
Persistent Monitoring in Discrete Environments: Minimizing
the Maximum Weighted Latency Between Observations∗

Soroush Alamdari† Elaheh Fata‡ Stephen L. Smith‡

Abstract
In this paper, we consider the problem of planning a path for a robot to monitor a known set of

features of interest in an environment. We represent the environment as a graph with vertex weights
and edge lengths. The vertices represent regions of interest, edge lengths give travel times between
regions, and the vertex weights give the importance of each region. As the robot repeatedly performs
a closed walk on the graph, we define the weighted latency of a vertex to be the maximum time
between visits to that vertex, weighted by the importance (vertex weight) of that vertex. Our goal
is to find a closed walk that minimizes the maximum weighted latency of any vertex. We show that
there does not exist a polynomial time algorithm for the problem. We then provide two approximation
algorithms; an O(logn)-approximation algorithm and an O(logρG)-approximation algorithm, where
ρG is the ratio between the maximum and minimum vertex weights. We provide simulation results
which demonstrate that our algorithms can be applied to problems consisting of thousands of vertices,
and a case study for patrolling a city for crime.

1 Introduction

An emerging application area for robotics is in performing long-term monitoring tasks. Some example
monitoring tasks include 1) environmental monitoring such as ocean sampling [25], where autonomous
underwater vehicles sense the ocean to detect the onset of algae blooms; 2) surveillance [20], where
robots repeatedly visit vantage points in order to detect events or threats, and; 3) infrastructure inspection
such as power-line or manhole cover inspection [30], where spatially distributed infrastructure must
be repeatedly inspected for the presence of failures. For such tasks, a key problem is the high-level
path planning problem of determining robot paths that visit different parts of the environment so as to
efficiently perform the monitoring task. Since some parts of the environment may be more important
than others (e.g., in ocean sampling, some regions are more likely to experience an algae bloom than
others), the planned path should visit regions with a frequency proportional to their importance.

In this paper, we cast such long-term monitoring tasks as an optimization problem on a graph with
vertex weights and edge lengths: the min-max latency walk problem. The vertices represent regions (or
features) of interest that must be repeatedly observed by a robot. The edge lengths give travel times
between regions, and the vertex weights give the importance of each region. A vertex is observed by

∗A preliminary version of this paper appeared in the Proceedings of the 2012 Workshop on the Algorithmic Foundations of
Robotics [1].
†Cheriton School of Computer Science, University of Waterloo, Waterloo ON N2L 3G1, Canada. email: s26hosse@

uwaterloo.ca.
‡Department of Electrical and Computer Engineering, University of Waterloo, Waterloo ON N2L 3G1, Canada. email:

efata@uwaterloo.ca; stephen.smith@uwaterloo.ca

1

the robot once it is reached. Given a robot walk1 on the graph, the weighted latency of a vertex is the
maximum time between visits to that vertex, weighted by the importance (vertex weight) of that vertex.
We then seek to find a walk that minimizes the maximum weighted latency over all vertices. In an
infrastructure task, this would be akin to minimizing the expected number of failures that occur in any
region prior to a robot visit.

Prior work: The problem of continuously (or persistently) monitoring an environment using mobile
robots has been studied in the literature under several names, including continuous sweep coverage;
patrolling; persistent surveillance; and persistent monitoring. The basis of all of these problems is sweep
coverage [10], where a robot must move through the environment so as to cover the entire region with
its sensor. Variants of sweep coverage include on-line coverage [14], where the robot has no a priori
information about the environment, and dynamic coverage [16], where each point in the environment
requires a pre-specified “amount” of coverage.

One approach to persistent monitoring has been to focus on randomized approaches in discrete en-
vironments. These works frequently use the name of continuous sweep coverage. In [29], a continuous
coverage problem is considered where a sensor must continually survey regions of interest by moving
according to a Markov chain. In [7] a similar approach to continuous coverage is taken and a Markov
chain is used to achieve a desired visit-frequency distribution over a set of features. In [2], the authors
look at robots modelled by controlled Markov chains, and seek to persistently monitor regions while
avoiding forbidden regions.

The other main approach to persistent monitoring is to cast the problem as one in combinatorial
optimization. This research typically falls under the name of patrolling or persistent surveillance. In
the most basic problem, a robot seeks to minimize the time between visits to each point in space. For
this problem, both centralized approaches [9, 13, 21], and distributed algorithms for multiple robots [24]
have been proposed. Recently, there has been work on minimizing the weighted time between visits to
each region of interest, where the weight of a region captures its priority relative to other regions [27, 23].
These works focus on controlling robots along predefined paths. In [27], the authors consider velocity
controllers for persistent monitoring along fixed tours, while in [23] the authors focus on coordination
issues for multiple robots on fixed tours. An optimal control formulation for persistent monitoring in
one-dimensional spaces is given in [8].

In our prior work [26], we considered a specific case of the min-max latency walk problem on Eu-
clidean graphs, where the graphs are constructed by distributing vertices in a Euclidean space according
to a known probability distribution. Under these assumptions, constant factor approximation algorithms
are developed for the limiting case when the number of vertices becomes very large.

The combinatorial approaches taken in persistent monitoring problems often draw from solutions to
vehicle routing [11, 17] and dynamic vehicle routing (DVR) problems [6]. The authors of [28] make
the connection between multi-robot persistent surveillance and the vehicle routing problem with time
windows [17]. In [30], the authors consider a preventative maintenance problem in which the input is
a vertex and edge-weighted graph, as in the min-max latency walk problem, but the output is a path
which visits each vertex exactly once. More important vertices (i.e., those that are more likely to fail)
should be visited earlier in the path. The authors find a path by solving a mixed-integer program. The
min-max latency walk problem can be thought of as a generalization of preventative maintenance, where
the maintenance and inspection should continually be performed.

Other work in persistent monitoring and surveillance includes [3, 4], where a persistent task is defined
as one whose completion takes much longer than the life of a robot. The authors focus on issues of battery

1We refer to a robot path as a walk to be consistent with the terminology in graph theory [5], where a path is a sequence of
unique vertices, while a walk may repeat vertices.

2

management and recharging. Such issues have also been recently considered in the context of persistent
monitoring in [19].

Contributions: There are four main contributions of this paper. First, we introduce the general min-
max latency walk problem and show that it is well-posed and that it is APX-hard. Second, we provide
results on the existence of optimal algorithms and approximation algorithms for the problem. We show
that in general, the optimal walk can be very long—its size can be exponential in the size of the input
graph, and thus there cannot exist a polynomial time algorithm for the problem. We then show that there
always exists a constant factor approximation solution that consists of a walk of size in O(n2), where n
is the number of vertices in the input graph. Third, we provide two approximation algorithms for the
problem. Defining ρG to be the ratio between the maximum and minimum vertex weights in the input
graph G, we give an O(logρG) approximation algorithm. Thus, when ρG is independent of n, we have a
constant factor approximation. We also provide an O(logn) approximation which is independent of the
value of ρG. The algorithms rely on relaxing the vertex weights to be powers of 2, and then planning
paths through “batches” of vertices with the same relaxed weights. Fourth, and finally, we show in
simulation that we can solve large problems consisting of thousands of vertices, and we demonstrate our
algorithm on a case study of patrolling the city of San Francisco, CA for crime.

A preliminary version of this paper appeared as [1]. Compared to the conference version, this version
presents detailed proofs of all statements, new results on the existence of optimal finite walks, additional
remarks and illustrative examples, and a new case study on patrolling in the simulations section.

Organization: This paper is organized as follows. In Section 2, we give the essential background
on graphs and formalize the min-max latency walk problem. In Section 3, we present a relaxation of
graph weights which allows for the design of approximation algorithms. In Section 4, we present results
on the existence of constant factor approximations and some negative results on the required size of the
walk. In Section 5, we present two approximation algorithms for the problem. In Section 6, we present
large scale simulation data for standard TSP test-cases and perform a case study in patrolling for crime.
Conclusions and the future directions are presented in Section 7.

2 Background and Problem Statement

In this section, we review graph terminology and define the min-max latency walk problem.

2.1 Background on Graphs

Vertex-weighted and edge-weighted graphs: The vertex set and edge set of a graph G are denoted
by V (G) and E(G), respectively, such that E(G)⊆V (G)×V (G). The number of vertices in a graph G,
i.e., |V (G)|, is called the size of graph G and is denoted by n. An edge in E(G) is referred to as (vi,v j)
or viv j. We consider only undirected graphs, meaning (vi,v j) ∈ E(G) if and only if (v j,vi) ∈ E(G).
An edge-weighted graph G associates a weight l(e) > 0 to each edge e ∈ E(G). We will refer to the
weight of an edge as its length. A vertex-weighted graph G associates a weight φ(v) ∈ [0,1] to each
vertex v ∈V (G). Given a graph G and a set V ′ ⊆V (G), the graph G[V ′] is the graph obtained from G by
removing the vertices of G that are not in V ′ and all edges incident to a vertex in V (G)\V ′. Throughout
this paper, all referenced graphs are both vertex-weighted and edge-weighted and therefore we omit the
explicit reference. Also, without loss of generality, we assume that there is at least one vertex in V (G)
with weight 1, as in our applications weights can be scaled so that this is true. We define ρG to be the

3

ratio between the maximum and minimum vertex weights, i.e.,

ρG := max
vi,v j∈V (G)

φ(vi)

φ(v j)
.

Walks in graphs: A walk of size k in a graph G is a sequence of vertices (v1,v2, . . . ,vk) such that for
any 1≤ i≤ k we have vi ∈V (G) (with the possibility that vi = v j for some 1≤ i, j ≤ k) and there exists
an edge v jv j+1 ∈ E(G) for each 1 ≤ j < k. A walk is closed if its beginning and end vertices are the
same. The length of a walk W = (v1, . . . ,vk), denoted by l(W), is defined as the sum of the length of
edges of graph G that appear in that walk, i.e.,

l(W) =
k−1

∑
i=1

l(vivi+1).

Given a walk W = (v1, . . . ,vk), and integers i≤ j≤ k, the sub-walk W (i, j) is defined as the subsequence
of W given by W (i, j) = (vi,vi+1, . . . ,v j). Given the walks W1,W2, . . . ,Wl , the walk W = [W1,W2, . . . ,Wl]
is the result of concatenation of W1 through Wl , while preserving order.

The traveling salesman problem: A tour of a graph G is a closed walk T = (v1,v2, . . . ,vn+1) that
visits all n vertices in G such that v1 = vn+1. Thus, a tour visits each vertex exactly once and then returns
to its start vertex. The Traveling Salesman Problem (TSP) is to find a tour in G of minimum length. We
refer to a solution of the TSP as a TSP tour and we denote it by TSP(G). We denote the first n vertices
on a TSP tour of G as TSP-Path(G). Thus, TSP-Path(G) is a walk that visits each vertex exactly once.
The length of TSP-Path(G) is upper bounded by the length of TSP(G).

Infinite walks in graphs: An infinite walk is a sequence of vertices, (v1,v2, . . .), such that there exists
an edge vivi+1 ∈ E(G) for each i ∈ N. We say that a walk W expands to an infinite walk ∆(W) if ∆(W)
is constructed by an infinite number of copies of W concatenated together, i.e., ∆(W) = [W,W, . . .]. It
can be seen that for any walk W , there exists a unique expansion to an infinite walk. The kernel of an
infinite walk W , denoted by δ (W), is the shortest walk such that W is the expansion of δ (W). It is easy
to observe that there are infinite walks for which a finite size kernel does not exist. For such an infinite
walk W , we define δ (W) to be W itself.

2.2 The Min-Max Latency Walk Problem

Let G = (V,E) be a graph with edge lengths l and vertex weights φ . In a robotic monitoring application,
the graph G can be obtained as a discrete abstraction of the environment, with vertices corresponding
to regions of the environment and edge lengths corresponding to travel distances (or times) between
regions. The vertex weights on the graph give the relative importance of the regions for the monitoring
task. Given an infinite walk W for the robot in G, we define the latency of vertex v on walk W , denoted
by L(W,v), as the maximum length of the sub-walk between any two consecutive visits to v on W . The
latency of a vertex v corresponds to the maximum time between observations of the region represented
by v.

Then, we can define the weighted latency, or cost of a vertex v ∈V (G) on the walk W to be

C(W,v) := φ(v)L(W,v).

4

The cost of an infinite walk W , is then

C(W) := max
v∈V (G)

C(W,v).

Therefore, the cost of a robot walk on a graph is the maximum weighted latency over all vertices in the
graph. This corresponds to the maximum importance-weighted time between observations of any region.
The min-max weighted latency walk problem can be stated as follows.

The min-max weighted latency walk problem: Find an infinite walk W that minimizes the cost C(W).

For brevity, we will refer to this problem as the min-max latency walk problem in the rest of the paper.

2.3 Well-Posedness of the Problem

Finding an infinite walk is computationally infeasible. Instead, we will try to find the kernel of the
minimum cost infinite walk. The first question, however, is whether there always exists a minimum cost
walk.

Lemma 2.1. For any graph G, there exists a walk of minimum cost.

Proof. Suppose that there does not exist a walk of minimum cost in G. There are two ways in which
this could happen. Either every walk in G has infinite cost, or there exists an infinite sequence of walks
W1,W2, . . . with costs C(W1) ≥ C(W2) ≥ ·· · , such that limi→∞C(Wi) = c∗, but there is no walk in G
attaining the cost c∗. Thus, to prove the result we will eliminate each of these cases.

First, let W be any walk of size n in G that visits all vertices in V (G). Then the cost C(∆(W)) is
necessarily finite. Next, we show that there are only a finite number of different values c′ < C(∆(W))
that can be costs of walks in G. Since the length of each edge is positive, for any vertex v ∈V (G) there
is a finite number of walks beginning in v with length less than C(∆(W))/φ(v). Therefore, there are a
finite number of possible values for the latency of v that are less than C(∆(W))/φ(v). Hence, there is a
finite number of possible costs for vertex v on a walk of cost less than C(∆(W)). Moreover, since there
are n vertices in G, a walk in G can only have a finite number of different costs. As a result, there exists
a walk of minimum cost for graph G.

We define OPTG to be the minimum cost among all infinite walks on G. An infinite walk W is an
optimal walk if C(W) = OPTG. By Lemma 2.1, such a number always exists. The next question is
whether there always exists a finite size kernel realizing OPTG, that is, whether there is an optimal walk
that consists of an infinite number of repetitions of a finite size walk.

Lemma 2.2. For any graph G, there is walk of minimum cost that has a finite size kernel.

Proof. Assume W is an optimal walk with cost OPTG. Note that W is an infinite walk. Let v be a vertex
in V (G). Let W1 be a sub-walk of W starting at v with length larger than OPTG×ρG. Since l(W1) >
OPTG×ρG, every vertex of G is visited at least once in W1; otherwise C(W)≥ l(W1)/ρG > OPTG. Let U
be the set of all possible walks in G starting at v with lengths between l(W1) and l(W1)+maxe∈E(G) l(e).
Since the edge lengths are positive and finite, the size of U is finite.

Let i be the index of a visit to v in W . Then, for every walk W (i, j) of length at least l(W1), there
exists a sub-walk starting at W (i, i) that is in U . Due to the fact that W is an infinite walk and hence v
appears an infinite number of times in W , there exists a walk W ′ ∈U that appears at least twice in W . Let
W ′′ be such that [W ′,W ′′,W ′] is a sub-walk of W . Note that [W ′,W ′′] is a finite walk, and so ∆([W ′,W ′′])
is a walk with a finite size kernel. We now claim that ∆([W ′,W ′′]) is also an optimal walk for G. Consider

5

any two consecutive instances of a vertex u ∈ V (G) in ∆([W ′,W ′′]). For these two instances of u, one
of the following two cases occurs: (i) the two instances are in the same copy of [W ′,W ′′], or (ii) the two
instances are in consecutive copies of [W ′,W ′′]. However, since [W ′,W ′′,W ′] is a sub-walk of W , both
cases occur in optimal walk W and thus ∆([W ′,W ′′]) is also an optimal walk for G.

Next we will show that the problem of min-max latency walk is APX-hard, implying that there is
no polynomial-time approximation scheme (PTAS) for it, unless P=NP. However, before that we need to
introduce the following definitions.

A complete graph is a graph that each pair of its vertices are connected by an edge. A graph is called
a metric graph if (i) it is a complete undirected graph, and (ii) for any three vertices u,v,w ∈ V (G) we
have l(uw)≤ l(uv)+ l(vw) (triangle inequality) [31].

Theorem 2.3. The min-max latency walk problem is APX-hard.

Proof. The reduction is from the metric Traveling Salesman Problem (TSP). Recall that the TSP is the
problem of finding the shortest closed walk that visits all vertices exactly once (except for its beginning
vertex). Such a walk is referred to as a TSP tour. The problem of finding TSP tours in metric graphs is
called the metric TSP. It is known that the metric TSP is APX-hard [22], and it is approximable within a
factor of 1.5. Here we show a reduction from the metric TSP to the min-max latency walk problem that
preserves the hardness of approximation.

Let G be the input of the metric TSP. Assign weight 1 to all vertices of G. Assume W is an infinite
walk with optimal cost OPTG in G. Let M be a closed walk that is an optimal solution for TSP in G with
l(M) = c′. We prove c′ = OPTG. Since each vertex is visited exactly once in M, the cost of ∆(M) is c′.
However, due to optimality of W we have OPTG ≤ c′. It remains to show that c′ ≤ OPTG.

Let v∈V (G) be a vertex with C(W,v) =OPTG and i and j be the indices of two consecutive instances
of v with l

(
W (i, j)

)
= OPTG. Since the weight of every vertex is 1 and l

(
W (i, j)

)
= OPTG, all vertices

of G appear in W (i, j); otherwise C(W) > OPTG. Consider the spanning tour T that is obtained from
W (i, j) by removing all but one of the instances of each vertex. Since we only remove vertices and due
to the triangle inequality we have l(T)≤ l

(
W (i, j)

)
. Since T visits each vertex of G exactly once, it is a

candidate solution for TSP and hence we have l(M)≤ l(T). Therefore, c′ = l(M)≤ l
(
W (i, j)

)
= OPTG.

Note that we showed that the size of the solution for the two problems are equal, hence the reduction is
gap preserving and the APX-hardness carries over.

For a graph G and two vertices u,v ∈ V (G), the shortest-path distance between u and v is denoted
by d(u,v). We focus on solving the min-max latency walk problem only for metric graphs. The reason
is that for any graph G and any u,v ∈ V (G) we can create a graph G′ with the same set of vertices such
that edge uv in G′ has length equal to the shortest-path distance from u to v in G, i.e., l(uv) = d(u,v).
Then, we construct a walk for G based on a walk in G′ by replacing each edge uv with the shortest path
connecting u and v in G. Since OPTG = OPTG′ and any walk in G′ corresponds to a walk of lower or
equal cost in G, any approximation in G′ carries over to G. In the literature, the graph G′ is refereed to as
the metric closure of G [31]. It should be noted that to aid the presentation in some examples we show
non-complete graphs with the understanding that we are referring to their metric closures.

In the proof of Theorem 2.3 gave a reduction from the TSP to the min-max latency walk problem.
However, in general the TSP tour is not a good approximation for the min-max latency walk problem.

Lemma 2.4. The cost of a TSP tour of G can be larger than (n−1)OPTG.

Proof. Let G be a graph of n vertices constructed as follows:

• There is a vertex v with weight 1.

6

2

2

1

1

1

2

2

21
1

1

Figure 1: The graph G as in Lemma 2.4 with n = 7. The cost of the TSP tour (red thick edges) in this graph is 2n− 2 = 12.
Note that if the weight of all vertices except the middle vertex is small, there is a walk that has cost 2.

• There are n−1 vertices, v1,v2, . . . ,vn−1, each having weight 1/n.

• There exists an edge connecting vi to v with length 1 for any 1≤ i < n.

• There exists an edge connecting vi to vi+1 with length 2 for any 1≤ i < n−1 (see Figure 1).

It is easy to see that the triangle inequality holds for edge lengths in G. The TSP tour has length 2n−2
and hence the cost of the TSP tour is 2n−2. However, the cost of the walk that only uses edges of unit
weight and visits v at every other index would be 2. This means that the cost of TSP can be as bad as
(n−1) times the cost of the optimal walk.

In the following sections we seek better approximation algorithms for the min-max latency walk
problem.

3 Relaxations and Simple Bounds

In this section, we present a relaxation of the min-max latency walk problem and two simple bounds
based on the lengths of the edges of the input graph.

3.1 Relaxation of Vertex Weights

Here, we define a relaxation of the problem so that all weights are of the form 1/2x, where x is an integer.
A similar relaxation has been used in both [15] and [26].

Definition 3.1 (Weight Relaxation). We say weights of vertices of graph G are relaxed, if for any vertex
v ∈V (G) we update its weight φ(v) to φ ′(v) = 1

2x such that x is the smallest integer for which 1
2x ≤ φ(v)

holds.

Lemma 3.2 (Relaxed Vertex Weights). For a graph G′ obtained by relaxing the weights of vertices of G
the following statements hold:

(i) If a walk W has cost c in G and cost c′ in G′, then c′ ≤ c < 2c′.

(ii) OPTG′ ≤ OPTG < 2OPTG′ .

Proof. (i) The weight of each vertex in G′ is less than or equal to the weight of that vertex in G, while
the lengths of the corresponding edges are the same. Hence, for costs of W in G and G′ we have c′ ≤ c.
Moreover, the weight of each vertex in G′ is more than half of the weight of the same vertex in G. This
results in c < 2c′. Consequently, we have c′ ≤ c < 2c′.

7

(ii) Let W and W ′ be optimal walks in G and G′, respectively. For cost of W in G′, denoted by
c, we have OPTG′ ≤ c. Also, (i) results in c ≤ OPTG < 2c. Consequently, we have OPTG′ ≤ OPTG.
Similarly, for cost of W ′ in G, denoted by c′, we have OPTG ≤ c′. Moreover, by (i) it follows that
OPTG′ ≤ c′ < 2OPTG′ and hence OPTG < 2OPTG′ . Therefore, we have OPTG′ ≤ OPTG < 2OPTG′ .

The reason for considering this relaxation is as follows. Given a relaxed graph G′, we can define
Vi to be all vertices in G′ with weight 1/2i. Then, in order for the vertices in Vi and Vi+1 to have the
same weighted latency, each vertex in Vi should be visited twice as often as each vertex in Vi+1 in a walk
on G′. This observation gives us some structure that we can exploit in our search for approximation
algorithms for walks on G′. By Lemma 3.2(ii), an α-approximation algorithm on G′ would yield a
2α-approximation algorithm on the unrelaxed graph G.

3.2 Simple Bounds on Optimal Cost

It is easy to observe that no vertex can be too far away from a vertex with weight one, as this distance
will bound the cost of the optimal solution.

Lemma 3.3. Let G be a metric graph. For any vertices u,v ∈ V (G) such that v has weight 1, we have
l(uv)≤ OPTG/2.

Proof. By way of contradiction, assume that l(uv)> OPTG/2 for some u,v ∈V (G) such that φ(v) = 1.
Let W be an optimal walk in G, i.e., C(W) = OPTG. Let ui be an occurrence of u in W . Let v j and vk be
the two consecutive occurrences of v preceding and succeeding ui in W , respectively. Since G is metric,
the sub-walk of W that lies between v j and vk has length greater than OPTG. However, since φ(v) = 1,
this contradicts the assumption that W has cost OPTG.

Corollary 3.4. If G is a metric graph, then the maximum edge length in G is at most OPTG.

Proof. The case that one end of an edge e has weight 1 is addressed in Lemma 3.3. Therefore, we
consider an edge uv such that φ(u),φ(v) < 1. Let w be a vertex in V (G) such that φ(W) = 1. By
Lemma 3.3 it follows that l(uw), l(vw)≤OPTG/2. Moreover, since G is a metric graph, we have l(uv)≤
l(uw)+ l(vw)≤ OPTG.

4 Properties of Min-Max Latency Walks

In this section, we characterize the optimal and approximate solutions of the min-max latency walk
problem.

4.1 Bounds on Size of Kernel of an Optimal Walk

Here, we show that the optimal solution for the min-max latency walk problem can be very large with
respect to the size of the input graph.

Lemma 4.1. There are infinitely many graphs for which any optimal walk has a kernel that is at least
exponential in the size of G.

Proof. For any constant integer k and any integer multiple of it n = sk, we construct a graph G with
unit length edges and |V (G)| = n and prove that the smallest kernel of any optimal solution has size in
Ω(nk−1). Let V1, . . . ,Vk be a partition of V (G) into k sets each having size s. Let there be a unit length

8

d b

a e

f

c

Figure 2: The graph G as in proof of Lemma 4.1 with n = 6, s = 2, V1 = {a,b}, V2 = {c,d} and V3 = {e, f}. The walk that
Algorithm 1 constructs would be [[[a,b],c, [a,b],d], [a,b],e, [[a,b],c, [a,b],d], [a,b], f], where brackets show recursive calls in
Algorithm 1.

edge uv for any u∈V1 and v∈Vi, where i∈ {1,2, . . . ,k}. For each v∈Vi with 1≤ i≤ k, let φ(v) = 1
(s+1)i .

We first prove that OPTG ≤ 1.
Let W be a walk constructed by visiting all vertices in the sets V1,V2, . . . ,Vi−1 recursively between

any two consecutive visits to members of Vi (see Algorithm 1). It is easy to see that cost of ∆(W) is at
most 1. The reason is that each vertex in Vi for i∈ {1,2, . . . ,k} has weight 1

(s+1)i and is visited in ∆(W) at
least once every other (s+1)i steps by the construction (see Figure 2). Therefore C(∆(W),v) is bounded
by 1 for any vertex v.

We have proved OPTG ≤ 1. It remains to prove any infinite walk M in G with cost less than or equal
to 1 has a kernel of size Ω(nk−1). Let M1 be a sub-walk of size s+1 of M. Then all vertices of V1 appear
in M1, otherwise the vertex v in V1 that does not appear in M1 would induce a cost larger than 1 to M,
that is, C(M,v) ≥ (s+ 2)× 1

s+1 > 1. This means that after each visit to a member of Vi with i > 1, the
next s vertices that are visited in M all belong to V1.

Now we need to show that at most a single vertex in
⋃

j>iVj appears in any sub-walk of M of size
(s+1)i−1. To prove this we use induction on i. Let M′ be a sub-walk of M with size (s+1)i−1. We can
partition the elements of M′ into s+1 disjoint sub-walks of size (s+1)i−2. By the induction hypothesis,
we know that each part of this partition has at most a single instance of vertices in

⋃
j>i−1Vj. Also, we

know that all vertices of Vi appear in M′, or else the vertex v ∈ Vi that is not visited in M′ would have
cost C(M,v) > 1. Since there are s vertices in Vi and s+ 1 visits to vertices of

⋃
j>i−1Vj in M′, there

is at most a single visit to a vertex in
⋃

j>iVj in M′. Since all vertices in Vk appear in the kernel of M,
this means that the kernel of M has size at least (s+ 1)k−1. Since k is a constant and n = sk, therefore
(s+1)k−1 ∈Ω(nk−1). Hence, kernel of any optimal walk is at least exponential in the size of G.

Algorithm 1 WALKMAKER({V1, . . . ,Vi−1,Vi})
1: if i < 1 then
2: return /0
3: else
4: W ← /0
5: for j = 1→ |Vi| do
6: W ← [W,WALKMAKER({V1, . . . ,Vi−1})],
7: W ← [W,v]; where v is the j-th element in Vi

8: end for
9: return W

10: end if

Corollary 4.2. There does not exist a polynomial time algorithm for the min-max latency walk problem.

9

Corollary 4.2 does not show exactly how hard the problem is. In fact, any algorithm that checks all
possible walks to find the optimal solution will have at least doubly exponential time complexity.

4.2 Binary Walks

In Section 4.1, we showed that any exact algorithm is not scalable with respect to the size of the input
graph. Therefore, we turn our attention to finding walks that approximate the optimal cost of the graph.
We show there always exists a polynomial size walk that has a cost within a constant factor of the optimal
cost. To obtain this result, we first need to define a special class of walks and show that there are walks
in this class that provide constant factor approximations.

Definition 4.3 (Binary Walks and Decompositions). Let G′ be a relaxed graph and Vi be the set of vertices
with weight 1/2i in G′. A walk S is a binary walk if it can be written as [S1,S2, . . . ,St], where t = 2ρG′ ,
such that for any v∈Vi and any 0≤ j < t/2i, vertex v appears exactly once in [S j2i+1,S j2i+2, . . . ,S(j+1)2i].
In other words, in each 2i consecutive Sl’s starting from S j2i+1, vertex v appears exactly once. Also, we
say that the tuple of walks (S1,S2, . . . ,St) is a binary decomposition of S.

By Definition 4.3, each vertex appears in each Sl at most once. Therefore, the size of each Sl is
bounded by n, where n = |V (G′)|. This means that S has size bounded by 2nρG′ . Consider a binary walk
S = [S1, . . . ,St], its expansion ∆(S), and a member of the binary walk Sl = (v1, . . . ,vk) for some 1≤ l ≤ t.
We say that a sub-walk ∆(S)(i, j) of ∆(S) intersects Sl if either (v1, . . . ,vi′) or (vi′ , . . . ,vk) appears in
∆(S)(i, j) for some 1≤ i′ ≤ k.

Lemma 4.4. Let G′ be a relaxed graph and let Vi denote the set of all vertices of G′ with weight 1/2i.
Let S = [S1,S2, . . . ,St] be a binary walk in G′. If a and b are indices of two consecutive visits to a vertex
v ∈Vi in ∆(S), then ∆(S)(a,b) intersects at most 2i+1 members of (S1,S2, . . . ,St).

Proof. Since ∆(S) is constructed by the concatenation of an infinite number of copies of walk S, the two
following cases can arise for indices a and b: (i) indices a and b refer to two visits of vertices in the
same copy of S, or (ii) indices a and b refer to two visits such that they are in two consecutive copies
of S. Note that since by Definition 4.3 every vertex is visited at least once in a binary walk S, no other
case is possible. For case (i), by Definition 4.3 we have that ∆(S)(a,b) intersects 2i + 1 members of
(S1,S2, . . . ,St). For case (ii), let a′ ≥ a be the maximum index of a vertex in ∆(S) such that visits a and
a′ are in the same copy of S. Similarly, let b′ ≤ b be the minimum index of a vertex in ∆(S) such that
visits b′ and b are in the same copy of S. Since there is one visit to v in both ∆(S)(a,a′) and ∆(S)(b′,b),
each of these two sub-walks intersects at most 2i members of (S1,S2, . . . ,St). Consequently, ∆(S)(a,b)
intersects at most 2i+1 members of (S1,S2, . . . ,St).

Lemma 4.5. Let G′ be a graph with relaxed weights. There is a binary walk S in G′ with cost at most
2.5×OPTG′ and size bounded by 2nρG′ , where n = |V (G′)|.

Proof. Let M = (m1,m2, . . .) be an optimal infinite walk in G′ with cost c=OPTG′ . Since M is an infinite
walk, we can begin the walk at any vertex mi and obtain the cost c. Therefore, we assume without loss
of generality that m1 is such that φ(m1) = 1. Based on M, we construct a binary walk S such that the
cost of ∆(S) is at most 2.5c as follows. Let a0 be 0 and Si be the sub-walk M(ai +1,ai+1) such that ai+1
is the maximal index satisfying l

(
M(1,ai+1)

)
≤ ic. Therefore, we have l

(
M(1,ai + 1)

)
> (i− 1)c and

hence l
(
M(ai +1,ai+1)

)
≤ c. Consequently, each Si is a walk of length at most c such that the union of

Si’s partitions M.
Now we modify the walks S1,S2, . . . by omitting some of the instances of vertices in them. Let Vi be

the set of vertices with weight 1/2i in G′. Let t = 2ρG′ as in Definition 4.3. For every vertex u ∈Vi and

10

any number 0≤ j < t/2i, omit all but one of the instances of u that appear in S j2i+1,S j2i+2, . . . ,S(j+1)2i .
There exists at least one such instance; otherwise a vertex u with weight 1/2i exists that is not visited
in an interval of length greater than c× 2i, implying C(M,u) > c. Let S′1,S

′
2, . . . be the result of this

modification, note that l(S′i)≤ l(Si) for each 1≤ i≤ t.
Let S be [S′1,S

′
2, . . . ,S

′
t]. We claim that ∆(S) has cost at most 2.5c. For u ∈ Vi a vertex of G′, we

know that u appears exactly once in each 2i consecutive S′l’s, i.e., [S′j2i+1,S
′
j2i+1, . . . ,S

′
(j+1)2i] for any

0≤ j < t/2i. Therefore by Definition 4.3, S is a binary walk. By Lemma 4.4, two consecutive visits to a
vertex u ∈Vi in ∆(S) intersects at most 2i+1 members of (S1,S2, . . . ,St).

By the construction, we have that for any j,k with 0 < j ≤ k, walk [S′j,S
′
j+1, . . . ,S

′
k] has length at

most (k− j+1)c. Also since φ(m1) = 1, by Lemma 3.3 we know that for any j,k with 0≤ k ≤ j, walk
[S′j,S

′
j+1, . . .S

′
t ,S
′
1,S
′
2, . . . ,S

′
k] has length at most ((t− j+1)+0.5+k)c. Therefore, if a and b are indices

of two consecutive visits to u ∈Vi in ∆(S), then

l
(
∆(S)(a,b)

)
< 2i+1c+0.5c≤ 2i× (2.5c).

Consequently, each vertex u ∈ V (G′) has cost C(∆(S),u) ≤ 2.5c and hence C
(
∆(S)

)
≤ 2.5c. Moreover,

since S is a binary walk, its size is bounded by 2nρG′ .

Theorem 4.6. In any graph G with n = |V (G)|, there exists a walk W of size O(n2) such that the cost of
∆(W) is less than or equal to 6×OPTG.

Proof. Let G′ be the relaxation of G and let Vi be the set of vertices u ∈ V (G′) of weight 1/2i. The set
of vertices in V (G′) with weights less than 1/2blognc+1 is denoted by U = {u1,u2, . . . ,u|U |}. Let G′′ be
the graph obtained by removing vertices in U from G′. Therefore, ρG′′ ≤ 2blognc+1 ≤ 2n. Note that G′′ is
also a metric graph. Let S be a binary walk in G′′ with cost at most 2.5OPTG′′ as described in Lemma
4.5. Since ρG′′ ≤ 2n, the size of S is bounded by 2ρG′′n≤ 4n2.

Now, we add the vertices in U to S in order to obtain a walk W that covers all vertices of G′. Let
v ∈ V (G′) be a vertex with φ(v) = 1. Let (S1,S2, . . . ,St) be the binary decomposition of S, where t =
2blognc+2. Let vi be the i-th instance of v in S. Note that t > 2n, thus v appears at least 2n times in S (see
Definition 4.3 for i = 0). For each 1 ≤ i ≤ |U |, modify S by duplicating v2i and inserting an instance of
ui between the two copies of v2i. Since |U |< n, this operation is possible. Let W be the resulting walk.
Note that size of W is in O(n2). We claim that the cost of ∆(W) is at most 2OPTG′+OPTG.

Let w ∈Vi be a vertex in G′ such that φ(w)≥ 1/2blognc+1. Let a and b be the indices of two consecu-
tive visits to w in ∆(S). Let a′ and b′ be the indices of the corresponding visits to w in ∆(W). By Lemma
4.4, sub-walk ∆(S)(a,b) intersects at most 2i+1 members of (S1,S2, . . . ,St). At least half of these 2i+1

walks in ∆(S) are the same in ∆(W), i.e., at least half of these walks have not been altered by duplication
of unit weight vertices or insertion of members of U during the construction of W from S. Therefore, at
most 2i vertices of U lie between indices a′ and b′ of ∆(W).

Furthermore, we inserted the visits to the vertices of U at visits to v with φ(v) = 1. Therefore, by
Lemma 3.3, each of these new detours made to visit a member of U has length at most 2(OPTG/2) =
OPTG. Also, by Lemma 4.5, we already know that C(∆(S),u)≤ 2.5OPTG′ . Hence, we have

C(∆(W),u)< 2.5OPTG′+OPTG. (1)

Note that the extra 0.5 factor in Lemma 4.5 is due to the distance of the last vertex of St to the first vertex
of S1. However, this extra cost can be treated as one of the detours to vertices of U , as we avoided adding
one of these detours to S1 and St . This means that we have already accounted for this extra cost in the
second part of the righthand side of inequality 1. Consequently, we have C(∆(W),w)< 2OPTG′+OPTG.

11

Figure 3: Graph G as in Lemma 4.7 with n = 6. Vertices v1,v2,v3 are the heavy vertices and u1,u2,u3 are the light ver-
tices. The red thick edges have unit weights and the weight of the black edges is small. We have C

(
∆(W)

)
= 2 + 6ε

for W = (v1,v2,v3,u1,v1,v2,v3,u2,v1,v2,v3,u3) with size 12. On the other hand, C
(
∆(W ′)

)
= 4 + 2ε , where W ′ =

(v1,u1,v2,u2,v3,v1,u3,v2,v3) has size 9. Here, we have k = 2.

By Lemma 3.2(ii), we have OPTG′ ≤ OPTG, therefore C(∆(W),w) < 3OPTG. Also, by Lemma 3.2(i),
the cost of ∆(W) in G would be less than 6OPTG. Consequently, we have C

(
∆(W)

)
< 6OPTG.

In the following, we show that Theorem 4.6 is almost tight with respect to the size of the output.

Lemma 4.7. Any algorithm for the min-max latency walk problem with guaranteed output size in
O(n2/k) has approximation factor in Ω(k).

Proof. Let ε be a very small positive number and let us construct a graph G as follows.

• There are n/2 vertices of weight 1, called heavy vertices.

• There are n/2 vertices of weight ε , called light vertices.

• Any two heavy vertices are connected to each other by an edge of length ε .

• There is an edge of length 1 connecting any light vertex to any heavy vertex.

Any minimum cost infinite walk in G visits all heavy vertices between visits to any two light vertices.
This means that each heavy vertex is repeated n/2 times in any walk that expands into a minimum cost
infinite walk. Therefore, any optimum solution has size in Ω(n2) and its cost is upper-bounded by
2+ ε×O(n). The value of ε can be chosen small enough so that the cost of optimal walk is close to 2.

To reduce the size of the output walk by a factor of k, we need to visit at least k light vertices between
two consecutive visits to a heavy vertex v. This means that a walk of size smaller than n2

4k has cost at least
2k, which is k times the optimal cost. Therefore, any solution for the min-max latency walk problem in
G with size in O(n2/k) has approximation factor in Ω(k).

Lemma 4.7 directly gives that there is no constant factor approximation algorithm with guaranteed
output size in o(n2). Note that this implies that Theorem 4.6 is tight in the sense that the size of the
constructed kernel can be reduced by at most a constant factor.

12

5 Approximation Algorithms for the Min-Max Latency Walk Problem

In this section, we present two polynomial time approximation algorithms for the min-max latency walk
problem. The approximation factor of the first algorithm is a function of the ratio of the maximum
weight to the minimum weight among vertices, i.e., ρG. The approximation ratio of the second algorithm,
however, relies solely on the number of vertices in the input graph.

5.1 An O(logρG)-Approximation Algorithm

A crucial requirement for our algorithms is a useful property regarding binary walks. This property is
discussed in the following lemma.

Lemma 5.1. (Binary Property) Let G′ be a graph with relaxed weights. Let S be a binary walk in G′

with the binary decomposition (S1,S2, . . . ,St). Assume that

(i) for some c ∈ R+, max1≤i≤t l(Si)≤ c, and

(ii) each Si begins in a vertex v ∈V (G′), where φ(v) = 1.

Then the cost of ∆(S) in G′ is at most 2c+OPTG′ .

Proof. Let Vi be the set of vertices of weight 1/2i in V (G′). Let u ∈Vi be a vertex of G′. By Lemma 4.4,
for any a and b that are the indices of two consecutive visits to u in ∆(S), we have that ∆(S)(a,b) intersects
at most 2i+1 members of (S1,S2, . . . ,St). Also, by condition (ii) and Lemma 3.3 we know that the lengths
of edges connecting two consecutive Sl’s in ∆(S) are at most OPTG′/2. Hence, we have l

(
∆(S)(a,b)

)
≤

2i+1(c+OPTG′/2). Consequently, each vertex u ∈V (G′) has cost C(∆(S),u)≤ 2c+OPTG′ . Hence, we
have C

(
∆(S)

)
≤ 2c+OPTG′ .

Here, we define a tool that will be useful in our approximation algorithms. Let Partition(W,k) be a
function that takes as input a walk W and an integer k and returns a set of k walks {W1,W2, . . . ,Wk} that
partitions the vertices of W such that l(Wi)≤ l(W)/k, for all 1≤ i≤ k. It is easy to see this can always be
computed in linear time by a single traversal of W . Note that in case that k > |W |, Partition(W,k) returns
a set {W1,W2, . . . ,Wk} in which Wi = W (i, i), for 1 ≤ i ≤ |W |, and Wi = /0 for |W | < i ≤ k. Also, recall
from Section 2.1 that TSP-Path(G) is a walk that visits each vertex in G exactly once.

Algorithm 2 BRUTEPARTITIONALG(G)

1: Let Vi be the set of vertices of weight 1
2i ≤ φ(u)< 1

2i−1 for 0≤ i≤ dlog2 ρGe
2: Let t be 2dlog2 ρGe+1

3: S1,S2, . . . ,St ← /0
4: for i = 0→ dlog2 ρGe do
5: {Wi,0, . . . ,Wi,2i−1}← Partition(TSP-Path(G[Vi]),2i)
6: for k = 1→ t do
7: Sk← [Sk,Wi, ji]; where ji is k mod 2i,
8: end for
9: end for

10: S← [S1, . . . ,St]
11: return S

Given a graph G, our first approximation algorithm, shown in Algorithm 2, is guaranteed to find a
solution with cost within a factor of O(logρG) of the optimal cost, where ρG is ratio of the maximum

13

Figure 4: The construction of Sk’s from walks Wi, j’s is depicted. For 1≤ k ≤ t, each Sk is constructed by concatenation of the
walks W0, j0 ,W1, j1 , . . . ,Wlog2 t, jlog2 t while preserving order, where k ≡ ji (mod 2i) for each 0≤ i≤ log2 t.

vertex weight to the minimum vertex weight in G. The main idea in Algorithm 2 is to construct a binary
walk S = [S1,S2, . . . ,St] that satisfies the binary property discussed in Lemma 5.1. Recall that in Lemma
5.1 it was shown that if max1≤k≤t l(Sk)< c for some c and each Sk begins in v for some vertex v ∈V (G)
with φ(v) = 1, then cost of S is at most 2c+OPTG′ . Here, we obtain a method that constructs a binary
walk S = [S1,S2, . . . ,St] such that for each 1≤ k≤ t, Sk starts with a unit weight vertex v and the length of
Sk is in O(logρG). An overview of Algorithm 2 is as follows. First graph G is relaxed. Then a TSP-Path
is calculated for each set of vertices Vi, where Vi denotes the set of all vertices with relaxed weight of
1/2i. The TSP-Path through vertices in Vi is partitioned into 2i walks. These walks are concatenated
to create each Sk. An illustration of Algorithm 2 is given in Figure 5. The final walk S is obtained by
repeatedly performing the four walks shown in Figure 5e through to Figure 5h.

Theorem 5.2. Given a graph G, Algorithm 2 constructs a walk S of size in O(nρG) such that ∆(S) is an
O(logρG)-approximation for the min-max latency walk problem in G.

Proof. Let G′ be the result of relaxing the weights of G. The set of vertices u ∈ V (G′) of weight 1
2i

is denoted by Vi. Let v denote a vertex in V0, i.e., φ(v) = 1, such that v is the first vertex that appears
in TSP-Path(G[V0]). Let t be the smallest power of two that is larger than ρG, i.e., t = ρG′ . Algo-
rithm 2 constructs a binary walk S = [S1,S2, . . . ,St] such that all Sk’s begin in v and max1≤k≤t l(Sk) <
2(log2 ρG′)OPTG′ .

Let us look at set Vi for some 0≤ i≤ log2 ρG′ . Algorithm 2 constructs 2i walks such that each vertex
in Vi appears in exactly one of these walks. Let Wi be the output of TSP-Path(G[Vi]). In the proof of
Theorem 2.3, we showed that in graphs with uniform weights the length of the TSP tour is the same
as the length of the kernel of the best solution for the min-max latency walk problem. Also, note that
in the optimal solution of the min-max latency walk problem in G′ the maximum length between two
consecutive visits to a vertex in Vi is 2iOPTG′ ; otherwise the cost of the solution is greater than OPTG′ .
Moreover, the length of a TSP tour is an upper-bound for the length of a TSP-Path. Since Wi visits only
vertices in Vi and they all have the same weight, we have l(Wi)/2i ≤ OPTG′ .

As in line 5 of Algorithm 2, the output of Partition(Wi,2i) is {Wi,0,Wi,2, . . . ,Wi,2i−1}. Hence, we have
l(Wi, j) ≤ l(Wi)/2i ≤ OPTG′ for all 0 ≤ j < 2i. Observe that the output of Partition(W0,1) is {W0,0},
where W0,0 =W0. A walk S = [S1,S2, . . . ,St] is constructed using each Wi, j as follows.

14

vertices of weight 1

vertices of weight 1/2

vertices of weight 1/4

(a) Legend for vertices. (b) A relaxed graph. (c) TSP-Path for V0,V1,V2. (d) Partitions for V0,V1,V2.

(e) The walk S1. (f) The walk S2. (g) The walk S3. (h) The walk S4.

(i) TSP-Path of S1. (j) TSP-Path of S2. (k) TSP-Path of S3. (l) TSP-Path of S4.

Figure 5: An illustration of the BRUTEPARTITIONALG in Algorithm 2. Figure (b) shows a relaxed graph consisting of vertices
of weight 1, 1/2, and 1/4. The edge lengths are given by the Euclidean distance between vertices. Figures (c-d) show the
partitioning of the vertices that occurs in line 5. Figures (e-h) show the four walks obtained in line 7. Figures (i-l) shows how
the walks can be heuristically improved by recomputing the TSP-Path through each of them, as discussed in Remark 5.3.

In line 6 of Algorithm 2, for each 1 ≤ k ≤ t, walk Sk is constructed by concatenating the walks
W0, j0 ,W1, j1 , . . . ,Wlog2 t, jlog2 t while preserving order, where k≡ ji (mod 2i) for each 0≤ i≤ log2 t. Observe
that for 1 ≤ k ≤ t, each Sk starts with W0,0. Therefore, the first vertex of all Sk’s is vertex v, where v is
the first vertex that appears in TSP-Path(G[V0]) (see Figure 4). Note that by Corollary 3.4, the length of
edges connecting two Wi, j’s is at most OPTG′ . In the end, there will be log2 ρG′ walks in each Sk, for
1 ≤ k ≤ t, each of length at most OPTG′ connected to each other by edges with length at most OPTG′ .
Therefore max1≤k≤t l(Sk)≤ 2log2 ρG′OPTG′ .

By Lemma 5.1, walk S has cost at most 4 log2 ρG′OPTG′ +OPTG′ in G′. Using Lemma 3.2(ii), it
follows that cost of S in G′ is at most 4 log2 ρG′OPTG +OPTG. Hence, by Lemma 3.2(i), walk S is an
(8log2 ρG′+2)-factor approximate solution for G. Note that since ρG′ < 2ρG, we have that 8 log2 ρG′+2
is in O(logρG). Therefore, ∆(S) is an O(logρG)-approximation for the min-max latency walk problem
in G. Finally, since each vertex u ∈ Vi appears exactly once in Wi and by the construction of Sk’s, for
1≤ k ≤ t, we have that S is a binary walk. Therefore, the size of S is in O(nρG).

The following remark discusses a heuristic improvement that should be used in practice.
Remark 5.3 (Implementation of Algorithm 2). In practice, we can recompute TSP-Path through each
walk S1, . . . ,St . We simply require that each walk TSP-Path(Si) starts at the same vertex. In recomputing
the TSP-Paths, the bounds remain unchanged. However, in practice the performance is improved. An

15

example of the improvement is shown in Figure 5. Thus, the final infinite walk is obtained by repeatedly
performing the walks in Figure 5i through to Figure 5l.

5.2 An O(logn)-Approximation Algorithm

In many applications, the value of ρG is independent of n. For example, in a robotic monitoring scenario,
there may be only a finite number of importance levels that can be assigned to a point of interest. In this
case we have a constant factor approximation algorithm. However, the ratio between the largest and the
smallest weights, i.e., ρG, does not directly depend on the size of the input graph. For even a small graph,
ρG can be very large. Therefore, in such cases we need an algorithm with an approximation guarantee
that is bounded by a function of the size of the graph.

Algorithm 3 SMARTPARTITIONALG(G)

1: Let Vi be the set of vertices of weight 1
2i ≤ φ(u)< 1

2i−1 for 0≤ i≤ dlog2 ρGe
2: U ←∪i>blog2 nc+1Vi

3: S← BRUTEPARTITIONALG(G[V\U])
4: k← 1
5: for all u ∈Vi where i > blog2 nc+1 do
6: Insert u at the end of S2k
7: Increment k
8: end for
9: return S

Our second approximation algorithm is shown in Algorithm 3. This algorithm is guaranteed to find
a solution with cost within a logarithmic factor of the optimal cost. The main idea in Algorithm 3 is
to construct a graph G′′ from the input graph G by relaxing weights and removing vertices with very
low weights from G. The result is that ρG′′ is a function of n. Performing Algorithm 2 on G′′ results
in a binary walk S such that ∆(S) is an O(logn)-factor approximation for the min-max latency walk
problem in G′′. We then insert the vertices in V (G) \V (G′′) into S in such a way that we maintain the
O(logn)-factor approximation on the input graph G.

Theorem 5.4. Given a graph G, Algorithm 3 constructs a walk S of size in O(n2) such that ∆(S) is an
O(logn)-approximation for the min-max latency walk problem in G.

Proof. The idea of Algorithm 3 is to remove the vertices of small weight so that we can use Algorithm 2
as a subroutine. Let G′ be the result of relaxing the weights of G and U be the set of vertices of G′ with
weight less than 1/2blog2 nc+1, as in line 2 of Algorithm 3. Let G′′ be the result of removing vertices in U
from G′. As in Line 3 of Algorithm 3, walk S = [S1,S2, . . . ,St] is the result of running Algorithm 2 on
G′′ with n < ρG′′ = 2blog2 nc+1 ≤ 2n. Recall that in Algorithm 2, for 1≤ k≤ t each Sk starts with the same
vertex v with φ(v) = 1. Moreover, by the proof of Theorem 5.2, since ρG′′ ≤ 2n each Sk has length at most
2 log2 ρG′′OPTG′′ = (2log2 n+2)OPTG′′ . Also, since OPTG′′ ≤ OPTG′ , we have that (2log2 n+2)OPTG′

is an upper-bound for lengths of Sk’s.
In line 6 of Algorithm 3, the k-th vertex of U is inserted at the end of walk S2k. Note that since |U |< n

and 2n < t = 2ρG′′ this is possible. Since each walk Sk begins in vertex v with φ(v) = 1, by Lemma 3.3
and Corollary 3.4, each detour to a vertex in U has length bounded by 3

2 OPTG′ . Consequently, after
inserting vertices in U into S, each Sk has length at most (2log2 n+ 7

2)OPTG′ in G′. Hence, by Lemma
5.1, the cost of ∆(S) in G′ is at most (4log2 n+8)OPTG′ . Furthermore, the cost of ∆(S) in G is bounded

16

Figure 6: The 4663 vertex graph used for all tests corresponding to all cities in Canada [12].

by (8log2 n+ 16)OPTG using Lemma 3.2. As a result, ∆(S) is an O(logn)-approximation for the min-
max latency walk problem in G.

Moreover, since S is a binary walk, its size is bounded by 2nρG′′ ≤ 4n2. Since the number of vertices
added to S during its modification is in O(n), the size of the constructed walk S is in O(n2).

As mentioned in Remark 5.3, we can improve the performance of Algorithm 3 by computing TSP-
Paths through each of the modified walks in S, making sure that all paths start at the same vertex. The
following result shows that Algorithm 3 always achieves a better approximation factor than Algorithm 2.

Corollary 5.5. The approximation ratio of Algorithm 3 is O
(

logmin{n,ρG}
)
, which is always less than

or equal to that of Algorithm 2.

Proof. In Algorithm 3, if for the input graph G we have ρG ≤ 2n, then the set U is empty and hence
the approximation guarantees of both Algorithms 2 and 3 are O(logρG). On the other hand, if ρG > 2n
then the approximation factor of Algorithm 3, i.e., O(logn), is smaller than the approximation factor of
Algorithm 2, which is O(logρG).

6 Simulations

In this section we present two sets of simulations. The first shows the scalability of our algorithms with
respect to the size of the graph, and compares the performance to a simple TSP-based algorithm. The
second set shows a case study for patrolling for crime in the city of San Francisco, CA.

6.1 Scalability of Approximation Algorithms

In this section, we study the scalability of Algorithm 3. Recall that by Corollary 5.5, Algorithm 3 always
performs better than Algorithm 2, both in runtime and approximation factor.

17

0 200 400 600 800 1000 1200

0.4

0.5

0.6

0.7

0.8

0.9

1

B

C
os

t o
f A

lg
or

ith
m

/C
os

t o
f T

S
P

Figure 7: The ratio of the cost of the walk produced by Algorithm 3 to the cost of the TSP tour as a function of B in (2).

For the simulations, we use test data that are standard benchmarks for testing the performance of
heuristic algorithms for the TSP. The data sets used here are taken from [12]. Each data set represents a
set of locations in a country. We construct a graph by placing a vertex for each location and letting the
length of the edge connecting each pair of vertices be the Euclidean distance of the corresponding points.

What remains is to assign weights to each vertex in the test cases. In many persistent monitoring
applications, the likelihood of a vertex with very high weight is low. In other words, majority of vertices
have low priority, while few vertices need to be visited more frequently. To simulate this behavior, we
use a distribution that has the following exponential property:

P

[(
1
2

)k+1

< φ(v)≤
(

1
2

)k
]
=

1
B
, (2)

for k < B, where B is a fixed integer. To create such a distribution, we assign to each vertex v a weight
(1/2)B ≤ φ(v)≤ 1 with probability f

(
φ(v)

)
=
(
φ(v)B ln2

)−1.
Here, we compare our algorithms to the simple algorithm of finding a TSP tour through all vertices

in G. For finding an approximate solution to the TSP we use an implementation of the Lin-Kernighan
algorithm [18] available at [12]. Recall that from Lemma 2.4, the walk obtained from the TSP can
have a cost that is n times larger than the optimal cost. However, when all vertex weights are equal,
the TSP yields the optimal walk. In simulation, when the vertex weights are uniformly distributed, the
TSP appears to provide a fairly good approximation for the min-max latency walk problem. One of
the reasons for this is that when the vertex weights are distributed uniformly, we expect that half of the
vertices will have weights in [0.5,1]. Thus O(n) of the vertices must be visited very frequently, and not
much can be gained by visiting vertices at different frequencies.

Performance with Respect to Vertex Weight Distribution: An important aspect of an environment
is the ratio of weight of its elements, therefore it is natural to test our algorithm with respect to ρG. Note
that by Equation 2, ρG > (1/2)B. Therefore, we consider different values of B to assess the performance
of the algorithm for different ranges of weights on the same graph (see Figure 6). It is easy to see
that if B < log2 n, then Algorithms 3 and 2 produce the same output. Figure 7 depicts the behavior of

18

−1 0 1 2 3 4 5 6 7 8
x 104

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Vertices

C
os

t o
f A

lg
or

ith
m

/C
os

t o
f T

SP

Figure 8: The ratio of the cost of Algorithm 3 to the cost of the TSP tour on the 27 test graphs in [12].

Algorithm 3 on a graph induced by 4663 cities in Canada, shown in Figure 6, with different values for
B. It can be seen that as B increases, our algorithm outperforms the TSP by a greater factor.

Performance with Respect to Input Graph Size: We use graphs of different sizes to evaluate the
performance and scalability of our algorithms. Again, the cost is compared to that of a simple TSP tour
that visits each vertex in the graph exactly once before returning to its starting vertex. Figure 8 depicts
the ratio of the cost of the walk constructed by Algorithm 3 to the cost of the TSP tour on 27 different
graphs each corresponding to a set of locations in a different country. Here the value of B is fixed to
1000. It can be seen that the ratio of the cost of the walk produced by our algorithm to the cost of the
TSP tour decreases as the size of graph increases. Hence, as the number of vertices in graphs increases,
the performance of Algorithm 3 relative to the TSP improves.

Also, the time complexity of the algorithm is O
(
n2 +β (n)

)
where β (n) is the running time of the

algorithm used for finding TSP tours. For the test data corresponding to 71009 locations in China, our
Java implementation of Algorithm 3 constructs an approximate solution in 20 seconds using a laptop
with a 2.50 GHz CPU and 3 GB RAM.

6.2 A Case Study in Patrolling for Crime

Here we study the problem of planning a route for a robot (or vehicle) to patrol a city. Assume we want
to plan a route for that patrols a set of intersections in a city, and the goal is to minimize the maximum
expected number of crimes that occur at any of the intersections between two consecutive visits. If the
weight of each intersection is given by the average crime rate in that intersection, then since expectation
is a linear function, this problem will exactly translate to the min-max latency walk problem.

We look at twelve intersections in the central district of the San Francisco police department (see
Table 1 and Figure 9). The number of crimes that occurred in August of 20122 in the vicinity of these
intersections is used as the weight function φ . The weight of each intersection approximates the average
rate of crime happening in vicinity of that intersection. Table 2 shows the pairwise travel times (for a

2Crime data for San Francisco was obtained from the San Francisco Police Department CrimeMAPS website: http:
//www.sf-police.org/.

19

Index # of crimes in Aug 2012 Approximate address
A 133 Sutter St & Stockton St, San Francisco, CA 94108, USA
B 90 Pacific Ave & Grant Ave, San Francisco, CA 94133, USA
C 89 Post St & Taylor St, San Francisco, CA 94142, USA
D 87 Jackson St & Front St, San Francisco, CA 94111, USA
E 83 Vallejo St & Powell St, San Francisco, CA 94133, USA
F 83 Bay St & Mason St, San Francisco, CA 94133, USA
G 74 Bush St & Montgomery St, San Francisco, CA 94104, USA
H 64 Bush St & Hyde St, San Francisco, CA 94109, USA
I 48 Chestnut St & Montgomery St, San Francisco, CA 94111, USA
J 43 Washington St & Leavenworth St, San Francisco, CA 94109, USA
K 38 Jones St & Beach St, San Francisco, CA 94133, USA
L 34 Hyde St & Francisco St, San Francisco, CA 94109, USA

Table 1: Twelve locations in the central district of San Francisco police department with the number of recorded criminal acts
in the vicinity of each location.

Figure 9: The twelve intersections of Table 1 in North East of San Francisco. Map obtained from San Francisco Police
Department CrimeMAPS program.

20

A B C D E F G H I J K L
A 0 141 121 293 209 329 134 250 406 199 358 344
B 141 0 271 200 105 226 201 299 297 169 254 274
C 127 291 0 368 311 433 153 198 491 219 461 362
D 304 207 417 0 253 309 226 387 249 358 337 384
E 210 147 340 244 0 180 244 268 342 164 209 230
F 330 216 460 244 175 0 313 370 126 311 61 163
G 90 246 162 244 310 369 0 271 400 292 397 427
H 147 293 105 370 338 412 154 0 492 153 406 287
I 426 324 539 203 343 226 348 509 0 448 299 389
J 201 170 231 322 164 290 279 159 415 0 283 164
K 354 240 474 337 199 105 337 332 226 273 0 125
L 334 220 354 316 179 121 317 212 246 153 114 0

Table 2: The pairwise by-car travel times in seconds corresponding to the locations in Table 1, queried from Google maps.

Index Latency (seconds) Cost (crimes per visit)
A 1159 0.059
B 2193 0.075
C 2136 0.072
D 2309 0.076
E 2694 0.085
F 2339 0.074
G 2779 0.078
H 4206 0.102
I 4206 0.077
J 4206 0.069
K 4206 0.061
L 4206 0.054

Table 3: The latencies and costs induced by S for the crime case-study. The maximum cost is attained at intersection H.

road vehicle) of these intersections in seconds. Note that these travel times are not, in general, symmetric
as some streets are one-way. For l(uv), we use the average between the travel time from u to v and the
travel time from v to u.

Let us step through Algorithm 3. Since logρG < blognc+1, Algorithms 3 simply returns the output
of Algorithm 2. We have V0 = {A}, V1 = {B ,C, D, E, F, G}, and V2 = {H, I, J, K, L}. Then we
find the TSP-Paths, which are given by W0 = (A), W1 = (C, G, D, F, E, B), and W2 = (I, K, L, J, H).
We then partition these into W0,0 = (A), W1,0 = (C, G, D), W1,1 = (F, E, B), W2,0 = (I), W2,1 = (K, L),
W2,2 = (J), and W2,3 = (H). Then, by concatenation of these walks and finding the TSP-Path of the results
we get S1 = (A, C, G, D, I), S2 = (A, B, L, K, F, E), S3 = (A, C, J, D, G), and S4 = (A, B, E, F, H).
The walks are shown in Figure 10. Note that the TSP-Path is shown instead of the TSP tour, and thus the
final edge that returns to intersection A is omitted. This is done so that the output is a binary walk, i.e.,
each walk Si contains at most one instance of each intersection.

The walk ∆(S) with S = [S1,S2,S3,S4] is our final patrolling route. The latencies and costs induced
by the intersections are shown in Table 3. The expected number of crimes that occur between two
consecutive visits to any intersection is bounded by C(∆(S)) = 0.102.

21

(a) The walk S1 = (A, C, G, D, I). (b) The walk S2 = (A, B, L, K, F, E).

(c) The walk S3 = (A, C, J, D, G). (d) The walk S4 = (A, B, E, F, H).

Figure 10: The four walks for patrolling San Francisco, corresponding to Table 1. Location A (red) is V0. Locations B,
C, D, E, F, G (yellow) correspond to V1. Locations H, I, J, K, L correspond to V2. The final monitoring walk is given by
[S1,S2,S3,S4,S1, . . .].

22

7 Conclusions and Future Work

In this paper, we considered the problem of planning a path for a robot to monitor a known set of
features of interest in an environment. We represented the environment as a graph with vertex weights
and edge lengths and we addressed the problem of finding a walk that minimizes the maximum weighted
latency of any vertex. We showed several results on the existence and non-existence of optimal and
constant factor approximation solutions. We then provided two approximation algorithms; an O(logn)-
approximation algorithm and an O(logρG)-approximation algorithm, where ρG is the ratio between the
maximum and minimum vertex weights. We also showed via simulations that our algorithms scale to
very large problems consisting of thousands of vertices.

There are several directions for the future work . We continue to seek a constant factor approximation
algorithm, independent of ρG. We also believe that by adding some heuristic optimizations to the walks
produced by our algorithms, we could significantly improve their performance in practice. Finally, we
are currently looking at ways to extend our results to multiple robots. One approach we are pursuing is
to equitably partition the graph such that the single robot solution can be utilized for each partition.

Acknowledgements. This work was supported in part by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

References

[1] S. Alamdari, E. Fata, and S. L. Smith. Min-max latency walks: Approximation algorithms for mon-
itoring vertex-weighted graphs. In Workshop on Algorithmic Foundations of Robotics, Cambridge,
MA, June 2012.

[2] E. Arvelo, E. Kim, and N. C. Martins. Memoryless control design for persistent surveillance under
safety constraints, September 2012. Available at http://arxiv.org/abs/1209.5805.

[3] B. Bethke, J. P. How, and J. Vian. Group health management of UAV teams with applications
to persistent surveillance. In American Control Conference, pages 3145–3150, Seattle, WA, June
2008.

[4] B. Bethke, J. Redding, J. P. How, M. A. Vavrina, and J. Vian. Agent capability in persistent mission
planning using approximate dynamic programming. In American Control Conference, pages 1623–
1628, Baltimore, MD, June 2010.

[5] J. A. Bondy and U. S. R. Murty. Graph Theory, volume 244 of Graduate Texts in Mathematics.
Springer, 1 edition, 2008.

[6] F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. L. Smith. Dynamic vehicle routing for robotic
systems. Proceedings of the IEEE, 99(9):1482–1504, 2011.

[7] G. Cannata and A. Sgorbissa. A minimalist algorithm for multirobot continuous coverage. IEEE
Transactions on Robotics, 27(2):297–312, 2011.

[8] C. G. Cassandras, X. C. Ding, and X. Lin. An optimal control approach for the persistent monitoring
problem. In IEEE Conf. on Decision and Control and European Control Conference, pages 2907
–2912, Orlando, FL, December 2011.

23

[9] Y. Chevaleyre. Theoretical analysis of the multi-agent patrolling problem. In IEEE/WIC/ACM Int.
Conf. Intelligent Agent Technology, pages 302–308, Beijing, China, September 2004.

[10] H. Choset. Coverage for robotics – A survey of recent results. Annals of Mathematics and Artificial
Intelligence, 31(1-4):113–126, 2001.

[11] N. Christofides and J. E. Beasley. The period routing problem. Networks, 14(2):237–256, 1984.

[12] W. J. Cook. National travelling salesman problems, 2009. Available at http://www.tsp.
gatech.edu/index.html.

[13] Y. Elmaliach, N. Agmon, and G. A. Kaminka. Multi-robot area patrol under frequency constraints.
In IEEE Int. Conf. on Robotics and Automation, pages 385–390, Roma, Italy, April 2007.

[14] Y. Gabriely and E. Rimon. Competitive on-line coverage of grid environments by a mobile robot.
Computational Geometry: Theory and Applications, 24(3):197–224, 2003.

[15] I. Gørtz, M. Molinaro, V. Nagarajan, and R. Ravi. Capacitated vehicle routing with non-uniform
speeds. Integer Programming and Combinatoral Optimization, 6655/2011:235–247, 2011.

[16] I. I. Hussein and D. M. Stipanovic̀. Effective coverage control for mobile sensor networks with
guaranteed collision avoidance. IEEE Transactions on Control Systems Technology, 15(4):642–
657, 2007.

[17] G. Laporte. Fifty years of vehicle routing. Transportation Science, 43(4):408–416, 2009.

[18] S. Lin and B. W. Kernighan. Effective heuristic algorithm for the traveling salesman problem.
Operations Research, 21:498–516, 1973.

[19] N. Mathew, S. L. Smith, and S. L. Waslander. A graph-based approach to multi-robot rendezvous
for recharging in persistent tasks. In IEEE Int. Conf. on Robotics and Automation, Karlsruhe,
Germany, May 2013. Submitted.

[20] N. Michael, E. Stump, and K. Mohta. Persistent surveillance with a team of MAVs. In IEEE/RSJ
Int. Conf. on Intelligent Robots & Systems, pages 2708–2714, San Francisco, CA, October 2011.

[21] N. Nigram and I. Kroo. Persistent surveillance using multiple unmannded air vehicles. In IEEE
Aerospace Conference, pages 1–14, Big Sky, MT, May 2008.

[22] C. H. Papadimitriou and M. Yannakakis. The traveling salesman problem with distances one and
two. Mathematics of Operations Research, 18:1–11, February 1993.

[23] F. Pasqualetti, J. W. Durham, and F. Bullo. Cooperative patrolling via weighted tours: Performance
analysis and distributed algorithms. IEEE Transactions on Robotics, 28(5):1181–1188, 2012.

[24] F. Pasqualetti, A. Franchi, and F. Bullo. On cooperative patrolling: Optimal trajectories, complexity
analysis and approximation algorithms. IEEE Transactions on Robotics, 28(3):592–606, 2012.

[25] R. N. Smith, M. Schwager, S. L. Smith, D. Rus, and G. S. Sukhatme. Persistent ocean monitoring
with underwater gliders: Adapting sampling resolution. Journal of Field Robotics, 28(5):714–741,
2011.

24

[26] S. L. Smith and D. Rus. Multi-robot monitoring in dynamic environments with guaranteed currency
of observations. In IEEE Conf. on Decision and Control, pages 514–521, Atlanta, GA, December
2010.

[27] S. L. Smith, M. Schwager, and D. Rus. Persistent robotic tasks: Monitoring and sweeping in
changing environments. IEEE Transactions on Robotics, 28(2):410–426, 2012.

[28] E. Stump and N. Michael. Multi-robot persistent surveillance planning as a vehicle routing problem.
In IEEE Conf. on Automation Science and Engineering, pages 569–575, Trieste, Italy, August 2011.

[29] A. Tiwari, M. Jun, D. E. Jeffcoat, and R. M. Murray. Analysis of dynamic sensor coverage problem
using Kalman filters for estimation. In IFAC World Congress, Prague, Czech Republic, July 2005.

[30] T. Tulabandhula, C. Rudin, and P. Jaillet. Machine learning and the traveling repairman, April
2011. Available at http://arxiv.org/abs/1104.5061.

[31] V. V. Vazirani. Approximation Algorithms. Springer, 2004.

25

