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Abstract—This paper presents an approach to distributively
approximate the continuous probability distribution that de-
scribes the fusion of sensor measurements from many networked
robots. Each robot forms a weighted mixture of Gaussians to
represent the measurement distribution of its local observation.
From this mixture set, the robot then draws samples of Gaussian
elements to enable the use of a consensus-based algorithm
that evolves the corresponding canonical parameters. We show
that the these evolved parameters describe a distribution that
converges weakly to the joint of all the robots’ unweighted
mixture distributions, which itself converges weakly to the
joint measurement distribution as more system resources are
allocated. The major innovation of this approach is to combine
sample-based sensor fusion with the notion of pre-convergence
termination that results in scalable multi-robot system. We also
derive bounds and convergence rates for the approximated joint
measurement distribution, specifically the elements of its infor-
mation vectors and the eigenvalues of its information matrices.
Most importantly, these performance guarantees do not come at
a cost of complexity, since computational and communication
complexity scales quadratically with respect to the Gaussian
dimension, linearly with respect to the number of samples, and
constant with respect to the number of robots. Results from
numerical simulations for object localization are discussed using
both Gaussians and mixtures of Gaussians.

I. INTRODUCTION

We wish to develop scalable approaches to state estimation
tasks such as tracking, surveillance, and exploration using
large teams of autonomous robots equipped with sensors.
Consider the task of using many aerial robots to monitor the
flow of objects into and out of a major seaport (e.g., ships,
containers, ground vehicles). To collectively estimate the
objects’ positions, one approach is to wirelessly communicate
all sensor measurements to a data fusion center, perform the
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estimation calculations in a centralized manner, and then glob-
ally broadcast the results to enable the robots to better position
their sensors. For large systems, the central processor quickly
becomes a computational and communication bottleneck, and
thus is not considered to be scalable [4].
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Fig. 1: This figure shows the distributed approximation of the joint measure-
ment distribution using mixtures of Gaussians. Top Right: Ten robots (black
circles) are located in three dimensional space with their î and ĵ positions
shown and their k̂ positions equal to their corresponding indices. The robots
use range only sensors and communicate on an undirected graph to locate an
object of interest (red star). Top Left: Each robot forms an unweighted mixture
of 1000 Gaussians to represent its independent measurement distribution of
the object’s position given its local observation. Here we show the 1st robot’s
mixture distribution on two dimensional slices that intersect at the object’s
true location of (5, 5, 5) meters. Bottom: The 1st robot’s approximation of the
joint measurement distribution becomes more accurate and precise as more
consensus iterations are performed. Note that the color scales vary among
the plots to highlight the distribution’s structure.

We propose to solve this problem in a purely decentralized
manner with the following approach. Each robot (i) indepen-
dently makes a local observation using its imperfect sensors,
(ii) represents the corresponding probability distribution with
a weighted mixture of Gaussians, (iii) draws samples from this
mixture set to form an unweighted mixture set, and lastly (iv)
runs a consensus-based algorithm to approximate the distri-
bution describing the joint of all robots’ observations (Figure
1). This approximation can then be used in a sequential



Bayesian filter to update the robots’ belief of the continuous
state of a finite extent of the world. Building on our prior
work [9] that only considered a discrete set of probabilities,
each robot uses the consensus-based algorithm to evolve its
representation of the independent measurement distribution
into an approximation for the joint measurement distribution.
This approach allows for resource adaptive state estimation,
for which the computation and communication complexities
do not depend on the number of robots.

We prove for all robots on a static, connected, undirected
communication graph that the approximation of the joint
measurement distribution converges weakly1 to the joint of
all the robots’ unweighted mixture distributions. The given
restrictions on the graph are used to derive bounds and
convergence rates for the approximated joint measurement
distribution, specifically elements of its information vectors
and eigenvalues of its information matrices. Yet, the im-
plementation works on arbitrary networks without risk of
catastrophic failures (e.g., robustness against robot failures),
and without restriction on the number of communication
rounds that the robots need to use for the consensus-based
algorithm. An extremely attractive aspect of the approach
is that expected performance provably improves as more
system resources are allocated. We believe these theoretical
contributions can drive the development of application specific
sensor fusion algorithms that are unbiased, convergent, and
scalable.

We have been inspired by over two decades worth of ad-
vancements in distributed estimation algorithms. An approach
to compute locally optimal estimators from many independent
sensor measurements at a central fusion center was described
in detail by Gubner [6]. Concerning decentralization, the early
work of Durrant-Whyte et al. [4] with decentralized Kalman
filters laid the basis for the Decentralized Data Fusion ar-
chitecture [10]. Extensions incorporating consensus averaging
algorithms [3], [15] have been used for maximum-likelihood
parameter estimation [16], maximum a-posteriori estimation
[11], and distributed Kalman filtering [1], [17].

One of the most relevant works in distributed Kalman
filtering is by Ren et al. [13], who showed the convergence
of a filter incorporating information-based states. The proof
of convergence for each Gaussian element in the joint dis-
tribution approximation closely follows in our work, even
though our approach applies to a larger class of Bayes filters
(e.g., map merging [2]). This generality is shared by the
approach of Fraser et al. [5] using hyperparameters. However,
our approach enables the early termination of the consensus-
based algorithm without the risk of double-counting any single
observation, even when the maximum in/out degree and the
number of robots are unknown.

This paper is organized as follows. In Section II we
formalize the problem of distributively approximating the joint

1Also known as convergence in distribution.

measurement distribution within a multi-robot system, then
discuss the use of a consensus-based algorithm to calculate
products of Gaussian distributions in Section III. Also in
Section III are our main results on the convergence of distribu-
tively formed Gaussian mixtures to representations of the joint
measurement distribution. In Section IV we derive bounds and
convergence rates for the elements of the joint mixture set,
followed by numerical simulations in Section V to illustrate
these performance guarantees and motivate the approach.

II. PROBLEM FORMULATION

A. General Setup

Consider a system of robots, where each robot has a belief
of the continuous-valued state concerning the same finite
extent of the world. We model the world state2 as a random
variable, X , that takes values from a continuous alphabet,
X . Each robot cannot perfectly measure the world state,
but instead makes an observation with its sensors that are
influenced by noise. The robots’ synchronous observations
together form a joint observation, which we also model as
a random variable, Y . Sensing may be interpreted as using
a noisy channel, and thus the relationship between the true
world state and the noisy observation is described by the joint
measurement distribution (JMD), P(Y = y|X), where y is the
value the joint observation takes.

Our goal is to enable each robot to independently perform
the posterior calculations,

P[i](X|Y = y) = P[i](X)P(Y=y|X)∫
x∈X P[i](X=x)P(Y=y|X=x)dx

, (1)

needed for sequential Bayesian filter predictions and mutual
information gradient-based control [9], where P[i](X) is the
prior distribution that describes the ith robot’s belief of the
world state. Since the sensors of any two robots are physically
detached from one another, we assume that the errors on the
observations are uncorrelated between robots. In other words,
a random variable that describes the ith robot’s observation,
Y [i], is conditionally independent of any other random vari-
able that describes another robot’s observation, Y [v] with v 6=
i, given the world state. This assumption for a system of nr
robots gives a JMD of P(Y = y|X) =

∏nr
i=1 P(Y [i] = y[i]|X)

when we model the joint observation as an nr-tuple random
variable, Y = (Y [1], . . . , Y [nr]), where y[i] is the value that
the ith robot’s observation takes and P(Y [i] = y[i]|X) is the
ith robot’s independent measurement distribution (IMD).

Thus, the posterior calculations from (1) become

P[i](X|Y = y) =
P[i](X)

∏nr
v=1 P(Y [v]=y[v]|X)∫

x∈X P[i](X=x)
∏nr
v=1 P(Y [v]=y[v]|X)dx

, (2)

and our goal of approximating the JMD over all possible
continuous-valued world states becomes equivalent to approx-
imating the product of all the IMDs. It is this equivalence that
enables our distributed algorithm to reasonably approximate

2We use the term world state as shorthand for state of the finite extent of
the world.
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arbitrary continuous distributions using independently formed
mixtures of multivariate Gaussian distributions. By reason-
ably we mean that the approximation has the performance
characteristics discussed in Section IV, such as convergence
to the true distribution as certain system resources increase
(e.g., computational capacity, network bandwidth, etc.).

B. Decentralized System

Let the nr robots communicate according to an undirected
communication graph, G, with a corresponding unordered
edge set, E ; that is, {i, v} ∈ E if the ith and vth robots
are neighbors. We use N [i] to denote the set of neighbors
of the ith robot, which has an in/out degree of |N [i]|. In
addition, we consider the corresponding Metropolis-Hastings
weight matrix [15], W, which has the form

[W]iv =


1−

∑
v′∈N [i]

1
max{|N [i]|,|N [v′]|}+1

, i = v,
1

max{|N [i]|,|N [v]|}+1
, {i, v} ∈ E ,

0, otherwise,

where [·]iv denotes the matrix entry (i, v). For vectors, [·]m
denotes the mth row entry.

It was previously shown [8] that by initializing the consen-
sus states ψ[i]

k and π
[i]
k to a basis vector and a probability

vector, respectively, each robot can run the discrete-time
average consensus algorithm

ψ
[i]
k+1 = [W]iiψ

[i]
k +

∑
v∈N [i] [W]ivψ

[v]
k (3)

in parallel with its exponential form

π
[i]
k+1 = (π

[i]
k )[W]ii

∏
v∈N [i](π

[v]
k )[W]iv (4)

to distributively approximate a finite set of joint measurement
probabilities, where k ∈ Z≥0 denotes the communication
round and the above algorithms are understood to be element-
wise. In this paper, we extend this approach to multivariate
Gaussian distributions, then show that this extension supports
the approximations of arbitrary JMDs using mixtures of
Gaussians3. Note that many other algorithms of this form
yielding asymptotic average consensus are also appropriate
(see, e.g., [11]).

III. DISTRIBUTED APPROXIMATIONS

A. Products of Gaussians

Consider for all robots i ∈ {1, . . . , nr} the non-
degenerate4 ng-dimensional Gaussians, Nc(ξ[i]

0 ,Ω
[i]
0 ) ∝

exp
(
− 1

2x
TΩ

[i]
0 x + xT ξ

[i]
0

)
, where ξ

[i]
0 ∈ Rng and Ω

[i]
0 ∈

Rng×ng are the ith robot’s information vector and information
matrix, respectively. If these Gaussians represent the robots’
IMDs, from (2) the JMD for the system is simply

η
∏nr
i=1Nc(ξ

[i]
0 ,Ω

[i]
0 ) = Nc(ξ,Ω), (5)

3We use the term Gaussians as shorthand for multivariate Gaussian
distributions.

4By non-degenerate we mean that the information matrix of a Gaussian is
a real positive-definite symmetric matrix.

where ξ =
∑nr
i=1 ξ

[i]
0 is the joint information vector, Ω =∑nr

i=1 Ω
[i]
0 is the joint information matrix, and η is a normal-

izing constant.
For a given world state x ∈ X , let π[i]

k ∈ R≥0 and
ψ

[i]
k ∈ [0, 1]nr be initialized to Nc(ξ[i]

0 ,Ω
[i]
0 ) and ei, re-

spectively, where ei is the standard basis pointing in the
ith direction in Rnr . On a connected graph G, we can use
(4) and (3) at each communication round to have (π

[i]
k )β

[i]
k

converge to
∏nr
i=1Nc(ξ

[i]
0 ,Ω

[i]
0 ) in the limit as k →∞, where

β
[i]
k = ‖ψ[i]

k ‖−1
∞ is a scalar exponential factor that converges

to nr [8]. The expansion of (π
[i]
k )β

[i]
k leads to the following.

Theorem 1 (Consensus of a Product of Gaussians). Let
ξ

[i]
k ∈ Rng and Ω

[i]
k ∈ Rng×ng be initialized to ξ

[i]
0 and

Ω
[i]
0 , respectively, and have both evolve according to (3) on

a connected graph G. Then for all robots we have that

Nc(β[i]
k ξ

[i]
k , β

[i]
k Ω

[i]
k )→ Nc(ξ,Ω), ∀x ∈ Rng (6)

as k → ∞, or in other words, that Nc(β[i]
k ξ

[i]
k , β

[i]
k Ω

[i]
k )

converges weakly to Nc(ξ,Ω).

Proof (Theorem 1). We first note for all robots and com-
munication rounds that π[i]

k is a product of values taken
from (possibly unnormalized) Gaussians. Hence (π

[i]
k+1)β

[i]
k+1

is itself a value that is taken from an unnormalized Gaussian
proportional to∏

v∈{{i}∪N [i]}
exp

(
β

[i]
k+1[W]iv

(
1
2x

TΩ
[i]
k x+ xT ξ

[v]
k

))
which gives us the desired consensus update expressions for
ξ

[i]
k+1 and Ω

[i]
k+1. Lastly, from [15] and [8] we have for every

x ∈ X that π[i]
k and β[i]

k converge to
∏nr
i=1Nc(ξ

[i]
0 ,Ω

[i]
0 )1/nr

and nr, respectively.

Remark 1 (Consensus of the Canonical Parameters). Even
though π

[i]
0 is dependent on a given world state, we have

that ξ[i]
0 and Ω

[i]
0 are not. Thus, (6) implies that we can run

our consensus-based algorithm on canonical parameters of
sizes O(ng) and O(n2

g) to reasonably approximate a JMD of
Gaussian form over all world states.

B. Mixtures of Gaussians

As previously stated, our goal is to enable each robot
to independently perform the posterior calculations (2) by
distributively approximating the product of all the IMDs.
With Theorem 1, we have presented sufficient machinery to
enable these approximations if each IMD can be accurately
represented by a single Gaussian. Performance guarantees
for this particular case will be discussed in Section IV.
For arbitrary continuous distributions, we now complete the
approach using mixtures of Gaussians.
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Let each robot form a weighted mixture set M[i] :={
(w[i,j], ξ

[i,j]
0 ,Ω

[i,j]
0 ) : j ∈ I(i)

}
composed of triples that

have scalar weights5 w[i,j] ∈ [0, 1], information vectors
ξ

[i,j]
0 ∈ Rng , and information matrices Ω

[i,j]
0 ∈ Rng×ng . For

simplicity we assume that the weighted summation of the
corresponding ng-dimensional Gaussians perfectly represents
the IMD, but also note that an approximation of this form
converges weakly6 to the true IMD in the limit as the size
of the weighted mixture set tends to infinity. Hence, the JMD
is represented by the normalized product of these weighted
summations across all robots,

N (M) := η
∏nr
i=1

∑
j∈I(i) w

[i,j]Nc(ξ[i,j]
0 ,Ω

[i,j]
0 ).

Unfortunately, the computational complexity of computing
the JMD scales exponentially with respect to the number
of robots, and thus is intractable even for moderately sized
systems. We now describe a technique that forms an unbiased7

approximation of the JMD, for which computation is tractable
and readily distributed among the robots. Let each robot draw
nm samples from its weighted mixture set with probabilities
proportional to the corresponding weights. The ordered pair-
ing of drawn information vectors and information matrices
form an unweighted mixture set, M̌[i]

0 :=
{

(ξ̌
[i,j]
0 , Ω̌

[i,j]
0 ) :

j ∈ {1, . . . , nm}
}

, from which the normalized summation

N (M̌[i]
0 ) :=

∑nm
j=1

Nc(ξ̌[i,j]
0 ,Ω̌

[i,j]
0 )

nm
≈ P(Y [i] = y[i]|X)

approximates the robot’s IMD. We then define the joint mix-
ture set, M̌, to be the unweighted set of canonical parameter
pairs resulting from the product of the robots’ unweighted
independent mixture distributions having equal indices. More
formally, we have M̌ :=

{
(ξ̌[j], Ω̌[j]) : j ∈ {1, . . . , nm}

}
,

where ξ̌[j] =
∑nr
i=1 ξ̌

[i,j]
0 and Ω̌[j] =

∑nr
i=1 Ω̌

[i,j]
0 . We

are interested in each robot independently forming the joint
mixture set to approximate the JMD, leading to the following.

Lemma 1 (Properties of the Joint Mixture Distribution).
Define the joint mixture distribution to be the normalized
summation of Gaussians formed from the joint mixture set,

N (M̌) :=
nm∑
j=1

Nc(ξ̌[j],Ω̌[j])
nm

.

Then the joint mixture distribution is an unbiased approxi-
mation of the JMD that converges weakly as the number of
samples nm tends to infinity.

Proof (Lemma 1). We first prove that the joint mixture
distribution converges weakly to the JMD. Consider any tuple
a ∈

∏nr
i=1 I(i), where for each i ∈ {1, . . . , nr} the ith

5We have for all robots that
∑

j∈I(i) w
[i,j] = 1.

6For weak convergence, we are assuming that the robot’s IMD belongs to
a certain reproducing kernel Hilbert space. See [12] for more detail.

7By unbiased we mean that the expected first moment of the approximation
and the true distribution are equal.

entry is [a]i ∈ I(i). Let us define w[a] :=
∏nr
i=1 w

[i,[a]i].
For a given unweighted sample j ∈ {1, . . . , nm}, let Ǎ[j] =
(Ǎ[1,j], . . . , Ǎ[nr,j]) be an nr-tuple random variable, for
which each element Ǎ[i,j] takes samples from I(i) with
probability P(Ǎ[i,j] = [a]i) = w[i,[a]i]. Hence, the probability
that the jth sample is a is given by

P(Ǎ[j] = a) =
∏nr
i=1 P(Ǎ[i,j] = [a]i) =

∏nr
i=1 w

[i,a[i]] = w[a].

Next, let us define an indicator random variable χǍ[j] for
the event {Ǎ[j] = a}. We have that

N (M̌) =
nm∑
j=1

Nc(ξ̌[j],Ω̌[j])
nm

= η
∑nm
j=1

∑
a∈

nr∏
i=1
I(i)

χ
Ǎ[j]

nm

∏nr
i=1Nc(ξ

[i,[a]i]
0 ,Ω

[i,[a]i]
0 ), (7)

where η is again a normalization constant.
By the Strong Law of Large Numbers [14], we have that

lim
nm→∞

∑nm
j=1

χ
Ǎ[j]

nm
= E(χǍ[j]) = w[a],

with probability one. Therefore, exchanging the order of the
summations in (7) and taking the limit as the number of
samples tend to infinity, we have with probability one that

lim
nm→∞

N (M̌) = η
∑nm
j=1 w

[a]
∑

a∈
nr∏
i=1
I(i)

Nc(ξ[i,a(i)]
0 ,Ω

[i,a(i)]
0 )

= η
∑

a∈
nr∏
i=1
I(i)

∏nr
i=1 w

[i,[a]i]Nc(ξ[i,[a]i]
0 ,Ω

[i,[a]i]
0 )

= η
∏nr
i=1

∑
j∈I(i)

w[i,j]Nc(ξ[i,j]
0 ,Ω

[i,j]
0 ) = N (M).

We now prove that the joint mixture distribution is an
unbiased approximation of the JMD. Let the following random
variables take values according to the corresponding distri-
butions:

Ž ∼ N (M̌),

Ž [j] ∼ Nc(ξ̌[j], Ω̌[j]),

Z [a] ∼ η
∏nr
i Nc(ξ

[i,ji]
0 ,Ω

[i,ji]
0 ),

Z ∼ N (M).

Considering the expected value of Ž, we have that

E(Ž) = 1
nm

E(
nm∑
j=1

Ž [j]) = E(Ž [1]) =
∑

a∈
nr∏
i=1

I(i)

w[a]E(Z [a]) = E(Z),

where the equalities in order are due to (i) the linearity of the
expected value function, (ii) the independence of the drawn
samples, (iii) the conditional independence of the robots’
observations, and (iv) the definition of the joint mixture set.
Thus, the joint mixture distribution is unbiased.
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C. Approximation of the Joint Mixture Distribution

Revisiting Remark 1, we can run a consensus-based algo-
rithm on distribution parameters of sizes O(ng) and O(n2

g)
to reasonably approximate a JMD of Gaussian form over all
world states. This capability combined with the independence
of the joint mixture set size with respect to the number
of robots is the key to enabling distributed and scalable
approximations of the JMD. The following formalizes the
approach and its convergence, while the subsequent remarks
discuss its significance and limitations.

Corollary 1 (Distributed Approximation and Convergence).
For all robots and samples j ∈ {1, . . . , nm}, let ξ̌[i,j]

k and
Ω̌

[i,j]
k be initialized to ξ̌[i,j]

0 and Ω̌
[i,j]
0 , respectively, and have

both evolve according to (3) on a connected graph G. Define
the ith robot’s approximation of the joint mixture set to be
M̌[i]

k :=
{

(β
[i]
k ξ̌

[i,j]
k , β

[i]
k Ω̌

[i,j]
k ) : j ∈ {1, . . . , nm}

}
. We have

that

N (M̌[i]
k ) :=

nm∑
j=1

Nc(β[i]
k ξ̌

[i,j]
k ,β

[i]
k Ω̌

[i,j]
k )

nm

converges weakly to the joint mixture distribution as k →∞.

Proof (Corollary 1). The proof follows directly from Theorem
1 and Lemma 1.

Remark 2 (Complexity and Scalability). We have that the
communication complexity is O(n2

gnm) for each communi-
cation round, while the memory and computational com-
plexity for calculating N (M̌[i]

k ) is also O(n2
gnm). Thus,

this distributed algorithm scales quadratically with respect
to Gaussian dimension and linearly with respect to number
of samples. Most importantly, overall complexity remains
constant with respect to number of robots.

Remark 3 (Significance and Interpretation). The concatena-
tion of the robot mixture sets (versus a Cartesian product)
is allowed due to the fact that the corresponding samples
are both unweighted (i.e., all samples are equally likely) and
conditionally independent across the robots. Without these
properties, Lemma 1 would not necessarily be true, and thus
the robot’s approximation of the JMD would be an arbitrarily
poor representation. Instead, this approximation is guaranteed
to converge weakly to the JMD as the communication round
and the number of samples tend to infinity, or in words, as
certain system resources increase.

Remark 4 (Limitations). One should immediately recognize
that as the number of robots increases, each mixture sample
becomes less informative about the JMD of the entire system.
Simultaneously increasing the robot mixture set size to retain
the approximation’s global precision can be exponential with

respect to the number of robots. In our work using gradient-
based information theoretic controllers, this limitation is not
significant since we typically want to retain precision with
respect to the JMD of a local neighborhood in physical
proximity to the robot.

IV. PERFORMANCE GUARANTEES

A. Non-Degeneracy and Disagreement

We begin to characterize the joint mixture approximation by
proving that the corresponding Gaussians make sense. Since
we are forming these distributions from the scaled canonical
parameters β[i]

k ξ̌
[i,j]
k and β[i]

k Ω̌
[i,j]
k , this making sense objective

is equivalent to proving for all robots, samples, and commu-
nication rounds that β[i]

k ξ̌
[i,j]
k is a real vector and β[i]

k Ω̌
[i,j]
k is a

real positive-definite symmetric matrix. Since the collection of
real vectors and the collection of positive-definite symmetric
matrices are both closed under addition and positive scalar
multiplication (β[i]

k ∈ [1, nr] from the upcoming Lemma 3), it
holds that the joint mixture set is composed of non-degenerate
Gaussians.

The guarantee of non-degeneracy is fundamental to many
of the claims to come. More interestingly, the mathematical
structure of (3) that allows this guarantee also allows for
intuitive interpretations of how the approximations evolve over
time, especially concerning the rate of convergence of the
scaled canonical parameters. These will be discussed shortly,
but first we review the concept of exponentially decreasing
disagreement [11].

Lemma 2 (Exponentially Decreasing Disagreement). For all
robots and communication rounds, we have that∥∥ψ[i]

k − 1 1
nr

∥∥
2
≤ Uψk :=

∥∥W− 11T 1
nr

∥∥k
2

(
1− 1

nr

) 1
2 ,

where lefthand side of the inequality is termed disagreement
and ‖ · ‖2 for a matrix denotes the spectral norm.

Proof (Lemma 2). The proof follows from Xiao et al. [15]
with ψ[i]

0 = ei, since

‖ψ[i]
0 − 1 1

nr
‖22 = (1− 1

nr
)2 + nr−1

n2
r

= 1− 1
nr
.

Lemma 3 (Properties of ψ[i]
k ). For all robots and communi-

cation rounds, we have that ψ[i]
k ∈ [0, 1]nr , ‖ψ[i]

k ‖1 = 1, and
‖ψ[i]

k ‖∞ ≥ 1/nr.

Proof (Lemma 3). Since for all robots ‖ψ[i]
0 ‖1 = ‖ei‖1 = 1,

we have that

‖ψ[i]
1 ‖1 = [W]ii‖ψ[i]

0 ‖1 +
∑
v∈N [i] [W]iv‖ψ[v]

0 ‖1
= [W]ii +

∑
v∈N [i]

[W]iv = 1−
∑

v∈N [i]

[W]iv +
∑

v∈N [i]

[W]iv = 1.

5



In addition, ψ[i]
1 is nonnegative since it is an element-wise

summation of nonnegative terms, which from the previous
equation implies ψ

[i]
1 ∈ [0, 1]nr . Lastly, we have from

the relationship between 1- and ∞-norms that ‖ψ[i]
1 ‖∞ ≥

‖ψ[i]
1 ‖1/nr = 1/nr. The proof follows by induction on k.

B. Bounds on Scaled Canonical Parameters

In the following subsection, we simplify notation by drop-
ping the overhead check ť and the sample index j. For
example, we have that ξ[i]

k and Ω
[i]
k denote ξ̌[i,j]

k and Ω̌
[i,j]
k ,

respectively.
It was discussed in [8] that the exponential factor β

[i]
k

accounts for the fact that the approximation of the JMD may
be used before the consensus-based algorithm has converged.
In our case, we expect this algorithm to prematurely ter-
minate before the Gaussian parameters converge, and thus
the exponential factor indicates how close the approximated
information and information are to the true joint canonical
parameters. In the following, we provide a strictly increasing
lower bound for the exponential factor that equals one at
k = 0 and converges to nr in the limit as k tends to infinity.

Theorem 2 (Lower Bound for the Exponential Factor). For
all robots and communication rounds, we have that

β
[i]
k ≥ L

β
k :=

(
Uψk

√
1− 1

nr
+ 1

nr

)−1
.

Proof (Theorem 2). Consider the optimization problem of
maximizing ‖ψ[i]

k ‖∞ with ψ
[i]
k being a free variable subject

to the constraints in Lemma 3 and subject to

‖ψ[i]
k − 1 1

nr
‖2 ≤ Uψk ∈ [0,

√
1− 1

nr
] = [0, Uψ0 ].

Note that an optimal solution ψ∗k always exists. Put c ≥ 0,
and without loss of generality suppose ‖ψ∗k‖∞ = [ψ∗k]1 and
‖ψ∗k − 1 1

nr
‖22 = c2. We define f(ψ

[i]
k , µ1, µ2) to be

[ψ
[i]
k ]1 + µ1

(
‖ψ[i]

k − 1 1
nr
‖22 − c2

)
+ µ2

(
‖ψ[i]

k ‖1 − 1
)
,

and by using Lagrange multipliers obtain

([ψ
[i]
k ]1−1/nr)2

nr−1 + ([ψ
[i]
k ]1 − 1

nr
)2 − c2 = 0.

Thus, we have that [ψ
[i]
k ]1 = c

√
1− 1/nr + 1/nr and c ≤√

1− 1/nr since [ψ
[i]
k ]1 ∈ [0, 1]. By the last equality, [ψ

[i]
k ]1 is

proportional to c, and by the last inequality we conclude that
c = Uψk . Thus, the corresponding value of [ψ

[i]
k ]1 = ‖ψ∗k‖∞

is Uψk
√

1− 1/nr + 1/nr.

Lastly, consider ψ[i]
k as consensus term rather than a free

variable. From above, we can interpret ‖ψ∗k‖−1
∞ as a lower

bound for β[i]
k given Uψk , which gives Lβk .

We now shift our attention to the geometric interpretation
of the scaled information matrix β

[i]
k Ω

[i]
k , which describes

ellipsoidal contours of equal density for the corresponding

Gaussian. The squared lengths of the contours’ principal axes
are given by the inverse of the scaled information matrix
eigenvalues, with larger values representing distribution axes
of higher certainty. As more communication rounds are per-
formed and the scaled information matrix converges element-
wise, we expect this certainty to increase and also converge.
This is in fact the case, and by using the lower bound for
the exponential factor, we provide a strictly increasing lower
bound for the scaled information matrix eigenvalues.

Theorem 3 (Lower Bound for the Scaled Information Matrix
Eigenvalues). Let λ1 ≤ λ2 ≤ · · · ≤ λng . Then for all robots,
samples, communication rounds, and m ∈ {1, . . . , ng}, we
have that

λm(β
[i]
k Ω

[i]
k ) ≥ LΩ

k,m := max{LΩ−
k,m, L

Ω+
k,m},

where

LΩ−
k,m :=

∑bLβkc
`=1 λng (Ω

[`]
0 ) +

(
Lβk − bL

β
kc
)
λng (Ω

[dLβke]
0 )

with the robot indices ordered such that λ1(Ω
[1]
0 ) ≤

λ1(Ω
[2]
0 ) ≤ · · · ≤ λ1(Ω

[nr]
0 ), and where

LΩ+
k,m := λm(Ω)−

∑nr
`=dLβke+1

λng (Ω
[`]
0 )

−
(
dLβke − L

β
k

)
λng (Ω

[dLβke]
0 )

with λng (Ω
[1]
0 ) ≤ λng (Ω

[2]
0 ) ≤ · · · ≤ λng (Ω

[nr]
0 ).

Proof (Theorem 3). We first prove that λm(β
[i]
k Ω

[i]
k ) is

bounded below by LΩ−
k,m. Note that

β
[i]
k Ω

[i]
k = β

[i]
k

∑nr
v=1[ψ

[i]
k ]vΩ

[v]
0 .

Recursively applying Weyl’s Theorem [7], we have that

λm(β
[i]
k Ω

[i]
k ) ≥ β[i]

k

∑nr
v=1[ψ

[i]
k ]vλ1(Ω

[v]
0 ). (8)

Ordering the robot indices for λ1 and using the lower bound
from Theorem 2, we have that

β
[i]
k

nr∑
v=1

[ψ
[i]
k ]vλ1(Ω

[v]
0 ) ≥

bLβkc∑̀
=1

λ1(Ω
[`]
0 ) +

(
Lβk − bL

β
kc
)
λ1(Ω

[dLβke]
0 ).

Substituting this inequality into (8) gives LΩ−
k,m.

Lastly we prove in similar fashion that λm(β
[i]
k Ω

[i]
k ) is

bounded above by LΩ+
k,m. Note that

β
[i]
k Ω

[i]
k = Ω−

∑nr
v=1(1− β[i]

k [ψ
[i]
k ]v)Ω

[v]
0 .

Recursively applying Weyl’s Theorem, we have that

λm(Ω) ≤ λm(Ω
[i]
k ) +

∑nr
v=1(1− β[i]

k [ψ
[i]
k ]v)λng (Ω

[v]
0 ). (9)

Ordering the robot indices for λng and using the upper bound
from Theorem 2, we have that∑nr

v=1(1− β[i]
k [ψ

[i]
k ]v)λng (Ω

[v]
0 )

≤
(
dLβke − L

β
k

)
λng (Ω

[dLβke]
0 ) +

∑nr
`=dLβke+1

λng (Ω
[`]
0 ).
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Subtracting the summation term from both sides of (9), substi-
tuting the result into the previous inequality gives LΩ+

k,m.

Remark 5 (Maximum of Two Bounds). The use of both
LΩ−
k,m and LΩ+

k,m yields an intuitive bound on λm(β
[i]
k Ω

[i]
k )

in the instances where k = 0 and k → ∞, respectively.
The former implies λm(Ω

[i]
0 ) ≤ maxv λm(Ω

[v]
0 ) and the

latter with Lemma 3 implies limk→∞ λm(β
[i]
k Ω

[i]
k ) = λm(Ω),

both of which are obvious. In addition, the two bounds are
equivalent for univariate Gaussians (i.e., ng = 1).

Lastly, we derive the strictly shrinking range for the in-
formation vector elements, which when combined with the
bounds on the information matrix eigenvalues well charac-
terizes the convergence behavior of the resulting Gaussians.
We believe such characterizations can lead to bounds on
such information theoretic metrics such as Kullback-Leibler
divergence of the mixture of Gaussians, however, such efforts
are reserved for future work.

Corollary 2 (Range of the Scaled Information Vector Ele-
ments). For all robots, samples, communication rounds, and
m ∈ {1, . . . , ng}, we have that Lξk,m ≤ [β

[i]
k ξ

[i]
k ]m ≤ Uξk,m,

where

Lξk,m :=
∑bLβkc
v=1 [ξ

[v]
0 ]m + (Lβk − bL

β
kc)[ξ

[dLβke]
0 ]m

with the robot indices arranged such that [ξ
[1]
0 ]m ≤ [ξ

[2]
0 ]m ≤

· · · ≤ [ξ
[nr]
0 ]m, and where Uξk,m is defined the same as Lξk,m

but with [ξ
[1]
0 ]m ≥ [ξ

[2]
0 ]m ≥ · · · ≥ [ξ

[nr]
0 ]m.

Proof (Corollary 2). The proof follows from applying Theorem
2 to Theorem 1.

V. NUMERICAL SIMULATIONS

A. Consensus of Univariate Gaussians

We first consider an object localization task using ten robots
with IMDs that can be accurately represented by univariate
Gaussians. Such a simplified task best illustrates how each
robot’s JMD approximation converges weakly to the true one,
which is analogous to how each Gaussian element of a mixture
would converge. Figure 2 shows the probability distributions
with corresponding parameters for the ten IMDs. Note that we
selected the canonical parameters to separate the distributions
for illustrative purposes, as one should not expect such initial
disagreement within a fielded robot system. Figure 2 also
shows the JMD of nonzero mean, since the assumption of
zero mean can potentially lead to misleadingly tight bounds
(e.g., bounds that are not invariant under translation).

We evaluated the performance of our consensus-based
algorithm on the connected communication graph shown in
Figure 1. Figure 3 shows the evolution of each robot’s JMD
approximation with respect to a strictly shrinking envelope

Fig. 2: This figure shows the one dimensional IMDs of the ten robots with
respect to the JMD.

derived from bounds given in Theorem 3 and Corollary
2. These envelopes can be interpreted as feasible regions
within which the peaks of all the robots’ JMD approximations
must lie, intuitively highlighting the performance guarantees
discussed in Section IV. We note that these bounds for this
particular communication graph are conservative; we found
that graphs with higher algebraic connectivity tend to produce
tighter bounds.

Fig. 3: This figure shows the evolution of each robot’s JMD approximation
on a connected communication graph topology at communication rounds of
k = {1, 10, 20, 30}. The dashed envelope in each plot represents the feasible
region within which the peak of every robot’s JMD approximation must lie.

B. Consensus of Mixtures of Gaussians

We now focus on an object localization task where the
world state is three dimensional and each robot’s IMD cannot
be accurately represented by a single Gaussian. Consider the
ten robots in Figure 1 task to localize an object by taking range
only measurements that obey a Gaussian sensor model. The
resulting IMDs are three dimensional probability distributions
with contours of equal probability being spheres centered at
the corresponding robot (Figure 4). To represent the IMD with
a weighted Gaussian mixture given an observation, each robot
forms a weighted mixture set of three dimensional Gaussian
elements using a dodecahedron-based geometric layout.

Using a computer cluster, Monte Carlo simulations em-
ploying various mixture sizes were performed in a distributed
fashion, meaning that every robot was simulated on an in-
dependent computer cluster node and communicated using

7



Fig. 4: This figure shows the process of representing a robot’s IMD with
a weighted mixture of Gaussians. A range only sensor model of Gaussian
distribution was assumed to have one standard deviation accuracy equal
to five percent of the received sensor measurement. Left: Given a relative
observation distance of 4.5 meters, the robot’s three dimensional IMD is
generated for all relative world states. Here we show the mixture distribution
on two dimensional slices that intersect at the robot’s location of (7, 6, 1)
meters. Right: A weighted mixture of 32 Gaussian elements is formed to
represent the IMD, where each element is located at a vertex or a face centroid
of a dodecahedron concentric with the robot.

MatlabMPI. For a given simulation run, each robot (i) drew
an observation from the previously described range only
measurement model, (ii) represented the resulting IMD with
a weighted Gaussian mixture, (iii) drew unweighted samples
to form the unweighted mixture set, and finally (iv) ran the
consensus-based algorithm to approximate the JMD. Figure 1
illustrates one particular evolution of the 1st robot’s three di-
mensional JMD approximation, which becomes more accurate
and precise as more consensus rounds are performed.
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Fig. 5: This figure shows the average Kullback-Leibler divergence of the
robots’ JMD approximations with respect to the joint mixture distribution for
various mixture sizes.

Figure 5 shows the average Kullback-Leibler divergence
over 1000 simulations with respect to the joint mixture distri-
bution. Not surprisingly, the divergence at all communication
rounds is smaller for larger mixture sizes; however, this be-
havior clearly exhibits diminishing returns. In addition, more
than 500 samples are needed to prevent the divergence from
initially increasing, although again all JMD approximations
by Corollary 1 are guaranteed to converge weakly to the joint
mixture distribution as the number of communication rounds
tend to infinity.

VI. CONCLUSIONS

We present a scalable, decentralized approach that en-
ables robots within a large team to independently perform

posterior calculations needed for sequential Bayesian filter
predictions and mutual information-based control. We focused
on distributively approximating the joint of continuous-valued
measurement distributions, providing performance guarantees
and complexity analyses. We are currently investigating the
concepts of sample deprivation and diminishing returns that
were highlighted in our numerical simulations. Lastly, we
wish to adapt the approach for specific types of Bayes filters
(e.g., Kalman) for which we can benchmark against much
prior work. Our paradigm of sample-based sensor fusion
combined with the notion of pre-convergence termination has
the potential to impact how the research community perceives
scalability in multi-robot systems.
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