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Abstract— In this paper we study rebalancing strategies for
a mobility-on-demand urban transportation system blending
customer-driven vehicles with a taxi service. In our system, a
customer arrives at one of many designated stations and is
transported to any other designated station, either by driving
themselves, or by being driven by an employed driver. When
some origins and destinations are more popular than others,
vehicles will become unbalanced, accumulating at some stations
and becoming depleted at others. This problem is addressed
by employing rebalancing drivers to drive vehicles from the
popular destinations to the unpopular destinations. However,
with this approach the rebalancing drivers themselves become
unbalanced, and we need to “rebalance the rebalancers” by
letting them travel back to the popular destinations with a
customer. In this paper we study how to optimally route the
rebalancing vehicles and drivers so that the number of waiting
customers remains bounded while minimizing the number of
rebalancing vehicles traveling in the network and the number
of rebalancing drivers needed; surprisingly, these two objectives
are aligned, and one can find the optimal rebalancing strategy
by solving two decoupled linear programs. We determine the
minimum number of drivers and minimum number of vehicles
needed to ensure stability in the system. Our simulations suggest
that, in Euclidean network topologies, one would need between
1/3 and 1/4 as many drivers as vehicles.

I. INTRODUCTION

In this paper we study vehicle routing algorithms for a
novel model of urban transportation system, which involves
blending customer-driven vehicles with a taxi service. Our
proposed car-share system is an example of a Mobility-
on-Demand (MOD) system, and aims at providing urban
dwellers with the tailored service of a private automobile,
while utilizing limited urban land more efficiently (e.g.,
by minimizing the automobiles that sit unused) [1]. In
our system, a customer arrives at one of many designated
stations and is transported to any other designated station,
either by driving themselves, or by being driven by an
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employed driver. In a typical one way car-share system
(e.g. Car2Go) it has been observed empirically [2], and
shown analytically [3], that vehicles become unbalanced,
accumulating at popular destinations and becoming depleted
at less popular ones. Our proposed system addresses this
problem by employing rebalancing drivers to drive vehicles
from the popular destinations to the unpopular destinations.
However, with this approach the rebalancing drivers them-
selves become unbalanced, and hence we need to “rebalance
the rebalancers” by letting them travel back to the popular
destinations with a customer. In such a trip, the rebalancing
driver operates the vehicle as a taxi, driving the customer to
their desired destination. The system is illustrated in Fig. 1.
The main difficulty in such a system, and the focus of this
paper, is how to determine the rebalancing trips and the taxi
trips in order to minimize wasted trips, while providing the
best possible customer experience.

Specifically, the contribution of this paper is twofold: we
study routing algorithms for the MOD system illustrated
in Fig. 1 that (1) minimize the number of rebalancing
vehicles traveling in the network, (2) minimize the number
of drivers needed, and (3) ensure that the number of waiting
customers remains bounded. Second, leveraging our analysis,
we determine the relation between the minimum number
of drivers needed and the minimum number of vehicles
needed to ensure stability in the system; these relations would
provide a system designer with essential structural insights
to develop business models. Interestingly, our simulations
suggest that, in Euclidean network topologies, one would
need between 1/3 and 1/4 as many drivers as vehicles, and
that this fraction decreases to about 1/5 if one allows up to
3-4 drivers to take a trip with a customer.

This paper builds upon the previous work of the authors
in designing optimal rebalancing policies for MOD systems
leveraging autonomous operation of the vehicles [4], [3],
i.e., without the need of human drivers. On the contrary, the
system proposed in this paper would use technology that is
available today (i.e., by employing human drivers instead
of autonomous cars), and our finding are readily applicable
to existing one-way car-share systems, which already employ
drivers to rebalance cars using heuristic methods [2]. Further-
more, by comparing the results in this paper with those in [4],
one can quantitatively assess the relative benefits of “hi-tech”
autonomous MOD systems versus “low-tech” driver-based
MOD systems. The problem addressed in this paper has
also many characteristics in common with the well-known
Dynamic Traffic Assignment (DTA) problem [5], [6], [7],
[8]. The key difference between rebalancing in MOD systems



and the DTA problem is that in the former the optimization
is over the empty vehicle trips (i.e., the rebalancing trips)
rather than the passenger carrying trips.

The paper is structured as follows. In Section II we present
a fluid model for our system, and we formally state the
rebalancing problem. In Section III we (i) study the well-
posedness and equilibria of the model; (ii) determine the
minimum number of vehicles and drivers needed to meet the
customer demand; and (iii) show that the system is indeed
locally stable. In Section IV we show how to optimally route
the rebalancing vehicles and drivers to keep the number of
waiting customers is bounded while minimizing the number
of rebalancing vehicles traveling in the network and the
number of rebalancing drivers needed. In Section V we study
the relation between the minimum number of drivers needed
and the minimum number of vehicles needed. Due to space
constraints, we refer to our technical note for proofs [9].
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Fig. 1. At each station there are three queues: customers (yellow dots),
drivers (red dots), and vehicles (small car icons). There are three types of
car trips between stations: A customer can drive a car ; a customer can be
driven by a driver; or, a driver can drive a car to rebalance.

TABLE I
DESCRIPTION OF NOTATION FOR STATION i

Definition
ci number of customers at station i
vi number of vehicles at station i
ri number of drivers at station i
λi rate of arrival of customers at station i
µi departure rate from station i
Tij travel time from station i to station j
pij fraction of customers at station i destined for station j
αij rate of rebalancing vehicles from station i to station j
γi

∑
j αij

βij rate of rebalancing drivers from station i to station j
fij fraction of customers traveling from i to j willing

to use taxis
H(·) Heaviside function

II. MODELING THE MOBILITY-ON-DEMAND SYSTEM

In our prior work [3] we proposed a fluid model for
mobility-on-demand systems and formulated a policy to op-
timally rebalance vehicles assuming that they could operate

autonomously. In this paper we consider rebalancing the
vehicles through the use of dedicated personnel that are
employed to drive the vehicles. In this section we extend
the fluid model in [3] to capture the later scenario.

Basic model: The model in [3] can be formalized as
follows. Consider a set of n stations, N = {1, . . . , n},
defined over an extended geographical area (see Figure 1).
Since the model is a fluid approximation, the number of
customers, vehicles, and drivers are represented by real
numbers. Customers arrive at station i at a constant rate
λi ∈ R>0. The number of customers at station i at time
t is ci(t) ∈ R≥0, and the number of vehicles waiting idle
at station i at time t is vi(t) ∈ R≥0. The total number
of vehicles in the system is V ∈ R>0. The fraction of
customers at station i whose destination is station j is pij
(where pij ∈ R≥0, pii = 0, and

∑
j pij = 1). The travel

time from station i to station j is Tij ∈ R≥0. When there
are both customers and vehicles at station i (i.e., ci(t) > 0
and vi(t) > 0), then the rate at which customers (and hence
vehicles) leave station i is µi; when, instead, ci(t) = 0 but
vi(t) > 0 the departure rate is λi. A necessary condition for
the total number of customers at station i to remain bounded
is that µi ≥ λi; we will assume µi > λi throughout the paper
(the case µi = λi can be addressed with techniques similar
to the ones introduced in this paper and is omitted).

From [3], we showed that a station is in need of rebalanc-
ing if −λi+

∑
j 6=i λjpji 6= 0. This can be easily understood

by noting that λi is the rate at which vehicles leave station
i, while

∑
j 6=i λjpji is the rate at which vehicles arrive at

station i. In what follows we assume that

−λi +
∑
j 6=i

λjpji 6= 0 for all i ∈ N ,

and thus each station is in need of rebalancing. We comment
further on this assumption in Remark III.3.

Rebalancing vehicles: In order to rebalance the number
of vehicles vi(t) at each station, vehicles without customers
will be driven between stations using hired human drivers.
The number of drivers waiting at station i is ri(t) ∈ R≥0
and the total number of drivers in the system is R ∈ R>0. In
order to send a vehicle without a customer on a rebalancing
trip from station i to station j, there must be a driver present
at station i. We let αij ∈ R≥0 denote the rate at which
we send vehicles from station i to station j when vehicles
and drivers are available at station i. The total rate at which
station i sends vehicles without customers is γi :=

∑
j αij ,

where αii = 0. We let α denote the matrix with entries given
by αij . These trips are shown in Figure 1 as vehicles with
red dots in them.

Rebalancing drivers: Finally, we must rebalance the
drivers in the network, as they will tend to accumulate at
some stations and become depleted at others. This is done
as follows. If a driver would like to make a trip from station
i to station j, it can drive a car for a customer on a trip from
i to j, thereby acting as a taxi driver for that trip. This allows
the driver to make the journey from station i to station j by
“hitching a ride” on a passenger-carrying trip, but without



negatively affecting the customer experience. We quantify
this using two sets of variables. The variables βij ∈ R≥0
give the rate at which drivers are sent from station i to station
j when there are idle drivers available at station i. We let
β denote the matrix with entries given by βij and assume
βii = 0.

The quantities fij ∈ (0, 1] give the fraction of customers
making the trip from station i to j that would be willing
to use the taxi mode of service on their trip. The remaining
fraction of customers 1−fij would prefer to drive themselves
on their trip. Thus, fij imposes a constraint on the largest
value of βij . In what follows we assume that the fij are such
that there are enough customer trips available to rebalance
the drivers. In Proposition III.4 we give a necessary and
sufficient condition on the fij such that this is true. These
trips are shown in Figure 1 as vehicles containing red and
yellow dots. The notation is summarized in Table I.

We are now ready to write the differential equations gov-
erning the evolution of the number of vehicles, customers,
and drivers at each station. In order to write the expressions
more compactly, we introduce the following notation:

vi := vi(t), ci := ci(t), ri := ri(t),

vij := vj(t− Tji), cij := cj(t− Tji), rij := rij(t− Tij).

(In other words, vij denotes the number of vehicles that were
present at station j, specifically Tji time units prior to the
current time.) Then, we can write the customer dynamics at
station i as

ċi =


λi, if vi = 0,

0, if vi > 0 and ci = 0,

λi − µi, if vi > 0 and ci > 0.

Defining the Heaviside function as

H(x) :=

{
1, if x > 0,
0, otherwise,

the customer dynamics can be written as

ċi = λi
(
1−H(vi)

)
+ (λi − µi)H(ci)H(vi).

The rate of change of vehicles at station i can be written
as the sum of four components:

1) the rate at which customer-carrying vehicles depart
station i: 

0, if vi = 0

−λi, if vi > 0 and ci = 0,

−µi, if vi > 0 and ci > 0,

which can be written more compactly as −λiH(vi) +
(λi − µi)H(ci)H(vi);

2) the rate at which customer-carrying vehicles arrive at
station i:∑

j 6=i

pji

(
λjH(vij)− (λj − µj)H(cij)H(vij)

)
;

3) the rate at which vehicles without a customer
(rebalancing vehicles) depart station i, given by
−γiH(vi)H(ri);

4) the rate at which vehicles without a customer (re-
balancing vehicles) arrive at station i, given by∑
j 6=i αjiH(vij)H(rij).

Thus, the vehicle dynamics can be written as

v̇i = −λiH(vi) + (λi − µi)H(ci)H(vi)

+
∑
j 6=i

pji

(
λjH(vij)− (λj − µj)H(cij)H(vij)

)
− γiH(vi)H(ri) +

∑
j 6=i

αjiH(vij)H(rij),

Finally, the dynamics for the drivers contains four com-
ponents. The first two components are identical to those of
the rebalancing vehicles, given by 3) and 4) above. (This
is due to the fact that each rebalancing vehicle contains a
driver). The third component is the rate at which rebalanc-
ing drivers depart station i (by driving customer carrying
vehicles): −

∑
j 6=i βijH(vi)H(ri). The fourth term is the

rate at which rebalancing drivers arrive at station i with
a customer:

∑
j 6=i βjiH(vij)H(rij). Since drivers rebalance

by driving vehicles on customer trips, we have from the
customer dynamics ċi that

βij ≤

{
fijλipij if ci = 0

fijµipij if ci > 0

However, we will consider fixed values of βij , and since
µi > λi, we simply need to enforce the more stringent
constraint βij ≤ fijλipij .

Therefore, the ṙi dynamics can be written as

ṙi = −γiH(vi)H(ri) +
∑
j 6=i

αjiH(vij)H(rij)

−
∑
j 6=i

βijH(vi)H(ri) +
∑
j 6=i

βjiH(vij)H(rij).

Putting everything together, we can write a set of nonlin-
ear, time-delay differential equations describing the evolution
of customers and vehicles in the system as

ċi =λi
(
1−H(vi)

)
+ (λi − µi)H(ci)H(vi),

v̇i =− λiH(vi) + (λi − µi)H(ci)H(vi)+∑
j 6=i

pji

(
λjH(vij)− (λj − µj)H(cij)H(vij)

)
− γiH(vi)H(ri) +

∑
j 6=i

αjiH(vij)H(rij),

ṙi =− γiH(vi)H(ri) +
∑
j 6=i

αjiH(vij)H(rij)

−
∑
j 6=i

βijH(vi)H(ri) +
∑
j 6=i

βjiH(vij)H(rij).

(1)

where t ≥ 0; the initial conditions satisfy ci(τ) =
0, vi(τ) = 0, ri(τ) = 0 for τ ∈ [−maxi,j Tij , 0), ci(0) ∈
R≥0, vi(0) ∈ R≥0 with vi(0) > 0 for at least one i ∈ N ,
ri(0) ∈ R≥0 with ri(0) > 0 for at least one i ∈ N ,



and
∑
i vi(0) = V and

∑
i ri(0) = R. The optimization

variables α and β are constrained as follows:

0 ≤βij ≤ fijλipij
0 ≤αij .

The problem we wish to solve is as follows: find an opti-
mal vehicle rebalancing assignment α and driver rebalancing
assignment β that simultaneously

1) minimizes the number of rebalancing vehicles traveling
in the network,

2) minimizes the number of drivers needed, and
3) ensures that the number of waiting customers remains

bounded.
Note that this is a multi-objective optimization, and thus
it is not clear that one can both minimize the number of
rebalancing vehicles in the network and the number of drivers
needed. However, it will turn out that these two objectives
are aligned, and one can find an assignment (α, β) that
minimizes both objectives.

III. WELL-POSEDNESS, EQUILIBRIA, AND STABILITY OF
FLUID MODEL

In this section we first discuss the well-posedness of
model (1) by showing two important properties, namely
existence of solutions and invariance of the number of vehi-
cles and rebalancing drivers along system trajectories. Then,
we characterize the equilibria, we determine the minimum
number of vehicles and drivers to ensure their existence,
and we give a necessary and sufficient condition on the
“user’s preference” fij such that there are enough customer
trips available to rebalance the drivers. Finally, we show
that rebalancing vehicles and drivers give rise to equilibria
that are locally (i.e., within a neighborhood of the nominal
conditions) stable.

A. Well-posedness

The fluid model (1) is nonlinear, time-delayed, and the
right-hand side is discontinuous. Due to the discontinuity, we
need to analyze the model within the framework of Filippov
solutions (see, e.g., [10]). The following proposition verifies
that the fluid model is well-posed.

Proposition III.1 (Well-posedness of fluid model). For the
fluid model (1), the following hold:

1) For every initial condition, there exist continuous func-
tions ci(t) : R → R≥0, vi(t) : R → R≥0, and
ri(t) : R → R≥0 i ∈ N , satisfying the differential
equations (1) in the Filippov sense.

2) The total number of vehicles and rebalancing drivers
is invariant for t ≥ 0 and is equal, respectively, to
V =

∑
i vi(0) and R =

∑
i ri(0).

B. Equilibria

The following result characterizes the equilibria of
model (1). The proof is contained in [9]. Recall that no
station is exactly balanced, and thus −λi+

∑
j 6=i λjpji 6= 0,

for all i ∈ N .

Theorem III.2 (Existence of equilibria). Let A× B be the
set of assignments (α, β) that verify the equations∑

j 6=i

(αij − αji) = Di, (2)∑
j 6=i

(βij − βji) = −Di, (3)

for each i ∈ N , where Di := −λi +
∑
j 6=i λjpji. Moreover,

let

Vα :=
∑
i,j

Tij (pijλi + αij), and

Rα,β :=
∑
i,j

Tij (αij + βij).

If (α, β) /∈ A × B, then no equilibrium exists. If (α, β) ∈
A× B, there are two cases:

1) If V > Vα and R > Rα,β , then the set of equilibria is

ci = 0, vi > 0, ri > 0 ∀ i ∈ N ,

where
∑
i vi = V − Vα and

∑
i ri = R−Rα,β .

2) If V ≤ Vα or R ≤ Rα,β , then no equilibrium exists.

Remark III.3 (Balanced stations case). We have assumed
that Di = −λi +

∑
j 6=i λjpji 6= 0 for each station i. This

assumption removes the pathological case that a station is
perfectly balanced and does not need any rebalancing effort.
In the case that Di = 0 for a station, then ri = 0 becomes a
valid equilibrium. Due to space constraints we have omitted
a full treatment of the Di = 0 case in this presentation. •

One question remains; does there always exist an assign-
ment (α, β) ∈ A × B that satisfies the constraints αij ≥ 0,
and 0 ≤ βij ≤ fijλipij for each i, j ∈ N ? We call such
an assignment feasible. It is straightforward to verify that a
feasible assignment for α always exists, since the variables
are constrained only to be non-negative [3]. The β variables,
however, are bounded from above (that is, they have finite
capacities), and thus it is not clear whether there exists a
feasible β assignment. The following result gives a standard
condition for the existence of a feasible assignment (see, for
example [11, p. 220] and a consequence of this condition.
The proof is given in [9].

Proposition III.4 (Existence of a feasible assignment). A
feasible assignment (α, β) exists if and only if,

−
∑
i∈S

Di ≤
∑

i∈S,j /∈S

fijλipij for every set S ⊆ N , (4)

where Di = −λi+
∑
j 6=i λjpji. As a consequence, if fij = 1

for all i, j,∈ N , then a feasible assignment always exists.

C. Stability of Equilibria

In this section we investigate the (local) stability of the
equilibria of our model. We consider the following notion
of local stability. Let (α, β) ∈ A × B and assume V > Vα
and R > Rα,β (this is a necessary and sufficient condition



to have equilibria, see Theorem III.2). We say that the (non-
empty) set of equilibria

Eα,β :=
{
(c,v, r) ∈ R3n

∣∣ ci = 0, vi > 0, ri > 0 for all

i ∈ N , and
∑
i

vi = V − Vα and
∑
i

ri = R−Rα,β
}

(5)

is locally asymptotically stable if for any equilibrium
(c,v, r) ∈ Eα,β there exists a neighborhood Bδα,β(c,v, r) :=
{(c,v, r) ∈ R3n | ci ≥ 0, vi ≥ 0, ri ≥ 0 for all i ∈ N , ‖(c−
c,v − v, r − r)‖ < δ, and

∑
vi = V − Vα and

∑
ri =

R−Rα,β} such that every evolution of model (1) starting at

ci(τ) = ci for τ ∈ [−max
i,j

Tij , 0)

vi(τ) = vi for τ ∈ [−max
i,j

Tij , 0)

ri(τ) = ri for τ ∈ [−max
i,j

Tij , 0)

(c(0),v(0), r(0)) ∈ Bδα,β(c,v, r))

(6)

has a limit which belongs to the equilibrium set. In other
words,

(
limt→+∞ c(t), limt→+∞ v(t), limt→+∞ r(t)

)
∈

Eα,β . The next theorem characterizes stability. The proof is
contained in [9].

Theorem III.5 (Stability of equilibria). Let (α, β) ∈ A×B
be a feasible assignment, and assume V > Vα and R >
Rα,β; then, the set of equilibria Eα,β is locally asymptotically
stable.

IV. OPTIMAL REBALANCING

Our objective is to find a rebalancing assignment (α, β)
that simultaneously minimizes the number of rebalancing
vehicles traveling in the network and the number of rebalanc-
ing drivers needed, while ensuring the existence of (locally)
stable equilibria for model (1). From the previous section,
we already know that the set of assignments ensuring the
existence of stable equilibria is A × B (provided that the
total number of vehicles V and drivers R is large enough).

The time-average number of rebalancing vehicles traveling
in the network is simply given by

∑
i,j Tijαij . In minimizing

this quantity we are also minimizing the lower bound on the
necessary number of vehicles Vα. The time-average number
of drivers in the network is given by

∑
i,j Tij(αij +βij). In

minimizing this quantity we are minimizing the lower bound
on the necessary number of drivers Rα,β .

Combining the two objectives with the existence of stable
equilibria constraints in (2) and (3), we obtain the following:

minimize
∑
i,j

Tijαij and
∑
i,j

Tij(αij + βij)

subject to
∑
j 6=i

(αij − αji) = Di ∀ i ∈ N∑
j 6=i

(βij − βji) = −Di ∀ i ∈ N

0 ≤ αij ∀ i, j ∈ N ,
0 ≤ βij ≤ fijλipij ∀ i, j ∈ N ,

where Di = −λi +
∑
j 6=i λjpji, and the optimization vari-

ables are αij and βij , where i, j ∈ N . The constraints ensure
that the optimization is over the set A× B. Note, however,
that this optimization can be decoupled into an optimization
over α and an optimization over β. Both optimizations are
minimum cost flow problems [11]. The α optimization is
identical to that presented in [3]:

minimize
∑
i,j

Tijαij

subject to
∑
j 6=i

(αij − αji) = Di ∀ i ∈ N

αij ≥ 0 ∀ i, j ∈ N .

The β optimization then looks as follows:

minimize
∑
i,j

Tijβij

subject to
∑
j 6=i

(βij − βji) = −Di ∀ i ∈ N

0 ≤ βij ≤ fijλipij ∀ i, j ∈ N .

The α optimization is an uncapacitated minimum cost flow
problem and thus is always feasible. In Proposition III.4
we give conditions on the fij fractions in order for the β
optimization to be feasible.

The rebalancing policy is then given by solving the two
minimum cost flow problems to obtain solutions α∗ij and β∗ij .
We then send empty rebalancing vehicles (along with drivers)
from station i to station j at a rate of α∗ij (when vehicles
and drivers are available at station i). We send drivers on
customer-carrying vehicles from i to j at a rate of β∗ij (when
customers and vehicles are available at station i).

V. SIMULATIONS

We study the relation between the minimum number of
drivers needed for stability Rα,β and the minimum number
of vehicles needed Vα from Theorem III.2. To this end, we
need to generate sample data consisting of arrival rates λi at
each station i, customer destination probabilities pij , travel
times between stations Tij , and the fraction of customers fij
traveling from i to j that are willing to be driven by a driver.
We generate this data as follows: We uniformly randomly
place n stations in a 100×100 environment, and calculate the
travel times Tij as the Euclidean distance between stations.
We uniformly randomly generate the arrival rates λi on
the interval [0, 0.05] arrivals per time unit. Similarly we
uniformly randomly generate the destination probabilities pij
such that they are nonnegative and

∑
j pij = 1 for each

station i. Finally, we assume that fij = 1 for each pair of
stations in order to avoid issues with feasibility. To solve
the optimizations in Section IV for the optimal assignment
(α∗, β∗) ∈ A×B, we use the freely available SeDuMi (Self-
Dual-Minimization) toolbox.

Figure 2 shows results for numbers of stations ranging
from 10 up to 200. For each number of stations we generate
20 random problem instances of the form described above.
The thick line in each plot shows the mean over the 20 trials
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Fig. 2. Left figure: The minimum number of vehicles and drivers. Middle figure: The ratio between the minimum number of drivers and number of
vehicles. Right figure: The fraction of drivers that are performing vehicle rebalancing trips. For each fixed number of stations, 20 trials were performed.
Thick lines show the mean of the 20 trials while thin dashed lines show the maximum and minimum over the trials.
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Fig. 3. Increasing the number of drivers per customer trip for 100 station
problems. Left figure: The minimum number of vehicles and drivers. Right
figure: The fraction of drivers that are performing vehicle rebalancing trips.

while the thin dashed lines show the maximum and minimum
values. The left figure shows how Vα∗ and Rα∗,β∗ vary with
the number of stations. The middle figure shows the ratio
Rα∗,β∗/Vα∗ as a function of the number of stations. We can
see that we need between 1/3 and 1/4 as many drivers as
we do vehicles. The right figure shows the ratio between the
minimum number of rebalancing vehicles in transit and the
number of drivers. This gives a measure of the fraction of
drivers that are driving rebalancing vehicles. It is interesting
to note that this ratio is quite low, reaching approximately
1/5 for 200 stations.

One way to increase the fraction of drivers performing
vehicle rebalancing is to allow multiple drivers to take a trip
with a customer. This allows drivers to take more efficient
routes back to stations that are in need of drivers. In our
model it corresponds to setting fij > 1. This is explored in
Figure 3 where we range fij from 1 to 4 for 20 problem
instances on 100 stations. We see that as fij increases from
1 to 4, the number of drivers decreases from approximately
80 to 50, and the fraction of drivers performing vehicle
rebalancing increases from under 1/4 to nearly 2/5.

VI. CONCLUSIONS

In this paper we studied the problem of rebalancing the
rebalancers in a mobility-on-demand system, which blends
customer-driven vehicles with a taxi service. For a fluid

model of the system, we showed that the optimal rebalancing
policy can be found as the solution of two linear programs.
Also, we showed that in Euclidean network topologies one
would need between 1/3 and 1/4 as many drivers as vehicles,
and that this fraction decreases to about 1/5 if one allows up
to 3-4 drivers to take a trip with a customer. These results
could have an immediate impact on existing one-way car-
sharing systems such as Car2Go.

For future work we plan to analyze a stochastic queueing
model and study the time-varying case whereby the system’s
parameters change periodically (thus modeling the day/night
variations). Also, we plan to develop real-time rebalancing
policies that do not require any a priori information, and to
incorporate uncertainty in the travel times, time windows for
the customers, and capacity constraints for the roads.
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