
Min-Max Latency Walks: Approximation Algorithms
for Monitoring Vertex-Weighted Graphs

Soroush Alamdari, Elaheh Fata, and Stephen L. Smith

Abstract In this paper, we consider the problem of planning a path for a robot to
monitor a known set of features of interest in an environment. We represent the en-
vironment as a vertex- and edge-weighted graph, where vertices represent features
or regions of interest. The edge weights give travel times between regions, and the
vertex weights give the importance of each region. If the robot repeatedly performs
a closed walk on the graph, then we can define the latency of a vertex to be the
maximum time between visits to that vertex, weighted by the importance (vertex
weight) of that vertex. Our goal in this paper is to find the closed walk that mini-
mizes the maximum weighted latency of any vertex. We show that there does not
always exist an optimal walk of polynomial size. We then prove that for any graph
there exist a constant approximation walk of size O(n2), where n is the number
of vertices. We provide two approximation algorithms; an O(logn)-approximation
and an O(logρ)-approximation, where ρ is the ratio between the maximum and
minimum vertex weight. We provide simulation results which demonstrate that our
algorithms can be applied to problems consisting of thousands of vertices.

1 Introduction
An emerging application area for robotics is in performing long-term monitoring
tasks. Some example problems in monitoring include 1) environmental monitoring
tasks such as ocean sampling [15], where autonomous underwater vehicles sense the
ocean to detect the onset of algae blooms; 2) surveillance tasks [12], where robots
repeatedly visit vantage points in order to detect events or threats, and; 3) infrastruc-
ture inspection tasks such as power-line or manhole cover inspection [18], where

Soroush Alamdari
Cheriton School of Computer Science, University of Waterloo, Waterloo ON N2L 3G1, Canada.
e-mail: s26hosse@uwaterloo.ca

Elaheh Fata and Stephen L. Smith
Department of Electrical and Computer Engineering, University of Waterloo, Waterloo ON N2L
3G1, Canada. e-mail: efata@uwaterloo.ca, stephen.smith@uwaterloo.ca

1

2 Soroush Alamdari, Elaheh Fata, and Stephen L. Smith

spatially distributed infrastructure must be repeatedly inspected for the presence of
failures. For such tasks, a key problem is to plan robot paths that visit different parts
of the environment so as to efficiently perform the monitoring task. Since some
parts of the environment may be more important than others (e.g., in ocean sam-
pling, some regions are more likely to experience an algae bloom than others), the
planned path should visit regions with a frequency proportional to their importance.

In this paper, we cast such long-term monitoring tasks as an optimization prob-
lem on a vertex- and edge-weighted graph: the min-max latency walk problem. The
vertices represent features or regions of interest. The edge weights give travel times
between regions, and the vertex weights give the importance of each region. Given
a robot walk on the graph, the latency of a vertex is the maximum time between
visits to that vertex, weighted by the importance (vertex weight) of that vertex. We
then seek to find a walk that minimizes the maximum latency over all vertices. In
an ocean sampling task, this would be akin to minimizing the expected number of
algae blooms that occur in any region prior to a robot visit.

Prior work: The min-max latency walk problem generalizes our earlier work [16],
where we considered the problem for features distributed in a Euclidean space ac-
cording to a known probability distribution. Under this setup, constant factor ap-
proximation algorithms were developed for the limiting case of large numbers of
vertices. However, the algorithms have no performance guarantees for general input
graphs that may have non-Euclidean edge weights and smaller numbers of vertices.

In [18], the authors consider a preventative maintenance problem in which the
input is the same as in the min-max latency walk problem, but the output is a walk
which visits each vertex exactly once. More important vertices (i.e., those that are
more likely to fail) should be visited earlier in the path. The authors find a path
by solving a mixed-integer program. The min-max latency walk problem can be
thought of as a generalization of this problem, where the maintenance and inspection
should continually be performed.

The problem considered in this paper is also a more general version of sweep cov-
erage [5], where a robot must move through the environment so as to cover the entire
region with its sensor. Variants of this problem include on-line coverage [9], where
the robot has no a priori information about the environment, and dynamic cover-
age [10], where each point in the environment requires a pre-specified “amount” of
coverage. In [17], a dynamic coverage problem is considered where sensor contin-
ually surveys regions of interest by moving according to a Markov Chain. In [3]
a similar approach to continuous coverage is taken and a Markov chain is used to
achieve a desired visit-frequency distribution over a set of features.

Another related problem is patrolling [4, 8, 14], a region must be continually sur-
veyed by a group of robots. Existing work has considered the case of minimizing
the time between visits to each point in space. A variant of patrolling is considered
in [2] for continual target surveillance. The persistent monitoring problem consid-
ered in this paper extends the work on patrolling in that different points change at
different rates, and the change between visits must be minimized.

Finally, the min-max latency walk problem is related to vehicle routing and dy-
namic vehicle routing (DVR) problems [1]. One example is the period routing prob-

Min-Max Latency Walks 3

lem [6], where each customer must be visited a specified number of times per week.
A solution consists of an assignment of customers to days of the week, and a set of
routes for the vehicles on each day.

Contributions: The contribution of this paper are threefold. First, we introduce
the general min-max latency walk problem and show that it is well-posed and that
it is APX-hard. Second, we provide results on the existence of optimal and approxi-
mation algorithms for the problem. We showed that in general, the optimal walk can
be very long—it’s length can be non-polynomial in the size of the input graph, and
thus there cannot exist a polynomial time algorithm for the problem. We then show
that there always exists a constant factor approximation solution that consists of a
walk of length O(n2), where n is the number of vertices in the input graph. Third,
and finally, we provide two approximation algorithms for the problem. Defining ρG
to be the ratio between the maximum and minimum vertex weight in the input graph
G, we give a O(logρG) approximation algorithm. Thus, when ρG is independent of
n, we have a constant factor approximation. We also provide an O(logn) approx-
imation which is independent of the value of ρ . The algorithms rely on relaxing
the vertex weights to be powers of 2, and then planning paths through “batches” of
vertices with the same relaxed weights.

Organization: This paper is organized as follows. In Section 2 we give some
background on graphs and formalize the min-max latency walk problem. In Sec-
tion 3 we present a relaxation of graph weights which allows for the design of ap-
proximation algorithms. In Section 4 we present results on the existence of constant
factor approximations and some negative results on the required length of the walk.
In Section 5 we present two approximation algorithms for the problem. In Section 6
we present large scale simulation data for standard TSP test-cases and in Section 7
we present conclusions and future directions.

2 Background and Problem Statement
In this section, we review graph terminology and define the problem considered in
this paper.

2.1 Background on Graphs

The vertex set and edge set of a graph G are denoted by V (G) and E(G) respec-
tively, where E(G) consists of two element subsets of V (G). We write an edge in
E(G) as {vi,v j} or viv j. An edge-weighted graph G associates a weight w(e)≥ 0 to
each edge e ∈ E(G). A vertex-weighted graph G associates a weight ϕ(v) ∈ [0,1] to
each vertex v ∈V (G). Throughout this paper, all referenced graphs are both vertex-
weighted and edge-weighted and therefore we omit the explicit reference. Also,
without loss of generality, we assume that there is at least one vertex in V (G)
with weight 1, as in our applications weights can be scaled so that this is true.
We define ρG to be the ratio between the maximum and minimum vertex weight:
ρG := maxvi,v j∈V (G){ϕ(vi)/ϕ(v j)}. Given a graph G and a set V ′ ⊆V (G), the graph

4 Soroush Alamdari, Elaheh Fata, and Stephen L. Smith

G[V ′] is the graph obtained from G by removing the vertices of G that are not in V ′

and all edges incident to a vertex in V (G)\V ′.
A walk of length k in a graph G is a sequence of vertices, (v1,v2, . . . ,vk+1), such

that there exists an edge vivi+1 ∈ E(G) for 1 ≤ i ≤ k. The weight of a walk W ,
denoted by weight(W), is the sum of the weights of edges of that walk. A walk is
closed if its beginning and end are the same vertex. Given a walk W = (v1, . . . ,vk),
and integers i ≤ j ≤ k, the sub-walk W (i, j) is defined as the subsequence of W
given by W (i, j) = (vi,vi+1, . . . ,v j). Given the walks W1,W2, . . . ,Wk, the walk W =
[W1,W2, . . . ,Wk] is the result of concatenation of W1 through Wk, while preserving
order.

An infinite walk is a sequence of vertices, (v1,v2, . . .), such that there exists an
edge vivi+1 ∈ E(G) for i ∈ N. We say that a closed walk W expands to an infinite
walk ∆(W), when ∆(W) is constructed by an infinite number of copies of W ap-
pended together: ∆(W) = [W,W, . . .]. It can be seen that for any closed walk, there
exists a unique expansion to an infinite walk. The kernel of an infinite walk W , de-
noted by δ (W), is the shortest closed walk such that W is the expansion of δ (W). It
is easy to observe that there are infinite walks for which a kernel does not exist. For
such an infinite walk W , we define δ (W) to be W itself.

2.2 The Min-Max Latency Walk Problem

Let G be a weighted graph and W be an infinite walk in G. We define the latency of
vertex v on walk W , denoted by L(W,v), as the maximum weight of the sub-walk
between any two consecutive visits to v on W . Then, we can define the cost of a
vertex v ∈V (G) on the walk W to be

c(W,v) := ϕ(v)L(W,v).

The cost of an infinite walk W , denoted by c(W) is

c(W) = max
v∈V (G)

c(W,v).

Then, the min-max latency walk problem can be stated as follows.

The min-max latency walk problem. Find an infinite walk W that minimizes the
cost c(W).

2.3 Well-Posedness of the Problem

Finding an infinite walk is computationally infeasible. Instead, we will try to find
the kernel of the minimum cost infinite walk. The first question, however, is whether
or not there always exists a minimum cost walk.

Lemma 1. For any graph G, there exists a walk of minimum cost.

Min-Max Latency Walks 5

Proof. Let W be a walk in G that covers V (G). Let c be the (necessarily finite) cost
of W . There are finite walks in G with cost less than c. The reason is that for any
vertex v∈V (G), there are finite closed walks beginning and ending in v with weight
less than c/ϕ(v). Hence there are finite possible costs so that v can induce to a walk
of cost less than c(W). In other words, there are finite numbers c′ < c that can be
the cost of some walk in G. ⊓⊔

We define OPTG to be the minimum cost among all infinite walks on G. By
Lemma 1, such a number always exists. Let S be the set of kernels of all infinite
walks of cost OPTG in G. We define τ(G) to be the length of the shortest kernels
in S. Next we will show that the problem of min-max latency is APX-hard, implying
that there is no polynomial-time approximation scheme (PTAS) for it, unless P=NP.

Theorem 1. The min-max latency problem is APX-hard.

Proof. The reduction is from the metric Traveling Salesman Problem (TSP). TSP is
the problem of finding the smallest closed walk that visits all vertices exactly once.
Such walk is referred to as the TSP tour. It is known that finding the TSP tour is
APX-hard in metric graphs [13], and it is approximable within a factor of 1.5. We
show a reduction that preserves the hardness of approximation.

Let G be the input of the metric TSP. Assign weight 1 to all vertices of G. Let
W be a minimum cost infinite walk in G. Let c be the cost of W and v be the vertex
with c(W,v) = c. Let i and j be the indices of two consecutive instances of v with
weight(W (i, j)) = c. It is easy to see that all vertices of G appear in W (i, j), other-
wise, there is another vertex u, with c(W,v)< c(W,u). Let M be a closed walk that
is an optimal solution for TSP in G, we prove weight(M) = c. Let weight(M) = c′.
It is easy to observe that the cost of ∆(M) is also c′. Therefore, c′ cannot be less
than c, because this would contradict the the fact that W has minimum cost. Also,
c′ can not be greater than c, since in that case, the spanning closed walk W (i, j)
with cost c < c′ would imply existence of a better solution for TSP than M. It is
well known that in metric graphs with a closed walk T , there is a cycle T ′ with
weight(T)≥ weight(T ′) that visits the same set of vertices and each vertex exactly
once by shortcutting the repetitive vertices in T . Note that we showed that the size
of the solution for the two problems are equal, hence the reduction is gap preserving
and the APX-hardness carries over. ⊓⊔

We focus on solving the min-max latency problem only for complete metric
graphs. The reason is that for any graph G and any u,v ∈ V (G) we can create a
graph G′ with the same set of vertices such that the uv edge in G′ has weight equal
to the shortest-path distance from u to v in G, d(u,v). Then to construct a walk for G
based on a walk in G′, we can replace each uv edge with the shortest path connecting
u and v in G. Since OPTG = OPTG′ and any walk in G′ corresponds to a walk of
lower or equal cost in G, any approximation in G′ carries over to G. In the literature,
the graph G′ is refereed to as the metric closure of G.

6 Soroush Alamdari, Elaheh Fata, and Stephen L. Smith

3 Relaxations and Simple Bounds
In this section, we present a relaxation of the problem and two simple bounds based
on the weights of the edges of the input graph.

3.1 Relaxation of Vertex Weights

Here, we define a relaxation of the problem so that all weights are of the form 1/2x,
where x is an integer.

Definition 1 (Weight Relaxation). We say weights of vertices are relaxed, if for any
vertex v ∈V (G), we update its weight to ϕ ′(v), where ϕ ′(v) = 1

2x with the property
that x is the smallest integer so that 1

2x ≤ ϕ(v) holds.

Lemma 2 (Relaxed vertex weights). Let G′ be obtained by relaxing the weights
of G. Let W be a walk with cost c in G and cost c′ in G′. Then c′ ≤ c < 2c′. Conse-
quently, OPTG′ ≤ OPTG < 2OPTG′ .

Proof. The weight of each vertex in G′ is less than or equal to the weight of that
vertex in G. Therefore, c′ ≤ c. Also, since the weight of each vertex in G′ is more
than half of the weight of the same vertex in G, we have that c < 2c′. ⊓⊔

3.2 Simple Bounds on Optimal Cost

It is easy to observe that no vertex can be too far away from a vertex with weight
one, as this distance will bound the cost of the optimal solution.

Lemma 3. Let G be a graph with OPTG = c. For any vertex v ∈ V (G) with weight
1 and any u ∈V (G), d(u,v)≤ c/2.

Proof. For the sake of contradiction, assume that d(u,v) > c/2 for some v ∈ V (G)
with ϕ(v) = 1 and u ∈ V (G). Let ui be an occurrence of u in W . Let v j and vk be
the two consecutive occurrences of v on W with j < i < k. It is obvious that the
sub-walk of W that lies between the two visits to v has length more than c. Since
ϕ(v) = 1, this contradicts the assumption that W has cost c. ⊓⊔

Corollary 1. Let G be a metric graph with OPTG = c. Then the maximum edge
weight in G is at most c.

4 Properties of Min-Max Latency Walks
In this section, we characterize the optimal and approximate solutions of the min-
max latency problem.

Min-Max Latency Walks 7

Fig. 1 The graph G as in
proof of Lemma 4 with
n = 6, s = 2, V1 = {a,b},
V2 = {c,d} and V3 = {e, f}.
The walk that Algo-
rithm 1 constructs would be
[[[a,b],c, [a,b],d], [a,b],e, [[a,b],c, [a,b],d], [a,b], f]

d b

a
e

f

c

4.1 Bounds on the Length of Kernel of an Optimal Walk

Here, we first show that the optimal solution for the min-max latency problem can
be very large with respect to the size of the input graph.

Lemma 4. There are infinitely many graphs for which any optimal walk has a kernel
that is non-polynomial in the size of G.

Proof. For any constant integer k and any multiple of it n = sk, we construct a
graph G with unit weight edges and |V (G)| = n and prove τ(G) to be in Ω(nk−1).
Let V1, . . . ,Vk be a partition of V (G) into k sets each having size s. Let there be
a unit weight uv edge for any u ∈ V1 and v ∈ Vi, where i ∈ {1,2, . . . ,k}. For each
v ∈Vi where 1≤ i≤ k, let ϕ(v) = 1

(s+1)i . We first prove OPTG ≤ 1. Let W be a walk

constructed by Algorithm 1. It is easy to see that cost of ∆(W) is 1. The reason is
that each vertex in Vi for i∈ {1,2, . . . ,k−1} has weight 1

(s+1)i and is visited in ∆(W)

every other (s+1)i steps. i∈ {1,2, . . . ,k}. Also the vertices in Vk have weight 1
(s+1)k

and are visited every other (s+1)k− (s+1)k−1 steps. Therefore c(∆(W),v) for any
vertex v is 1.

We have proved OPTG ≤ 1. It remains to prove any infinite walk M in G with
cost less or equal to 1 has a kernel of size Ω(nk−1). Let M1 be a sub-walk of length
s of M. Then all vertices of V1 appear in M1, otherwise there is a vertex v in V1 that
does not appear in M1 (note that both cost of M and |V1| are equal to s). Therefore,
c(M,v)≥ (s+2)× 1

s+1 > 1. This means that after each visit to a member of Vi with
i > 1, the next s vertices that are visited in M all belong to V1.

Now we need to show that at most a single instance of vertices in
∪

j>i Vj appears
in any sub-walk of M of length (s+ 1)i−1− 1. To prove this we use induction on
i. Let M′ be a sub-walk of M with length (s+ 1)i−1− 1. We can partition the ele-
ments of M′ into s+1 disjoint sub-walks of length (s+1)i−2−1. By the induction
hypothesis, we know that each part of this partition has at most a single instance
of vertices in

∪
j>i−1 Vj. Also, we know that all vertices of Vi appear in M′, or else

the vertex v ∈ Vi that is not visited in M′ would have cost c(M,v) > 1. Since there
are s vertices in Vi and s+1 visits to vertices of

∪
j>i−1 Vj in M′, there is at most a

single visit to a vertex in
∪

j>i Vj in M′. Since all vertices in Vk appear in the kernel
of M, this means that the kernel of M has length at least (s+1)k−1−1 which is in
Ω(nk−1) since k is a constant. ⊓⊔

Corollary 2. There is no polynomial time algorithm for the min-max latency prob-
lem.

8 Soroush Alamdari, Elaheh Fata, and Stephen L. Smith

Algorithm 1 WalkMaker({V1, . . . ,Vi−1,Vi})
1: if i < 1 then
2: return /0
3: else
4: W ← /0
5: for j = 1→ |Vi| do
6: W ← [W,WalkMaker({V1, . . . ,Vi−1})],
7: W ← [W,WalkMaker({V1, . . . ,Vi−2})],
8: W ← [W,v]; where v is the j-th element in Vi
9: end for

10: return W
11: end if

Corollary 2 does not show exactly how hard the problem is. In fact, any algorithm
that checks all possible walks to find the optimal solution will have complexity
Ω(ce(|V (G)|)), where c > 1 and e grows faster than any polynomial function.

4.2 Binary Walks

We showed that any exact algorithm is not scalable with respect to the size of the
input graph. Therefore, we turn our attention to finding walks that approximate OPT.
We show there always exists a walk that has polynomial size and has a cost within
a constant factor of the optimal walk. To obtain this result, we first need to define a
special structure. Here we define a class of walks, and show that there are walks in
this class that provide constant factor approximations.

Definition 2 (Binary Walks and Decompositions). Let G′ be a relaxed graph and
Vi be the set of vertices with weight 1/2i in G′. Let S be the walk [S1,S2, . . . ,St],
where t = 2log2ρG′+1. We say S is a binary walk if for any v ∈ Vi and 0 ≤ j < t/2i,
v appears exactly once in S j2i+1,S j2i+2, . . . ,S(j+1)2i , i.e., in each 2i consecutive Sl’s
starting from S j2i+1, v appears exactly once. Also, we say that the tuple of walks
(S1,S2, . . . ,St) is a binary decomposition of S.

It is easy to see that t ≤ 2ρG′ . Also, each vertex appears in each Si at most once,
therefore length of each Si is bounded by n. This means that S has length bounded
by 2nρG′ .

Lemma 5. Let G′ be a graph with relaxed weights. There is a binary walk W in G′

of cost less than or equal to 2.5×OPTG′ . Moreover, since this walk is binary, it has
length bounded by 2nρG′ .

Proof. Let M′ = (m′1,m
′
2, . . .) be an infinite walk of cost c in G′. Note that for any

infinite walk, we can remove any prefix of it without increasing the cost of it. Let
M = (m1,m2, . . .) be an infinite walk of cost c obtained by removing some prefix
of M′ such that ϕ(m1) = 1. Based on M, we construct a binary walk W , such that
the cost of ∆(W) is at most 2c as follows: Let a0 be 0 and Si be the sub-walk

Min-Max Latency Walks 9

M(ai+1,ai+1) such that ai+1 is the maximal index satisfying weight(M(1,ai+1))≤
ic. Each Si is a walk of weight at most c, such that the union of Si’s partitions M.

Now we modify the walks S1,S2, . . . by omitting some of the instances of vertices
in them. Let Vi be the set of vertices with weight 1/2i in G′. Let t = 2log2ρG′+1 as
in definition of binary walks. For any vertex u ∈ Vi and any number 0 ≤ j < t/2i,
omit all but one of the instances of u that appear in S j2i+1,S j2i+2, . . . ,S(j+1)2i . There
exists at least one such instance, otherwise a vertex u with weight 1/2i exists that is
not visited in an interval of weight larger than c×2i, implying c(M,u)> c.

Let S′1,S
′
2, . . . be the result of this modification, note that weight(Si)≥weight(S′i).

Let S be [S′1,S
′
2, . . . ,S

′
t]. We claim that ∆(S) has cost at most 2c. Let u ∈Vi be a ver-

tex of G′. Then we know that u appears exactly once in [S j2i+1,S j2i+1, . . . ,S(j+1)2i],
for any 0 < j. Also, by the construction we have that for any j,k with 0 < j ≤ k,
[S′j,S

′
j+1, . . . ,S

′
k] has weight at most c(k− j+1). Also since ϕ(m1) = 1, by Lemma

3 we know that for any 0 ≤ k ≤ j, [S′j,S
′
j+1, . . .S

′
t ,S
′
1,S
′
2, . . . ,S

′
k] has length at most

c((t− j+1)+0.5+ k). This means weight(∆(S)(a,b))< 2i+1c+0.5c ≤ (2.5)c2i,
for any a and b that are the indices of two consecutive visits to u in ∆(S). Conse-
quently, the cost c(∆(S),u)≤ 2.5c. ⊓⊔

Theorem 2. In any graph G, there exists a closed walk W of length O(n2), where
the cost of ∆(W) is less or equal to 6×OPTG.

Proof. Let G′ be the relaxation of G and U = {u1,u2, . . . ,u|U |} be the set of vertices
in V (G′) with weights less than 1/2⌊logn⌋+2. Graph G′′ is obtained by removing
vertices in U from G′. Note that G′′ is also a complete metric graph. Therefore
ρG′′ ≤ 2⌊logn⌋+2 ≤ 4n. Let S be a binary walk in G′′, with cost at most 2.5OPTG′′ as
described in Lemma 5. Since ρG′′ ≤ 4n, length of S is bounded by 2ρG′′n≤ 8n2.

Now, we add the vertices in U to S in order to obtain a walk W that covers all
vertices of G′. Let v ∈ V (G′) be a vertex with ϕ(v) = 1. Let (S1,S2, . . . ,St) where
t = 2⌊logn⌋+2 be the binary decomposition of S. Let vi be the i-th instance of v in
S. Note that t > 2n, and thus v appears in S at least 2n times. For each 1 ≤ i ≤ |U |
modify S by duplicating v2i and inserting an instance of ui between the two copies
of v2i. Let W be the resulting walk. We claim that the cost of ∆(W) is at most
2OPTG′ +OPTG.

Let ϕ(u) be 1/2i ≥ 1/2⌊logn⌋+2 in G′. Let a and b be the indices of two consec-
utive visits to u in ∆(W). Then there are at most 2i instances of vertices in U in
W (a,b). This follows from the proof of Lemma 5, where we showed that W (a,b)
intersects at most 2i+1 members of (S1,S2, . . . ,St). Of these 2i+1 walks, at least half
of them were not changed in W . Therefore, at most 2i vertices of U lie between in-
dices a and b of W . Also, we inserted the visits to the vertices of U at visits to v with
ϕ(v) = 1. Therefore, by Lemma 3 each of these new detours made to visit a member
of U has weight at most 2(OPTG/2) = OPTG. Also, by Lemma 5 we already know
that c(∆(S),u)≤ 2.5OPTG′ . Therefore, we already have that:

c(∆(W),u)< 2.5OPTG′ +OPTG (1)

10 Soroush Alamdari, Elaheh Fata, and Stephen L. Smith

Note that the extra 0.5 factor in Lemma 5 is due to the distance of the last vertex of St
to the first element of S1. However, this extra cost can be treated as one of the detours
to vertices of U , as we avoided adding one of these detours to S1 and St . This means
that we have already accounted for this extra cost in the second part of the righthand
side of the inequality 1. Consequently, we have c(∆(W),u)< 2OPTG′ +OPTG. By
Lemma 2 we have OPTG′ ≤OPTG, therefore c(∆(W),u)< 3OPTG. Also by Lemma
2 we know that the cost of W in G would be less than 6OPTG, concluding the proof.

⊓⊔

Lemma 6. Any algorithm with guaranteed output size O(n2/k) has approximation
factor Ω(k).

Proof. Let ε be a very small positive number. Let the graph G be as follows:

• There are n/2 vertices of weight 1, called heavy vertices,
• There are n/2 vertices of weight ε , called light vertices,
• The heavy vertices are in a clique with edges of weight ε ,
• There is an edge of weight 1 connecting any light vertex to any heavy vertex.

In G, any minimum cost infinite walk visits all heavy vertices between visits to two
light vertices. This means that each heavy vertex is repeated n/2 times in any walk
that expands into a minimum cost infinite walk. So far we have shown that any
optimum solution has size Ω(n2). Note that to reduce the size of the output by a
factor k, we would need to visit at least k light vertices between two consecutive
visits to some heavy vertex v. This means that a walk of length smaller than n2

4k , has
cost at least k, which is k/2 times the optimal solution 2+(ε×O(n2)). Therefore,
any solution for the min-max latency in G with size O(n2/k) has approximation
factor of Ω(k). This concludes the lemma. ⊓⊔

Lemma 6 directly gives that there is no constant factor approximation algorithm
with guaranteed output size of o(n2). Note that this implies that Theorem 2 is tight
in the sense that the size of the constructed kernel, can not be reduced except for a
constant factor, maybe.

5 Approximation Algorithms for the Min-Max Latency Walk
In this section, we present two polynomial time approximation algorithms for the
min-max latency problem. The approximation factor in the first algorithm is a func-
tion of the ratio of the maximum weight to the minimum weight among vertices. The
approximation ratio of the second algorithm however, solely relies on the number
of vertices in the graph.

5.1 An O(logρG)-Approximation Algorithm

A crucial requirement for our algorithms is a useful property regarding binary walks.

Min-Max Latency Walks 11

Lemma 7. (Binary property) Let G′ be a graph with relaxed weights. Let S be a
binary walk in G′ with the binary decomposition (S1,S2, . . . ,St). Assume we know
that max1≤i≤t(weight(Si))≤ c and for some vertex v, each Si begins and ends in v.
Then the cost of S is at most 2c.

Proof. Let S j be S(j mod t). Let Vi be the set of vertices u ∈ V (G′) of weight
1/2i. Let u ∈ Vi be a vertex of G′. Then we know that u appears exactly once in
[S j2i+1,S j2i+1, . . . ,S(j+1)2i] for any 0 < j. Also, by the construction and Corollary
1, we have that for any 0 < j ≤ k, [S j,S j+1, . . . ,Sk] has weight at most c(k− j+1).
This means weight(∆(S)(a,b)) ≤ 2c2i, for any a and b that are the indices of two
consecutive visits to u in ∆(S). Consequently, the cost c(∆(S),u)< 2c. ⊓⊔

Here we define a useful tool. Let the function Partition(W,k) be a function that
gets a walk W and an integer k as input and returns a set of k walks {W1,W2, . . . ,Wk}
such that these walks partition vertices of W and also weight(Wi) ≤ weight(W)/k
for all 1≤ i≤ k. It is easy to see this is always doable in linear time.

Given a graph G, our first algorithm is guaranteed to find a solution within a
factor of O(log(1/ε)) of the optimal solution, where ε is the smallest weight among
the vertices.

Algorithm 2 BrutePartitionAlg(G)

1: Let Vi be the set of vertices of weight 1
2i+1 < w(u)≤ 1

2i for 0≤ i≤ log2 ρG

2: Let t be 2⌊log2 ρG⌋+1

3: S1,S1, . . . ,St ← /0
4: for i = 0→ ⌊log2 ρG⌋ do
5: {W1, . . . ,W2i}← Partition(T SP(G[Vi]),2i)
6: for j = 1→ t do
7: S j ← [S j,Wx]; where x is j mod 2i,
8: end for
9: end for

10: S← /0
11: for i = 1→ t do
12: S← [S,Si]
13: end for
14: return S

Theorem 3. Given a graph G, Algorithm 2 constructs a walk of length O(nρG) that
is within O(logρG) factor of the OPTG.

Proof. Let G′ be the result of relaxing the weights of G. Let v be a vertex in G′

with ϕ(v) = 1. Let Vi be the set of vertices u ∈ V (G′) of weight 1
2i . Let t be the

smallest power of two that is larger than ρG. Algorithm 2 constructs a binary walk
S = [S1,S1, . . . ,St] such that all Si begin and end in v and max1≤i≤tweight(Si) <
2(⌈logρG⌉)OPTG.

Assume addition and subtraction on the index of Si is modulo t (e.g., St+4 is the
same as S4). Here, in addition to the constraints defining a binary walk, we will be

12 Soroush Alamdari, Elaheh Fata, and Stephen L. Smith

trying to satisfy another constraint: Each vertex in Vi appears in S j through S j+2i−1
exactly once. This condition will force a better behavior of S as it guarantees vertices
to be visited more uniformly.

For minimizing the maximum weight S j, we look at each Vi separately and try to
minimize the maximum contribution of Vi to each S j. Since there are at most logρG
sets Vi, this will give us an overhead approximation factor of logρG.

Let us look at Vi. We will construct 2i closed walks beginning and ending in v,
such that they cover Vi. Let W be the TSP tour of Vi. We showed that the best solution
for min-max latency problem in graphs with uniform weight is the same as the
TSP tour. Therefore weight(W)/2i ≤OPTG′ . Let W1,W2, . . . ,W2i be a set of 2i paths
partitioning W such that the maximum of them is smaller than OPTG′ . Construct W ′j
by adding v to the both ends of Wj. By Lemma 3, this increases the weight of each Wj
by at most 2(OPTG′/2) = OPTG′ . Therefore, each W ′j has weight at most 2OPTG′ .
Appending each W ′j to S2i+ j for all 0 ≤ i ≤ t will construct our desired solution.
Note that since all W ′j end in v, we do not need to worry about concatenation of
these walks. In the end, there will be ⌈logρG⌉ closed walks in S j each of weight
at most 2OPTG′ . Therefore max1≤ j≤t(weight(S j)) ≤ 2⌈logρG⌉OPTG′ . By Lemma
7 this means that S has cost 4⌈logρG⌉OPTG′ . Hence by Lemma 2 S has cost within
8⌈logρG⌉ factor of the optimal solution for G. ⊓⊔

5.2 An O(logn)-Approximation Algorithm

In many applications, the value ρG is independent of n. For example, in a monitoring
scenario, there may be only a finite number of importance levels that can be assigned
to a point of interest. In this case we have a constant factor algorithm. However, the
ratio between largest and smallest weights ρG does not directly depend on the size
of the input graph. For even a small graph, ρG can be very large. Therefore, in such
cases we need an algorithm with an approximation guarantee that is bounded by a
function of the size of the graph. Next we present an approximation algorithm for
min-max latency problem that is guaranteed to find a solution within logarithmic
factor of the optimal solution.

Theorem 4. Given a graph G, Algorithm 3 constructs a walk of length O(n2) that
is within O(logn) factor of the OPTG.

Proof. The idea is to remove the vertices of small weight so that we can use Al-
gorithm 2 as a subroutine. Let G′ be the result of relaxing the weights of G and U
be the set of vertices of G′ with weight at most 1/2⌊logn⌋+1. Let G′′ be the result of
removing vertices in U from G′. Assume S = [S1,S1, . . . ,St] is the result of running
Algorithm 2 on G′′ with ρG′′ = 2⌊logn⌋+2 < 4n. Add the i-th vertex of U at the end of
S2i. Note that since |U |< n−1 and 2n< t, this is possible. Let S′= [S′1,S

′
1, . . . ,S

′
t] be

the result of this modifications. Each walk Si begins and ends in v, where ϕ(v) = 1.
Therefore, by Lemma 3 each detour to a vertex in U has weight bounded by OPTG.
Also, by the proof of Theorem 3, each Si has weight at most (2logn+ 2)OPTG′ .

Min-Max Latency Walks 13

This means that each S′i has weight at most (2logn+3)OPTG. By Lemmas 2 and 7,
this means that the cost of ∆(S′) in G is bounded by (8logn+12)OPTG. ⊓⊔

Algorithm 3 SmartPartitionAlg(G)

1: Let Vi be the set of vertices of weight 1
2i+1 < w(u)≤ 1

2i for 0≤ i≤ logρG
2: Let v be an element with weight 1
3: U ←∪i>⌊logn⌋Vi
4: S← BrutePartitionAlg(G[V\U])
5: i← 0
6: for all u ∈Vk where k > ⌊logn⌋ do
7: Insert u after the (2i)-th instance of v in S
8: Increment i
9: end for

10: return S

6 Simulations
In this section, we present simulation results for the two approximation algorithms
presented in Section 5. As Algorithm 3 always performs better than Algorithm 2
both in runtime and approximation factor, we will be studying the performance of
Algorithm 3.

For the simulations, we use test data that are standard benchmarks for testing
performance of heuristics for calculating TSP tour. The data sets used here are taken
from [7]. Each data set represents a set of locations in a country. We construct a
graph by placing a vertex for each locations and letting the distance of any pair
of vertices be the Euclidean distance of the corresponding points. Unfortunately,
no information regarding each individual location was available. Such information
could be used to assign weights of the vertices of the graph. For example, if the
population of each city was also available, it would have made a meaningful measure
for the weights of the vertices.

In many applications of the min-max latency problem—such as monitoring or
inspection—the likelihood of a vertex with very high weight is low. In other words,
majority of vertices have low priority, while few vertices need to be visited more
frequently. To simulate this behavior, we use a distribution that has the following
exponential property:

P[(1/2)k+1 < ϕ(v)≤ (1/2)k] = 1/B (2)

for k < B where B is a fixed integer. If we assign to a vertex v the weight (1/2)B ≤
ϕ(v)≤ 1 with probability f (ϕ(v)) = (ϕ(v)B ln2)−1 the exponential property holds.

Here, we compare our algorithms to the simple algorithm of following a TSP
tour through all vertices in G. For finding an approximate solution for TSP we used
an implementation of the Lin-Kernighan algorithm [11] available at [7]. Relative

14 Soroush Alamdari, Elaheh Fata, and Stephen L. Smith

0 200 400 600 800 1000 1200

0.4

0.5

0.6

0.7

0.8

0.9

1

B

C
os

t o
f A

lg
or

ith
m

/C
os

t o
f T

S
P

Fig. 2 (Left) The ratio of the cost of the walk produced by Algorithm 3 to the cost of the TSP for
different values of B. (Right) The 4663 vertex graph used for all tests corresponding to all cities in
Canada [7].

to other heuristics we test for the min-max latency problem, the cost of TSP tour
is low when the weights are distributed uniformly. One of the reasons for this is
that when weights are uniform, ρG grows proportional to logn. This means that
by rounding all weights to ε and calculating the TSP we can obtain a solution of
expected approximation factor of logn. However, it is easy to construct a graph G
in which the cost of the TSP tour of G can be Ω(n)×OPTG.

6.1 Performance with respect to Vertex Weight Distribution

An important aspect of an environment is the ratio of weight of the elements, there-
fore it is natural to test our algorithm with respect to ρG. Note that ρG > (1/2)B.
Therefore, we consider different values of B to assess the performance of the algo-
rithm for different ranges of weights on the same graph (see Figure 2). It is easy
to see that if B = 1, then Algorithm 3 returns the TSP tour of the graph. Also, if
B < logn, then Algorithms 3 and 2 behave the same. Figure 2 depicts the behavior
of Algorithm 3 on a graph induced by 4663 cities in Canada with different values
for B. It can be seen that for larger B our algorithm outperforms the TSP tour by a
greater factor.

6.2 Performance with respect to Input Graph Size

Here, we use graphs of different sizes to evaluate the performance of our algorithms.
Again, the cost is compared to that of a simple TSP tour that visits each vertex in
the graph once. Figure 3 depicts the ratio of the cost of the walk constructed by
Algorithm 3 to the cost of the TSP tour, on 27 different graphs each corresponding
to a set of locations in a different country. Here B is fixed. It can be seen that the
ratio of the cost of the TSP tour to the cost of the walk produced by our algorithm
increases as the size increases.

Min-Max Latency Walks 15

−1 0 1 2 3 4 5 6 7 8

x 10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Vertices

C
os

t o
f A

lg
or

ith
m

/C
os

t o
f T

S
P

Fig. 3 The ratio of the cost of Algorithm 3 to the cost of the TSP on the 27 test graphs in [7].

Also, the time complexity of the algorithm is O(n2 + β (n)) where β (n) is the
running time of the algorithm used for finding the TSP tour. For the test data cor-
responding to 71009 locations in China, our Java implementation of Algorithm 3
constructs an approximate solution in 20 seconds using a regular laptop with a 2.50
GHz CPU and 3 GB RAM.

7 Conclusions and Future Work
In this paper, we considered the problem of planning a path for a robot to monitor
a known set of features of interest in an environment. We represent the environ-
ment as a vertex- and edge-weighted graph and we addressed the problem of find-
ing a closed walk that minimizes the maximum weighted latency of any vertex. We
showed several results on the existence and non-existence of optimal and constant
factor approximation solutions. We then provided two approximation algorithms; an
O(logn)-approximation and an O(logρG)-approximation, where ρG is the ratio be-
tween the maximum and minimum vertex weights. We also showed via simulation
that our algorithms scale to very large problems consisting of thousands of vertices.

For future work there are several directions. We continue to seek a constant factor
approximation algorithm, independent of ρG. We also believe that by adding some
heuristic optimizations to the walks produced by our algorithms, we could signif-
icantly improve their performance in practice. Finally, we are currently looking at
ways to extend our results to multiple robots. One approach we are pursuing is to
equitably partition the graph such that the single robot solution can be utilized for
each partition.

Acknowledgements. This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC).

16 Soroush Alamdari, Elaheh Fata, and Stephen L. Smith

References

1. Bullo, F., Frazzoli, E., Pavone, M., Savla, K., Smith, S.L.: Dynamic vehicle routing for robotic
systems. Proceedings of the IEEE 99(9), 1482–1504 (2011)

2. Caffarelli, L., Crespi, V., Cybenko, G., Gamba, I., Rus, D.: Stochastic distributed algorithms
for target surveillance. In: Intelligent Systems and Design Applications, pp. 137–148. Tulsa,
OK (2003)

3. Cannata, G., Sgorbissa, A.: A minimalist algorithm for multirobot continuous coverage. IEEE
Transactions on Robotics 27(2), 297–312 (2011)

4. Chevaleyre, Y.: Theoretical analysis of the multi-agent patrolling problem. In:
IEEE/WIC/ACM Int. Conf. Intelligent Agent Technology, pp. 302–308. Beijing, China (2004)

5. Choset, H.: Coverage for robotics – A survey of recent results. Annals of Mathematics and
Artificial Intelligence 31(1-4), 113–126 (2001)

6. Christofides, N., Beasley, J.E.: The period routing problem. Networks 14(2), 237–256 (1984)
7. Cook, W.: National travelling salesman problem (2009). Available at

http://www.tsp.gatech.edu/index.html
8. Elmaliach, Y., Agmon, N., Kaminka, G.A.: Multi-robot area patrol under frequency con-

straints. In: IEEE Int. Conf. on Robotics and Automation, pp. 385–390. Roma, Italy (2007)
9. Gabriely, Y., Rimon, E.: Competitive on-line coverage of grid environments by a mobile robot.

Computational Geometry: Theory and Applications 24(3), 197–224 (2003)
10. Hussein, I.I., Stipanovic̀, D.M.: Effective coverage control for mobile sensor networks with

guaranteed collision avoidance. IEEE Transactions on Control Systems Technology 15(4),
642–657 (2007)

11. Lin, S., Kernighan, B.: Effective heuristic algorithm for the traveling salesman problem. Op-
erations Research 21, 498–516 (1973)

12. Michael, N., Stump, E., Mohta, K.: Persistent surveillance with a team of mavs. In: IEEE/RSJ
Int. Conf. on Intelligent Robots & Systems, pp. 2708–2714. San Francisco, CA (2011)

13. Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with distances
one and two. Math. Oper. Res. 18, 1–11 (1993). DOI 10.1287/moor.18.1.1. URL
http://dl.acm.org/citation.cfm?id=154540.154541

14. Pasqualetti, F., Franchi, A., Bullo, F.: On optimal cooperative patrolling. In: IEEE Conf. on
Decision and Control, pp. 7153–7158. Atlanta, GA, USA (2010)

15. Smith, R.N., Schwager, M., Smith, S.L., Rus, D., Sukhatme, G.S.: Persistent ocean monitoring
with underwater gliders: Adapting sampling resolution. Journal of Field Robotics 28(5), 714–
741 (2011)

16. Smith, S.L., Rus, D.: Multi-robot monitoring in dynamic environments with guaranteed cur-
rency of observations. In: IEEE Conf. on Decision and Control, pp. 514–521. Atlanta, GA
(2010)

17. Tiwari, A., Jun, M., Jeffcoat, D.E., Murray, R.M.: Analysis of dynamic sensor coverage prob-
lem using Kalman filters for estimation. In: IFAC World Congress. Prague, Czech Republic
(2005)

18. Tulabandhula, T., Rudin, C., Jaillet, P.: Machine learning and the traveling repairman (2011).
Available at http://http://arxiv.org/abs/1104.5061

