
Optimality and Robustness in Multi-Robot Path Planning with

Temporal Logic Constraints

Alphan Ulusoy† Stephen L. Smith? Xu Chu Ding∗ Calin Belta† Daniela Rus‡

Abstract

In this paper we present a method for automatic planning of optimal paths for a group of robots
that satisfy a common high level mission specification. The motion of each robot is modeled as a
weighted transition system, and the mission is given as a Linear Temporal Logic (LTL) formula over a
set of propositions satisfied at the regions of the environment. In addition, an optimizing proposition
must repeatedly be satisfied. The goal is to minimize a cost function that captures the maximum time
between successive satisfactions of the optimizing proposition while guaranteeing that the formula is
satisfied.

When the robots can follow a given trajectory exactly, our method computes a set of optimal satisfying
paths that minimize the cost function and satisfy the LTL formula. However, if the traveling times of
the robots are uncertain, then the robots may not be able to follow a given trajectory exactly, possibly
violating the LTL formula during deployment. We handle such cases by leveraging the communication
capabilities of the robots to guarantee correctness during deployment and provide bounds on the deviation
from the optimal values. We implement and experimentally evaluate our method for various persistent
surveillance tasks in a road network environment.

1 Introduction

In the classical reach-avoid robotic path planning problem (Choset et al., 2005; LaValle, 2006), the aim is
to steer a robot from a given initial position to some final position while avoiding any obstacles along the
way. Many methods based on the configuration space approach (Lozano-Perez, 1983) have been proposed
to find such collision-free paths. If the dimension of the configuration space permits, one can use discretized
approaches that utilize various graph search algorithms (Choset et al., 2005; LaValle, 2006) or continuous
methods (Rimon and Koditschek, 1992) to solve this problem. Alternatively, randomized sampling-based
algorithms such as Probabilistic Road Map (PRM) (Kavraki et al., 1996) or Rapidly-Exploring Random Tree
(RRT) (Kuffner and LaValle, 2000) can be used to find admissible paths. However, due to the limited scope
of the problem that they address, classical path planning algorithms cannot handle more complex temporal
and logic mission requirements.

Complex robotic missions need a precise as well as user-friendly language for requirement specification.
In this regard, Linear Temporal Logic (LTL) provides a very attractive formalism that can capture the
infinite behavior of a dynamic system in an intuitive but mathematically precise manner (Baier and Katoen,
2008). Using LTL one can easily specify complex robotic missions such as “Repeatedly visit region 1. Go
to region 3 before each visit to region 1. Always avoid region 2.”. Current literature on path planning
and control synthesis using LTL specifications considers finite systems, which may be abstractions of their
infinite counterparts (Tabuada and Pappas, 2006; Yordanov et al., 2012). Given a finite system and an LTL

This work was supported in part by Office of Naval Research [grant number MURI N00014-09-1051]; Army Research Office
[grant number W911NF-09-1-0088]; Air Force Office of Scientific Research [grant number YIP FA9550-09-1-020]; National
Science Foundation [grant number CNS-0834260]; and by Natural Sciences and Engineering Research Council of Canada.

† Division of Systems Engineering, Boston University, Boston, MA 02215 (alphan@bu.edu, cbelta@bu.edu)
? Dept. of Electrical and Computer Engineering, University of Waterloo, Waterloo ON, N2L 3G1 Canada (stephen.smith@

uwaterloo.ca)
∗ Embedded Systems and Networks, United Technologies Research Center, East Hartford, CT 06108 (dingx@utrc.utc.com)
‡ Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139

(rus@csail.mit.edu)

1

mission specification, paths and control strategies that satisfy the mission can be automatically computed
for deterministic (Kloetzer and Belta, 2010; Kress-Gazit et al., 2011), non-deterministic (Kloetzer and Belta,
2008; Kress-Gazit et al., 2007; Thomas, 2002; Yordanov et al., 2012), and probabilistic systems (Bianco and
de Alfaro, 1995; Ding et al., 2011; Kwiatkowska et al., 2002). Nevertheless, finding a path that accomplishes
a mission is only part of the robotic path planning problem, as there remains the question of picking a
particular path from all those paths that satisfy given specifications. In this case, one can either break the
tie by making an arbitrary choice or pick the best alternative in terms of safety, speed, efficiency, or some
other relevant metric.

The goal of this paper is to compute optimal paths for a group of robots subject to general LTL spec-
ifications. Our approach is motivated by persistent monitoring and pickup-delivery problems, where there
is an optimizing task that must be repeatedly completed. We aim to compute paths that satisfy the LTL
specification while minimizing the maximum time between sucessive completions of this optimizing task.
Previously, we provided a method that solves this problem for a single robot (Smith et al., 2011). Then, we
extended our approach to multiple robots by utilizing timed automata (Ulusoy et al., 2011), and provided
improved methods that are robust to uncertainties in the speeds of robots (Ulusoy et al., 2012a,b). Moving
from a single robot to multiple robots requires special care, as the model of the robotic team must capture
the asynchronous motion of its members. In Kloetzer and Belta (2010), the authors propose a method for
decentralized motion of multiple robots subject to LTL specifications. Their method, however, results in
sub-optimal performance as it requires the robots to travel synchronously, blocking the execution of the
mission before each transition until all robots are synchronized. The vehicle routing problem (VRP) (Toth
and Vigo, 2001) and its extensions to more general classes of temporal constraints (Karaman and Frazzoli,
2008a,b) also deal with finding satisfying optimal paths for a given specification. In Karaman and Frazzoli
(2008a), the authors consider optimal vehicle routing with metric temporal logic specifications by converting
the problem to a mixed integer linear program (MILP). However, their method does not apply to the mis-
sions where robots must repeatedly complete some task, as it does not allow for specifications of the form
“always eventually”. Furthermore, none of these methods are robust to timing errors that can occur during
deployment, as they rely on the ability of the robots to follow generated trajectories exactly for satisfaction of
the mission specification. In Quottrup et al. (2004), the authors propose a method for synthesizing controls
for a team of robots subject to a computational tree logic (CTL) formula. But, they do not consider opti-
mizing the paths of the robots. In Chen et al. (2012), the authors propose a method for automatic synthesis
of control and communication strategies for a team of robots. However, they consider finite horizon tasks
given as regular expressions as opposed to infinite horizon tasks expressed in LTL that are of our interest.
Morever, their method does not consider the costs of the generated team trajectories and thus, in general,
does not provide optimal solutions. Even though the authors consider LTL as the specification language for
the same problem in Chen et al. (2011), they again do not consider optimal solutions.

The contribution of this paper is threefold. First, we provide an algorithm to capture the asynchronous
motion of a group of robots. Given a team of robots modeled as weighted transition systems, this algorithm
constructs a new transition system that models the joint behavior of all members as a whole. Second,
we provide an algorithm to compute communication strategies for a team of robots so that we can still
guarantee correctness even if the robots cannot follow generated trajectories exactly during deployment.
Finally, building on these two algorithms, we present a method for generating optimal paths for a group of
robots satisfying general LTL formulas. Our method is general enough to address problems involving robotic
teams with different capabilities. The first case that we consider is when the members of the robotic team can
follow generated paths arbitrarily closely and their models have exact timing information. One such example
would be a team of robots that have accurate position information and can regulate their speeds to track
moving set-points that correspond to generated paths. We address such problems with our exact solution
that generates optimal satisfying paths. However, there might also be cases where the robots lack accurate
speed control and traveling times between the regions of the environment is an unknown quantity within a
given interval. If this is the case, one cannot generally guarantee satisfaction of the LTL formula without
additional measures. Intuitively, if during deployment the robot speeds differ from those used for planning,
then the order of events can switch, which may result in the violation of the global mission specification.
For such cases we propose a robust solution that leverages the communication capabilities of the robots to
guarantee correctness and to maintain field performance in the presence of timing errors. Paths generated
using this approach are robust to uncertainties in the speeds (traveling times) of robots. In addition, we

2

characterize the performance of the robust paths with respect to the exact solutions. Preliminary versions
of parts of our approach appeared in conference proceedings Ulusoy et al. (2011, 2012a,b). Here, we extend
these preliminary works by presenting a unified approach that can handle cases with both exact and non-
deterministic traveling times. We also provide full proofs, new case studies, and experiments.

The organization of the paper is as follows. In Sec. 2, we give some preliminaries in formal methods
and trace-closed languages. In Sec. 3, we formally state the optimal motion planning problem for a team
of robots and give an overview of our approach. In Sec. 4, we present the parts of our approach that are
common to the two cases that we consider in this paper. We present our exact solution in Sec. 5, which
applies to the cases where the models of the robots have exact timing information and the robots can follow
generated trajectories exactly. In Sec. 6, we present our robust solution, which applies to the cases where
the traveling times of the robots are uncertain and the robots communicate to guarantee correctness during
deployment and maintain field performance. In Sec. 7, we present experimental case studies for a team of
robots performing persistent data gathering missions in a road network environment followed by numerical
case studies that investigate the scalability of our approach considering a small academic example. We
conclude with final remarks in Section 8.

2 Preliminaries

In this section, we introduce the notation that we use in the rest of the paper and give some definitions.
We refer the reader to Baier and Katoen (2008); Clarke et al. (1999); Hopcroft et al. (2007) and references
therein for a more complete and rigorous treatment of these topics.

For a set Π, we use |Π|, 2Π, Π∗, and Πω to denote its cardinality, power set, set of finite words, and set
of infinite words, respectively. We also define Π∞ = Π∗ ∪Πω.

Definition 2.1 (Transition System). A (weighted) transition system (TS) is a tuple T ··= (QT, q
0
T, δT,

ΠT,LT, wT), where

(i) QT is a finite set of states;

(ii) q0
T ∈ QT is the initial state;

(iii) δT ⊆ QT ×QT is the transition relation;

(iv) ΠT is a finite set of atomic propositions;

(v) LT : QT → 2ΠT is a map giving the set of atomic propositions satisfied in a state;

(vi) wT : δT → N>0 is a map that assigns a positive integer weight to each transition.

We define a run of T as an infinite sequence of states rT = q0, q1, . . . such that q0 = q0
T, qk ∈ QT and

(qk, qk+1) ∈ δT for all k ≥ 0. A run generates an infinite word ωT = L(q0),L(q1), . . . where L(qk) is the
set of atomic propositions satisfied at state qk. A prefix of a run is a finite path from an initial state to a
state q. A periodic suffix is an infinite run originating at the state q reached by the prefix, and periodically
repeating a finite path, which we call the suffix cycle, originating and ending at q. A run is in prefix-suffix
form if it consists of a prefix followed by a periodic suffix.

Definition 2.2 (LTL Formula). An LTL formula φ over a set of atomic propositions Π is defined induc-
tively as follows (Baier and Katoen, 2008; Clarke et al., 1999):

φ ··= > | p | φ ∨ φ | φ ∧ φ | ¬φ | Xφ | φU φ

where > is a predicate true in each state of a system, p ∈ Π is an atomic proposition, ¬ (negation), ∨
(disjunction) and ∧ (conjunction) are standard Boolean connectives, and X and U are temporal operators.

LTL formulas are interpreted over infinite words (generated by the transition system T from Def. 2.1
with ΠT = Π). Informally, X p states that at the next position of a word, proposition p is true. Formula
p1 U p2 states that there is a future position of the word when proposition p2 is true, and proposition p1 is
true at least until p2 is true. From these temporal operators we can construct two other temporal operators:

3

Eventually (future), F, defined as Fφ ··= >U φ, and Always (globally), G, defined as Gφ ··= ¬F¬φ.
Formula Gφ states that φ is true at all positions of the word; formula Fφ states that φ eventually becomes
true in the word. More expressivity can be achieved by combining the temporal and Boolean operators. We
say a run rT satisfies φ if and only if the word generated by rT satisfies φ. An LTL formula φ over a set Π
can be represented by a Büchi automaton, which is defined next.

Definition 2.3 (Büchi Automaton). A Büchi automaton is a tuple B ··= (QB,Q0
B,ΠB, δB,FB), where

(i) QB is a finite set of states;

(ii) Q0
B ⊆ QB is the set of initial states;

(iii) ΠB is the input alphabet;

(iv) δB ⊆ QB ×ΠB ×QB is a non-deterministic transition relation;

(v) FB ⊆ QB is the set of accepting (final) states.

A run of B over an input word ω = ω0, ω1, . . . is a sequence rB = q0, q1, . . ., such that q0 ∈ Q0
B, and

(qk, ωk, qk+1) ∈ δB, for all k ≥ 0. A Büchi automaton B accepts a word over ΠB if and only if at least one of
the corresponding runs intersects with FB infinitely many times. For any LTL formula φ over a set Π, one
can construct a Büchi automaton with input alphabet ΠB = 2Π accepting all and only words over 2Π that
satisfy φ. The set of all the words accepted by a Büchi automaton B is called the language recognized by
the automaton and is denoted by LB.

Given a set Π, the collection of subsets Πi ⊆ Π, ∀ i = 1, . . . ,m is called a distribution of Π if ∪mi=1Πi = Π.
For a word ω ∈ Π∞ and a subset Πi ⊆ Π, ω �Πi denotes the projection of ω onto Πi, which is obtained by
removing all the symbols in ω that are not in Πi. For a language L ⊆ Π∞ and a subset Πi ⊆ Π, L�Πi denotes
the projection of L onto Πi, which is the set of projections of all words in L onto Πi, i.e., {ω �Πi : ω ∈ L}.

Definition 2.4 (Trace-Closed Language). Given a distribution {Π1, . . . ,Πm} of Π and words ω, ω′ ∈ Π∞,
ω′ is trace-equivalent to ω, denoted ω′ ∼ ω, iff their projections onto each one of the subsets in the given
distribution are equal, i.e., ω �Πi= ω′ �Πi for each i = 1, . . . ,m. For {Π1, . . . ,Πm}, the trace-equivalence
class of ω is given by [ω] = {ω′ ∈ Π∞ : ω′ �Πi= ω �Πi ∀ i = 1, . . . ,m}. Finally, a trace-closed language over
{Π1, . . . ,Πm} is a language L such that [ω] ⊆ L, ∀ ω ∈ L.

Remark 2.5 (Optimal-Run Algorithm (Smith et al., 2011)). The approach that we present in this
paper utilizes the Optimal-Run algorithm that we previously developed in Smith et al. (2011). The algorithm
takes as input a weighted transition system modeling the motion of a robot and an LTL formula of the form
φ ··= ϕ∧GFπ. In formula φ, π is the optimizing task that must be repeatedly satisfied and ϕ is an arbitrary
LTL formula for capturing other mission requirements. The Optimal-Run algorithm outputs an optimal
satisfying run that satisfies φ and minimizes the maximum time between successive satisfying instances of π.
We refer the interested reader to Smith et al. (2011) for more details on the Optimal-Run algorithm.

3 Problem Formulation and Approach

In this section we introduce the optimal multi-robot path planning problem and motivate the need for
solutions that are robust to uncertain robot speeds. Let

E = (V,→E ,Π,L)

be a directed graph, where V is the set of vertices, →E⊆ V ×V is the set of edges, Π is a finite set of atomic
propositions, and L is a map giving the set of atomic propositions satisfied at a vertex. In this paper, E is
the quotient graph of a partitioned environment, where V is a set of labels for the regions in the partition
and →E is the corresponding adjacency relation. For example, V can be a set of labels for the regions and
intersections for a road network and →E can give their connections (see Fig. 4).

Consider a team of m robots moving in an environment modeled by E . The motion capabilities of robot
i ∈ {1, . . . ,m} are represented by a transition system Ti = (Qi, q0

i , δi,Πi,Li, wi), where Qi ⊆ V ; q0
i is the

4

initial vertex of robot i; δi ⊆→E is a relation modeling the capability of robot i to move among the vertices;
Πi ⊆ Π is the set of propositions that can be satisfied by robot i and {Π1, . . . ,Πm} is a distribution of Π;
Li is a mapping from Qi to 2Πi showing how the propositions are satisfied at vertices; wi(q, q

′) captures the
time for robot i to go from vertex q to q′, which we assume to be a positive integer. In this model, each
robot travels along the edges of the corresponding transition system Ti, and spends zero time at its vertices.
We assume that the robots are equipped with motion primitives that allow them to deterministically move
from q to q′ for each (q, q′) ∈ δi.

We consider the case where this robotic team has a mission in which some particular task must be repeat-
edly completed and the maximum time in between successive completions of this task must be minimized.
For instance, in a persistent surveillance mission (Smith et al., 2011), the global mission could be to keep
gathering data while obeying traffic rules at all times, and the repeating task could be gathering data. For this
example, the robots would operate according to the mission specification while ensuring that the maximum
time between successive data gatherings is minimized. Consequently, we assume that there is an optimizing
proposition π ∈ Π corresponding to this particular repeating task and consider missions specified by LTL
formulae of the form

φ ··= ϕ ∧GFπ, (1)

where ϕ can be any LTL formula over Π, and GFπ means that the proposition π must be repeatedly satisfied.
Our aim is to plan multi-robot paths that satisfy the mission specified by φ and minimize the maximum
time between successive satisfying instances of π.

To state this problem formally, we assume that each run ri = q0
i , q

1
i , . . . of Ti (robot i) starts at t = 0 and

generates a word ωi = ω0
i , ω

1
i , . . . and a corresponding sequence of time instances Ti ··= t0i , t

1
i , . . . such that

ωki = Li(qki) is satisfied at tki . To define the behavior of the team as a whole, we interpret the sequences Ti as
sets, take the union

⋃m
i=1 Ti and order this set in an ascending order to obtain the sequence T ··= t0, t1,

Next, we define ωteam = ω0
team, ω

1
team, . . . to be the word generated by the team of robots where ωkteam is the

union of all propositions satisfied at tk. Then, we define the infinite sequence Tπ = Tπ(1),Tπ(2), . . . where
Tπ(k) stands for the time instance when π is satisfied for the kth time by the team1. Finally, we define the
cost function

J(Tπ) = lim sup
k→+∞

(Tπ(k + 1)− Tπ(k)) . (2)

The form of the cost function given in (2) is motivated by persistent surveillance and pickup-delivery missions,
where one is interested in the long-term behavior of the team. Given a sequence Tπ corresponding to a run
of the team, the cost function in (2) captures the maximum time between satisfying instances of π once the
team behavior reaches a steady-state, which is achieved in finite time as we will discuss in Sec. 4.2.

In this paper we are particularly interested in the implementability and robustness of our solutions. Thus,
we consider two cases for the traveling times given by the models of the robots: The first case that we consider
is when the weight wi(q, q

′) of each transition (q, q′) ∈ δi is exactly the time it takes for robot i to go from q
to q′ for i = 1, . . . ,m. This corresponds to the case when the robots can follow any given run exactly when
deployed in the environment and Tπ observed during deployment is identical to the planned Tπ. The second
case that we consider is when the robots lack accurate speed control and the actual time it takes for robot i
to go from q to q′ is an uncertain quantity w̃i(q, q

′) taking values in known intervals non-deterministically.
The interval of each w̃i(q, q

′) is given by [ρiwi(q, q
′), ρiwi(q, q

′)], where wi(q, q
′) is the weight of the transition

(q, q′) ∈ δi, ρi and ρi are the lower and upper deviation values of robot i, and 0 < ρi ≤ 1 ≤ ρi. In this
setting, we treat the weight wi(q, q

′) given by Ti as a nominal value, which determines the bounds of the
uncertain traveling time w̃i(q, q

′) along with ρi and ρi. We further assume that ρi and ρi of each robot i are
known a priori. In the following, we use x and x̃ to denote the nominal and actual values of some variable
x, and use the expression “in the field” to refer to the model with uncertain traveling times. Notice that, for
the case of uncertain traveling times, J(Tπ) corresponds to the nominal value of the cost function, whereas
J(T̃π) is the actual maximum time between any two successive satisfactions of π during deployment, i.e.,

J(T̃π) = lim sup
k→+∞

(
T̃π(k + 1)− T̃π(k)

)
.

1Throughout the paper, we will denote transition systems and automata with boldface letters, e.g., T and B. We use the
double-barred letter T exclusively for referring to various time sequences that we define in this section, e.g., Ti,T, and Tπ .

5

When the robots cannot follow generated trajectories exactly, the order in which the propositions are
satisfied may switch during deployment. Then, the actual word ω̃team generated by the robotic team during
its infinite asynchronous run in the field may not be the planned word ωteam, but a trace equivalent of ωteam
instead, i.e., ω̃team ∈ [ωteam]. This leads to the definition of critical words.

Definition 3.1 (Critical Words). Given the language LB of the Büchi automaton that corresponds to the
LTL formula φ over Π, and a distribution {Π1, . . . ,Πm} of Π, the word ωteam over Π is a critical word if
∃ ω̃team ∈ [ωteam] such that ω̃team 6∈ LB, where [ωteam] is the trace-equivalence class of ω (Def. 2.4).

Thus, we see that if the planned word is critical and the traveling times of the robots are non-deterministic,
then we may not satisfy the specification in the field. This can be formalized by noting that the optimal
runs that satisfy (1) are always in a prefix-suffix form (Smith et al., 2011), where the suffix cycle is repeated
infinitely often. Using this observation and Def. 3.1 we can formally define the words that can violate the
LTL formula during the deployment of a robotic team with uncertain traveling times.

Proposition 3.2. If the suffix cycle of the word ωteam is a critical word and the traveling times of the robots
are non-deterministic, then the correctness of the motion of the robotic team during its deployment cannot
be guaranteed.

Proof. We denote the actual word generated by the robotic team in the field by ω̃team, whereas ωteam stands
for the planned word. Suppose that for each robot ρi = 1− ε, ρi = 1 + ε, and in the suffix cycle of ωteam we

have α ⊆ ωkteam and β ⊆ ω(k+τ)
team , where α and β are the propositions generated by robots i and j at positions

k and k+ τ of ωteam, respectively. Further assume that β must not occur before α, because if it does, ω̃team
violates φ. Note that we are guaranteed to find such α and β as we assume the suffix cycle to be a critical
word. In the worst-case, for ω̃team to violate φ, we must have (1 + ε)tk > (1 − ε)tk+τ , where tk is the time
at which ωkteam is satisfied. Solving for ε, we get ε > (tk+τ − tk)/(tk + tk+τ). However, as the suffix is an
infinite repetition of the suffix cycle, limk→∞(tk+τ − tk)/(tk + tk+τ) = 0 and φ is violated for any ε > 0. �

Remark 3.3 (Worst-Case Performance in the Field under Uncertain Traveling Times). In ad-
dition, we can consider the performance of the team during deployment in terms of the value of the cost
function (2) observed in the field. Using the same arguments presented in Prop. 3.2, it can be easily shown
that the worst-case field value of (2) will be the minimum of (J(T̃π1), . . . , J(T̃πm)), where T̃πi is the time
sequence of satisfactions of π by robot i and J(T̃πi) is the maximum duration between any two successive
satisfactions of π by robot i in the field. This effectively means that, in the worst case, there is no benefit in
executing the task with multiple robots, as at some point in the future the overall performance of the team
will be limited by that of a single member.

Prop. 3.2 shows that we cannot solely rely on the planned runs to satisfy the mission when the traveling
times are uncertain and the suffix cycle of the word ωteam is a critical word. Thus, for such cases, it is
relevant to consider the communication capabilities of the robots as one may leverage them to guarantee
correctness during deployment. We can now formulate the problem that we consider in this paper.

Problem 3.4. Given an LTL formula φ over Π of the form (1) and a team of m robots modeled as transition
systems {T1, . . . ,Tm}, possibly with uncertain traveling times characterized by deviation values ρi, ρi, i =
1, . . . ,m; generate individual runs and communication strategies for each robot such that Tπ minimizes the
cost function (2) subject to the constraint that ωteam, or ω̃team in case of uncertain traveling times, satisfies
φ.

Since we consider LTL formulas containing GFπ, this optimization problem is always well-posed. An
overview of our approach is given in Fig. 1. Notice that the exact steps we take to solve Prob. 3.4 depend
on whether the traveling times of the robots are uncertain or not. Nevertheless, in both solutions, we first
construct the team transition system T that captures the joint asynchronous motion of the robots in the
environment (Sec. 4.1). Then, we find an optimal satisfying run on T using the Optimal-Run algorithm
we previously developed in Smith et al. (2011), and project this run back to the individual Ti, i = 1, . . . ,m
(Sec. 4.2). In the next section, we discuss these common parts of our approach before presenting our exact
and robust solutions in the sections that follow.

6

Exact Solution (Sec. 5)

Robust Solution (Sec. 6)

Transition Systems T1, . . . ,Tm

Mission specification φ
Deviation values ρi, ρi, i = 1, . . . ,m (optional)

Uncertain
traveling times?

Obtain the team
transition system T

Find optimal satisfying
individual runs r⋆1 , . . . , r

⋆
m

Done

Obtain the team
transition system T

Find optimal satisfying
individual runs r⋆1 , . . . , r

⋆
m

Is φ trace-closed?

Find individual sync
sequences s⋆1, . . . , s

⋆
m

Use simple
synchronization

Done

No

Yes

No Yes

Figure 1: An overview of our approach.

Remark 3.5 (Complexity of Multi-Robot Optimal Path Planning). LTL model checking is the
problem of automatically checking a given system model against some LTL specification ψ. In Sistla and
Clarke (1985), the authors show that the complexity of LTL model checking is PSPACE-complete. The single-
robot version of Prob. 3.4, where the aim is to find an optimal path that satisfies a given LTL specification of
the form (1) and minimizes (2), was previously considered in Smith et al. (2011). Notice that any instance
of the LTL model checking problem can be transformed to a single-robot optimal path planning problem in
polynomial time by letting φ := ¬ψ ∧GFπ and defining π on all states of the model. Then, if one can find
an optimal path that satisfies φ, the system model violates ψ, and vice versa. Thus, the single-robot version
of Prob. 3.4 is PSPACE-hard. Since the multi-robot optimal path planning problem is at least as hard as the
single-robot case, Prob. 3.4 is also PSPACE-hard.

Remark 3.6 (Optimization Objective). Another interesting optimization objective would be to compute
robot paths that give the best performance for the worst case, i.e., min maxJ(Tπ), where minimization is over
all paths that satisfy φ, and maximization is over all possible realizations of traveling times within the given
intervals. However, it appears that this would entail the solution of an additional optimization problem over
a high dimensional continuous space (for discovering the worst-case traveling times), potentially resulting in
a further increase in the complexity of this problem.

4 Modeling the Team and Finding Optimal Satisfying Runs

As given in Fig. 1, there are two operations common to both of our solutions: construction of the team
transition system T and finding optimal satisfying runs for individual robots. In the following, we discuss
these operations.

7

4.1 Constructing the Team Transition System

In order to be able to optimize the motion of the team, we must capture the joint asynchronous behavior
of its members as they move in the environment. Since traveling times between regions are typically not
identical, we need a way to capture the states, or relative positions, of the robots regardless of whether
they are at the regions in the environment or traveling between the regions. This leads to the definition of
traveling states.

Definition 4.1 (Traveling State). Given the transition system Ti ··= (Qi, q0
i , δi,Πi,Li, wi) modeling robot

i, we refer to a state of the form qiq
′
ixi, where qi, q

′
i ∈ Qi and xi > 0, as a traveling state, and use it to

represent the instant where robot i has traveled from qi to q′i for xi time units.

To model the asynchronous motion of the team in the environment, we use a team transition system
T = (QT, q

0
T, δT,ΠT,LT, wT), where QT is the set of states of the form q = (q[1], . . . , q[m]) where q is a

tuple and its ith element q[i] is the state of robot i; q0
T = (q0

1 , . . . , q
0
m) is the initial state of the team; δT is the

set of transitions; ΠT = ∪mi=1Πi is the set of propositions; LT is a mapping from QT to 2ΠT ; wT(q, q′) is the
weight of the transition from q to q′. The states of T correspond to the instants where at least one member
of the team has completed a transition on its individual transition system and is currently at a vertex while
other robots may still be traveling. When robot i is at some region in the environment, we have q[i] ∈ Qi.
If, on the other hand, robot i is traveling from qi to q′i and it has been xi time units since it left qi, we have
q[i] = qiq

′
ixi. Using this, we construct T by running a depth first search on the transition systems of the

individual members of the team as given in Alg. 1.

Algorithm 1: Construct-Team-TS

Input: {T1, . . . ,Tm}.
Output: Corresponding team transition system T.

1 q0
T := (q0

1 , . . . , q
0
m).

2 dfsT(q0
T).

3 Function dfsT(state tuple q ∈ QT)

4 Define q[i] as the ith element of q.
5 Define →i as a transition of Ti, such that →i∈ {(q[i], q′i)|(q[i], q′i) ∈ δi} for q[i] ∈ Qi and →i= (qi, q

′
i)

for q[i] = qiq
′
ixi.

6 T is the set of all possible transition tuples (→1, . . . ,→m) at q.
7 foreach transition tuple (→1, . . . ,→m) ∈ T do
8 w = Shortest time until a robot is at a vertex.
9 Find the q′ that corresponds to the new state of the team.

10 if q′ /∈ QT then
11 Add state q′ to QT.
12 Set LT(q′) = ∪mi=1Li(q′[i]).
13 Add (q, q′) to δT with weight w.
14 Continue search from q′: dfsT(q′).

15 else if (q, q′) /∈ δT then
16 Add (q, q′) to δT with weight w.

Alg. 1 is essentially a recursive depth first search (lines 4 – 16) that starts at the initial state of the team
transition system T (line 2). The initial state q0

T of T is defined as the tuple of the initial states of the
m transition systems (line 1). Given a state q of T, the function dfsT first generates all possible tuples of
transitions that can be taken at the current states of the transition systems {T1, . . . ,Tm} (lines 4 – 6). The
current state of transition system Ti is given by the ith element q[i] of the current state q of T. At line 5 of
Alg. 1, we consider all possible transitions out of the current states of all transition systems {T1, . . . ,Tm}. If
q[i] ∈ Qi, i.e., q[i] is a regular state of Ti, then all transitions going out of this state in Ti will be considered
in the transition tuples that we will construct. Else, q[i] is a traveling state of Ti of the form qiq

′
ixi, and the

8

only transition that can be taken is the one that is being taken, i.e., the transition from qi to q′i. Then, we
construct the set of all possible tuples of transitions that can be taken at the current states of the transition
systems (line 6) and process each tuple one by one (lines 7–16). In a transition tuple (→1, . . . ,→m), the
ith element →i gives the transition that is being taken at the current state of Ti. In lines 8–9, we find the
next instant where at least one transition from the current tuple (→1, . . . ,→m) has been completed and the
next state q′ of T has been reached. The ith element q′[i] of the next state q′ of T corresponds to the next
state of Ti w time units after starting taking the transition →i at q[i]. Suppose that, the source and target
states of transition →i are qi and q′i, respectively. If the transition →i has been completed at this point,
then q′[i] = q′i, i.e., we set the next state of Ti to the target state of →i. Otherwise, q′[i] is a traveling state
of the form qiq

′
ixi such that xi = w if q[i] = qi, and xi = n+w if q[i] = qiq

′
in. If q′ is a new state (lines 10 –

14), we accordingly add it to QT and define its propositions. Then, we add the transition that has just been
completed to δT and continue our search from this new state q′. Else, we add the transition that has just
been completed to δT if required and proceed to the next transition tuple in T . The algorithm concludes
when all states and transitions of T have been discovered.

The following proposition provides a bound on the size of the team transition system T.

Proposition 4.2. The number of states |QT| of T is bounded by

m∏
i=1

|Qi|+ (wmax − 1)

m∏
i=1

|δi| (3)

where wmax is the largest edge weight in all transition systems {T1, . . . ,Tm}.

Proof. The first term in (3) is the maximum number of states that we can have in the Cartesian product of
Ti, i = 1, . . . ,m. The second term in (3) is an upper-bound on the number of traveling states (Def. 4.1) that
we can define as we construct T. Here,

∏m
i=1 |δi| is the maximum number of different transition tuples that

we can consider (Alg. 1, line 7) and (wmax − 1) is the upper bound on the number of new traveling states
per transition tuple. Thus, |QT| is bounded by the sum of these two terms as given in (3). �

Remark 4.3 (Comparison with Naive Construction). One can avoid going through Alg. 1 and capture
the joint behavior of the team by discretizing each transition in Ti, i = 1, . . . ,m to unit-length edges and
taking the synchronous product of these m Ti’s. This approach, however, yields a much larger model whose
state count is bounded by

m∏
i=1

|Qi|+ ∑
(q,q′)∈δi

wi(q, q
′)− |δi|

 .

For the case where we have m identical robots in an environment with Q vertices, ∆ edges and a largest
edge weight of wmax, the above given bound is O((Q + ∆wmax)m), whereas the bound given by Prop. 4.2 is
O(Qm + ∆mwmax).

4.2 Finding Optimal Satisfying Runs for Individual Robots

Once we have the transition system T modeling the team, we can use the Optimal-Run algorithm (Smith
et al., 2011) to obtain an optimal run r?team on T that minimizes the cost function (2) and satisfies any
mission specification φ of the form (1). The optimal run r?team always consists of a finite sequence of states
of T (prefix), followed by infinite repetitions of another finite sequence of states of R (suffix).

Given a run rteam of T, we can finally project it onto individual robots to obtain their individual runs
{r1, . . . , rm}.

Definition 4.4 (Projection of a Run on T to Ti). Given a run rteam on T where rteam = q0, q1, . . .,
we define its projection on Ti as run ri = q0

i q
1
i . . . for all i = 1, . . . ,m, such that qki appears in ri only if

qk[i] ∈ Qi where qk[i] is the ith element of tuple qk.

It can be easily seen that the set of runs {r1, . . . , rm} obtained from rteam using Def. 4.4 and the run
rteam on T agree with each other: The projection given in Def. 4.4 simply breaks down a sequence of tuples
of states into a tuple of sequences of states, while preserving the order of the states and filtering out the

9

traveling states. Thus, the word ω and the time sequence T generated by {r1, . . . , rm} are exactly the word
ωteam and the time sequence Tteam generated by rteam. Moreover, if the run rteam is in prefix-suffix form,
all individual runs ri projected from rteam are also in prefix-suffix form. Therefore, the individual runs
projected from the optimal run r?team are always in prefix-suffix form.

5 Exact Solution

In this section we consider the case where the models of the robots have exact timing information and the
time it takes for the robots to travel between regions during deployment is exactly the time captured in their
models. Consequently, if we plan a run based on the models of the robots, the run that we will observe when
the robots are deployed will be exactly the planned run in the sense that the times at which robots reach
the regions in the run will be exactly as planned.

To solve Prob. 3.4 in this case, we first create a model of the motion of the team in the environment.
Given the individual transition systems {T1, . . . ,Tm} of the robots, we use Alg. 1 to construct the team
transition system T that captures the joint asynchronous behavior of the robots.

a

b p1, πT1

2 2

(a)

a

b p2, π

c p3

T2

2

2

1

1

(b)

a, a ba1, cp3 a, b
p2
π

b, b
p1
p2
π

ab1, c p3 b, a
p1
πT

2

1

1
2 2

1

2
1

(c)

Figure 2: Figs. (a) and (b) show the transition systems T1 and T2 of two robots in an environment with three vertices. The
states of the transition systems correspond to vertices {a, b, c} and the edges represent the motion capabilities of each robot.
The weights of the edges represent the traveling times between any two vertices. Propositions p1, p2, p3, and π are shown next
to the vertices where they can be satisfied by the robots. Fig. (c) shows the team transition system capturing the joint behavior
of the robots in 6 states. A state labeled (a, b) means robot 1 is at region a and robot 2 is at region b, whereas a state labeled
(ba1, c) means robot 1 has traveled from b to a for 1 time unit and robot 2 is at c.

Example 5.1. Figs. 2(a) and 2(b) illustrate the transition systems of two robots, where Π1 = {p1, π}, Π2 =
{p2, p3, π}, and Π = {p1, p2, p3, π}. Using Alg. 1 we construct the team transition system T (Fig. 2(c))
that captures the joint asynchronous behavior of the team in 6 states.

Next, given an LTL mission specification φ of the form (1), we use our previous Optimal-Run algo-
rithm (Smith et al., 2011) to generate an optimal satisfying run r?team on the team transition system T.
Then, we project the optimal satisfying run r?team on T onto individual transition systems using Def. 4.4 to
obtain individual optimal satisfying runs {r?1 , . . . , r?m} of the robots.

Example 5.1 Revisited. Running the Optimal-Run algorithm (Smith et al., 2011) for the team transi-
tion system T given in Fig. 2(c), and the formula φ ··= GFπ results in the optimal run

T 0 2 3 4 6 8 10 . . .

r?team a,a b,b ba1,c a,b b,a a,b b,a . . .
LT(·) p1, p2, π p3 p2, π p1, π p2, π p1, π . . .
r?1 a b a b a b . . .
r?2 a b c b a b a . . .

where the first row corresponds to the times when transitions occur, the second row corresponds to the run
r?team, the third row shows the propositions satisfied at each position, and the last two rows correspond to the
individual runs of the robots. For this run, we see that (a, a), (b, b), (ba1, c) is the prefix and (a, b), (b, a) is the
suffix cycle and will be repeated an infinite number of times. Also, the time sequence of satisfactions of π is
Tπ = 2, 4, 6, 8, 10, . . . and the cost as defined in (2) is J(Tπ) = 2. Note that, at time t = 3, the second robot

10

has arrived at c while the first robot is still traveling from b to a, therefore r?1 has no state corresponding to
time t = 3.

We finally summarize our exact solution in Alg. 2, and show that this algorithm indeed gives a solution
to Prob. 3.4 for the case where the models of the robots have exact timing information. We analyze the
overall complexity of Alg. 2 in Prop. 5.3.

Algorithm 2: Exact-Multi-Robot-Optimal-Run

Input: Transition systems {T1, . . . ,Tm} and an LTL specification φ of form (1).
Output: A set of runs {r?1 , . . . , r?m} that both satisfies φ and minimizes (2).

1 Construct the team transition system T using Construct-Team-TS (Alg. 1).
2 Find the optimal run r?team using Optimal-Run (Smith et al., 2011).
3 Project r?team onto {T1, . . . ,Tm} to obtain runs {r?1 , . . . , r?m} (Def. 4.4).

Proposition 5.2. Alg. 2 solves Prob. 3.4.

Proof. Note that Alg. 2 combines all steps outlined in this section. Run r?team obtained from Alg. Optimal-
Run both satisfies φ and minimizes (2) among all runs of T (Smith et al., 2011). As discussed in Sec. 4.2,
there is a one-to-one correspondence between a set of runs {r1, . . . , rm} obtained using Def. 4.4 and a run
rteam of T. Therefore, {r?1 , . . . , r?m} as a projection of r?team onto {T1, . . . ,Tm} is a solution to Prob. 3.4. �

Proposition 5.3. For the case where a group of m identical robots are expected to satisfy an LTL specification
φ in a common environment with Q vertices, ∆ edges and a largest edge weight of wmax, the worst-case
complexity of Alg. 2 is O((Qm + ∆mwmax)3 · 2O(|φ|)).

Proof. For the above mentioned case, the worst-case size of T as given in (3) is O(Qm+∆mwmax). In Smith
et al. (2011), the authors give the worst-case complexity of the Optimal-Run algorithm as O(|T |3 · 2O(|φ|))
where |T | is the number of states of the input transition system and |φ| is the length of the LTL specification.
Then, the worst-case complexity of Alg. 2 becomes O((Qm + ∆mwmax)3 · 2O(|φ|)). �

6 Robust Solution

In this section we consider the case where the actual traveling times of the robots observed during deployment,
denoted by w̃i(q, q

′), are uncertain quantities taking values in known intervals non-deterministically. Recall
from Sec. 3 that, w̃i(q, q

′) lies in the interval [ρiwi(q, q
′), ρiwi(q, q

′)], where wi(q, q
′) is the nominal value

given by Ti, ρi and ρi are the lower and upper deviation values of robot i, and 0 < ρi ≤ 1 ≤ ρi. Thus, when
the robots execute a planned run in the field, the run observed during deployment may be different from
the one planned, possibly violating the mission specification. As previously discussed in Sec. 3, our solution
in this case will also comprise a communication strategy so that the satisfaction of the mission specification
will be guaranteed and the deviation of the field performance from optimality will be bounded.

6.1 Optimal Satisfying Runs and Transition Systems with Traveling States

Given the transition systems {T1, . . . ,Tm} of the robots and the mission specification φ, we first construct the
team transition system T using Alg. 1 to model the team. Then, we use the Optimal-Run algorithm (Smith
et al., 2011) to obtain a run r?team on T that satisfies φ and minimizes the cost function (2).

Example 6.1. Running the Optimal-Run algorithm (Smith et al., 2011) on T given in Fig. 2(c) for the
formula φ = G(p1 ⇒ X(¬p1 U p3)) ∧GFπ results in the optimal run

T 0 2 3 4 5 6 . . .

r?team a,a b,b ba1,c a,b ab1,c b,b . . .
LT(·) p1, p2, π p3 p2, π p3 p1, p2, π . . .

11

where the first row shows when transitions occur, the second row corresponds to the run r?team, and the last
row shows the satisfying atomic propositions. For this run, (a, a), (b, b) is the finite prefix and (ba1, c), (a, b),
(ab1, c), (b, b) is the suffix cycle, which will be repeated an infinite number of times. Also, the time sequence
Tπ of satisfactions of π is Tπ = 2, 4, 6, 8, . . . and the cost as defined in (2) is J(Tπ) = 2.

Since T captures the asynchronous motion of the robots, the optimal satisfying run r?team on T may con-
tain some traveling states (Def. 4.1) which do not appear in the individual transition systems {T1, . . . ,Tm}
that we started with. In our exact solution (Sec. 5), we pruned such states as we projected r?team onto
{T1, . . . ,Tm} to obtain {r?1 , . . . , r?m}. But we cannot ignore such traveling states in this case, as each one
of them is a candidate synchronization point for the corresponding robot as we discuss in the following
subsections. Instead, we insert those traveling states into individual transition systems so that the robots
will be able to synchronize with each other at those points if needed. In the following, we use qk[i] to
denote the ith element of the kth state tuple in r?team, which is also the state of robot i at that position
of r?team. As given in Def. 4.1, a traveling state of robot i has the form qiq

′
ixi. First, we construct the set

S = {(i, qk[i]) | qk[i] = qiq
′
ixi ∀ k, i} of all traveling states that appear in r?team. Elements of S are ordered

pairs where the second element is a traveling state and the first element gives the transition system this
new traveling state will be added to. Next, we construct the set T = {(i, (qk[i], qk+1[i]), x) | ((i, qk[i]) ∈
S) ∨ ((i, qk+1[i]) ∈ S), x = wT(qk, qk+1)∀ k, i} of all transitions that involve any of the traveling states in
r?team. Elements of T are triplets where the second element is a transition, the third element is the weight
of this transition, and the first element shows the transition system that this new transition will be added
to. Then, we add the traveling states in S and the transitions in T to their corresponding transition sys-
tems. Finally, using Def. 4.4, we project the run r?team onto {T1, . . . ,Tm} to obtain the individual runs
r?i , i = 1, . . . ,m.

a

ab1

b p1, π

ba1

T1

1

1 1

1

2 2

(a)

a

b p2, π

c p3

T2

2

2

1

1

(b)

Figure 3: Figs. (a) and (b) show the transition systems with new traveling states and transitions that correspond to the optimal
run r?team that we compute for Exp. 6.1. In Fig. (a), the new traveling states and transitions of T1 are highlighted in red.

Example 1 Revisited. For the optimal run r?team we obtained for this example, we have S = {(1, ab1), (1, ba1)}
and T = {(1, (a, ab1), 1), (1, (ab1, b), 1), (1, (b, ba1), 1), (1, (ba1, a), 1)}. Fig. 3 illustrates the corresponding
transition systems with new traveling states and transitions highlighted in red. Then, we have runs of indi-
vidual robots from Def. 4.4 as r?1 = a, b, ba1, a, ab1, b, ba1, a, ab1, . . . and r?2 = a, b, c, b, c, b, c, b, c,

Remark 6.2. For most applications, adding new states and transitions to the models of the robots may imply
introducing new waypoints or motion primitives at lower levels. Since the exact way in which these model
changes are accommodated at lower levels is strictly application specific, we do not discuss these details here
assuming that such necessary changes can be implemented.

6.2 Synchronization for Trace-Closed Specifications and Optimality Bounds

After obtaining individual runs of the robots, we proceed by checking if the mission specification φ is trace-
closed using an algorithm adapted from Peled et al. (1998). We say an LTL formula φ is trace-closed if the
language LB of the corresponding Büchi automaton is trace-closed in the sense of Def. 2.4.

Proposition 6.3. If the LTL formula φ over the set Π is a trace-closed formula with respect to the distri-
bution {Π1, . . . ,Πm}, then it will not be violated in the field due to uncertain traveling times.

12

Proof. From Defs. 2.4 and 3.1, we know that if we can find a run that satisfies a trace-closed LTL formula,
then the word ωteam corresponding to the run will not be a critical word. We use ω̃team to denote the actual
word generated by the team during deployment. Since ωteam is not a critical word, @ ω̃team ∈ [ωteam] such
that ω̃team 6∈ LB. Thus, regardless of the deviation values of the robots, φ will not be violated in the field
due to uncertain traveling times as any ω̃team ∈ [ωteam] will also be in LB. �

Corollary 6.4. If the LTL formula φ over the set Π is not trace-closed with respect to the distribution
{Π1, . . . ,Πm}, then φ may be violated during deployment due to uncertain traveling times.

Proof. The proof directly follows from Prop. 6.3. �

If φ is not trace-closed, we cannot guarantee correctness during deployment in general as shown in
Cor. 6.4. In cases where the traveling times of the robots are uncertain and φ is not trace-closed, we
compute individual synchronization sequences {s1, . . . , sm} for the robots to guarantee correctness during
deployment. We discuss how we generate these synchronization sequences in greater detail in Sec. 6.3. If, on
the other hand, the mission specification φ is trace-closed, we can guarantee correctness in the field without
any additional measures as shown in Prop. 6.3. Nevertheless, as given in Rem. 3.3, the field performance of
the team will invariably deviate from its planned value, and in the worst-case, the field performance of the
team will be limited by that of a single member. To address this issue, we propose a periodic synchronization
protocol (Alg. 3). As the robots execute their infinite runs in the field, they synchronize with each other
periodically at the beginning of each repetition of the suffix cycle.

Algorithm 3: Trace-Closed-Sync-Run

Input: A run ri = q0
i , q

1
i , . . . of robot i in prefix-suffix form.

1 qsync ← First state in the suffix cycle.
2 k ← 0.
3 while True do
4 if current state is qsync then
5 Notify all robots.
6 Wait until notification messages of all robots are received.

7 Make transition to rk+1
i .

8 k ← k + 1.

Using this protocol, we can define a bound on the deviation from optimality, i.e., the value of the cost
function (2) observed in the field, as given in the following proposition.

Proposition 6.5. Suppose that each robot’s deviation values are bounded by ρ and ρ where ρ ≥ 1 ≥ ρ > 0

(i.e., ρi ≥ ρ and ρi ≤ ρ for each robot i). Let J(Tπ) be the cost of the planned robot paths and let J(T̃π)
be the actual value of the cost observed during deployment. Then, if the robots follow the protocol given in
Alg. 3 the field value of the cost satisfies

J(T̃π) ≤ J(Tπ)ρ+ ds(ρ− ρ)

where ds is the planned duration of the suffix cycle.

Proof. The suffix consists of an infinite number of repetitions of the suffix cycle, which we denote by Sc. As
given in Alg. 3, each repetition of Sc begins with a synchronization point where all robots synchronize with
each other. Let ds be the planned duration of Sc, let ns be the number of optimizing propositions satisfied
in Sc. Let us redefine t = 0 to be the time when the suffix starts, and let T̄π be a sequence of length ns
recording the ns times that the optimizing proposition is satisfied in the first repetition of Sc. Note that,
as we consider infinite runs and as the process restarts itself at the beginning of each Sc by means of the
synchronization protocol given in Alg. 3, we only need to consider the first repetition of Sc. We first define

T i = T̄π(i)ρ

T i = T̄π(i)ρ

tw = dsρ

13

where, T i and T i are the earliest and latest times that the ith optimizing proposition can be satisfied,
respectively. The value tw is the latest time that the second repetition of Sc can begin. Then, for 0 < i ≤ ns,
the worst-case time between satisfying the ith optimizing proposition and the (i+1)th optimizing proposition
is

τ i,i+1 =

{
T i+1 − T i if 0 < i < ns,

tw + T 1 − Tns if i = ns.
(4)

Next, in the planned paths, multiple robots may simultaneously satisfy the ith optimizing proposition. In
the field, these satisfactions will not occur simultaneously. The maximum amount of time between the first
and last of these satisfying instances for the ith proposition, for 0 < i ≤ ns, is

τ i = T i − T i. (5)

Finally, using (4) and (5) we obtain the upper bound on the value of the cost function (2) that will be
observed during deployment as

J(T̃π) = max{max
i
{τ i,i+1},max

i
{τ i}}. (6)

Substituting the definitions for T i, T i, and tw into (4) we obtain

τ i,i+1 =

{
T̄π(i+ 1)ρ− T̄π(i)ρ if 0 < i < ns,(
ds + T̄π(1)

)
ρ− T̄π(ns)ρ if i = ns

But, we have that J(Tπ) ≥ T̄π(i+ 1)− T̄π(i), and J(Tπ) ≥ ds+ T̄π(1)− T̄π(ns). In addition, T̄π(1) ≤ J(Tπ)
and T̄π(i) ≤ ds for all i ∈ {2, . . . , ns}. Using these expressions we obtain τ i,i+1 ≤ J(Tπ)ρ + ds(ρ − ρ).

Similarly, we get τ i ≤ ds(ρ− ρ), and thus J(T̃π) ≤ J(Tπ)ρ+ ds(ρ− ρ). �

Remark 6.6 (Exact Bound on J(T̃π)). In Prop. 6.5, we have provided a conservative bound for ease of
presentation. However, we can also calculate an exact bound on the field value of the cost J(T̃π) using a
treatment similar to the proof of Prop 6.5.

6.3 Synchronization for General Specifications and Guarantee of Correctness

If the traveling times of the robots are uncertain and φ is not trace-closed, we compute individual synchro-
nization sequences {s1, . . . , sm} for the robots to guarantee correctness during deployment. As the robots
execute their infinite runs in the field, they synchronize with each other according to the synchronization
sequences that we generate using Alg. 4. The synchronization sequence si of robot i is an infinite sequence of
pairs of sets. The kth element of si, denoted by ski , corresponds to the kth element qki of r?i . Each ski is a pair
of two sets of robots: ski = (ski,wait, s

k
i,notify), where ski,wait and ski,notify are the wait-set and notify-set of ski ,

respectively. The wait-set of ski is the set of robots that robot i must wait for at state qki before satisfying
its propositions and proceeding to the next state qk+1

i in r?i . The notify-set of ski is the set of robots that
robot i must notify as soon as it reaches state qki . As we discussed earlier in Sec. 4.2, the optimal run r?team
of the team and the individual optimal runs r?i , i = 1, . . . ,m of the robots are always in prefix-suffix form.
Consequently, individual synchronization sequences si of the robots are also in prefix-suffix form.

Alg. 4 is essentially a loop (lines 3 – 16) that computes the wait-sets for each position of the runs of the
robots to guarantee correctness in the field. Initially, synchronization sequences are set so that the robots
wait for each other at every position of their runs (line 2). At line 4 of Alg. 4, if k is the first position of the
runs, we do not modify this initial value of ski,wait. This ensures that all robots start executing their runs in a

synchronized way. We also keep this initial value of ski,wait if k is the beginning of the suffix cycle, so that all
robots synchronize with each other globally at the beginning of each suffix cycle. This lets us define a bound
on the deviation from optimality, i.e., the value of the cost function (2) observed in the field, as given in
Prop. 6.5. For all other positions of the runs, we try to shrink the wait-set of each ski so that communication
effort is minimized while we can still guarantee correctness in the field (lines 5 – 16). To this end, we first
consider the case where robots do not wait for each other at this position of the run (lines 5 – 8). This

14

Algorithm 4: Sync-Seq

Input: Individual runs {r?1 , . . . , r?m}, Büchi automaton B¬φ of ¬φ, and models of the robots.
Output: Synchronization sequence for each robot {s1, . . . , sm}.

1 I = {1, . . . ,m}, beg = beginning of suffix cycle, end = end of suffix cycle.

2 ski,wait = I \ i for i ∈ I and k = 0, . . . , end.

3 foreach k = 0, . . . , end do
4 if k 6= 0 and k 6= beg then
5 Set ski,wait = ∅ ∀ i ∈ I.

6 Construct the transition system W that generates every possible ω̃team (Alg. 6).
7 if the language of B¬φ ×W is empty then
8 Continue to next position k in run.

9 else
10 Set ski,wait = I \ i ∀ i ∈ I.

11 foreach i ∈ I do
12 foreach j ∈ I \ i do
13 Remove j from ski,wait.

14 Construct the transition system W that generates every possible ω̃team (Alg. 6).
15 if the language of B¬φ ×W is not empty then
16 Add j back to ski,wait.

17 Define each ski,notify such that i ∈ skj,wait ⇒ j ∈ ski,notify ∀ i ∈ I, j ∈ I, k = 0, . . . , end.

18 Rest of each si is an infinite repetition of its suffix cycle, i.e. sbegi , . . . , sendi , ∀ i ∈ I.

is actually a heuristic based on the observation that in most missions robots synchronize only occasionally.
We set all wait-sets corresponding to this position to empty sets. Then, given the runs, transition systems,
deviation values, and wait-sets of the robots, we use Alg. 6 to construct the transition system W that
generates all possible words ω̃team that can be observed in the field due to the uncertainties in the traveling
times. Next, we construct the product B¬φ ×W, where B¬φ is the Büchi automaton corresponding to the
negation of the LTL formula φ. If the language of this product is empty, then the robots indeed do not need
to synchronize at this position. Else, we restore the previous values of the wait-sets of this position (line 10)
and consider each one of the robots in robot i’s kth wait-set ski,wait one by one (lines 11 – 16). After removing

some robot j from ski,wait, we construct W and check if the language of B¬φ ×W is empty (lines 13 – 15).

If the language of the product is empty, then robot i indeed does not need to wait for robot j at the kth

position of its run. Thus, we keep the new value of ski,wait. Else, we restore ski,wait to its previous value (line

16) and proceed with the next robot in ski,wait. Once every robot in ski,wait is considered, we proceed with the
next robot in the team, and eventually next position of the run. Notice that, the synchronization sequences
generated by Alg. 4 are free from any dead-locks as line 17 ensures that if some robot j waits for robot i
at position k, then robot i notifies robot j at position k. As the synchronization sequences of the robots
are in prefix-suffix form and the robots synchronize with each other globally at the beginning of each suffix
cycle (line 4), at line 18, we define the rest of each synchronization sequence as an infinite repetition of its
first suffix cycle that we have just generated. Let K denote the total length of the prefix and the first suffix
cycle. Then, worst case complexity of Alg. 4 is O(m2K(W +E)) where m is the number of robots, W is the
complexity of constructing W, and E is the complexity of checking emptiness of W×B¬φ at each iteration.
If the robots need to synchronize only occasionally, i.e., if the heuristic at lines 5 – 8 succeeds most of the
time, then the complexity is O(K(W +E)). The synchronization protocol that the robots follow in the field
is given in Alg. 5.

We use Alg. 6 to construct the transition system W that generates all possible words that can be observed
in the field for a given set of runs and synchronization sequences of the robots. We must first define some
new terms before getting into the details of Alg. 6. We use the term position to refer to the current position

15

Algorithm 5: Sync-Run

Input: The run ri and synchronization sequence si of robot i .

1 k ← 0.
2 while True do
3 Notify all robots in ski,notify.

4 Wait until notification messages of all robots in ski,wait are received.

5 Make transition to rk+1
i after satisfying the propositions at rki .

6 k ← k + 1.

of a robot in its run. If some robot i has just reached the state rki in its run and satisfied the corresponding
propositions after waiting for all of the robots in its wait-set ski,wait as given in Alg.5, then the position of

the robot is k. If, on the other hand, robot i has left state rk−1
i , but one of the above conditions has not

been satisfied yet, then the position of the robot is (k−1, k). A robot-position pair is a pair of the form (i, p)
meaning that the position of robot i is p which can be either an integer or a pair of integers, as discussed
above. For instance, the robot-position pair (i, (k−1, k)) means robot i is on its way from state rk−1

i to state
rki . An event is a set of one or more robot-position pairs that give the new positions of the corresponding
robots. In case of multiple robot-position pairs, all these changes occur simultaneously. That is, the event
{(i, k), (j, k)} means that robots i and j have just reached position k in their runs. On the other hand, the
event {(i, k)} means that robot i has just reached position k and gives no information about the position of
robot j. Finally, an event sequence is a list of events that occur sequentially. Now we can begin discussing
Alg. 6. The states of W are tuples of positions such that the ith element q[i] of some state q ∈ QW gives
the current position of robot i. Consequently, at line 1 we set (0, . . . , 0) to be the initial state of W as we
assume that the robots start their runs synchronously (Alg. 4). Alg. 6 is essentially a loop (lines 2–12) that
considers all possible sequences of events that may occur in the field. To do this, Alg. 6 relies on Alg. 8 to
generate pairs of event sequences and corresponding sets of states of W where those event sequences start.
For an event sequence and the corresponding set of start states generated using Alg. 8, Alg. 6 adds the
necessary states and transitions to W starting from each possible start state (lines 3–12). Then, at line 5,
we consider all events in an event sequence one by one. At lines 6–9, we compute the next state q′ after the
event e occurs at state q. If the position of some robot i changes due to event e, then q′[i] is set to the new
position given in e (line 7). Else we update the position of robot i to capture its progress. If the position of
robot i is already a tuple in q, i.e., if robot i is already on road, then we do not change its position in q′ (line
8). Else, we update the position of robot i in q′ such that it starts traveling towards the next state in its
run (line 9). Next, we add the new state q′ with the necessary propositions and the new transition (q, q′) to
W as required (lines 10–11). Then, we set the current state q of W to q′ and switch to the next event e in
the event sequence. Once we process all the events in this event sequence for all start states, we repeat the
same procedure for the next event sequence. Since the runs of the robots are in prefix-suffix form, Alg. 8 is
designed such that it terminates once the positions of the robots reach the end of the first suffix cycle. Since
the robots start each suffix cycle in a synchronized way (Alg. 4), at line 14 of Alg. 6 we add a transition
from all those states with no outgoing transitions to the state that corresponds to the beginning of the suffix
cycle. This final step concludes the construction of W by capturing the periodic structure of the runs of
the robots. In order not to interrupt the flow of the paper, we present and discuss the complexity of Algs. 8
and 9, which we use to generate the event sequences discussed above, in App. B. Next, we characterize the
complexity of Alg. 6.

Proposition 6.7. Let K denote the the total length of the prefix and the first suffix cycle. For the case where
the intervals of the robots corresponding to different positions do not overlap (discussed in greater detail in
App. B), complexity of Alg. 6 is O(4mm2m+7K2) and the number of states of W is O(2mmm+3K).

Proof. From Props. B.1 and B.3, for the given case, we have at most O(2mmm+2K) event sequences in the
prefix and the first suffix cycle with at most m events each. Since Alg. 6 creates a new state for each new
event, the number of states of W is O(2mmm+3K). Consequently, each of the event sequences generated
by Alg. 8 can have at most O(2mmm+3K) different start states. Also, the complexity of the inner loop of

16

Algorithm 6: Construct-Field-Words-TS

Input: {r1, . . . , rm}, {s1,wait, . . . , sm,wait}, {T1, . . . ,Tm}, and ρi, ρi, i = 1, . . . ,m.
Output: The field words transition system W that generates all possible words that can be observed

in the field.

1 Add q0
W = (0, . . . , 0) to QW.

2 foreach (event seq, start states) generated using Generate-Event-Seq (Alg. 8) do
3 foreach qstart in start states do
4 q = qstart.
5 foreach e in event seq do
6 foreach i ∈ {1, . . . ,m} do
7 if (i, knew) ∈ e then q′[i] = knew.
8 else if q[i] is a tuple then q′[i] = q[i].
9 else q′[i] = (q[i], q[i] + 1).

10 if q′ is not in W then add q′ to QW with LW(q′) = ∪(i,k)∈eLi(rki).
11 if (q, q′) is not in W then add (q, q′) to δW.
12 q = q′.

13 qsuffix = (beg, . . . , beg) where beg corresponds to the beginning of the suffix cycle.
14 foreach q ∈ QW such that @(q, q′) ∈ δi for any q′ ∈ QW do add (q′, qsuffix) to δW.

Alg. 6 (lines 5–9) is O(m2). Thus, the complexity of Alg. 6 is O(4mm2m+7K2). �

Remark 6.8. In Prop. 6.7 we assumed that the intervals of the robots corresponding to different positions do
not overlap. Let tn denote the planned time until the robots reach the nth position in their runs and K denote
the total length of the prefix and the first suffix cycle. The above condition is satisfied when ρitn−1 < ρjtn
holds for all i, j ∈ {1, . . . ,m} and n = 1, . . . ,K − 1. This is typically the case where the deviation values of
the robots are small enough (with respect to the length of the suffix cycle and durations between consecutive
states in the run) such that the intervals in which the robots can reach different positions in their runs do not
overlap. A more general complexity analysis could be performed for the case where robots move to different
positions in a single interval, but at the cost of increased difficulty of presentation and interpretation. We
employ the same assumption in Props. 6.10, B.1, and B.3 for the same reason.

Example 6.1 Revisited. For the example we have shown throughout this section, we obtain the following
individual optimal runs and synchronization sequences.

T 0 2 3 4 5 6 . . .

r?1 a b ba1 a ab1 b . . .
s1 ({2}, {2}) (∅, ∅) ({2}, {2}) (∅, ∅) (∅, ∅) (∅, ∅) . . .
L1(.) p1, π p1, π . . .
r?2 a b c b c b . . .
s2 ({1}, {1}) (∅, ∅) ({1}, {1}) (∅, ∅) (∅, ∅) (∅, ∅) . . .
L2(.) p2, π p3 p2, π p3 p2, π . . .

In a line corresponding to a synchronization sequence si, first and second elements of the tuple at position k
are ski,wait and ski,notify, respectively. The symbol ∅ denotes an empty wait-set, or notify-set, i.e., the robot
does not wait for, or notify, any other robot at that position of its run.

We finally summarize our robust solution in Alg. 7, and show that it provides a solution to Prob. 3.4.
We analyze the overall complexity of Alg. 7 in Prop. 6.10.

Proposition 6.9. Alg. 7 solves Prob. 3.4 when the traveling times of the robots are uncertain during de-
ployment.

17

Algorithm 7: Robust-Multi-Robot-Optimal-Run

Input: Transition systems {T1, . . . ,Tm}, corresponding deviation values and an LTL specification φ
of the form (1).

Output: A set of runs {r?1 , . . . , r?m} that satisfies φ and minimizes (2), a set of synchronization
sequences {s1, . . . , sm} that guarantees correctness in the field (if applicable), and the
bound on the performance of the team in the field.

1 Construct the team transition system T using Alg. 1.
2 Find an optimal run r?team on T using Optimal-Run (Smith et al., 2011).
3 Insert new traveling states to transition systems {T1, . . . ,Tm} (See. Sec. 6.1).
4 Obtain individual runs {r?1 , . . . , r?m} using Def. 4.4.
5 if φ is not trace-closed then
6 Generate synchronization sequences {s1, . . . , sm} using Sync-Seq (Alg. 4).

7 Find the bound on optimality as given in Prop. 6.5.

Proof. Note that Alg. 7 combines all steps outlined in this section. The planned word ωteam generated by
the entire team satisfies φ, and minimizes (2), as shown in Smith et al. (2011). If the mission specification
φ is trace-closed, correctness during deployment is guaranteed by construction as given in Prop. 6.3. If φ is
not trace-closed, the synchronization sequences guarantee correctness by ensuring that the ω̃team generated
in the field never violates φ for given deviation values. Therefore, Alg. 7 solves Prob. 3.4. �

Proposition 6.10. Suppose that a group of m identical robots are expected to satisfy an LTL specification φ
in a common environment with Q vertices, ∆ edges and a largest edge weight of wmax. Further assume that
K is the total length of the prefix and the first suffix cycle of the optimal satisfying run, and the the intervals
of the robots corresponding to different positions do not overlap. Then, for typical cases where m << Q,
K < Q, complexity of Alg. 7 is O((Qm + ∆mwmax)3 · 2O(|φ|)).

Proof. For the above mentioned case, the worst-case complexity of lines 1–4 of Alg. 7 becomes O((Qm +

∆mwmax)3 ·2O(|φ|)) from Prop. 5.3. The trace-closedness check (line 5) can be done in time O(2O(|φ|)22O(|φ|)
)

(Peled et al., 1998). If this check fails, we generate synchronization sequences using Alg. 4, which runs
in time O(m2K(W + E)). From Prop. 6.7, W is O(4mm2m+7K2) and the number of states of W is
O(2mmm+3K). Thus, E isO(2O(|¬φ|)2mmm+3K) (Baier and Katoen, 2008) and complexity of Alg. 4 becomes
O(4mm2m+9K3 + 2O(|¬φ|)2mmm+5K2). Notice that, the check for trace-closedness at line 5 of Alg. 7 can
be omitted for long formulas by simply assuming that the result is false and proceeding with the generation
of the synchronization sequences using Alg. 4. Then, complexity of Alg. 7 is O((Qm + ∆mwmax)32O(|φ|) +
4mm2m+9K3 + 2O(|¬φ|)2mmm+5K2). For typical cases where m << Q and K < Q, the complexity becomes
O((Qm + ∆mwmax)3 · 2O(|φ|)). �

Remark 6.11. In cases where the conditions given in Props. 6.7 and 6.10 do not hold, the computational
cost of computing synchronization sequences using Alg. 4 may be undesirably high. In such cases, one can
trade communication effort for computational complexity by deploying the robots using the trivially correct
synchronization sequence given at line 2 of Alg. 4 where each robot waits for every other robot at each position
of the run. Note that, the bound on field performance given in Prop. 6.5 still holds in this case.

7 Implementation and Case Studies

We implemented our algorithms in python as the LTL Optimal Multi-Agent Planner (LOMAP) package,
which is publicly available online2. LOMAP uses the NetworkX graph package described in Hagberg et al.
(2008) to represent various models in our implementation and the LTL2BA software described in Gastin and
Oddoux (2001) to convert LTL specifications to Büchi automata. LOMAP also includes an enhanced version
of the Optimal-Run algorithm (Smith et al., 2011) which returns the path with the shortest suffix cycle

2LTL Optimal Multi-Agent Planner (LOMAP) Python Package is available at http://hyness.bu.edu/lomap/.

18

when there are multiple optimal paths in terms of the cost function (2). Furthermore, this new version can
be executed on a computer cluster in a distributed fashion to be able to solve problems with large resource
requirements. A typical usage of our package is as follows:

(i) The user defines the transition systems {T1, . . . ,Tm} that model the robots moving in the environment
in a plain text file using LOMAP’s format.

(ii) Then, the user writes a short python script that defines the mission specification expressed in LTL in
the form of (1) and calls the appropriate LOMAP function.

(iii) Finally, the trajectory of the team and the value of the cost function are returned if the mission
specification can be satisfied. Otherwise, our implementation shows an error message and quits.

7.1 Experimental Case Studies on Persistent Surveillance

In the following, we present various case studies considering persistent surveillance missions in the environ-
ment shown in Figs. 4(a) and 4(b). This environment is a road network consisting of roads, intersections,
and regions for data gathering and upload. In this network, road segments are connected to each other
via intersections, and the surveillance target is located in the middle, surrounded by four data gathering
locations. For our case studies, we considered two Pololu m3pi robots with mbed development boards. We
realized the environment using lines of black tape that correspond to the roads and intersections of the road
network. The robots can navigate in the environment and can sense whether they are at an intersection or
not using their infrared reflection sensors. The robots can also communicate with each other and a computer
using Xbee wireless modules. In our case studies, inter-robot communication is used for synchronization
of the robots, whereas computer-robot communication is used for deploying the robots according to the
trajectory generated using our implementation.

The robots that we consider in our experiments have uncertain traveling times. In order to obtain their
upper and lower deviation values, we measured the time it takes for both of the robots to complete the
cycle “U2, 10, 11, 12, 1, 2, 21, 22, 23, 9, 10, U2” in Fig. 4(c) and recorded the maximum and minimum
values among 20 trials. We chose this cycle because it tests all the motion primitives of the robots: “left-
turn, right-turn, u-turn, and go-straight”. The average time for both robots to complete this cycle was
approximately 17 seconds. We used this information to obtain the weights of the model given in Fig. 4(c),
which were used as the nominal values in our computations. The maximum and minimum times for robot
1 to complete this cycle were 17.67 and 16.68 seconds, respectively. The maximum and minimum times for
robot 2 were 17.56 and 16.77 seconds, respectively. Using these measurements we obtained the following
deviation values: ρ1 = 1.039, ρ1 = 0.981, ρ2 = 1.033, ρ2 = 0.986. In the following, we take these deviation
values as ρ1 = ρ2 = 1.04 and ρ1 = ρ2 = 0.98 after adding a small margin of safety.

Fig. 4(c) illustrates the transition systems T1 and T2 that model the motion of the robots in this road
network. The sets of states Q1 and Q2 are the sets of labels assigned to intersections and regions. The
transition relations δ1 and δ2 give how the intersections and regions are connected and the weight maps w1

and w2 capture the time it takes for robots to take a transition. For our experiments, we assume that the
transition systems T1 and T2 are identical except for their initial states and the sets of propositions that
can be satisfied at their states.To be able to differentiate between data gatherings and uploads performed at
different locations by different robots we define the set of propositions as

Π ={gather, upload, r1gather, r2gather, r1upload, r2upload, gather1, gather2, gather3,
gather4, upload1, upload2, r1gather1, r1gather2, r1gather3, r1gather4, r2gather1,

r2gather2, r2gather3, r2gather4, r1upload1, r1upload2, r2upload1, r2upload2}.

Propositions gather and upload mean data has been gathered and uploaded, respectively, whereas propo-
sitions of the form gatherY and uploadY, where Y ∈ {1, 2, 3, 4}, capture the locations of data gather and
upload as well. For instance, gather3 means data has been gathered at gather location 3. Propositions of the
form rXgather and rXupload, where X ∈ {1, 2}, mean robot X has gathered and uploaded data, respectively.
Finally, we use propositions of the form rXgatherY and rXuploadY, where X ∈ {1, 2} and Y ∈ {1, 2, 3, 4}, to

19

(a)

G1

G2

G3

G4

U1

U2

(b)

1 12

2 21

273

4 5

25

23

6

9

1011

7

8

24

26

28

22

6

3

3

2

1

1

1

1

1

3

22

1 2

1 1

1

1

1

1
11

6

1

1

1
1

122

3

2

1

12

1 2

12
4

4

G1

G2

G3

G4

U1

U2

(c)

Figure 4: Fig. 4(a) shows our experimental platform where the roads are marked by black tape and the robots are labeled 1 and
2. Fig. 4(b) gives a schematic illustration of this road network. The surveillance target is in the middle. Regions highlighted
in yellow are data gathering locations and regions highlighted in green are data upload locations. The transition system that
models the motion of the robots is given in Fig. 4(c). The weight of each transition captures the time it takes for the robots to
complete that transition.

capture both the location and the subject of the data gather and upload, i.e., r2Upload1 means robot 2 has
uploaded data at upload location 1. Consequently, we define the sets Π1 and Π2 as

Π1 ={gather, upload, r1gather, r1upload, gather1, gather2, gather3, gather4, upload1,
upload2, r1gather1, r1gather2, r1gather3, r1gather4, r1upload1, r1upload2}, and

Π2 ={gather, upload, r2gather, r2upload, gather1, gather2, gather3, gather4, upload1,
upload2, r2gather1, r2gather2, r2gather3, r2gather4, r2upload1, r2upload2};

and assign the propositions in Π1 and Π2 to the states of T1 and T2 as given in Tbl. 1. Note that all

Region Propositions of Robot 1 Propositions of Robot 2

G1 {gather, gather1, r1gather, r1gather1} {gather, gather1, r2gather, r2gather1}
G2 {gather, gather2, r1gather, r1gather2} {gather, gather2, r2gather, r2gather2}
G3 {gather, gather3, r1gather, r1gather3} {gather, gather3, r2gather, r2gather3}
G4 {gather, gather4, r1gather, r1gather4} {gather, gather4, r2gather, r2gather4}
U1 {upload, upload1, r1upload, r1upload1} {upload, upload1, r2upload, r2upload1}
U2 {upload, upload2, r1upload, r1upload2} {upload, upload2, r2upload, r2upload2}

Table 1: Assignment of the propositions to the regions in the environment.

propositions in Π can be written in terms of the propositions of the last form, and therefore we could have
a set Π consisting of twelve propositions of the form rXgatherY and rXuploadY. However, for the sake of
clarity and simplicity, we choose to define Π as given above, because otherwise we would have to use the long
boolean expression r1Gather1 ∨ . . . ∨ r1Gather4 ∨ r2Gather1 ∨ . . . ∨ r2Gather4 to express a data gather
event, instead of using a single proposition, i.e., gather.

For the case studies presented next, we ran LOMAP on a computing cluster consisting of five m2.2xlarge
Amazon Elastic Compute Cloud3 instances each with 34.2 GB of memory and 2.67 GHz quad-core processing
power. As shown in Fig. 4(c) transition systems T1 and T2 of both of the robots have 26 states. Table 2
gives the state count of the team transition system, Büchi automaton and the product automaton (product

3Amazon EC2 is a commercial cluster computing service available at http://aws.amazon.com/ec2/.

20

Case-Study
State Count
of the Team
Tran. Sys.

State Count
of the Büchi
Automaton

State Count of
the Product
Automaton

Total
Computation

Time

1 2444 12 17952 1946 secs
2 2444 12 15080 26 secs
3 2444 12 15072 47 secs
4 2444 12 15050 20 secs
5 2444 5 9895 1404 secs

Table 2: Quantitative information on the case-studies presented in Sec. 7.1

of the Büchi automaton and the team transition system constructed by the Optimal-Run (Smith et al.,
2011) algorithm to solve the path planning problem) along with total computation time for each individual
case study. Since we consider the same robot model for all case studies presented in this section, the state
count of the team transition system T is 2444 for all case studies. We investigate the scalability of our
approach in the number of robots and the size of the environment considering a small academic example in
Sec. 7.2.

Case-Study 1 – The first mission specification that we consider is as follows: “Each robot must re-
peatedly visit data gather locations to gather data and go to an upload location to upload their data before
gathering data again. The maximum time between successive data gatherings must be minimized.” This
mission specification can be expressed in LTL in the form of (1) as

φ1 ··=G(r1gather⇒ X(¬r1gather U r1upload))∧
G(r2gather⇒ X(¬r2gather U r2upload)) ∧GFπ,

where π ··= gather is set as the optimizing proposition. Since the traveling times of our robots are uncertain,
we use our robust solution (Sec. 6). It takes 32.5 minutes for our method to obtain an optimal satisfying team
trajectory, and the cost in terms of (2) is 10. For this case, since φ1 is trace-closed, the robots synchronize
only at the beginning of their suffix cycles. The upper bound on the value of the cost as given by Prop. 6.5 is
11.6 seconds whereas the maximum value of the cost observed in the field after 10 iterations of this trajectory
was 10.66 seconds. For comparison, it also takes approximately 32.5 minutes for our exact solution to return
the same trajectory with the same cost. Fig. 5(a) illustrates the optimal team trajectory that we obtain for
formula φ1. As discussed in Sec. 4.2, optimal satisfying runs obtained using our approach always consist of
a finite prefix followed by infinite repetitions of a finite suffix cycle. In the figures that we present in this
section, we omit the prefix for the sake of clarity, and use red and blue lines to illustrate the infinite periodic
runs of robots 1 and 2, respectively. We use filled circles to represent the beginning of the suffix cycles of
the robots and white triangles to represent the synchronization points.

Case-Study 2 – In some missions, sequential data gatherings at different locations may not be enough
to obtain the desired information about the surveillance target. In such cases, synchronous data gatherings
by multiple robots may be more desirable. For instance, one can use photographs taken synchronously from
different angles to recover depth information which may be used to construct an approximate 3-d model of
the surveillance target. Also, time-synchronous eavesdropping of radio communications at different locations
may substantially increase the chances of recovering useful information from surveillance data. An example
mission specification for such a case would be: “Robots must repeatedly gather data in a synchronous fashion,
and upload their data before gathering data again.” This mission specification can be written in LTL as

φ2 ··=G(gather⇒ (r1gather ∧ r2gather)) ∧G(r1gather⇒ X(¬r1gatherUr1upload))∧
G(r2gather⇒ X(¬r2gatherUr2upload)) ∧GFπ

where π ··= r1gather∧r2gather. Both of our robust (Sec. 6) and exact (Sec. 5) solutions take approximately
26 seconds to compute the trajectory illustrated in Fig. 5(b). The cost of this trajectory in terms of (2) is
20. The significant drop in computation from case-study 1 can be explained by the reduction in the size
of the solution space in which the Optimal-Run algorithm has to work. The previous case-study requires

21

(a) (b) (c)

Figure 5: Team trajectories for case studies 1, 2, and 3. Red and blue lines illustrate trajectories of robot 1 and 2, respectively.
Yellow regions are data gathering locations and green regions are data upload locations. Filled circles represent the beginning
of the suffix cycles of the robots and the white triangles represent synchronization points.

4664 executions of Dijkstra’s algorithm, whereas this case study requires only 680 executions of Dijkstra’s
algorithm on a significantly smaller graph. We were, however, unable to execute this trajectory as our
experimental setup does not allow multiple robots to be at the same region at the same time. Next, we
discuss how we can address this issue and obtain a more desirable run.

Case-Study 3 – Fig. 5(b) shows that lock-step motion of the robots is an optimal team trajectory for
φ2. However, as our motivation for synchronous surveillance is to gather data synchronously from different
locations, we can include this requirement in our specification to eliminate such undesired behaviors. Then,
the mission specification can be written as

φ3 ··=φ2 ∧G(¬(r1gather1 ∧ r2gather1) ∧ ¬(r1gather2 ∧ r2gather2)∧
¬(r1gather3 ∧ r2gather3) ∧ ¬(r1gather4 ∧ r2gather4))

where φ2 is the specification of the previous case study with π ··= r1gather ∧ r2gather and the rest of φ3

forbids robots to gather data at the same place at the same time. Fig. 5(c) illustrates the optimal team
trajectory we obtain for φ3 using our robust approach. Notice that in addition to synchronizing at the
beginning of their suffix cycles, the robots also synchronize with each other before gathering data in order
not to violate the mission specification. It takes 47 seconds for our robust solution to compute this trajectory
and the cost is 20. After 10 iterations of this trajectory, the maximum value of the cost observed in the field
was 21 seconds, which is less than the upper bound of 22 seconds given by our approach. Extension 1 shows
the execution of this trajectory by the robots.

Case-Study 4 – Now, we consider the case where we need to assign each robot a specific region for data
gathering while still requiring them to gather data synchronously. This is typical in scenarios where data
gathering capabilities of the robots are not identical and the robots need to visit specific regions to gather
useful surveillance. An example specification where robot 1 is assigned to G4 and robot 2 is assigned to G2

would be:

φ4 ··=G(gather⇒ (r1gather4 ∧ r2gather2)) ∧G(r1gather⇒ X(¬r1gatherUr1upload))∧
G(r2gather⇒ X(¬r2gatherUr2upload)) ∧GFπ

where π ··= r1gather1∧r2gather4. Notice that it is the sub-formula G(gather⇒ (r1gather4∧r2gather2))
in φ4 that enforces the first robot to gather data at G4 and the second robot to gather data at G2. Fig. 6(a)
illustrates the optimal team trajectory we obtain for φ4 using our robust approach. For this case, total

22

(a)

×11

(b)

Figure 6: Team trajectories for case studies 4 and 5. Red and blue lines illustrate trajectories of robot 1 and 2, respectively.
Yellow regions are data gathering locations and green regions are data upload locations. Filled circles represent the beginning
of the suffix cycles of the robots and the white triangles represent synchronization points.

computation time is 20 seconds and the cost is 24 with an upper bound of 26.4 seconds. After 10 iterations
of this trajectory, maximum value of the cost observed in the field never exceeded 25.3 seconds.

Case-Study 5 – In all of the case studies that we have considered so far, some of the data gathering
locations have not been visited in order to optimize the team trajectory. Also, we have had the requirement
that the robots must go to a dedicated upload region to upload their data before their next data gathering.
However, in many cases, robots have uninterrupted links to their bases by means of some sort of wireless
communication channel, and are not required to visit an upload location to upload their data. Now, we
consider the case where the robots are required to visit all of the data gathering locations and are not
required to visit an upload region before each data gathering. This can be expressed in LTL as

φ5 ··= GFgather1 ∧GFgather2 ∧GFgather3 ∧GFgather4 ∧GFπ

where the optimizing proposition is set as π ··= gather. Fig. 6(b) illustrates the optimal team trajectory we
obtain for φ5. For this case, it takes 23.5 minutes for our robust approach to obtain this trajectory. The cost
of this trajectory is 3, with an upper bound of 5.1 seconds. Since φ5 is trace-closed, the robots synchronize
only at the beginning of their suffix cycles. It is interesting to note that the optimal solution for this case
is to have robot 2 repeatedly gather data at G4 while using robot 1 to visit the remaining data gathering
locations. Here, the trajectory of robot 2 minimizes the cost by gathering data as frequently as possible
whereas the trajectory of robot 1 satisfies the rest of mission specification by visiting the remaining data
gathering locations.

7.2 Numerical Case Studies on Scalability

In this section we investigate the scalability of our approach both in the number of robots and in the size of
the environment considering a small patrolling example in an environment with 9 regions. Fig. 7 illustrates
the transition system that models the motion of the robots in a 3x3 grid environment, where the center
region (state 22) is the initial state of the robots and the proposition patrol is assigned to the upper left
region (state 11). We assume that the robots are identical to each other and can follow a given trajectory
exactly, i.e., we use our exact solution given in Sec. 5. We consider the mission specification φ := GFπ
where the optimizing task is π := patrol. For the case studies presented next, our implementation is run
on an iMac i5 computer with 32 GB of RAM.

In order to evaluate the scalability of our approach in the number of robots, we run our implementation
for increasing number of robots starting from 2 robots going up to 5 robots. A summary of these four case

23

11patrol 12 13

21 22 23

31 32 33

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 7: The transition system that models the motion of the robots in the 3x3 environment that we consider in our scalability
experiments. The patrol proposition is defined at state 11 and the initial state is 22.

studies is presented in Table. 3. Note that as we consider the same mission, the size of the Büchi automaton
remains the same for all cases. The last column of Table 3 gives the ratio of total computation times between
the cases with n and n − 1 robots for n = 3, 4, 5, as 117, 186, and 197. On the other hand, the worst-case
bounds on these values as given by Prop. 5.3 are 10868 are 12565, and 13327. The state count of the team
transition system (second column in Table 3) also remains well below the worst-case bound of 9n, n = 2, 3, 4, 5
given by Prop. 4.2. Thus, we see that for this example our approach scales better in the number of robots
than the worst-case bounds.

Number
of

Robots

State Count
of the Team
Tran. Sys.

State Count
of the Büchi
Automaton

State Count of
the Product
Automaton

Total
Computation

Time

Ratio to
Previous

Case

2 41 2 50 0.07 secs —
3 189 2 250 8.2 secs 117
4 881 2 1250 1530 secs 186
5 4149 2 6250 301734 secs 197

Table 3: Quantitative information on the scalability of our approach in the number of robots. We assume that robots are
identical and each one of them is modeled as given in Fig. 7.

Next, we evaluate the scalability of our approach in the size of the environment by considering two robots
moving over grids of increasing size: 3× 3, 5× 5, 7× 7, 9× 9, 11× 11, and 13× 13. Each environment that
we consider here is basically a bigger version of the 3 × 3 environment given in Fig. 7, where the patrol

proposition is defined at the upper left region and the initial state of each robot is the center of the grid.
Table. 4 gives a summary of these six case studies. The last column of Table 4 gives the ratio of total
computation times between environments of size n×n and (n− 2)× (n− 2) for n = 5, 7, 9, 11, 13, as 14, 7.8,
4.55, 3.45, and 2.81. The worst-case bounds of these values as given by Prop. 5.3 are approximately 1222,
83, 25, 12.6, and 8. Thus, for this example, our algorithm scales better also in the size of the environment
than the worst-case bounds.

These results suggest that, in practice, the computational complexity of our approach depends very much
on the problem at hand and one can potentially observe much better running times and scalability (both in
the number of robots and the size of the environment) than the worst-case analysis given in Prop. 5.3. Such
differences in running times can be attributed to the mission specification, locations of the propositions, and
connectivity between the states of the robot models under consideration.

8 Conclusions and Future Work

In this paper we presented a method for automatic planning of optimal paths for a team of robots subject
to temporal logic constraints. We considered mission specifications expressed in LTL where an optimizing

24

Environment
Size

State Count
of the Team
Tran. Sys.

State Count
of the Büchi
Automaton

State Count of
the Product
Automaton

Total
Computation

Time

Ratio to
Previous

Case

3× 3 41 2 50 0.07 secs —
5× 5 313 2 338 1 secs 14
7× 7 1201 2 1250 7.8 secs 7.8
9× 9 3281 2 3362 35.5 secs 4.55

11× 11 7321 2 7442 122.5 secs 3.45
13× 13 14281 2 14450 344.7 secs 2.81

Table 4: Quantitative information on the scalability of our approach in the size of the environment for two identical robots.
Each 5× 5 and larger environment is a bigger version of 3× 3 grid given in Fig. 7.

proposition must repeatedly be satisfied. We provided an algorithm to model the asynchronous behavior
of the team as a whole, which let us extend our previous work on single robot optimal path planning to
multiple robots. The motion plan that our method provides is optimal in the sense that it minimizes the
maximum time in between successive satisfying instances of the optimizing proposition. Our approach is
general and robust enough to handle cases where the robots cannot follow planned trajectories exactly. If
the traveling times observed in the field deviate from those given by the models of the robots, our method
leverages the communication capabilities of the robots to guarantee that the mission specification is never
violated while overall communication effort is minimized. Our method also provides an upper bound on the
difference between the performance in the field and the optimal performance in case of uncertain traveling
times. We experimentally evaluate our approach and demonstrate its relevance in persistent surveillance
missions in a road network environment

In order to be able to obtain a globally optimal team trajectory, our method constructs a relatively
large model that captures all members of the team and the mission specification. Thus, the main drawback
of this approach is its complexity. While the method presented in this paper can be extended to Markov
Decision Processes (MDPs) and different cost functions, the most rewarding direction for future research
seems likely to be in the area of distributed synthesis of optimal multi robot motion plans for general mission
specifications.

Bibliography

C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic systems. In Foundations
of Software Technology and Theoretical Computer Science, Lecture Notes in Computer Science, pages
499–513. Springer Berlin / Heidelberg, 1995.

Y. Chen, X. C. Ding, and C. Belta. Synthesis of distributed control and communication schemes from global
LTL specifications. In 2011 IEEE Conference on Decision and Control (CDC 2011), pages 2718–2723,
Orlando, FL, 2011.

Y. Chen, X. C. Ding, A. Stefanescu, and C. Belta. A formal approach to the deployment of distributed
robotic teams. IEEE Trans. Robotics, 28(1):158–171, 2012.

H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun. Principles
of Robot Motion - Theory, Algorithms, and Implementations. MIT Press, 2005.

E. M. Clarke, D. Peled, and O. Grumberg. Model checking. MIT Press, 1999.

X. C. Ding, S. L. Smith, C. Belta, and D. Rus. MDP optimal control under temporal logic constraints. In
2011 IEEE Conference on Decision and Control (CDC 2011), pages 532–538, Orlando, FL, 2011.

P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. Lecture Notes in Computer Science,
pages 53–65, 2001.

25

A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure, dynamics, and function using
NetworkX. In Proceedings of the 7th Python in Science Conference (SciPy2008), pages 11–15, Pasadena,
CA, 2008.

J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Languages, and Compu-
tation. Addison Wesley, 2007.

S. Karaman and E. Frazzoli. Vehicle routing problem with metric temporal logic specifications. In IEEE
Conf. on Decision and Control, pages 3953–3958, Cancún, México, 2008a.

S. Karaman and E. Frazzoli. Complex mission optimization for multiple-UAVs using linear temporal logic.
In American Control Conference, pages 2003–2009, Seattle, WA, 2008b.

L. Kavraki, P. Svestka, J. Latombe, and M. Overmars. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Trans. Robotics and Automation, 12(4):566–580, 1996.

M. Kloetzer and C. Belta. Dealing with non-determinism in symbolic control. In M. Egerstedt and B. Mishra,
editors, Hybrid Systems: Computation and Control: 11th International Workshop, Lecture Notes in Com-
puter Science, pages 287–300. Springer Berlin / Heidelberg, 2008.

M. Kloetzer and C. Belta. Automatic deployment of distributed teams of robots from temporal logic speci-
fications. IEEE Trans. Robotics, 26(1):48–61, 2010.

H. Kress-Gazit, G. Fainekos, and G. J. Pappas. Where’s Waldo? sensor-based temporal logic motion
planning. In IEEE Intl. Conf. Robotics and Automation, pages 3116–3121, 2007.

H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu. Correct, reactive robot control from abstraction and
temporal logic specifications. Special Issue of the IEEE Robotics & Automation Magazine on Formal
Methods for Robotics and Automation, 18:65–74, 2011.

J. Kuffner and S. LaValle. Rrt-connect: An efficient approach to single-query path planning. In IEEE Intl.
Conf. Robotics and Automation, page 9951001, 2000.

M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model checking with PRISM: A hybrid
approach. In International Journal on Software Tools for Technology Transfer, pages 52–66. Springer,
2002.

S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

T. Lozano-Perez. Spatial planning: A configuration space approach. IEEE Trans. Comput., 32(2):108–120,
1983.

D. Peled, T. Wilke, and P. Wolper. An algorithmic approach for checking closure properties of temporal
logic specifications and omega-regular languages. Theor. Comput. Sci., 195(2):183–203, 1998.

M. M. Quottrup, T. Bak, and R. Izadi-Zamanabadi. Multi-robot motion planning: A timed automata
approach. In IEEE Intl. Conf. Robotics and Automation, pages 4417–4422, New Orleans, LA, 2004.

E. Rimon and D. E. Koditschek. Exact robot navigation using artificial potential functions. IEEE Trans.
Robotics and Automation, 8(5):501–518, 1992.

A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics. Journal of the
Association for Computing Machinery, 32(3):733–749, 1985.

S. L. Smith, J. Tůmová, C. Belta, and D. Rus. Optimal path planning for surveillance with temporal logic
constraints. Intl. Journal of Robotics Research, 30(14):1695–1708, 2011.

P. Tabuada and G. J. Pappas. Linear time logic control of discrete-time linear systems. IEEE Transactions
on Automatic Control, 51(12):1862–1877, 2006.

W. Thomas. Infinite games and verification. In CAV, pages 58–64, 2002.

26

P. Toth and D. Vigo, editors. The Vehicle Routing Problem. Monographs on Discrete Mathematics and
Applications. SIAM, 2001. ISBN 0898715792.

A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus. Optimal multi-robot path planning with temporal
logic constraints. In IEEE/RSJ Intl. Conf. Intelligent Robots & Systems, pages 3087–3092, San Francisco,
CA, USA, Sep 2011.

A. Ulusoy, S. L. Smith, and C. Belta. Optimal multi-robot path planning with LTL constraints: Guaranteeing
correctness through synchronization. In Intl. Symp. on Distributed and Autonomous Robotic Systems,
Baltimore, MD, USA, 2012a.

A. Ulusoy, S. L. Smith, X. C. Ding, and C. Belta. Robust multi-robot optimal path planning with temporal
logic constraints. In IEEE Intl. Conf. Robotics and Automation, pages 4693–4698, St. Paul, MN, USA,
May 2012b.

B. Yordanov, J. Tumova, I. Cerna, J. Barnat, and C. Belta. Temporal logic control of discrete-time piecewise
affine systems. IEEE Trans. Automatic Control, 57(6):1491–1504, 2012.

27

A Index to Multimedia Extensions

Extension Media Type Description

1 Video Execution of the trajectory in case-study 3.

B Generation of Event Sequences

In this section, we discuss how we generate the event sequences and corresponding sets of start states that
we process in Alg. 6 (Sec. 6.3). We start by recalling the definitions of the terms position, robot-position pair,
event, and event sequence as defined in Sec. 6.3. We use the term position to refer to the current position
of a robot in its run. If some robot i has just reached the state rki in its run and satisfied the corresponding
propositions after waiting for all of the robots in its wait-set ski,wait as given in Alg.5, then the position of

the robot is k. If, on the other hand, robot i has left state rk−1
i , but one of the above conditions has not

been satisfied yet, then the position of the robot is (k−1, k). A robot-position pair is a pair of the form (i, p)
meaning that the position of robot i is p which can be either an integer or a pair of integers, as discussed
above. For instance, the robot-position pair (i, (k−1, k)) means robot i is on its way from state rk−1

i to state
rki . An event is a set of one or more robot-position pairs that give the new positions of the corresponding
robots. In case of multiple robot-position pairs, all these changes occur simultaneously. That is, the event
{(i, k), (j, k)} means that robots i and j have just reached position k in their runs. On the other hand, the
event {(i, k)} means that robot i has just reached position k and gives no information about the position of
robot j. Finally, an event sequence is a list of events that occur sequentially.

Alg. 6 relies on Alg. 8 to construct the transition system W that generates all possible words that can
be observed in the field. Alg. 8 is a loop (lines 3–25) that processes a dictionary called tl, short for timeline,
which we construct using Alg. 9 (line 1) presented later in this section. A dictionary is a data structure that
comprises a set keys, a set of values, and a function that maps each key to a value. In the case of tl, the
keys are time intervals and the values are sets of robot-position pairs. Due to non-deterministic traveling
times, the time at which the robots reach their new positions in the field, in general, is not a single point
but an interval. The dictionary tl captures this information by dividing the time from the beginning of the
run till the end of the first suffix cycle to disjoint intervals and by associating a set of robot-position pairs
with each interval. The set of robot-position pairs that corresponds to some interval in tl gives the new
positions of the robots that can be achieved in that interval. In tl, the sets of robot-position pairs that
correspond to different intervals are not guaranteed to be disjoint. Thus, new positions of the robots can
span multiple intervals and can be reached in either one of the intervals that they span. Suppose that the
sets of robot-position pairs {(1, 1)}, {(1, 1), (2, 1)}, {(1, 1)} correspond to the intervals [0.8, 0.9), [0.9, 1.1],
(1.1, 1.2], respectively. Then, robot 1 can reach position 1 in either one of the three intervals, whereas robot
2 can reach position 1 only in the interval [0.9, 1.1].

The first part of Alg. 8 (lines 6–12) takes this fact into account while computing all possible position
sequences that can be achieved by each robot at each interval. At lines 7–9, we first construct three sets of
positions for each robot i: the set posthis of positions that the robot can reach at this interval, the set posprev
of positions that the robot can reach at either this interval or the previous interval, and the set posnext of
positions that the robot can reach at either this interval or the next interval. Then, at line 10, we iterate
over the elements of the product posprev × posnext. For each element (prev, next) of this product set, we
interpret prev as the last position that is reached in the previous interval and next as the first position that
is reached in the next interval, and we obtain the remaining set of positions pos′this to be reached at this
interval as given in line 11. Then, we sort pos′this in ascending order and add it to robot seq[i], which gives
the set of all possible position sequences that can be achieved by robot i at this interval.

In a given interval, different robots can reach their new positions in any order with respect to each
other, including simultaneously. The second part of Alg. 8 (lines 14–25) addresses this by generating all
possible event sequences that can be achieved by the robotic team. At line 14 we consider all combinations
of position sequences that can be achieved by the robots by iterating over the elements of the product
robot seq[1]× . . .× robot seq[m]. An element seq tuple of this set is an m-tuple of position sequences whose
ith element is a position sequence that can be realized by robot i and lenseq[i] (line 15) gives the length of
this position sequence. Next, we define max event cnt as the maximum number of events that can occur
in this interval, given by the case where the robots reach the positions in seq tuple sequentially (line 16).

28

Algorithm 8: Generate-Event-Seq

Input: W, {r1, . . . , rm}, {s1,wait, . . . , sm,wait}, {T1, . . . ,Tm}, and ρi, ρi, i = 1, . . . ,m.
Output: Yields a valid event sequence and the corresponding set of starting states.

1 Obtain dictionary tl using Compute-Timeline (Alg. 9).
2 ivs = Sorted list of intervals of tl, lenivs = length of ivs.
3 foreach l = 1 . . . lenivs do
4 all posthis = tl[ivs[l]], all posprev = ∅, all posnext = ∅, robot seq = array of m empty sets.
5 if l > 1 then all posprev = tl[ivs[l − 1]], if l < lenivs then all posnext = tl[ivs[l + 1]].
6 foreach i ∈ {1, . . . ,m} do
7 posthis = {p|(i, p) ∈ all posthis}.
8 posprev = {p|(i, p) ∈ all posprev ∩ all posthis} ∪ {∼}.
9 posnext = {p|(i, p) ∈ all posnext ∩ all posthis} ∪ {∼}.

10 foreach tuple (prev, next) in posprev × posnext do
11 pos′this = {p|p ∈ posthis, (p > prev ∨ prev =∼), (p < next ∨ next =∼)}.
12 Sort pos′this in ascending order and add to robot seq[i].

13 Set robot seq[i] = {[]} if robot seq[i] = ∅ ∀ i ∈ {1, . . . ,m}.
14 foreach seq tuple in robot seq[1]× . . .× robot seq[m] do
15 lenseq[i] = length of seq tuple[i] ∀ i ∈ {1, . . . ,m}.
16 max event cnt =

∑m
i=1 lenseq[i], all perms = array of m empty sets.

17 all perms[i] = all lenseq[i] ordered combinations of {1, . . . ,max event cnt} ∀ i ∈ {1, . . . ,m}.
18 foreach perm tuple in all perms[1]× . . .× all perms[m] do
19 event seq = array of max event cnt empty sets.
20 foreach i ∈ {1, . . . ,m} do
21 foreach n ∈ {1, . . . , lenseq[i]} do
22 Add event (i, seq tuple[i][n]) to event seq[perm tuple[i][n]].

23 Remove those entries with event seq[i] = ∅ for i ∈ {1, . . . ,max event cnt}.
24 Define start states as the set of states of W at which event seq can start occurring.
25 Yield (event seq, start states) after performing wait-set checks.

29

In order to generate all possible event sequences, we use the variable event seq to interpret the current
interval as a box with max event cnt bins labeled {1, . . . ,max event cnt} (line 19). For each robot i, we
compute all lenseq[i] ordered combinations of the sequence {1, . . . ,max event cnt} (line 17) and iterate over
the elements of the product all perms[1] × . . . × all perms[m] (line 18). Each element of this product set
is a tuple that gives how the events of individual robots are ordered with respect to the events of the other
robots. Next, we obtain the event sequence corresponding to each perm tuple by placing the events of the
robots into event seq according to the positions given by the perm tuple (lines 20–22). Notice that, as events
of different robots can occur simultaneously, we may end up with some empty bins in event seq. We remove
such empty entries of event seq at line 23. Next, at line 24, we compute the set of start states of W at which
event seq can start occurring. Finally, at line 25 we yield the event seq along with the corresponding set of
start states after making sure that they do not violate the given wait-sets. At the next call, Alg. 8 continues
execution from line 14 with the next seq tuple, and eventually from line 6 with the next interval. Once all
the intervals of tl are considered, Alg. 8 terminates causing the loop that it is called in Alg. 6 to terminate
as well.

Proposition B.1. Let O(T) denote the time complexity of constructing the timeline tl and let I denote the
number of intervals in tl. For the case where the intervals of the robots corresponding to different positions
do not overlap, complexity of Alg. 8 is O(I 2mmm+1 + T).

Proof. It follows from our assumption that there is at most one robot-position pair per robot per interval.
Then, complexity of the first part of the algorithm (lines 6–12) is O(m), and the maximum values of lenseq[i]
and max event cnt are 1 and m. As |all perms[i]| is at most m, the complexity of the inner loop at lines 18–
25 becomes O(mm+1). Since each |robot seq[i]| is at most 2, the complexity of the second part of the
algorithm (lines 14–25) is O(2mmm+1). As O(m) < O(2mmm+1), the complexity of Alg. 8 for each interval
considered at line 3 is also O(2mmm+1). After substituting I for the number of intervals and O(T) for the
time complexity of constructing tl, the overall complexity of Alg. 8 becomes O(I 2mmm+1 + T). �

Remark B.2. In Prop. B.1 we assumed that the intervals of the robots corresponding to different positions do
not overlap. Let tn denote the planned time until the robots reach the nth position in their runs and K denote
the total length of the prefix and the first suffix cycle. The above condition is satisfied when ρitn−1 < ρjtn
holds for all i, j ∈ {1, . . . ,m} and n = 1, . . . ,K − 1. This is typically the case where the deviation values of
the robots are small enough (with respect to the length of the suffix cycle and durations between consecutive
states in the run) such that the intervals in which the robots can reach different positions in their runs do not
overlap. A more general complexity analysis could be performed for the case where robots move to different
positions in a single interval, but at the cost of increased difficulty of presentation and interpretation. We
employ the same assumption in Prop. B.3 for the same reason.

We use Alg. 9 to construct the dictionary tl, short for timeline, that we use in Alg. 8. As discussed earlier,
since the runs of the robots are periodic and the robots synchronize at the beginning of each suffix cycle,
we consider only the prefix and the first suffix cycle of the runs of the robots during the construction of tl.
The first part of Alg. 9 (lines 1–7) computes the intervals in which the robots can reach the next positions in
their runs. The interval in which robot i can reach position k is determined by the deviation values ρi and
ρi, the time wi(r

k−1
i , rki) it takes for the robot to reach rki from its previous state rk−1

i , wait-set ski,wait of the
robot for position k, and the interval in which the robot has departed from its previous position. In Alg. 9,
we use pos ivs[i][k].start and pos ivs[i][k].end to denote the start and end points of the interval in which
robot i can reach position k. As the robots start their runs in a synchronized way, we set the interval of the
first positions of all robots to [0, 0] at line 3. For all other positions, we first construct the set waits for
that includes both robot i itself and the robots that robot i has to wait for at that position (line 4). Next,
at lines 5–6 we calculate the earliest and latest time that robot i can reach position k by using the models
of the robots in the set waits for and the intervals of their previous positions. Then, at line 7, we save the
interval of robot-position pair (i, k) in the pos ivs array.

The second part of Alg. 9 (lines 8–28), projects the intervals in pos ivs to a common timeline by consid-
ering each position k of each robot i. The variable tl is a dictionary of sets of robot-position pairs keyed by
intervals. To be able to use this dictionary by iterating over its keys as discussed earlier, we need to make
sure that its keys, which are intervals, do not intersect with each other. To this end, we maintain the queue
projection queue to hold the remaining parts of the intersecting intervals that we may need to break up

30

Algorithm 9: Compute-Timeline

Input: Individual runs {r1, . . . , rm}, wait-sets {s1,wait, . . . , sm,wait}, transition systems
{T1, . . . ,Tm}, and deviation values ρi, ρi, i = 1, . . . ,m of the robots.

Output: The dictionary tl of sets of robot-position pairs keyed by disjoint intervals.

1 for k = 0, . . . , end do
2 for i = 1, . . . ,m do
3 if k is 0 then pos ivs[i][k] = [0, 0] else
4 waits for = {i} ∪ ski,wait.
5 earliest = maxj∈waits for(pos ivs[j][k − 1].start+ ρj ∗ wj(rk−1

j , rkj)).

6 latest = maxj∈waits for(pos ivs[j][k − 1].end+ ρj ∗ wj(rk−1
j , rkj)).

7 pos ivs[i][k].start = earliest, pos ivs[i][k].end = latest.

8 for k = 0, . . . , end do
9 for i = 1, . . . ,m do

10 projection queue = {pos ivs[i][k]}.
11 foreach new iv ∈ projection queue do
12 intersected = False.
13 foreach old iv ∈ tl do
14 int iv is the intersection of new iv and old iv.
15 if new iv intersects with old iv then
16 intersected = True.
17 tl[int iv] = tl[old iv] ∪ {(i, k)}.
18 if old iv.start < new iv.start then
19 tl[[old iv.start, new iv.start)] = tl[old iv].
20 Remove old iv from tl.

21 if old iv.end > new iv.end then
22 tl[(new iv.end, old iv.end]] = tl[old iv].
23 Remove old iv from tl.

24 if new iv.start < old iv.start then
25 Add [new iv.start, old iv.start) to projection queue.

26 if new iv.end > old iv.end then
27 Add (old iv.end, new iv.end] to projection queue.

28 if intersected is False then tl[new iv] = {(i, k)}

29 Return tl.

31

during the projection. We start the projection by adding the interval of the robot-position pair (i, k) to the
projection queue. Then, for each interval new iv in the projection queue, we check all the intervals in tl to
see if any of them intersects with new iv. If not, we add this interval new iv to the timeline along with its
set of robot-position pairs (line 28). If, on the other hand, the interval new iv intersects with some interval
old iv in tl, we set the interval int iv to be the intersection of new iv and old iv and add it to the timeline
with the appropriate set of robot-position pairs (line 17). Next, at lines 18–27 we check to see if we need
to break the old iv or new iv. If old iv extends beyond new iv from the beginning or the end, we break it
appropriately by defining a new entry for the extending parts and removing the old entry that corresponds
to old iv from tl. If, on the other hand, new iv extends beyond old iv, we do not add the extending parts
to tl directly as they may intersect with other intervals already in tl. Instead, we add the extending parts of
new iv to the projection queue so that they are processed in the coming iterations. Alg. 9 terminates once
it processes all positions of all robots up to the end of the first suffix cycle of their runs.

Proposition B.3. Let K denote the total length of the prefix and the first suffix cycle. For the case where the
intervals of the robots corresponding to different positions do not overlap, complexity of Alg. 9 is O(m2K2).

Proof. In the worst-case, each robot waits for every other robot, thus computation of each pos ivs[i][k] at
lines 4–7 takes time O(m). Then, the complexity of the first part of the algorithm (lines 1–7) is O(m2K).
In the second part of the algorithm (lines 8–28), each projected interval may intersect with previously
defined intervals resulting up to 2 additional intervals per projection. Thus, we have O(m) intervals for each
position and O(mK) intervals in total. Consequently, the loop at lines 11–28 executes O(mK) times for
each projection, and complexity of the second part of the algorithm (lines 8–28) becomes O(m2K2). Thus,
the overall complexity of Alg. 9 is O(m2K2). �

32

