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Abstract— In this paper we present a method for automati-

cally planning optimal paths for a group of robots that satisfy

a common high level mission specification. Each robot’s motion

in the environment is modeled as a weighted transition system.

The mission is given as a Linear Temporal Logic formula.

In addition, an optimizing proposition must repeatedly be

satisfied. The goal is to minimize the maximum time between

satisfying instances of the optimizing proposition. Our method

is guaranteed to compute an optimal set of robot paths. We

utilize a timed automaton representation in order to capture

the relative position of the robots in the environment. We

then obtain a bisimulation of this timed automaton as a finite

transition system that captures the joint behavior of the robots

and apply our earlier algorithm for the single robot case

to optimize the group motion. We present a simulation of a

persistent monitoring task in a road network environment.

I. INTRODUCTION

Recently there has been an increased interest in using
temporal logics to specify mission plans for robots [1], [2],
[3], [4], [5]. Temporal logics are appealing because they
provide a formal high level language in which to describe a
complex mission. In addition, tools from model checking [6],
[7] can be used to generate a robot path satisfying the
specification, if such a path exists. However, frequently there
are multiple robot paths that satisfy a given specification.
In this case, one would like to choose the optimal path
according to a cost function. The current tools from model
checking do not provide a method for doing this. In our
previous work [8] we considered Linear Temporal Logic
(LTL) specifications, and a particular form of cost function,
and provided a method for computing optimal robot paths
for one robot. In this paper we extend this result to multiple
robots.

For simplicity of presentation, we assume that each robot
moves among the vertices of an environment modeled as
a graph. However, by using feedback controllers for facet
reachability and invariance in polytopes [9], [10] the method
developed in this paper can be easily applied for motion
planning and control of robots with “realistic” continuous dy-
namics (e.g., unicycle) traversing an environment partitioned
using popular partitioning schemes such as triangulations and
rectangular partitions.

The main difficulty in moving from a single robot to mul-
tiple robots is in synchronizing the motion of the robots, or in
allowing the robots to move asynchronously. In [11], the au-
thors propose a method for decentralized motion of multiple
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robots subject to LTL specifications. In their approach, the
robots take transitions (i.e., travel along edges in the graph)
synchronously. Once every robot has completed a transition,
the robots can synchronously make the next transition. While
such an approach is effective for satisfying the LTL formula,
it does not lend itself to optimizing the robot motion,
since time is spent “waiting” for other robots. In [12], the
authors take a different approach, representing the motion of
the robots in the environment as a timed automaton. Each
robot then has a continuous clock variable that describes
its progress along a transition (i.e., a robot’s position along
an edge between two vertices). The authors then look at
satisfying specifications given in computational tree logic
(CTL). In this paper, we utilize a similar timed-automaton
representation. However, we consider LTL specifications,
for which the control synthesis problem is fundamentally
different. In addition, rather than just satisfying the formulas,
we optimize the motion of the robots.

In terms of optimizing paths, the most closely related work
has been on the vehicle routing problem (VRP) [13]. In [14],
the authors consider vehicle routing with metric temporal
logic specifications. The goal is to minimize a cost function
of the vehicle paths (such as total distance traveled). The
authors present a method for computing an optimal set of
paths by converting the problem to a mixed integer linear
program (MILP). While the approach is computationally
intensive, it has been used to solve problems of real-world
significance. However, their method does not apply to the
persistent monitoring and data gathering applications that are
of interest in this paper. In particular, it does not allow for
specifications of the form “always eventually,” which appear
when specifying that a robot should repeatedly perform a
task. In this paper we take an entirely different approach
to optimizing robot motion, resulting in an optimization
problem on a graph, rather than a MILP.

The contribution of this paper is to present a method for
generating optimal paths for a group of robots satisfying
general LTL formulas. We focus on minimizing a cost
function that captures the maximum time between satisfying
instances of an optimizing proposition. The cost is motivated
by problems in persistent monitoring and in pickup and deliv-
ery problems. Our solution relies on describing the motion of
the group of robots in the environment as a timed automaton.
This description allows us to represent the relative position
between robots. Such information is necessary for optimizing
the robot motion. We provide a bisimulation [15] of the
infinite-dimensional timed automaton to a finite dimensional
transition system. From this point we are able to apply our
previous results [8] to compute an optimal run. This run
then maps to a path for each robot. We provide simulation
results for robots in a road network environment. The main
hurdle in our approach is the computational complexity. We



discuss ways in which this can be reduced, and show that
fairly complex problems can be solved under this framework.

Due to page constraints we omit all proofs of all results.
An extended version of this paper, which includes all proofs,
can be found in [16].

II. PRELIMINARIES

A. Transition Systems and LTL

Definition II.1 (Transition Systems). A (weighted) transi-

tion system (TS) is a tuple T := (QT , q0T ,→T ,Π,LT , wT ),
where (i) QT is a finite set of states; (ii) q0T ∈ QT is the

initial state; (iii) →T⊆ QT ×QT is the transition relation;

(iv) Π is a finite set of atomic propositions (observations);

(v) LT : QT → 2Π is a map giving the set of all atomic

propositions satisfied in a state; (vi) wT :→T→ R+
is a

map that assigns a positive weight to each transition.

We define a run of T as an infinite sequence of states rT =
q0q1 . . . such that q0 = q0T , qk ∈ QT and (qk, qk+1) ∈→T

for all k ≥ 1. A run generates an infinite word ωT =
L(q0)L(q1) . . . where L(qk) is the set of atomic propositions
satisfied at state qk.

To specify the mission of the group, we use LTL formulas
over Π. We use the standard syntax and semantics defined
in [17] and we follow the literal notation for the temporal
operators (G,F,X,U ).

Definition II.2 (Büchi Automaton). A Büchi automaton is a

tuple B := (S,S0,Σ, δ,F), consisting of (i) a finite set of

states S; (ii) a set of initial states S0 ⊆ S; (iii) an input

alphabet Σ; (iv) a non-deterministic transition relation δ ⊆
S × Σ× S; (v) a set of accepting (final) states F ⊆ S .

A run of the Büchi automaton over an input word ω =
ω0ω1 . . . is a sequence rB = s0s1 . . ., such that s0 ∈ S0,
and (sk, ωk, sk+1) ∈ δ, for all k ≥ 1. A Büchi automaton
accepts a word over Σ if at least one of the corresponding
runs intersects with FB infinitely many times. For any LTL
formula φ over Π, one can construct a Büchi automaton with
input alphabet Σ ⊆ 2Π accepting all and only words over
Π that satisfy φ. We refer readers to [18] and references
therein for efficient algorithms and freely downloadable
implementations to translate a LTL formula over Π to a
corresponding Büchi automaton.

B. Timed Automata

A clock is a real-valued variable that increases at a rate of
one as time progresses. Clocks may be valuated, or reset to
zero. Let C denote a set of clocks. A clock valuation of some
clock x ∈ C, denoted as v(x), is a mapping from C to R≥0

that assigns a real value to each clock. A clock constraint g
over a set of clocks C is formed according to the grammar

g ::= x < c
�� x ≤ c

�� x > c
�� x ≥ c

�� g ∧ g,

where c ∈ N is a constant and x ∈ C is a clock. We let
G denote the set of all clock constraints over C. A clock

valuation v(x) of some clock x satisfies a clock constraint
g at some time iff g evaluates to true for v(x).

Definition II.3 (Timed Automata). A timed automaton (TA)

is a tuple A := (QA, q0A, CA,GA,→A,Π,LA) where (i) QA

is a finite set of states; (ii) q0A ∈ QA is an initial state; (iii)

CA is a finite set of clocks; (iv) GA is a finite set of clock

constraints over CA; (v) →A⊆ QA ×GA × 2CA ×QA is the

transition relation. A transition is a tuple (q, g, c, q�) where

q is the source state, q� is the destination state, g is the clock

constraint, and c ⊆ CA is the clock-resets, the set of clocks

to be reset right after the transition. (vi) Π is a finite set of

atomic propositions; (vii) LA is a map assigning a subset of

Π to each transition of →A.

The semantics of the timed automaton can be understood
as follows: starting from the initial state q0A, the values of
all clocks increase at rate one, and the system remains at
this state until a clock constraint of an outgoing transition
is satisfied. When this happens, the transition is immediately
taken and the clocks in the clock-resets are reset. The timed
automaton from Def. II.3 can be seen as a particular case of
the timed automaton defined in [19], which also allows for
clock invariants associated with states.

A TA, as defined in Def. II.3, has a finite set of clock
regions RA, which is the set of equivalence classes of clock
valuations induced by its clock constraints GA. Intuitively,
a clock region r ∈ RA is a subset of the infinite set of
all clock valuations of CA, in which all clock valuations
are equivalent in the sense that the future behavior of the
system is the same. In [19], it has been shown that a clock
region can be either a corner point (e.g., (0,1)), an open
line-segment (e.g., 0 ≤ x1 = x2 ≤ 1), or an open region
(e.g., 0 ≤ x1 ≤ x2 ≤ 1). The clock regions RA of a timed
automaton A induce an equivalence relation ∼A over its state
space, and a bisimulation quotient, which we refer to as the
region automaton R = A/ ∼A. To define R, we define a
clock region r�� to be the time-successor of a clock region
r if and only if there is a t > 0 such that all possible clock
valuations in r are in clock region r�� after time t.

Definition II.4 (Region Automata). The region automaton

(RA) R of a timed automaton A (Def. II.3) is a tuple R :=
(QR, q0R,→R), where (i) QR is the set of states of the form

{q, r} such that q ∈ QA and r ∈ RA; (ii) q0R is the initial

state of the form {q0A, r0} such that q0A is the initial state of A
and all clock valuations of r0 are zero, i.e., xi = 0 ∀ xi ∈
r0; (iii) →R is the transition relation such that there is a

transition from {q, r} to {q�, r�} if and only if there is a

transition from q to q� in A and a clock constraint g in GA

and a clock region r�� such that: r�� is a time-successor of r,

r�� satisfies the clock constraint g, and r�� goes to r� when

corresponding clocks are reset once g is satisfied and the

transition is made.

III. PROBLEM FORMULATION AND APPROACH

Let
E = (V,→E) (1)

be a graph of the environment, where V is the set of vertices
and →E⊆ V × V is a relation modeling the set of edges.
In practice, E can be the quotient graph of a partitioned
environment, where V is a set of labels for the regions
in the partition, and →E is the corresponding adjacency
relation. For example, V can be a set of labels for the roads,
intersections, and buildings in an urban-like environment and
→E can show how these are connected (see Fig. 4).



Consider a team of m robots moving in an environ-
ment modeled by E . The motion capabilities of robot i =
{1, . . . ,m} can be represented by a TS Ti = (Qi, q0i ,→i

,Π,Li, wi), where Qi ⊆ V ; q0i is the initial vertex of robot
i; →i⊆→E is a relation modeling the capability of robot i to
move among the vertices; Π is a set of propositions assigned
to the environment, which are assigned by Li to robot i;
wi(q, q�) captures the time for robot i to go from vertex q
to q�, and we assume that wi(q, q�) is always an integer. In
this robotic model, robot i travels along the edges of Ti,
and spends zero time on the vertices. Note that we allow
the assignment of propositions to differ for different robots
to capture the possibly different capabilities of the robots.
Since TS’s are deterministic, any run on Ti can always be
followed by robot i.

We assume that there is an atomic proposition π ∈ Π,
called the optimizing proposition. We consider LTL formulas
of the form

φ := ϕ ∧GFπ, (2)

where ϕ can be any LTL formula over Π, and GFπ specifies
that proposition π must be satisfied infinitely often. In a
persistent data gathering task, π can be assigned to regions
where new data is gathered, while ϕ could be used to specify
rules (such as traffic rules) that must be obeyed at all times
during the task.

We assume that each run ri = q0i q
1
i . . . of a Ti (robot i)

starts at t = 0 and generates a word ωi = ω0
i ω

1
i . . . and an

infinite sequence of time instances Ti := t0i t
1
i . . . such that

ωk
i = Li(qki ) is satisfied at tki . In order to define the behavior

of the team as a whole, we consider the sequences Ti as sets
and take the union

�m
i=1 Ti and order this set in an ascending

order to obtain T := t0t1, . . .. Then, we define ω = ω0ω1 . . .
to be the word generated by the team of robots where ωk

is the union of all propositions satisfied at tk. Finally, we
define the infinite sequence Tπ = Tπ(1),Tπ(2), . . . where
Tπ(k) stands for the time instance when π is satisfied for the
kth time by the team. We can now formulate the problem:

Problem III.1. Given a team of robots modeled as tran-

sitions systems Ti and an LTL formula φ in the form (2);
Synthesize a run ri for each robot in the team such that the

word generated by the team satisfies φ and Tπ
minimizes

J(Tπ) = lim sup
i→+∞

(Tπ(i+ 1)− Tπ(i)) . (3)

Note that a solution to Prob. III.1 minimizes the maximum
time between satisfying instances of π. Since we consider
LTL formulas containing GFπ, this optimization problem
is always well-posed. For the data gathering task previously
mentioned, this translates to minimizing the maximum time
in between two data gatherings.

Our solution to Problem III.1 can be outlined as follows:
(i) For each TS Ti, we obtain the dual TS Di (Sec. IV-
A); (ii) For each Di, we obtain the corresponding TA Ai

consisting of a single clock, and we create a product TA
P as the parallel composition of these m Ai’s (Sec. IV-B);
(iii) We obtain the RA R as the bisimulation quotient of P
(Sec. IV-C); (iv) We find the optimal run on R using the
OPTIMAL-RUN algorithm we previously developed in [8].

We project this run back to the individual Ti’s to obtain the
solution to Prob. III.1 (Sec. IV-D).

IV. PROBLEM SOLUTION

In this section, we explain each step of the solution to
Prob. III.1 in detail using a simple example involving two
robots in an environment consisting of three vertices. We
present a multi-robot scenario in a more realistic setting in
Sec. V.

A. Dual Transition Systems

We proceed by converting the Ti for each robot to a dual
TS Di. The dual D of a TS T is obtained by swapping
its states with its transitions. More precisely, given T =
(QT , q0T ,→T ,Π,LT , wT ), we define D = (QD, q0D →D

,Π,LD, wD) as follows: if (a, b) ∈→T , then ab ∈ QD, and
(ab, bc) ∈→D. Intuitively, this means that the robot can “go
from a to c through b.” As propositions are originally as-
signed to the states of T, they are satisfied on the transitions
of D, i.e., if (ab, bc) ∈→D, then LD((ab, bc)) = LT (b).
In addition, weights assigned to transitions of T are now
defined on states of D, i.e., wD(ab) = wT (a, b). This means
that in the dual Di of a Ti time is spent on the vertices and
transitions are instantaneous. Since the initial state q0T of T
can have multiple outgoing transitions, the initial state q0D
does not correspond to any transitions, therefore it has zero
weight, but it connects to all outgoing transitions of q0T . The
duals of two simple TS’s are shown in Fig. 1.
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Fig. 1: (a) and (b) show the TS’s T1 and T2 for two robots in an
environment with three vertices. The states correspond to vertices {a, b, c},
the edges represent the motion capabilities of each robot, and the weights
represent the time needed to traverse from a state to another; (c) and (d)
are the duals D1 and D2 of T1 and T2, respectively. A state labelled ab
means that the robot is travelling from vertex a to b.

B. Construction of the timed automata

By constructing the duals of the original TS’s of individual
robots, we can now fully capture the evolution of time for
each robot with a TA (Def. II.3). We can then generate a
product TA capturing the time evolution of the whole team.

To this end, for each robot, we define a clock xi, which
records how much time has passed in each state of Di. We
interpret the weights on the states of Di as clock constraints,
i.e., each state ab in Di is associated with a clock constraint
v(xi) ≥ wT (a, b). We set the initial value of the clock for
each robot to 0. At each state, once the clock constraint is
satisfied, it triggers an outgoing transition and clock xi is
reset to 0. As mentioned before in Def. II.3, we enforce a
transition when a clock constraint is satisfied. We denote the
TA corresponding to Di as Ai. The TAs of the Di’s in Fig.
1 are illustrated in Fig. 2.

We capture the joint behavior of the robots by taking the
parallel composition of the individual TAs Ai, i = 1, . . . ,m,
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Fig. 2: A1 and A2 of each robot, corresponding to D1 and D2 shown in
Fig. 1c and Fig. 1d, respectively. The equations next to each arrow represents
the clock constraint and the clock-reset associated with the transition.

and calling it the product TA P. The set of states of P is
the Cartesian product of the set of states of Di. The initial
state of P is (q0D1

, . . . , q0Dm
). We enable a transition from

state (q1, . . . , qm) to (q�1, . . . , q
�
m) if and only if, for all i,

either (qi, gi, ci, q�i) ∈→Ai , or if (qi, gi, ci, q�i) /∈→Ai for
some i, then qi = q�i. We label this transition with the union
of propositions satisfied by the corresponding transitions in
→Di , and similarly the clock constraints that enable this
transition are the union of all clock constraints gi associated
with the transitions that are taken and inverses of the clock
constraints associated with the remaining transitions that are
not taken. Moreover, the clocks are reset for all robots i that
transitioned to a new state q�i. We require that at least one
robot i makes a transition to a new state for each transition of
P. Since we enforce each transition to be taken immediately
when all clock constraints are satisfied, some transitions of
P may never be taken because they are always preceded by
some other transitions for all possible clock values. Such
transitions will be referred to as invalid transitions.

C. Construction of the Region Automaton

From the product TA P, we can obtain the region automa-

ton (RA) R as a bisimulation quotient of P (see Sec. II-B).
Note that the bisimulation quotient we obtain from P is a
particular case of the bisimulation quotient of a general TA,
where the transitions are enforced when clock constraints are
satisfied. In the process of obtaining R, all invalid transitions
of P are automatically removed, by the definition of RA.

We can now assign propositions and weights to R, con-
verting it to a TS as defined in Def. II.1. We define a
function LR : QR → 2Π such that, for each transition
({q, r}, {q�, r�}), the set of propositions corresponding to
the transition (q, g, c, q�) on P are assigned to the state q�,
i.e., observations defined on the transitions of P are carried
to their destination states in R. In the following, we take m
to be the number of clocks, or equivalently the number of
robots, in the product TA P, and di to be the largest integer
constant that some clock xi is compared with.

Proposition IV.1. For each state {q, r} of the region automa-

ton R, clock region r is always a tuple (v(x1), . . . , v(xm)),
where v(xi) are integers for all i = 1, . . . ,m.

Using Prop. IV.1, we now assign a weight to each tran-
sition of R. Given a transition ({q, r}, {q�, r�}), we define
its weight to be the time t it takes to reach from r =
(v(x1), . . . , v(xm)) to r�� = (v(x1) + t, . . . , v(xm) + t),
where r�� is a time-successor of r. The RA R corresponding
to the product of the TAs from Fig. 2 is shown in Fig. 3.

The following proposition gives the bound on the size of
the region automaton R.
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Fig. 3: The finite state region automaton capturing the joint behavior of two
robots in 9 states. In the circle representing a state {q, r}, the first line is
q and the second line is r.

Proposition IV.2. The number of states |QR| of R is

bounded by

|QP |
�

m�

i=1

di −
m�

i=1

(di − 1)

�
(4)

Remark IV.3. In [19] the authors give the upper-bound on

the number of clock regions |RP | of P as m!·2m·
�m

i=1(2di+
2), which gives the upper bound of R as |QP | · m! · 2m ·�m

i=1(2di+2). Using our particular case of timed automata,

|QR| is reduced by at least a factor of m! · 22m.

We use Alg. 1 to obtain the region automaton R, by
applying a (recursive) depth-first search (DFS) on P. We
note that line 8 in Alg. 1 removes all invalid transitions in
P. Moreover, Alg. 1 generates R by finding all reachable
clock regions of P.

Algorithm 1: OBTAIN-REGION-AUTOMATON

Input: Product timed automaton P.
Output: Corresponding region automaton R.

1 begin

2 Obtain R by running a DFS on P starting from the
initial state and clock region r0 = (0, . . . , 0):
dfsP(q0P ,r0).

3 Function dfsP(state q, clock region r)
4 begin

5 Find the next clock region r�� when we have a
transition out of q.

6 w ← Time between r and r��.
7 foreach transition t taken at r�� do

8 Find the next clock region r� once t is taken by
resetting the appropriate clock.

9 q� ← Target state of t.
10 if {q�, r�} /∈ QR then

11 Add state {q�, r�} to QR with proposition
LP (t) of t.

12 Add {q, r} → {q�, r�} to →R with w.
13 Continue search from {q�, r�}: dfsP(q�, r�)

14 else if {q, r} → {q�, r�} /∈→R then

15 Add {q, r} → {q�, r�} to →R with w.

We now show that the region automaton indeed captures
the behavior of the team. Given a run rR on R, we
denote the corresponding word (see Sec. II-A) as ωR and
the corresponding time sequence of satisfying instances of
propositions (see Sec. III) as TR. We have



Proposition IV.4. Given individual runs of the team, ri =
q0i q

1
i . . . , i = 1, . . . ,m, there is a corresponding run rR on

R such that, the word ω generated by the team is ωR and

the time sequence T of satisfying instances of propositions

for the team is TR.

D. Generating the optimal runs for individual robots

Once the region automaton capturing the behavior of the
team is constructed, we can use Alg. OPTIMAL-RUN [8] to
obtain an optimal run r�R on R that minimizes the lim sup
as defined in (3). The optimal run r�R always consists of a
finite sequence of states of R (prefix), followed by infinite
repetitions of another finite sequence of states of R (suffix).
Such a run is said to be in a prefix-suffix form.

For the example we have shown throughout this section,
running Alg. OPTIMAL-RUN [8] on R given in Fig. 3 for
the formula φ := GFπ results in the optimal run

T 0 2 3 4 6 8 10 . . .

r�R
ab,ab ba,bc ba,cb ab,ba ba,ab ab,ba ba,ab

. . .(0,0) (0,0) (1,0) (0,0) (0,0) (0,0) (0,0)
LR(·) π π π π π . . .

where the rows correspond to the times when transitions
occur, the run r�R, and the satisfying atomic propositions,
respectively. For this run, {(ab, ba), (0, 0)}{(ba, ab), (0, 0)}
is the suffix and will be repeated infinite number of times.
Moreover, for this example, Tπ = 2, 4, 6, 8, 10, . . . and the
cost as defined in (3) is J(Tπ) = 2.

Given a run rR of R, we can finally project it down to
individual robots to obtain individual runs ri of Ti.

Definition IV.5 (Projection of a run on R to Ti’s). Given

a run rR on R where

rR =
�
(q01q

1
1 , . . . , q

0
mq1m), (v0(x1), . . . , v

0(xm))
�

�
(q11q

2
1 , . . . , q

1
mq2m), (v1(x1), . . . , v

1(xm))
�
. . . ,

we define its projection on Ti as run ri = q0i q
1
i . . . for all

i = 1, . . . ,m, where qki only appears in ri if vk(xi) = 0.

It can be easily seen that, given rR, its set of projected runs
ri correspond to rR as defined in Prop. IV.4, i.e., the behavior
of the team where robot i follows run ri is captured exactly
by rR. For the optimal run we obtained for the previous
example, using Def. IV.5, we have runs of individual robots
as follows:

T 0 2 3 4 6 8 10 . . .
r�1 a b a b a b . . .
r�2 a b c b a b a . . .

Note that, at time t = 3, the second robot has arrived at c
while the first robot is still traveling from b to a, therefore the
clock of the first robot is not zero at this time, i.e., v3(x1) �=
0, and b does not appear in r�1 at time t = 3.

We finally summarize our approach in Alg. 2 and show
that this algorithm indeed gives a solution to Prob. III.1.

Proposition IV.6. Alg. 2 solves Prob. III.1.

V. IMPLEMENTATION AND CASE STUDIES

We implemented Alg. 2 in objective-C as the software
package LTL OPTIMAL MULTI-ROBOT PLANNER (LOMP)
and used it in conjunction with our earlier OPTIMAL-RUN

Algorithm 2: MULTI-ROBOT-OPTIMAL-RUN

Input: m Ti’s and a LTL specification φ of form (2).
Output: A set of runs {r�1 , . . . , r�m} that both satisfies

φ and minimizes (3).
1 begin

2 forall the Ti do

3 Construct the timed automaton Ai by first
constructing the dual TS Di and then defining
clocks and clock constraints.

4 Find the product timed automaton P = Πm
i=1Ai.

5 Construct the region automaton R using
OBTAIN-REGION-AUTOMATON .

6 Find the optimal run r�R using OPTIMAL-RUN [8].
7 Project r�R to Ti’s to obtain runs {r�1 , . . . , r�m}.
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Fig. 4: The road network showing the labels of task locations and the
quantized weights of the road segments for the two case studies. Values
in blue are weights for the case where the weights are in {1 . . . 20} and
values in magenta are for the case where the weights are in {1 . . . 5}.

[8] algorithm to obtain simulations of robots performing
persistent data gathering missions in a road network en-
vironment. Our user-friendly software package is available
at http://hyness.bu.edu/Software.html. It uti-
lizes the dot tool [20] to visualize transition systems and the
OPTIMAL-RUN algorithm uses the LTL2BA software [21]
to convert LTL specifications to Büchi automata. Briefly, our
software creates the region automaton R from Ti’s following
the steps detailed in Sec.IV. Then, OPTIMAL-RUN algorithm
is executed in Matlab to find r�R on R, which is projected
onto Ti’s to obtain the solution to Prob. III.1. Finally, the
resulting motion of the team is shown in a simulator.

The road network that we consider for our case studies
is a collection of roads, intersections, and task locations. In
this road network, a road connects two intersections and the
task locations are always located on the side of a road. The
transition system that we used to model the motion of the
robots in this environment is illustrated in Fig. 4. We assume
that the transition systems Ti of robots are identical except
at the initial state. In Ti’s, the weights of transitions are
quantized so that the resulting region transition system has a
manageable size while still preserving the relative distances
of the road segments. In the following, we consider two
cases where the weights fall in the range {1, . . . , 5} and
{1, . . . , 20}, respectively.

We consider a persistent monitoring task where robots are
deployed to repeatedly gather and upload data. We require



(a) (b)

Fig. 5: Simulated team trajectories for the two case studies. (a) and (b)
correspond to the cases where the weights are within the ranges {1 . . . 5}
and {1 . . . 20}, respectively. Robot 1 and robot 2 travel between red and
blue task locations respectively. Regions filled with a solid color are data
gathering locations and regions with a diagonal pattern are upload locations.

robot 1 to gather data at P1 and upload the gathered data at
P5; and robot 2 to gather data at P2 and upload the gathered
data at P4. To specify this task, we define
Π = {Gather, R1Gather, R1Upload, R2Gather, R2Upload}
and assign the atomic propositions as follows:
L1(P1) = {R1Gather, Gather},L1(P5) = {R1Upload}
L2(P2) = {R2Gather, Gather},L2(P4) = {R2Upload}.

We aim to minimize the maximum time in between data-
gatherings performed by either robot 1 or 2. Therefore we
set the proposition Gather to be satisfied when either robots
visit their gathering locations, and we set it as the optimizing
proposition (π as in formula (2)). We set the propositions
{R1Gather, R1Upload} and {R2Gather, R2Upload} to be
robot specific since robots gather and upload at different
locations. For both robots, we enforce the rule that, after
each data gathering, the data must be uploaded at the upload
location before another data gathering. This rule can be
specified in LTL as follows:

ϕ = G(R1Gather ⇒ X(¬R1Gather U R1Upload))

∧G(R2Gather ⇒ X(¬R2Gather U R2Upload)).

Our overall LTL formula is φ = ϕ ∧GF Gather.
Running our algorithms on an iMac i5 quad-core com-

puter, we obtain the solutions as illustrated in Fig. 5. For
the case where the weights are in the range {1 . . . 5} the
algorithm ran for 90 seconds, the region transition system
R that the OPTIMAL-RUN algorithm worked on had 2337
states and the value of the cost function was 11 time units,
meaning that the maximum time in between data gatherings
was 11 time units. For the case where the weights are in
the range {1 . . . 20} our algorithm ran for 10 minutes, R
had 6191 states and the value of the cost function was 22
time units. Our video submission accompanying the paper
displays the robot trajectories for both cases.

It is interesting to note that, for the case where the weights
are in {1 . . . 20}, the optimal team trajectories have robots
spending extra time entering and exiting some vertices. This
behavior is actually time-wise optimal since it decreases the

maximum time between satisfying instances of the optimiz-
ing proposition, minimizing the cost function.

VI. CONCLUSIONS

In this paper we presented a method for planning the
optimal motion for a team of robots in a common envi-
ronment subject to temporal logic constraints. The problem
is important in applications where multiple robots have to
perform a sequence of operations collectively subject to
various external constraints. We considered temporal logic
specifications which contain an optimizing proposition that
must be repeatedly satisfied. The motion plan that our
method provides is optimal in the sense that it minimizes
the maximum time between satisfying instances of the opti-
mizing proposition.
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