
LTL Control in Uncertain Environments
with Probabilistic Satisfaction Guarantees ?

Xu Chu (Dennis) Ding ∗ Stephen L. Smith ∗∗ Calin Belta ∗

Daniela Rus ∗∗∗

∗Department of Mechanical Engineering, Boston University, Boston,
MA 02215, USA. (e-mail: {xcding; cbelta}@bu.edu)

∗∗Department of Electrical and Computer Engineering, University of
Waterloo, Waterloo ON, N2L 3G1 Canada (email:

stephen.smith@uwaterloo.ca).
∗∗∗ Computer Science and Artificial Intelligence Laboratory,

Massachusetts Institute of Technology, Cambridge, MA 02139, (e-mail:
rus@csail.mit.edu)

Abstract: We present a method to generate a robot control strategy that maximizes the
probability to accomplish a task. The task is given as a Linear Temporal Logic (LTL) formula
over a set of properties that can be satisfied at the regions of a partitioned environment.
We assume that the probabilities with which the properties are satisfied at the regions are
known, and the robot can determine the truth value of a proposition only at the current region.
Motivated by several results on partitioned-based abstractions, we assume that the motion is
performed on a graph. To account for noisy sensors and actuators, we assume that a control
action enables several transitions with known probabilities. We show that this problem can be
reduced to the problem of generating a control policy for a Markov Decision Process (MDP)
such that the probability of satisfying an LTL formula over its states is maximized. We provide a
complete solution for the latter problem that builds on existing results from probabilistic model
checking. We include an illustrative case study.

Keywords: Robot Control, Markov Decision Processes, Formal Methods, Temporal Logic

1. INTRODUCTION

Recently there has been an increased interest in using
temporal logics, such as Linear Temporal Logic (LTL) and
Computation Tree Logic (CTL) as motion specification
languages for robotics [Kress-Gazit et al., 2007, Karaman
and Frazzoli, 2009, Kloetzer and Belta, 2008, Wongpirom-
sarn et al., 2009]. Temporal logics are appealing because
they provide formal, high level languages in which to
describe complex missions, e.g., “Reach A, then B, and
then C, in this order, infinitely often. Never go to A. Don’t
go to B unless C or D were visited.” In addition, off-the-
shelf model checking algorithms [Clarke et al., 1999] and
temporal logic game strategies [Piterman et al., 2006] can
be used to verify the correctness of robot trajectories and
to synthesize robot control strategies.

Motivated by several results on finite abstractions of
control systems, in this paper we assume that the motion
of the robot in the environment is modeled as a finite
labeled transition system. This can be obtained by simply
partitioning the environment and labeling the edges of
the corresponding quotient graph according to the motion
capabilities of the robot among the regions. Alternatively,
the partition can be made in the state space of the

? This work was supported in part by ONR-MURI N00014-09-1051,
ARO W911NF-09-1-0088, AFOSR YIP FA9550-09-1-020, and NSF
CNS-0834260.

robot dynamics, and the transition system is then a finite
abstraction of a continuous or hybrid control system [Alur
et al., 2000].

The problem of controlling a finite transition system from
a temporal logic specification has received a lot of atten-
tion during recent years. All the existing works assume
that the current state can be precisely determined. If the
result of a control action is deterministic, control strategies
from specifications given as LTL formulas can be found
through an adaptation of off-the-shelf model checking
algorithms [Kloetzer and Belta, 2008]. If the control is
non-deterministic (an available control at a state enables
one of several transitions with unknown probabilities),
the control problem can be mapped to the solution of a
Rabin game [Thomas, 2002], or simpler GR(1) games if the
specification is restricted to fragments of LTL [Kress-Gazit
et al., 2007]. If the control is probabilistic (an available
control at a state enables one of several transitions with
known probabilities), the transition system is a Markov
Decision Process (MDP). The control problem then re-
duces to generating a policy (adversary) for an MDP
such that the produced language satisfies a formula of
a probabilistic temporal logic [Dianco and Alfaro, 1995,
Kwiatkowska et al., 2004]. We have recently developed
a framework for deriving an MDP control strategy from
a formula in a fragment of probabilistic CTL (pCTL)
[Lahijanian et al., 2010].

In this paper, we consider motion specifications given as
arbitrary LTL formulas over a set of properties that can
be satisfied with given probabilities at the vertices of a
graph environment. We assume that the truth values of the
properties can be observed only when a vertex is reached in
the environment, and the observations of these properties
are independent with each other. We assume a probabilis-
tic robot control model and that the robot can determine
its current vertex precisely. Under these assumptions, we
develop an algorithm to generate a control strategy that
maximizes the probability of satisfying the specification.
Our approach is based on mapping this problem to the
problem of generating a control policy for a MDP such that
the probability of satisfying an LTL formula is maximized.
We provide a solution to this problem by drawing inspira-
tion from probabilistic model checking. We illustrate the
method by applying it to a numerical example of a robot
navigating in an indoor environment.

The contribution of this work is twofold. First, we adapt
existing approaches in probabilistic model checking (e.g.
Baier and Katoen [2008], Dianco and Alfaro [1995]), and
provide a complete solution to the general problem of
controlling MDPs from full LTL specifications using de-
terministic Rabin automata. Second, we allow for non-
determinism not only in the robot motion, but also in
the robot’s observation of properties in the environment.
This allows us to model a large class of robotic problems
in which the satisfaction of properties of interest can be
predicted only probabilistically.

2. PRELIMINARIES

2.1 Linear Temporal Logic

We employ Linear Temporal Logic (LTL) to describe MDP
control specifications. A detailed description of the syntax
and semantics of LTL is beyond the scope of this paper and
can be found in Baier and Katoen [2008], Clarke et al.
[1999]. Roughly, an LTL formula is built up from a set
of atomic propositions Π, standard Boolean operators ¬
(negation), ∨ (disjunction), ∧ (conjunction), and temporal
operators© (next), U (until), 3 (eventually), 2 (always).
The semantics of LTL formulas are given over infinite
words o = o0o1 . . . in 2Π. A word satisfies an LTL formula
φ if φ is true at the first position of the word; 2φ means
that φ is true at all positions of the word; 3φ means that
φ eventually becomes true in the word; φ1 Uφ2 means that
φ1 has to hold at least until φ2 is true. More expressivity
can be achieved by combining the above temporal and
Boolean operators. We say o � φ if the word o satisfies
φ. An LTL formula can be represented by a deterministic
Rabin automaton, which is defined as follows.

Definition 2.1. (Deterministic Rabin Automaton). A de-
terministic Rabin automaton (DRA) is a tuple R =
(Q,Σ, δ, q0, F), where (i) Q is a finite set of states; (ii)
Σ is a set of inputs (alphabet); (iii) δ : Q× Σ → Q is the
transition function; (iv) q0 ∈ Q is the initial state; and
(v) F = {(L1,K1), . . . , (Lk,Kk)} is a set of pairs where
Li,Ki ⊆ Q for all i ∈ {1, . . . , k}.

A run of a Rabin automaton R, denoted by rR = q0q1 . . .,
is an infinite sequence of states in R such that for each
i ≥ 0, qi+1 ∈ δ(qi, α) for some α ∈ Σ. A run rR is accepting

if for a pair (L,K) ∈ F , rR intersects with L only finitely
many times and K infinitely many times.

For any LTL formula φ over Π, one can construct a DRA
with input alphabet Σ = 2Π accepting all and only words
over Π that satisfy φ. We refer readers to Klein and
Baier [2006] and references therein for algorithms and to
freely available implementations, such as Klein [2007], to
translate a LTL formula over Π to a corresponding DRA.

2.2 Markov Decision Process and probability measure

Definition 2.2. (Labeled Markov Decision Process). A
labeled Markov decision process (MDP) is a tuple M =
(S,U ,A,P, ι,Π, h), where (i) S is a finite set of states; (ii)
U is a finite set of actions; (iii) A : S → 2U represents the
set of actions enabled at state s ∈ S; (iv) P : S × U ×
S → [0, 1] is the transition probability function such that
for all states s ∈ S,

∑
s′∈S P(s, u, s′) = 1 if u ∈ A(s) ⊆ U

and P(s, u, s′) = 0 if u /∈ A(s); (v) ι : S → [0, 1] is the
initial state distribution satisfying

∑
s∈S ι(s) = 1; (vi) Π

is a set of atomic propositions; and (vii) h : S → 2Π is a
labeling function.

We define an action function as a function µ : S → U such
that µ(s) ∈ A(s) for all s ∈ S. An infinite sequence of
action functions M = {µ0, µ1, . . .} is called a policy. One
can use a policy to resolve all nondeterministic choices
in an MDP by applying the action µk(sk) at each time-
step k. Given an initial state s0 such that ι(s0) > 0, an
infinite sequence rMM = s0s1 . . . on M generated under
a policy M = {µ0, µ1, . . .} is called a path on M if
P(si, µi(si), si+1) > 0 for all i. If µi = µ for all i, then
we call this policy a stationary policy.

We define PathsMM as the set of all paths of M under
a policy M starting from any state s0 where ι(s0) > 0.
We can now define a probability measure over the set
PathsMM. The definition of this measure can be found in
a text in probabilistic model checking, such as Baier and
Katoen [2008, Ch. 10]. This measure enables us to define
the probability that an MDPM under a policy M satisfies
an LTL formula φ. A path rMM = s0s1 . . . deterministically
generates a word o = o0o1 . . ., where oi = L(si) for
all i. We denote L(rMM) as the word generated by rMM.
Given an LTL formula φ, one can show that the set
{rMM ∈ PathsMM : L(rMM) � φ} is measurable. We define

PrMM(φ) := PrMM{rMM ∈ PathsMM : L(rMM) � φ} (1)

as the probability of satisfying φ for M under M . See
Baier and Katoen [2008] for more details about probability
measures on MDPs under a policy and measurability of
LTL formulas.

3. MODEL, PROBLEM FORMULATION, AND
APPROACH

In this section we formalize the environment model, the
robot motion model, and the robot observation model. We
then formally state our problem and provide a summary
of our technical approach.

3.1 Environment, task, and robot model

Environment model: In this paper, we consider a robot
moving in a partitioned environment, which can be repre-
sented by a graph and a set of properties:

E = (V, δE ,Π), (2)

where V is the set of vertices, δE ⊆ V × V is the relation
modeling the set of edges, and Π is the set of properties (or
atomic propositions). Such a finite representation of the
environment can be obtained by using popular partition
schemes, such as triangulations or rectangular grids. The
set V can be considered as a set of labels for the regions in
the partitioned environment, and δE is the corresponding
adjacency relation. In this paper we assume that there is
no blocking vertex in V (i.e., all vertices have at least one
outgoing edge).

Task specification: The atomic propositions Π represent
properties in the environment that can be true or false.
We require the motion of the robot in the environment to
satisfy a rich specification given as an LTL formula φ over
Π (see Sec. 2).

Robot motion model: The motion capability of the
robot in the environment is represented by a set of mo-
tion primitives U , and a function A : V → 2U that
returns the set of motion primitives available (or en-
abled) at a vertex v ∈ V . For example, U can be
{Turn Left,Turn Right,Go Straight} in an urban envi-
ronment with roads and intersections. To model non-
determinism due to possible actuation or measurement
errors, we define the transition probability function Pm :
V × U × V → [0, 1] as the probability that after applying
a motion primitive u ∈ A(v) at vertex v, the robot moves
from v to an adjacent region v′ without passing through
other regions. The set U corresponds to a set of feedback
controllers for the robot, which can be constructed from
facet reachability (see Habets and van Schuppen [2004]),
and the transition probabilities can be obtained from ex-
periments (see Lahijanian et al. [2010]). Note that this
model of motion uses an underlying assumption that tran-
sition probabilities of the robot controllers do not depend
on the previous history of the robot.

Robot observation model: In our earlier work [Kloetzer
and Belta, 2008, Lahijanian et al., 2010], we assumed that
some propositions in Π are associated with each region
in the environment (i.e., for each v ∈ V), and they are
fixed in time. However, this assumption is restrictive and
often not true in practice. For example, the robot might
move to a road and find it congested; while finding parking
spots, some parking spots may already be taken; or while
attempting to upload data at an upload station, the upload
station might be occupied. We wish to design control
strategies that react to information which is observed in
real-time, e.g. if a road is blocked, then pick another route.

Motivated by these scenarios, in this paper we consider
the problem setting where observations of the properties
of the environment are probabilistic. To this end, we define
a probability function Po : V × Π → [0, 1]. Thus, Po(v, π)
is the probability that the atomic proposition π ∈ Π
is observed at a vertex v ∈ V when v is visited. We
assume that all observations of atomic propositions for a
vertex v ∈ V are independent and identically distributed.

This is a reasonable model in situations where the time-
scale of robot travel is larger than the time scale on
which the proposition changes. For future work, we are
pursuing more general observation models. Let Πv :=
{π ∈ Π : Po(v, π) > 0} be the atomic propositions that
can be observed at a vertex v. Then Zv = {Z ⊆ Πv :∏
π∈Z

Po(v, π) ×
∏
π/∈Z

(1 − Po(v, π)) > 0} is the set of all

possible sets of observations Z ⊆ Πv at v.

3.2 Problem Formulation

Let the initial state of the robot be given as v0. The
trajectory of the robot in the environment is an infinite
sequence r = v0v1, . . ., where Pm(vi, u, vi+1) > 0 for
some u for all i. Given r = v0v1, . . ., we call vi the state
of the robot at the discrete time-step i. We denote the
observed atomic propositions at time-step i as oi ∈ Zvi
and O(r) = o0o1 . . . as the word observed by r.

Our desired “reactive” control strategy is in the form of an
infinite sequence C = {ν0, ν1, . . .} where νi : V × 2Π → U
and νi(v, Z) is defined only if Z ∈ Zv. Furthermore, we
enforce that νi(v, Z) ∈ A(v) for all v and all i. The
reactive control strategy returns the control to be applied
at each time-step, given the current state v and observed
set of propositions Z at v. Given an initial condition v0

and a control strategy C, we can produce a trajectory
r = v0v1 . . . where the control applied at time i is νi(vi, oi).
We call r and O(r) = o = o0o1 . . . the trajectory and
the word generated under C, respectively. Note that given
v0 and a control strategy C, the resultant trajectory
and its corresponding word are not unique due to non-
determinism in both motion and observation of the robot.

Now we formulate the following problem:

Problem 3.1. Given the environment represented by E =
(V, δE ,Π); the robot motion model U , A and Pm; the
observation model Po; and an LTL formula φ over Π, find
a control strategy C that maximizes the probability that
the word generated under C satisfies φ.

Note that a solution to Prob. 3.1 is generally not unique.

4. MDP CONSTRUCTION AND PROBLEM
REFORMULATION

As part of our approach to solve Problem 3.1, we construct
a labeled MDP (see Def. 2.2) M = (S,U ,A,P, ι,Π, h)
from the environment model E , the robot motion model
U , A, Pm, and the observation model Po as follows:

• S = {(v, Z) | v ∈ V,Z ∈ Zv}
• U = U
• A((v, Z)) = A(v)
• P((v, Z), u, (v′, Z ′)) =

Pm(v, u, v′)×

(∏
π∈Z′

Po(v
′, π)×

∏
π/∈Z′

(1− Po(v′, π))

)
• ι is defined as ι(s) =

∏
π∈Z
P(v0, π)×

∏
π/∈Z

(1−P(v0, π))

if s = (v0, Z) for any Z ∈ Zv0 , and ι(s) = 0 otherwise.
• h((v, Z)) = Z for all (v, Z) ∈ S.

We now formulate a problem on the MDPM. We will then
show that this new problem is equivalent to Prob. 3.1.

Problem 4.1. For a given labeled MDP M and an LTL
formula φ, find a policy such that PrMM(φ) (see Eq. (1)) is
maximized.

The following proposition formalizes the equivalence be-
tween the two problems, and the one-to-one correspon-
dence between a control strategy on E and a policy onM.

Proposition 4.1. A control strategy C = {ν0, ν1, . . .}
is a solution to Problem 3.1 if and only if the policy
M = {µ0, µ1, . . .}, where

µi
(
(vi, Zi)

)
= νi(vi, Zi) for each i,

is a solution to Problem 4.1.

Proof. See Technical Report Ding et al. [2011].

Due to the above proposition, we will proceed by con-
structing a policy M on the MDP M as a solution to
Prob. 4.1. We can then uniquely map M to a control
strategy C in the robot environment E for a solution to
Prob. 3.1.

5. SYNTHESIS OF CONTROL STRATEGY

In this section we provide a solution for Prob. 3.1 by
synthesizing an optimal policy for Prob. 4.1. Our approach
is adapted from automata-theoretic approaches in the area
of probabilistic model checking (see Dianco and Alfaro
[1995], Baier and Katoen [2008, Ch. 10] and references
therein). Probabilistic LTL model checking finds the max-
imum probability that a path of a given MDP satisfies
an LTL specification. We modify this method to obtain
an optimal policy that achieves the maximum probability.
This approach is related to the work of Courcoubetis and
Yannakakis [1998], in which rewards are assigned to spec-
ifications and non-deterministic Büchi automata (NBA)
are used. We do not use NBAs since a desired product
MDP cannot be directly constructed from an NBA, but
only from an DRA. Our method is also related to Baier
et al. [2004], in which a control strategy is synthesized
for an MDP where some states are under control of the
environment, so that an LTL specification is guaranteed
to be satisfied under all possible environment behaviors.

We proceed by converting the LTL formula φ to a DRA
as in Def. 2.1. We denote the resulting DRA as Rφ =
(Q, 2Π, δ, q0, F) with F = {(L1,K1), . . . , (Lk,Kk)} where
Li,Ki ⊆ Q for all i = 1, . . . , k. We now obtain an MDP
as the product of a labeled MDPM and a DRA Rφ. This
product MDP allows one to find runs onM that generate
words satisfying the acceptance condition of Rφ.

Definition 5.1. (Product MDP). The product MDPM×
Rφ between a labeled MDP M = (S,U ,A,P, ι,Π, h)
and a DRA Rφ = (Q, 2Π, δ, q0, F) is a tuple MP =
(SP ,U ,AP ,PP , ιP , FP), where:

• SP = S ×Q (the Cartesian product of sets S and Q)
• AP((s, q)) = A(s)
• PP((s, q), u, (s′, q′)) ={

P(s, u, s′) if q′ = δ(q, h(s′))
0 otherwise

• ιP((s, q)) = ι(s) if q = δ(q0, h(s)) and ιP = 0
otherwise

• FP = {(LP1 ,KP1), . . . , (LPk ,K
P
k)} where LPi = S×Li,

KPi = S ×Ki for all i = 1, . . . , k.

Note that the set of actions for MP is the same as the
one for M. A policy MP = {µP0 , µP1 , . . .} on MP directly
induces a policy M = {µ0, µ1, . . .} onM by keeping track
of the state on the product MDP (µPi is an action function
that returns an action corresponding to a state in MP).
Note that given the state ofM at time-step i and the state
of MP at time-step i− 1, the state of MP at time-step i
can be exactly determined. We can induce a policy M for
M from a policy MP for MP as follows:

Definition 5.2. (Inducing a policy for M from MP). If
the state of MP at time-step i is (si, qi), then the policy
M = {µ0, µ1, . . .} induced from MP = {µP0 , µP1 . . .} can be
obtained by setting µi(si) = µPi ((si, qi)) for all i. We say a

path rMP
MP

is accepting if and only if it satisfies the Rabin
acceptance condition with FP as the accepting states pairs.

From probabilistic model checking, the product MDP is
constructed so that given a path rMP

MP
= (s0, q0)(s1, q1) . . .,

the path s0s1 . . . on M satisfies φ if and only if rMP
MP

is
accepting. We can then obtain a set of accepting maximum
end components (AMECs) of MP . An AMEC for MP
consists of a set of states SP ⊆ SP and function AP
such that ∅ 6= AP((s, q)) ⊆ AP((s, q)) for all (s, q) ∈ SP ,
with the property that, by taking actions enabled by AP ,
all states in SP can reach every other state in SP and
can not reach any state outside of SP . Furthermore, it
contains no state in LPi and at least one state in KPi and
is not properly contained in another such component. A
procedure to obtain all AMECs of an MDP is outlined
in Baier and Katoen [2008]. The maximum probability of
satisfying the LTL formula φ for M is the same as the
maximum probability of reaching any AMEC ofMP . Once
an AMEC (SP ,AP) is reached, all states in SP are reached
infinitely often (and φ satisfied) with probability 1 under
a policy that using all actions in AP infinitely often.

Our desired policy M?
P that maximizes the probability of

satisfying φ on the product MDP is the policy maximizing
the probability of reaching a set of states, which is the
union of all AMECs of all accepting state pairs in FP , if
the state is not already in an AMEC. A policy maximizing
the probability of reaching a set of states on an MDP can
be found by the solution of a linear program (see e.g.
Ding et al. [2011]). If the state of the MDP is inside an
AMEC, the optimal policy is to use all enabled actions
in the AMEC infinitely often in a round-robin fashion.
The solution to Prob. 4.1 is then the policy M? on M
induced by M?

P . The desired reactive control strategy C?

as a solution to Prob. 3.1 can finally be obtained as the
control strategy corresponding to M? (see Prop. 4.1). Our
overall approach is summarized in Alg. 1.

5.1 Complexity

The complexity of our proposed algorithm is dictated
by the size of the generated MDPs. We use | · | to
denote cardinality of a set. The number of states in M
is |S| =

∑
v∈V |Zv|. Hence, in the worst case where all

propositions π ∈ Π can be observed with positive but
less than 1 probability at all vertices v ∈ V , |S| = 2|Π|.

V13

V1 V4

V7 V8

V2 V3

V5 V6

V12V11V10V9

Po(v13, pickup) = 1

Po(v13, observe9) = 0.4

Po(v7, event7) = 1

Po(v9, event9) = 0.8

(a)

0.7 0.7

1 10.6 0.4

1 1 1

0.2

0.8 0.8

0.2
1

1

0.90.90.9

0.3

1 10.8

0.2

1 1

1

0.1
0.10.1

α

α

α

αα

α α α

αα

α

α

α

γγ

γγ

γ

β γ

β

0.3

pickup, observe9

observe9

observe7

pickup

(b) (c)

Fig. 1. (a): Environment for a numerical example of the proposed approach. We assume that the set of motion primitive
is U = {α, β, γ}. We define the enabling function A so that the motion primitive α is enabled at all vertices, β is
enabled at vertices v1, v6 and v7, and γ is enabled at vertices v2, v3, v6, v7 and v8. (b): MDP M generated from
the environment with given U , A, Po and Pm. (c): A sample path of the robot with the optimal control strategy.
The word observed by the sample path is pickup, event7, event9, {pickup, observe9}, event9,

Algorithm 1 Generating the optimal control strategy C?

given E , U , A, Pm, Po and φ

1: Generate the MDP M from the environment model
E , the motion primitives U , the actions A, the motion
model Pm and the observation model Po.

2: Translate the LTL formula φ to a DRA Rφ.
3: Generate the product MDP MP =M×Rφ.

4: Find all AMECs (SP ,AP) for all pairs (LPi ,K
P
i) ∈ FP ,

and find the union BP of all SP ’s.
5: Find the stationary policy {µ?P , µ?P , . . .} maximizing

the probability of reaching BP .
6: Generate the policy M?

P = {µP0 , µP1 , . . .} as follows:
µPi (p) = µ?P(p) if p ∈ SP \ BP . Otherwise, p is in

at least one AMEC. Assuming it is (SP ,AP) and
AP(p) = {u1, u2, . . . , um}, then µPi (p) = uj where
j = i mod m.

7: Generate policy M? = {µ0, µ1, . . .} induced by M?
P .

8: Generate the optimal control strategy C? =
{ν0, ν1, . . .} from M? using Prop. 4.1.

In practice, the number of propositions that can be non-
deterministically observed at a vertex is small. The size
of the DRA |Q| is in worst case, doubly exponential with
respect to |Π|. However, empirical studies such as Klein
and Baier [2006] have shown that in practice, the sizes
of the DRAs for many LTL formulas are exponential or
lower with respect to |Π|. In robot control applications,
since properties in the environment are typically assigned
scarcely (meaning that each region of the environment is
usually assigned a small number of properties comparing
to |Π|), the size of DRA can be reduced much further
by removing transitions in the DRA with inputs that can
never appear in the environment and unreachable states.
The size of the product MDP is |M|×|Q|. The complexity
for the algorithm generating AMECs is at most quadratic
in the size of MP (see Baier and Katoen [2008]), and the
complexity for finding the optimal policy from a linear
program is polynomial in the size of MP . Thus, overall,
our algorithm is polynomial in the size of MP .

6. EXAMPLE

The computational framework developed in this paper is
implemented in MATLAB, and here we provide an exam-
ple as a case study. Note that we did not use probabilistic
model-checkers such as PRISM (see Kwiatkowska et al.
[2004]) because they return only maximal probabilities and
not optimal policies.

Consider a robot navigating in an indoor environment
as shown in Fig. 1a. Each region of the environment is
represented by a vertex vi, and the arrows represent al-
lowable transitions between regions. In this case study, we
choose the motion primitives arbitrarily (see the caption
of Fig. 1a). In practice, they can either correspond to low
level control actions such as “turn left”, “turn right” and
“go straight”, or high level commands such as “go from
region 1 to region 2”, which can then be achieved by a
sequence of low level control actions.

The goal of the robot is to perform a persistent surveil-
lance mission on regions v7 and v9, described as fol-
lows: The robot can pickup (or receive) a surveillance
task at region v13. With probability 0.4 the robot re-
ceives the task denoted observe9. Otherwise, the task
is observe7. The task observe7 (or observe9) is com-
pleted by traveling to region v7 (or v9), and observing
some specified event. In region v7, the robot observes
the event (event7) with probability 1. In region v9, each
time the robot enters the region, there is a probability
of 0.8 that it observes the event (event9). Thus, the
robot may have to visit v9 multiple times before observing
event9. Once the robot observes the required event, it
must return to v13 and pickup a new task. This mis-
sion can be specified with the set of atomic propositions
{pickup, observe9, event7, event9} (the task observe7
can be written as ¬observe9). The propositions pickup
and observe7 are assigned to v13, with Po(v13, pickup) =
1 and Po(v13, observe9) = 0.4. The proposition event7
is assigned to v7 with Po(v7, event7) = 1 and event9 is
assigned to v9 with Po(v9, event9) = 0.8.

The mission specification can be written as:

φ = 23pickup∧
2 (pickup ∧ ¬observe9⇒©(¬pickup Uevent7))

∧2 (pickup ∧ observe9⇒©(¬pickup Uevent9)) .

The first line of φ, 23pickup, enforces that the robot must
repeatedly pick up tasks. The second line pertains to task
observe7 and third line pertains to task observe9. These
two lines ensure that a new task cannot be picked up until
the current task is completed (i.e., the desired event is
observed). Note that if event9 is observed after observing
event7, then the formula φ is not violated (and similarly
if event7 is observed after observing event9).

The MDP M generated from the environment is shown
in Fig. 1b. For this example, we have arbitrarily cho-
sen values for the probability transition function Pm. In
practice, probabilities of transition under actuation and
measurement errors can be obtained from experiments or
accurate simulations (see Lahijanian et al. [2010]). The
number of states in the MDPM is |S| = 15. We generated
the deterministic Rabin automaton Rφ using the ltl2dstar
tool (see Klein [2007]). The number of states |Q| is 52.
Thus, the product MDPMP has 780 states. For the DRA
generated, there is only one set in F , i.e., F = {(L,K)},
with 1 state in L and 18 states in K. Thus, the number of
states in LP is 15 and the number of states in KP is 270.
There is one AMEC in MP , and it contains 17 states.

Using the implementation of Alg. 1 we computed the
maximum probability of satisfying the specification from
the initial state and the optimal control strategy. The
Algorithm ran in approximately 7 seconds on a MacBook
Pro computer with a 2.5 GHz dual core processor. For
this example the maximum probability is 1, implying that
the corresponding optimal control strategy almost surely
satisfies φ. To illustrate the control strategy, a sample
execution is shown in Fig. 1c.

7. CONCLUSIONS AND FINAL REMARKS

We presented a method to generate a robot control strat-
egy that maximizes the probability to accomplish a task.
The robot motion in the environment was modeled as a
graph and the task was given as a Linear Temporal Logic
(LTL) formula over a set of properties that can be satisfied
at the vertices with some probability. We allowed for noisy
sensors and actuators by assuming that a control action
enables several transitions with known probabilities and
reduced this problem to one of generating a control policy
for a Markov Decision Process such that the probability of
reaching some of its states is maximized. We then provided
a complete solution to this problem adapting existing
probabilistic model checking approaches.

We are currently pursuing several future directions. We
are looking at proposition observation models that are
not independently distributed, i.e., when the current truth
value of the proposition gives information about the future
truth value. We are also looking at methods for optimizing
the robot control strategy for a suitable cost function when
costs are assigned to actions of an MDP.

REFERENCES

R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas.
Discrete abstractions of hybrid systems. Proceedings of

the IEEE, 88:971–984, 2000.
C. Baier and J-P. Katoen. Principles of Model Checking.

MIT Press, 2008.
C. Baier, M. Größer, M. Leucker, B. Bollig, and F. Ciesin-

ski. Controller synthesis for probabilistic systems. In
Proceedings of IFIP TCS. 2004.

E. M. Clarke, D. Peled, and O. Grumberg. Model checking.
MIT Press, 1999.

C. Courcoubetis and M. Yannakakis. Markov decision
processes and regular events. IEEE Transactions on
Automatic Control, 43(10):1399–1418, 1998.

A. Dianco and L. De Alfaro. Model checking of proba-
bilistic and nondeterministic systems. In Foundations of
Software Technology and Theoretical Computer Science,
volume 1026 of LNCS, pages 499–513. Springer, 1995.

X. C. Ding, S. L. Smith, C. Belta, and D. Rus. LTL
control in uncertain environments with probabilis-
tic satisfaction guarantees, April 2011. available at
http://arxiv.org/abs/1104.1159.

L.C.G.J.M. Habets and J.H. van Schuppen. A con-
trol problem for affine dynamical systems on a full-
dimensional polytope. Automatica, 40(1):21–35, 2004.

S. Karaman and E. Frazzoli. Sampling-based motion
planning with deterministic µ-calculus specifications. In
IEEE Conf. on Decision and Control, pages 2222 – 2229,
Shanghai, China, 2009.

J. Klein. ltl2dstar - LTL to deterministic Streett and Rabin
automata. http://www.ltl2dstar.de/, 2007.

J. Klein and C. Baier. Experiments with deterministic
ω-automata for formulas of linear temporal logic. The-
oretical Computer Science, 363(2):182–195, 2006.

M. Kloetzer and C. Belta. A fully automated framework
for control of linear systems from temporal logic speci-
fications. IEEE Transactions on Automatic Control, 53
(1):287–297, 2008.

H. Kress-Gazit, G. Fainekos, and G. J. Pappas. Where’s
Waldo? Sensor-based temporal logic motion planning.
In IEEE Int. Conf. on Robotics and Automation, pages
3116–3121, Rome, Italy, 2007.

M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic
symbolic model checking with PRISM: A hybrid ap-
proach. International Journal on Software Tools for
Technology Transfer, 6(2):128–142, 2004.

M. Lahijanian, J. Wasniewski, S. B. Andersson, and
C. Belta. Motion planning and control from temporal
logic specifications with probabilistic satisfaction guar-
antees. In IEEE Int. Conf. on Robotics and Automation,
pages 3227 – 3232, Anchorage, AK, 2010.

N. Piterman, A. Pnueli, and Y. Saar. Synthesis of reac-
tive(1) designs. In International Conference on Veri-
fication, Model Checking, and Abstract Interpretation,
pages 364–380, Charleston, SC, 2006.

W. Thomas. Infinite games and verification. In
E. Brinksma and K. Larsen, editors, Computer Aided
Verification, volume 2404 of LNCS, pages 58–65.
Springer, 2002.

T. Wongpiromsarn, U. Topcu, and R. M. Murray. Re-
ceding horizon temporal logic planning for dynamical
systems. In IEEE Conf. on Decision and Control, pages
5997–6004, Shanghai, China, 2009.

