
The Maximum Traveling Salesman Problem with Submodular Rewards

Syed Talha Jawaid Stephen L. Smith

Abstract— In this paper we extend the classic problem of
finding the maximum weight Hamiltonian cycle in a graph to
the case where the reward is a submodular function of the
edges. We propose a greedy algorithm and a 2-matching based
algorithm, and we show that they have approximation factors

of 1
2+κ

and max
{

2
3(2+κ)

,
2
3
(1− κ)

}

respectively, where κ is the

curvature of the function. Both algorithms run in time cubic
to the number of vertices. We provide simulation results to
empirically evaluate the performance of the algorithms.

I. INTRODUCTION

The maximum weight Hamiltonian cycle is a classic

problem in combinatorial optimization. It consists of finding

a cycle in a graph that visits all the vertices and maximizes

the sum of the weights on the edges traversed. Also referred

to as the max-TSP, the problem is NP-hard; however, a num-

ber of approximation schemes have been developed. In [1]

four simple approximation algorithms are analyzed. The

authors show that greedy, best-neighbour, and 2-interchange

heuristics all give a 1
2 approximation to the optimal tour.

They also show that a 2-matching based heuristic, gives

a 2
3 approximation. Serdyukov’s algorithm [2] — which

combines a cycle cover and a matching to compute a tour

— can give a 3
4 approximation. In this paper we look at

extending the max-TSP problem to the case of submodular

rewards.

The main property of a submodular function is that of

decreasing marginal value, i.e., adding an element to a set

will result in a larger reward than adding it to a superset.

One application in which submodular functions appear is

in making sensor measurements in an environment. For

example, in [3] the authors consider the problem of placing

static sensors over a region for optimal sensing. This can be

represented quantitatively by using the concept of mutual

information of a set of sensors, which is a submodular

function. Other areas where submodular functions come up

include viral marketing, active learning [4] and AdWords

assignment [5]. A different form of sensing involves using

mobile sensors (robots) for persistent monitoring of a large

environment [6]. The metric used to determine the quality

of the sensing is usually submodular in nature. Due to the

persistent operation, it is desirable to have a closed walk or

a tour over which the sensing robot travels. This motivates

the problem of finding a tour that has the maximum reward.

Maximizing a monotone submodular function over an

independence system constraint is known to be NP-hard.

This research is partially supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

The authors are with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo ON, N2L 3G1 Canada
(stjawaid@uwaterloo.ca; stephen.smith@uwaterloo.ca)

Approximation bounds exist for optimizing over a matroid

[7], and more generally, p-systems [8] as well as for the

class of k-exchange systems [9]. Some bounds that include

the dependence on curvature are evaluated in [10].

Contributions: The contributions of this paper are to

present and analyze two simple algorithms for constructing

a maximum reward tour on a graph. The metric used in

evaluating the “reward” of a particular tour is a positive

monotone submodular function of the edges. We frame this

problem as an optimization over an independence system

constraint and present two approximation algorithms. The

first method is greedy and gives a 1
2+κ

approximation. The

second method creates a 2-matching and then turns it into

a tour. This gives a max
{

2
3(2+κ) ,

2
3 (1− κ)

}

worst case

approximation where κ is the curvature of the submodular

function. Both techniques require O(|V |3) value oracle calls

to the submodular function. The algorithms are also extended

to directed graphs. To obtain these results, we present a new

bound for the greedy algorithm as a function of curvature.

In an extended version of this paper [11] we present

some preliminary results for the case of a multi-objective

optimization consisting of submodular (sensing) rewards

along with modular (travel) costs.

Organization: The organization of this paper is as fol-

lows. In Section II we review independence systems and

submodularity. In Section III we formalize our problem. In

Section IV we analyze a simple greedy strategy. In Section V

we present and analyze a strategy to construct a solution

using a matching. In Section VI we look at how the presented

algorithms extend to the case where the graph is directed.

Finally, simulation results are provided in Section VII.

II. PRELIMINARIES

Here we present preliminary concepts and give a brief

summary of results on combinatorial optimization problems

over independence systems.

A. Independence systems

Combinatorial optimization problems can often be formu-

lated as the maximization or minimization over a set system

(E,F) of a cost function f : F → R, where E is the

base set of all elements and F ⊆ 2E . An independence

system is a set system that is closed under subsets (i.e.,

if A ∈ F , then B ⊆ A =⇒ B ∈ F). Sets in F are

referred to as “independent sets”. Maximal independent sets

(i.e., {A ∈ F|A ∪ {x} /∈ F , ∀x ∈ E \A}) are the bases.

Definition II.1 (p-system). Given an independence system

S = (E,F). For any A ⊆ E, let U(A) and L(A) be the

sizes of the maximum and minimum cardinality bases of A
respectively. S is a p-system if U(A) ≤ pL(A), ∀A ⊆ E.

Two classes of p-systems are called p-extendible systems

and matroids. A matroid is a 1-extendible system and any

p-extendible system is a p-system.

B. Submodularity

Without any additional structure on the set-function f ,

the optimization problem is generally intractable. However, a

fairly general class of cost functions for which approximation

algorithms exist is the class of submodular set functions.

Definition II.2 (Submodularity). Let N be a finite set. A

function f : 2N → R is submodular if

f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T), ∀S, T ⊆ N.

Submodular functions satisfy the property of diminishing

marginal returns. That is, the contribution of any element x
to the total value of a set decreases as the set gets bigger.

More formally, let ∆A(B) := f(A ∪B)− f(A). Then,

∆A(x) ≥ ∆B(x), ∀A ⊆ B ⊆ N.

Since the domain of f is 2N , there are an exponential

number of possible values for the set function. We will

assume that f(S) for any S ⊆ N is determined by a

black box function. This value oracle is assumed to run in

polynomial time in the size of the input set.

The class of submodular functions is fairly broad and

includes linear functions. One way to measure the degree of

submodularity is the curvature. A submodular function has

a curvature of κ ∈ [0, 1] if for any A ⊂ N and e ∈ N \A
∆A(e) ≥ (1− κ)f(e). (1)

In other words, the minimum possible marginal benefit of

any element e is within a factor of (1− κ) of its maximum

possible benefit.

We formulate a slightly stronger notion of the curvature—

the independence system curvature, κI—by taking the inde-

pendence system into account. In this case, (1) need only be

satisfied for any A ∈ F and e ∈ N \ A,A ∪ {e} ∈ F . This

value of curvature will be lower than the one obtained by

the standard definition given above.

C. Approximations

Here we consider some useful results for optimization over

independence systems. Combining results from [12], [8] and

[7], we have the following.

Lemma II.3. For the problem of approximating the maxi-

mum valued basis of a p-system,

(i) using a non-negative linear objective function, the

greedy algorithm gives a 1
p

approximation.

(ii) using a monotone non-negative submodular function,

the greedy algorithm gives a 1
p+1 approximation.

Linear functions are a special case of submodular func-

tions (curvature is 0) so it is reasonable to expect the greedy

bound to be a continuous function of the curvature. In [10],

for a system that is the intersection of p matroids the greedy

bound is shown to be 1
p+κ

. We extend this result to p-

systems. The proof is omitted here and can be found in [11].

Theorem II.4. Consider the problem of maximizing a no-

negative monotone submodular function f with curvature

κ, over a p-system. Then, the greedy algorithm gives an

approximation factor of 1
p+κ

.

D. Set Systems on Graphs

In this section we introduce some graph constructs and

then give some results relating them to p-systems. We are

given a graph G = (V,E,w) where V is the set of vertices

and E is the set of edges. A set of edges has a reward or

utility associated with it given by the function w : 2E →
R≥0. Let δ(v) denote the set of edges that are incident to v.

We follow the standard definitions for simple path, simple

cycle and Hamiltonian cycle (cf. [13]). We refer to a Hamil-

tonian cycle as a tour, and a simple cycle that is not a tour

as a subtour. Let H ⊂ 2E be the set of all tours in G.

Definition II.5 (Simple b-matching). Given vertex capacities

b : V [G]→ N. A simple b-matching is an assignment to the

edges f ∈ {0, 1}E such that
∑

e∈δ(v) fe ≤ b(v), ∀v ∈ V [G].
If

∑

e∈δ(v) fe = b(v), ∀v, the b-matching is perfect.

For the rest of this paper, any reference to a b-matching

will always refer to a simple b-matching.

Theorem II.6 (Mestre, [14]). A simple b-matching is a 2-

extendible system.

Given a complete graph, the classical Traveling Salesman

Problem (TSP) is to find a minimum cost tour. On a

directed graph, the TSP can be divided into two variants: the

Asymmetric TSP (where for two vertices u and v, c(u, v) 6=
c(v, u)) and the Symmetric TSP (where c(u, v) = c(v, u),
which is the case if the graph is undirected).

The set of possible solutions for the TSP can be defined

using an independence system. A set of edges is independent

if they form a collection of vertex disjoint paths, or a

complete tour. Although the STSP is just a special case of

the ATSP, directly defining an independence system for an

undirected TSP can lead to better approximations. A set of

edges is independent if the induced graph satisfies the two

conditions (i) each vertex has degree at most 2, and (ii) there

are no subtours.

Lemma II.7 (Jenkyns, [15]). On a graph with n vertices the

undirected TSP is a p-system with p = 2−
⌊

n+1
2

⌋−1
< 2.

III. PROBLEM FORMULATION

Given a complete graph G = (V,E,w), where w is

a submodular rewards function that has a curvature of κ,

we are interested in analysing simple algorithms to find a

Hamiltonian tour S that has the maximum reward:

max
S∈H

w(S). (2)

In [11] we also consider the problem of where costs are

incorporated into the optimization problem.

In the following sections, we look at two methods of

approximately finding the optimal tour according to (2).

IV. A SIMPLE GREEDY STRATEGY

A greedy algorithm to construct the TSP is given in

Algorithm 1. The idea is to pick the edge that will give

the largest marginal benefit at each iteration. The selected

edge cannot cause the degree of any vertex to be more than

2 nor create any subtours.

Algorithm 1: GREEDYTOUR

Input: Graph G = (V,E). Function oracle

w : 2E → R≥0

Output: Edge set M corresponding to a tour.

1 M ← ∅
2 while E 6= ∅ and |M | < |V | do

3 if M was updated then recalculate ρe, ∀e ∈ E
4 em ← argmaxe∈E ρe
5 Determine if em is valid by checking vertex degrees

and checking for loops

6 if em is valid then M ←M ∪ {em}
7 E ← E \ {em}
8 return M

Theorem IV.1. The complexity of the greedy tour algorithm

(Alg. 1) is O(|V |3(f + log |V |)), where f is the runtime of

the oracle, and is a 1
2+κ

approximation.

Proof. By Lemma II.7 and Theorem II.4, Algorithm 1 is a
1

2+κ
-approximation of (2). At each iteration, the marginal

benefit of edges not yet selected are recalculated and

sorted. This dominates the runtime and has a complexity

of O(|V |(|E|f + |E| log |E|)).

Motivated by the reliance of the bound on the curvature,

in the next section we will consider a method to obtain

improved bounds for functions with a lower curvature.

V. 2-MATCHING BASED TOUR

Another approach to finding the optimal basis of an

undirected TSP set system is to first relax the “no subtours”

condition. The set system defined by the independence

condition that each vertex can have a degree at most 2 is in

fact just a simple 2-matching. As before, finding the optimal

2-matching for a submodular function is a NP-hard problem.

We discuss two methods to approximate a solution. The first

is a greedy approach and the second is by using a linear

relaxation of the submodular function. We will see that the

bounds with linear relaxation will be better than the greedy

approach for lower values of curvature.

A. Greedy 2-Matching

One way to find an approximate maximum 2-matching is

to use a greedy approach similar to GREEDYTOUR, except

there is no need to check for subtours. We call this the

GREEDYMATCHING algorithm and present details in [11].

Theorem V.1. The complexity of the greedy matching algo-

rithm is O(|V |3(f +log |V |)), where f is the runtime of the

oracle. The greedy approach is a 1
2+κ

-approximation.

Proof. A simple 2-matching is a 2-extendible system, so

the greedy solution will be within 1
2+κ

of the optimal

(Lemma 2). The runtime analysis is similar to that of

GREEDYTOUR.

B. Maximum 2-Matching Linear Relaxation

Looking at the case of a linear objective function, the

problem of finding the maximum weight 2-matching can be

found in O(|V |3) time [13] via an extension of Edmonds’

Maximum Weighted Matching algorithm. For our original

problem with (2) as the objective function for the maxi-

mization, this method can obviously not be applied directly.

Therefore, we define a linear relaxation w̃ of the submodular

function w as follows,

w̃(S) =
∑

e∈S

w(e) =
∑

e∈S

∆∅(e), ∀S ⊆ E. (3)

In other words, we assign to each edge its maximum pos-

sible marginal benefit. Using this relaxation, the optimal 2-

matching based on the weights w̃ can be calculated.

Theorem V.2. Let M1 be the maximum 2-matching for a

submodular rewards function w and let M2 be the maximum

weight 2-matching using w̃ as the edge weights. If w has an

independence system curvature of κI , then

w(M2) ≥ (1− κI)w(M1).

Proof. The definition of curvature states that ∆S(e) ≥ (1−
κI)w(e) for any independent subset S of the edges and e
such that S ∪ {e} is also independent. Using this and the

definition of submodularity,

w(M2) = ∆∅(e1) + ∆{e1}(e2) + ∆{e1,e2}(e3) + . . .

≥ (1− κI)
∑

e∈M2

w(e) = (1− κI)w̃(M2).

Since w̃(M2) is maximum, w̃(M2) ≥ w̃(M1). Therefore,

w(M2) ≥ (1 − κI)w̃(M1) ≥ (1 − κI)w(M1), due to

decreasing marginal benefits. Note that this bound also holds

using the standard definition of curvature.

C. Reduced 2-Matching

The output of either of the two algorithms described will

be a basis of the 2-matching system. Once a maximal 2-

matching has been obtained, it needs to be converted into

a tour. The edge set corresponding to the 2-matching can

be divided into a collection of disjoint sets. At most one of

these will consist of a simple path containing at most two

vertices (i.e., one edge); the rest will be subtours. If any

simple path consisted of more than one edge, its endpoints

could be joined together contradicting the maximality of the

2-matching.

In order to convert the maximal 2-matching to a tour, the

subtours are broken by removing an edge from each one.

The remaining set of simple paths are then connected up.

We first give a result on efficiently finding a subset of

edges to remove from a set while maintaining 2
3 of the value.

We then give an algorithm to reduce a set of subtours starting

from a maximal 2-matching.

1) Removing elements from a set: Given a set S and a

m-partition of the set
{

Ai
}m

i=1
, i.e. S =

⋃m
i=1 A

i and that

Ai∩Aj = ∅ for all i 6= j. Set Ai contains ni elements, Ai =
⋃ni

j=1 a
i
j , such that 3 ≤ ni ≤ N . Let k = mini ni and let

n̄ = (n1, . . . , nm). Also given a monotone non-decreasing

submodular function f : 2S → R≥0. Let Ai
−j := Ai \ aij .

Theorem V.3. Given set S and disjoint subsets Ai, i =
1, . . . ,m, where k is the size of the smallest subset Ai,

as defined above. There exists a set R of m elements (to

which each set Ai contributes exactly one element) such that

f(R) ≥ (1− 1
k
)f(S) ≥ 2

3f(S).

Proof. A selection of one element from each set can be given

by the vector p ∈ Z
m
+ , p ≤ n̄. Let bp = f(S)−f(⋃m

i=1 A
i
−pi

)
be the unique contribution of the selected elements to the

total reward of S. For convenience of notation, define i :=
(i, i, . . . , i) ∈ R

m.

The following lemma will help show the desired result.

Lemma V.4.
∑k

i=1 bi ≤ f(S).

Proof. The basic argument is that bi is the minimum possible

contribution of the set
⋃

j a
j
i . So the total contribution over

different i will be less than (or equal to) the sum of their

minimum contributions.

Let Bi =
⋃m

j=1 a
j
i be the set obtained by selecting the

ith element from each set and let T =
⋃k

i=1 Bi. Using the

definition of marginal benefit ∆S(X), we can write f(T) =
∆∅(B1) + . . . + ∆T\Bk

(Bk). However, by submodularity,

bi = ∆S\Bi
(Bi) ≤ ∆X(Bi), ∀X ⊆ S \ Bi. Therefore,

f(T) ≥∑k
i=1 ∆S\Bi

(Bi).
Combining this with the fact that T ⊆ S =⇒ f(T) ≤

f(S) by monotonicity, we get the desired result.

To prove the theorem statement, assume that there does

not exist any set with the desired property, i.e. ∀p ∈
Z
m
+ , p ≤ n̄ we have f(

⋃m
i=1 A

i
−pi

) < (1 − 1
k
)f(S). From

this assumption, we can see that bp > 1
k
f(S). Therefore,

∑k
i=1 bi > f(S). With Lemma V.4 the desired result is

obtained by contradiction.

For the second part of the inequality, since k = minni ≥
3, so (1− 1

k
) ≥ 2

3 .

Corollary V.5. Given a set S such that |S| ≥ mk, then

there exists a subset T of m elements such that f(S \ T) ≥
(1− 1

k
)f(S).

2) Algorithm to remove one element per set: Based on the

above results for existence of a set that can be removed while

maintaining at least 2
3 of the original value, we introduce a

simple technique (given in Algorithm 2) to find such a set

by searching over a finite number of disjoint sets.

Theorem V.6. Algorithm 2 is correct and its complexity is

O(kf) = O(|S|f).
The proof (see [11]) follows from the following lemma.

Lemma V.7. Consider a set S composed of m disjoint

subsets as defined above. Then there exists i ∈ {1, . . . , k}
such that f(

⋃m
j=1 A

j
−i) ≥ (1− 1

k
)f(S).

Algorithm 2: REDUCESET(S,A1, . . . , Am)

Input: S =
⋃m

i=1 A
i where Ai =

⋃ni

j=1 a
i
j

Output: U ⊂ S s.t. U ∩Ai = 1 for all i = 1 . . .m
1 i← 1; k ← minj |Aj |;
2 U :=

⋃m
j=1 a

j
i ;

3 while f(S \ U) < k−1
k

f(S) do

4 i← i+ 1;

5 U :=
⋃m

j=1 a
j
i ;

6 return U ;

(a) Initial (b) 2−Matching (c) Reduced (d) Tour

Fig. 1. The steps in the 2-matching based tour algorithm

3) Algorithm to delete edges: We can now use Algo-

rithm 2 to remove one edge from each subtour in a matching.

The subtours, T i, can be considered as a collection of

disjoint edge sets. Each subtour will consist of atleast three

edges. Since we want to remove one element from each set,

the results of Theorem V.3 apply and so we know that there

will exist a solution such that at most 1
3 of the value of the

objective is lost. If there exists an extra edge not part of any

subtour, it does not affect the result since, following from

Corollary V.5, it can just be considered as part of one of the

other subtours. Outlined in Algorithm 3 is a method that will

find a good set of edges to remove.

Algorithm 3: REDUCEMATCHING

Input: A 2-matching GM = (V,M) where

M =
⋃m

i=1 T
i and the sets T i are the subtours.

1 Ignore all sets T i such that |T i| = 1. Label the

remaining n ≤ m sets A1, . . . , An.

2 return REDUCESET(M,A1, . . . , An)

Theorem V.8. Algorithm 3 correctly reduces the matching

while maintaining 2
3 of the original value. The complexity of

the algorithm is O(kf) = O(|V |f)
D. Tour using matching algorithm

We now present an outline of the complete 2-matching

tour algorithm. The steps are illustrated in Figure 1.

(i) Run GREEDYMATCHING to get a simple 2-matching,

M1. Using the linear relaxation w̃ of w, solve for the

maximum weight 2-matching, M2. From M1 and M2,

choose the 2-matching that has a higher reward.

(ii) Determine all sets of subtours.

(iii) Run Algorithm 3 to select edges to remove.

(iv) Connect up the reduced subtours into a tour.

Theorem V.9. The 2-matching tour algorithm gives a

max{ 2
3(2+κ) ,

2
3 (1−κ)}-approximation in O

(

(|V |3+|V |)f+
|V |3 log |V |

)

time.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Curvature of Submodular Function

A
p
p
ro

x
im

a
ti
o
n
 F

a
c
to

r

Greedy Algorithm

2−matching Algorithm

Fig. 2. Comparison of bounds for the two algorithms.

Proof. Note that the optimal tour has a value less than

or equal to the optimal 2-matching. The 2-matching is a

max{ 1
2+κ

, 1−κ}-approximation from Theorems V.1 and V.2.

Removing edges from the 2-matching retains atleast 2
3 of the

original value of the 2-matching (Theorem V.8).

A similar method of using a matching is used in [1] for a

linear reward function. In that case, the amount loss in the

reduction step is shown to be 2
3 of the optimal matching.

We showed that a similar bound limiting the loss can be

obtained for the submodular case; however, using the greedy

approximation for the 2-matching, we see a further loss in

value resulting in the final tour being within 2
3
1
2 = 1

3 of the

optimal. By also using the second method of finding the 2-

matching, our resulting bound for the final tour in the case

of a linear function improves to 2
3 .

Remark V.10. For any value of κ < 1
2 (
√
3 − 1) ≈ 0.366,

constructing a 2-matching and then converting it into a tour,

gives a better bound with respect to the optimal tour than by

using the greedy tour approach (cf. Figure 2). •

VI. EXTENSION TO DIRECTED GRAPHS

The algorithms can also be applied to directed graphs,

yielding approximations for the submodular ATSP.

A. Greedy Tour

For the greedy tour algorithm, a slight modification needs

to be made to check that the in-degree and out-degree of the

vertices are less than 1 instead of checking for the degree

being less than 2. Since the ATSP is a 3-extendible system

[14], the approximation of the greedy algorithm changes to
1

3+κ
instead of 1

2+κ
as in the undirected case.

B. Tour using Matching

Instead of working with a 2-matching, the system can

be modeled as the intersection of two partition matroids

defined as edge sets such that the indegree (outdegree) of

each vertex ≤ 1. This system is still 2-extendible and so the

approximation for the greedy 2-matching does not change.

For the second approximation, the Maximum Assignment

Problem can be solved optimally by representing the weights

in (3) as a weight matrix W̃ where we set W̃ii = −∞, then

(a) Example graph. (b) Greedy solution.

Fig. 3. A ten vertex graph and example solution.

applying the Hungarian algorithm, which has a complexity of

O(|V |3). Therefore, the result of Theorem V.2 still applies.

The result of the greedy algorithm or the solution to the

assignment problem will be a set of edges that together

form a set of cycles, with the possibility of a lone vertex.

Note that a “cycle” could potentially consist of just two

vertices. Therefore, removing one edge from each cycle will

result in a loss of at most 1
2 instead of 1

3 . This follows

from Theorem V.3, setting k = 2. The final bound for the

algorithm is therefore max
{

1
2(2+κ) ,

1
2 (1− κ)

}

.

VII. SIMULATIONS

In order to empirically compare our algorithms, we have

run simulations for a function that represents coverage of an

environment. A complete graph is generated by uniformly

placing vertices over a rectangular region. Each edge in the

graph is associated with a rectangle and each rectangle is

assigned a width to represent different amounts of coverage.

An example of a ten vertex graph is given in Figure 3a. Here

we see the complete graph as well as a representation of the

value of each edge given by the area of the rectangle the

edge corresponds to. Running the greedy tour algorithm, we

get the tour given in Figure 3b.

We used a slightly different implementation for the greedy

algorithm in our tests. For a submodular objective function,

the marginal value of each element in the base set changes

every iteration and so has to be recalculated. In [16], the

author presents an accelerated greedy algorithm that uses the

properties of submodularity to reduce the number of recalcu-

lations and thus improve the efficiency of the simple greedy

approach. The accelerated greedy algorithm has the same

worst case bound as the naive version; however, empirical,

it can achieve significant speed-up factors [16],[4].

The simulations were performed on a quad-core machine

with a 3.10 GHz CPU and 6GB RAM.

A. Algorithm Comparison

All algorithms were run on 30 randomly generated graphs

for five different graph sizes. The resulting value of the

objective function was recorded and averaged over all 30

instances. The vertices were distributed randomly over a

100x100 region. The edge thickness was assigned a value

of 7 with probability 2/
√

|V |, or 1 otherwise (so O(|V |)
of the edges had a high reward). The results are shown in

Figures 4 and 5.

10 20 50 70 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Average value of function

Number of Vertices

V
a

lu
e

 o
f

O
b

je
c
ti
v
e

GreedyTour

RandomTour

GreedyMatch

GreedyMatch2

GreedyMatch3

GT RT GM GM2 GM3

10 27 (3) 0 (0) 25 (1) 16 (1) 2 (0)

20 23 (8) 0 (0) 21 (5) 8 (0) 1 (0)

50 26 (16) 0 (0) 14 (4) 5 (0) 0 (0)

70 27 (18) 0 (0) 12 (3) 3 (0) 1 (0)

100 27 (16) 0 (0) 14 (3) 2 (0) 1 (0)

Fig. 4. (Top) The bars give the range of results. The white markers inside
the bars show the mean and standard deviation. (Bottom) Number of wins
for each algorithm. Wins include ties (unique wins specified in parens).

GT RT GM GM2 GM3

10 0.2 0 0.4 0.3 0.2

20 0.8 0.1 2.2 1.4 1.1

50 13.3 0.8 27.1 15.9 14.4

70 37.4 2.2 70.4 40.7 39.0

100 109.7 5.4 189.9 116.5 113.1

Fig. 5. Average runtime (seconds) of algorithms.

The algorithms compared are now described. GreedyTour

(GT): The greedy algorithm for constructing a tour. Ran-

domTour (RT): Randomly select edges to construct a tour.

For the 2-matching based algorithm, three possibilities are

considered. All three start off by greedily constructing a

2-matching. GreedyMatching (GM): Remove from each

subtour the element that will result in the least loss to

the total value and greedily connect up the complete tour.

GreedyMatching2 (GM2): Use Algorithm 3 to reduce the

matching and greedily connect up the complete tour. Greedy-

Matching3 (GM3): Use Algorithm 3 to reduce the matching

and arbitrarily connect up the complete tour.

While the performance of GT and GM are similar, GM

takes considerably longer to run, due to the oracle calls

needed to determine which edge to remove from each

subtour.

Note that in this particular set up, there were only a small

number of subtours (compared to the number of vertices), so

few calculations were needed to construct the final tour from

the reduced subtours in GM2. It is however possible for the

number of subtours to be Θ(|V |) and in those cases GM2

would be much slower compared to GM3 as the problem

size would not be significantly reduced by first coming up

with a 2-matching.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we extended the max-TSP problem

to submodular rewards. We presented two algorithms;

a greedy algorithm which achieves a 1
2+κ

approxima-

tion, and a 2-matching-based algorithm, which achieves

a max{ 2
3(2+κ) ,

2
3 (1 − κ)} approximation (where κ is the

curvature of the function). Both algorithms have a complexity

of O(|V |3) in terms of number of oracle calls. We extended

these results to directed graphs and presented simulation

results to compare performance.

There are several directions for future work. First, we

would like to determine the tightness of our bounds. Also,

there are other strategies, such as best neighbour, insertion

heuristics or Serdyukov’s algorithm, that could be extended

to the submodular case. One other possible extension would

be to consider the case where multiple tours are needed.

REFERENCES

[1] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey, “An analysis of
approximations for finding a maximum weight hamiltonian circuit,”
Operations Research, vol. 27, no. 4, pp. pp. 799–809, 1979.

[2] A. I. Serdyukov, “An algorithm with an estimate for the traveling
salesman problem of the maximum,” Upravlyaemye Sistemy, vol. 25,
pp. 80–86, 1984.

[3] C. Guestrin, A. Krause, and A. Singh, “Near-optimal sensor place-
ments in Gaussian processes,” in Int. Conf. on Machine Learning,
Bonn, Germany, Aug. 2005.

[4] D. Golovin and A. Krause, “Adaptive submodularity: Theory and
applications in active learning and stochastic optimization,” Journal

of Articial Intelligence Research, vol. 42, pp. 427–486, 2011.
[5] P. R. Goundan and A. S. Schulz, “Revisiting the greedy approach

to submodular set function maximization,” 2007, Working Paper,
Massachusetts Institute of Technology.

[6] A. Singh, A. Krause, C. Guestrin, and W. Kaiser, “Efficient informa-
tive sensing using multiple robots,” Journal of Artificial Intelligence

Research, vol. 34, pp. 707–755, 2009.
[7] G. Calinescu, C. Chekuri, M. Pl, and J. Vondrk, “Maximizing a

monotone submodular function subject to a matroid constraint,” SIAM

Journal on Computing, vol. 40, no. 6, pp. 1740–1766, 2011.
[8] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey, “An analysis of

approximations for maximizing submodular set functions - II,” in
Polyhedral Combinatorics, ser. Mathematical Programming Studies,
1978, vol. 8, pp. 73–87.

[9] J. Ward, “A (k+3)/2-approximation algorithm for monotone sub-
modular k-set packing and general k-exchange systems,” in 29th

International Symposium on Theoretical Aspects of Computer Science,
vol. 14, Dagstuhl, Germany, 2012, pp. 42–53.

[10] M. Conforti and G. Cornuejols, “Submodular set functions, matroids
and the greedy algorithm: Tight worst-case bounds and some general-
izations of the rado-edmonds theorem,” Discrete Applied Mathematics,
vol. 7, no. 3, pp. 251 – 274, 1984.

[11] S. T. Jawaid and S. L. Smith, “The maximum traveling salesman
problem with submodular rewards,” Sep. 2012, available at http:
//arxiv.org/abs/1209.3759.

[12] D. Hausmann, B. Korte, and T. A. Jenkyns, “Worst case analysis of
greedy type algorithms for independence systems,” in Combinatorial

Optimization, ser. Mathematical Programming Studies. Springer
Berlin Heidelberg, 1980, vol. 12, pp. 120–131.

[13] B. Korte and J. Vygen, Combinatorial Optimization: Theory and

Algorithms, 4th ed., ser. Algorithmics and Combinatorics. Springer,
2007, vol. 21.

[14] J. Mestre, “Greedy in approximation algorithms,” in Algorithms ESA

2006, Y. Azar and T. Erlebach, Eds. Springer Berlin / Heidelberg,
2006, vol. 4168, pp. 528–539.

[15] T. A. Jenkyns, “The greedy travelling salesman’s problem,” Networks,
vol. 9, no. 4, pp. 363–373, 1979.

[16] M. Minoux, “Accelerated greedy algorithms for maximizing submod-
ular set functions,” in Optimization Techniques, ser. Lecture Notes in
Control and Information Sciences, J. Stoer, Ed. Springer Berlin /
Heidelberg, 1978, vol. 7, pp. 234–243.

