q). (17)
Moreover,
Z(a,yr) = Z(d, Yr—s) + Nie—v,x(a),
if Z(q,yx—;) >0 forall j € {1,...,b—1}. (18)

Thus, we see that the quantity Ny_; 1 (q) gives the maximum
reduction in the field between 6 = yi_, and 0 = yy.
An example for b = 1 is shown in Figure 3. With these
definitions, we can characterize the steady-state field at the
points yi. The proof of this result is given in [9].

Lemma IIL5S (Steady-State Field at Points yi). Given a
feasible persistent task and a stabilizing speed controller,
consider a point q € Q and the set F(q) = U\_, [zr, yr]-

Then, for each k € {1,...,4} we have
Z(q7 yk) = ma)lgfl} Nk}—b,k(q)a

where Ny_p 1 (q) is defined in (16) and Ny, 1 (q) := 0.

The above lemma gives the value of the field in steady-
state at each end point y;. However, the maximum steady-
state value is attained at an z, rather than a y;. For example,
in Figure 3, the maximum is attained at the point x;.
However, the value at zj, can be easily computed from the
value at yi_1 using (13):

Ni—v1(a) +p(q) /ml UC(ZZ)-

Yk

2(@7x11) = be{éna)zgq}

From this we obtain the following result.

Lemma IIL.6 (Steady-State Upper Bound). Given a stabi-

lizing speed controller v, the maximum steady-state field at
q € Q (defined in (10)) satisfies

H s = X 3
(q,v) pNax kb (Q)
be{0,...,0—1}
where
Tk+41 Yk —w
Xesla) =pla) [0 Z/
Yk—b Th—w

and F(q) = U_, [z, yi] with yx > ) > yr_1 for each k.

The above lemma provides a closed form expression
(albeit quite complex) for the largest steady-state value of
the field. Thus, consider speed controllers of the form

0 =3 ai(0)

2In this definition, and in what follows, addition and subtraction in the
indices is performed modulo £. Therefore, if k = 1, then Nj,_1 3 = Ny .



where f1,...,0, are basis functions (e.g., the rectan-
gular basis). For a finite field @ = {qi,...,qm},
the terms Ny_pr(q;) can be written as Xj;(q;) =
Z;‘L:1 a; Xk p(qi, B), where

Xk,b(‘liaﬂj) =

" B,(0)d0 — ela Z/ym (6)d6. (19)

With these definitions we can define a linear program for
minimizing the maximum of the steady-state field. We will
write ¢(q) to denote the number of disjoint intervals on the
curve v over which the point q is covered, as defined in (12).

p(a)

Yk—b

Theorem IIL.7 (Minimizing the Steady-State Field). Given a
feasible persistent task, the solution to the following linear
program Yyields a speed controller v of the form (7) that
minimizes the maximum value of the steady-state field H(v).

minimize 'V

subject to Zank,b(%Bj) <V

Vie{l,...,m},

j=1
ke{l,... . lai)},
be{oy"'a (ql)_1}7
Za] (d, B5) > Vie{l,...,m},
;<a-<7 vVijie{l n}
UmaX(j)_ ]_Umin(j)’ R

The optimization variables are o; and V' and the quantities

Xiv(qi, B5) and K(q;, B;) are defined in (19) and (8).

From the above theorem, we can minimize the maximum
value of the field using a linear program. This optimiza-
tion has nm + 1 variables (n basis function coefficients,
and one upper bound B). The number of constraints is
m > it €(q;)?+m~+2n. In practice, £(q;) is small compared
to n and m, and is independent of n and m. Thus, for most
instances, the linear program has O(2n + m) constraints.

IV. SIMULATIONS

The optimization framework was implemented in
MATLAB®, and the linear programs were solved using the
freely available SeDuMi (Self-Dual-Minimization) toolbox.
To give the readers some feel for the efficiency of the
approach, we report the time to solve each optimization on
a laptop computer with a 2.66 GHz dual core processor and
4 GB of RAM.

Figure 4 shows a simulation for one robot performing a
persistent monitoring task with || = 10 points. The speed
controller resulting from the optimization in Section III-B is
shown in Figure 5a. For the optimization, the minimum speed
was set to vpin = 0.1 and the maximum speed to Vyax = 1,
for all 6. A total of 150 rectangular basis functions were used.
The optimization was solved in less than 1/10 of a second.
The field Z(q, ) for the red (shaded) point in Figure 4, is
shown as a function of time in Figure 5b. One can see that the
field converges in finite time to a periodic cycle. In addition,

Fig. 4: An example with a field consisting of 10 points. The field Z(q,t)
at each point is indicated by the area of the disk centered at the point. The
vehicle footprint is a disk. The time sequence of the three snapshots goes
from left to right. The vehicle is moving counter-clockwise around the top
half of the figure eight and clockwise around the bottom half. The time
evolution of the red field point is shown in Figure 5.

35
4
0.9 3
0.8
25
0.7 £
2
°
g 0.6 3
@ 0.5 T
q s1s
0.4 2
1
0.3
0.2 U L ‘\H 0.5
0.1
0
0 0.2 0.4 0.6 0.8 1 0 500 1000 1500
theta time

(a) Optimal speed controller. (b) Field Z(q,t) at red (dark) point.

Fig. 5: The optimal speed controller corresponding to the curve and field
shown in Figure 4. The minimum speed is vpin = 0.1 and the maximum
speed i8S vmax = 1. The field Z(q, t) is shown for the red (dark) point in
Figure 4. It converges in finite time to a steady state.

the field goes to zero during each cycle. The periodic cycle
is the steady-state as characterized in Section III-B.

In Figure 1 a simulation is shown for the case when the
entire continuous environment must be monitored. In this
case the environment was discretized into a 40 x 40 grid. The
speed constraints were given by vy, = 0.1 and vpax = 1.
A total of 300 rectangular basis functions were used. The
consumption function (or rate of reduction) was given by
¢(q) = 1 for all @ € Q. The production function (or rate
of increase) p(q) was given by a bi-modal Gaussian. The
optimization was solved in approximately 10 seconds.

In Figure 6, the robot footprint is a square that is oriented
with the robot’s current heading. In addition, for this simula-
tion the maximum speed is a function of 6, and is given by
Umax () = 1/(1.5—(0—.5)?). The production function p(q)
for the simulation in Figure 6 is shown in Figure 7, along
with the optimal speed controller. From Figure 7b, one can
see that the maximum speed stays below the bound vpax(6),
and that the robot moves at maximum speed for much of the
trajectory.

V. CONCLUSIONS

In this paper we proposed the notion of persistent tasks
for robots. A persistent task is one in which a robot has to
continually move to keep an accumulation function as low
as possible everywhere in the environment. We specifically
considered the case in which robots are confined to pre-
specified, closed paths, along which their speed must be



Fig. 6: In this example the robot has a square footprint that is oriented with its heading. The robot’s trajectory is given by zig-zagging trajectory drawn
on the top of the cube. The time sequence of the three snapshots goes from left to right.

(a) The production function p(q).
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(b) The optimal speed controller.

Fig. 7: The production function p(q) is shown on the left for the simulation
in Figure 6. The optimal speed controller for Figure 6 is shown on the right.
The minimum speed is vymin = 0.1 and the maximum speed is given by

vmax(0) = 1/(1.5 — (6 — .5)2).

controlled. We formulated an LP whose solution gives an
optimal speed controller. One interesting direction in which
to expand this work is to consider planning paths and full
trajectories for robots to carry out persistent tasks. Another
direction of extension is to have a robot solve the LP for its
controller on-line. This would be useful if, for example the
production rate is not know before hand, but can be sensed
over the sensor footprint of the robot.
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