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Abstract— This paper presents an exponentially converging
nonlinear switched observer for diesel selective catalytic reduc-
tion (SCR) nitrogen oxide (NOx) aftertreatment systems using
only NOx measurements. The state of the SCR system is shown
to evolve in a physically meaningful positively invariant set. A
state estimator is designed using a continuous-time observer,
a switching law, and a projection that ensures the estimates
are in the positively invariant set. The convergence rate of
the estimates to the SCR states has the same bound as the
corresponding continuous-time observer.

I. INTRODUCTION

One of the most important aspects of modern air quality
management is the control of diesel engine emissions [1].
Some of the key pollutants produced by diesel engines are
nitrogen oxides (NOx). The USA, EU, and Japan have strict
regulations restricting NOx emissions of diesel engines, par-
ticularly the state of California, whose maximum emissions
limit is 80% lower than the EU’s for light-duty engines [1].
Selective catalytic reduction (SCR) has been identified as
one of the most promising methods of NOx emissions
reduction [2]. The reduction is achieved by mixing ammonia
(NH3) with the NOx inside a reactor, located downstream
from the engine. However, because of the toxicity of NH3,
urea is injected instead, which produces NH3 through a series
of reactions [2]. In some regions, such as the USA, the
toxic NH3 “slip”, i.e., unreacted NH3 that does not mix with
the exhaust and exits the SCR reactor, is not regulated, but
self-imposed limits of 10 ppm in steady-state and 20 ppm
during transients have been adopted [3]. This is the central
SCR control problem, the goal of which is to satisfy two
dichotomous criteria: simultaneously minimize both NOx
emissions and NH3 slip. Injecting more urea reduces NOx,
but also increases NH3 slip.

The SCR control problem is addressed using state feed-
back control schemes, such as in [3], [4], [5], [6]. The
key values used for SCR state feedback control are NOx
concentration, NH3 concentration, and NH3 coverage; the
percentage of the catalyst’s surface that is covered with NH3.
Since NH3 slip is not regulated in some regions, combined
with the high cost of NH3 and NOx sensors, commercial
SCR reactors are often not equipped with NH3 sensors [3].
Also, the NH3 coverage ratio θ cannot be measured; it
must be inferred from measured values such as temperature,
NOx concentration, and NH3 concentration. Since these two
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key values in SCR operation and control are not known
via measurement, they must be deduced using an observer.
Despite the fact that commercial SCR units are often not
equipped with NH3 sensors, much research in this area
is conducted under the assumption that these sensors are
available [3], [7], [8], [9], [10].

Sliding mode estimation strategies are used in [7] and [8],
the former estimating the NH3 coverage and the latter esti-
mating the mid-catalyst NH3 concentration. In [6] a linear-
parameter-varying observer is designed to estimate the NH3

coverage, using only a NOx sensor. The extended Kalman
filter was used in [9] to estimate NO, NO2, and the NH3

coverage, and in [10] to estimate the NH3 coverage.
In this paper, we propose a nonlinear observer based on

that in [11] with saturated state estimates, so as to keep the
estimates within a physically meaningful positively invariant
set, thereby bounding the estimation error. The saturation
effect is implemented using state-dependent switched dy-
namics. If the saturated dynamics interfere with convergence,
the observer’s dynamics and estimates switch to those of the
underlying observer, but outputting a projected version of its
estimates to the controller. The proposed observer is shown
to be exponentially stable, and to have the same convergence
rate bound as that in [11].

We assume that NOx sensors at both the inlet and outlet
of the SCR are available. The observer estimates the con-
centrations of NOx and NH3, as well as the NH3 coverage
ratio θ along the length of the catalyst.

Our contributions are: 1) we show that a simplified stan-
dard SCR system [4] is observable, and that the nonlinear
observer in [11] can be used; 2) we note that the state
estimates are capable of taking on physically meaningless
values, thus we introduce switched dynamics and projections
to the observer and analyze their effect on stability and
convergence; 3) we illustrate our results in simulation.

II. BACKGROUND

In this section we introduce our notation, the class of
systems to which our observer applies, and the SCR model.

A. Notation

Given a set Ω ⊆ Rn, let Ω̄ be its closure, and ∂Ω be
its boundary. Given a vector x ∈ Rn and a set Ω ⊂ Rn,
let x(Ω) [x(Ω)] be the vector whose elements comprise the
upper [lower] bounds of the intervals defining Ω, and x> be
its transpose. Let 0n ∈ Rn denote the vector of all zeros.
Given a C1 mapping φ : Rn → Rm let dφ(x) be its Jacobian
evaluated at x ∈ Rn. Given a rational function g : Rn → R,



let num(g) be its numerator. Lastly, given a smooth function
h : Rn → R and a smooth vector field f : Rn → Rn, let
Lkfh(x) be the k-times repeated Lie derivative of h(x) in the
direction of the vector field f(x).

B. Selective Catalytic Reduction Reactor Model

To model the SCR system, we adopt a multi-cell modelling
strategy, as described in [5]. The SCR volume is divided
into N cells connected in series. The block diagram between
adjacent cells is illustrated in Figure 1. The concentrations
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Fig. 1. Propagation of dynamics between adjacent cells

of NOx and NH3 are the inputs and outputs of each cell.
Every cell has identical dynamics, with the output of cell i
treated as the input to cell i+1. In addition to NOx and NH3,
each cell has its own NH3 coverage, denoted by θ, that has
no inter-cell dynamic coupling. Together, the NH3 coverage
θ, outgoing NOx, and outgoing NH3 compose the states of
an individual cell. The NOx emissions and NH3 slip of the
overall system are the respective concentrations of the N th
cell. Since NH3 sensors are prohibitively expensive and θ
cannot be measured, NOx,N is the only output that can be
reliably measured in a non-laboratory scenario.

For each cell, the model used in this paper is based on
that used in [4]. Denote the state of the ith cell by xi :=
[ x1,i x2,i x3,i ]> := [ CNO,i θi CNH3,i ]>.

TABLE I
PHYSICAL INTERPRETATION OF SYSTEM PARAMETERS

Parameter
Chemical/Physical
Symbol [4] Meaning

α (
F /V

)
/N

volumetric flow rate over catalyst
volume in a single cell

β 1/σ inverse of NH3 storage capacity
r1,i σRred,i normalized reduction reaction rate
r2,i σRox,i normalized oxidation reaction rate
r3,i σRdes,i normalized desorption reaction rate
r4,i σRads,i normalized adsorption reaction rate

For i = 2, . . . , N , the cell dynamics are

ẋ1,i = −r1,ix1,ix2,i − α(x1,i − x1,i−1)

ẋ2,i = −βx2,i(r2,i + r1,ix1,i + r3,i)− β(x3,ir4,i(x2,i − 1))

ẋ3,i = r3,ix2,i + r4,ix3,i(x2,i − 1)− α(x3,i − x3,i−1),
(1)

where r1,i, r2,i, r3,i, β, and α are physical constants (when
temperature is in steady-state) described in Table I. Note that
in the expression for ẋ1,i we neglect the term r2,ix2,i. Under
reasonable operating conditions, i.e., NOx concentrations on
the order of 10−3 mol/m3 and temperatures below 400◦C,
we have r2,ix2,i � r1,ix1,ix2,i [4]. It is verified in [4] that,
in practice, the neglected term does not affect observability.

The dynamics of the first cell, i.e., i = 1, are similar to (1),
except that since there is no cell zero, the relevant states are

replaced by the control input and a measured disturbance.
The control input u ∈ R≥0 is the concentration of NH3 from
a urea pump and the measured disturbance d ∈ R≥0 is the
concentration of NOx emissions from a diesel engine, which
is proportional to the load. The model of cell 1 is therefore

ẋ1,1 = −r1,1x1,1x2,1 − α(x1,1 − d)

ẋ2,1 = −βx2,1(r2,1+r1,1x1,1+r3,1)−β(x3,1r4,1(x2,1−1))

ẋ3,1 = r3,1x2,1 + r4,1x3,1(x2,1 − 1)− α(x3,1 − u).
(2)

Stacking the states of each cell in reverse order, i.e., cell N
on top, cell 1 on the bottom, we obtain the overall state vector
x = [ xN · · · x1 ]> ∈ R3N . Combining (1) and (2)
and assuming that the only measured output is the NOx
concentration of cell N , the overall state space model is

ẋ = f(x) +
[
Bd Bu

] [
d u

]>
, y = h(x) = x1,N , (3)

where Bd = [ 0n−3 α 0 0 ]>, Bu = [ 0n−1 α ]>,
and n := 3N . The drift vector field f : Rn → Rn is smooth
and [ Bd Bu ] =: B ∈ Rn×2 is constant. System (3) is a
special case of the class of control affine systems, i.e.,

ẋ = f(x) + g(x)u, y = h(x), (4)

with g(x) = B.
We assume that the engine has been operating at constant

load (constant d) long enough that the temperature along the
length of the catalyst is constant, and that the steady-state
values of the parameters in Table I are known for a given d.

III. EXTENDED LUENBERGER OBSERVER

Before characterizing our proposed switched observer in
Section V, we introduce the continuous-time observer which
serves as its foundation.

The observer proposed in [11] is obtained by first
expressing (4) in a canonical form, which is realized
via the candidate diffeomorphism T : Ω → T (Ω),
x 7→ [ h(x) Lfh(x) · · · Ln−1

f h(x) ]>, where Ω is
a subset of Rn. If the the assumptions of [11], summarized
below, hold, then the transformed system is of the form

ż =
[
z2 z3 · · · zn ϕ(z)

]>
+
[
g1(z1) g2(z1, z2) · · · gn(z1, . . . , zn)

]>
u

=: F (z) +G(z)u

y =
(
h ◦ T−1

)
(z) = z1 = Cz,

(5)

where z ∈ Rn is the vector of states in the transformed
coordinates, F : Rn → Rn is the drift vector field in the
transformed coordinates, and G : Rn → Rn×m is the vector
field of the input dynamics in the transformed coordinates.
The observer, expressed in z-coordinates, is

˙̂z = F (ẑ) +G(ẑ)u− S−1(Θ)C>(Cẑ − y), (6)

where Θ ∈ R>0 is a gain, S(Θ) ∈ Rn×n is the
unique, positive definite solution to the Sylvester equation(
ΘI +A>

)
S(Θ) + S(Θ)A = C>C, and the pair (A,C) is

in observable canonical form. An appealing quality of this
observer is its structural simplicity; it is the original dynamics



of the system with the addition of an error term. The observer
is implemented by converting (6) back to x-coordinates

˙̂x(t) = f(x̂)+g(x̂)u− ∂

∂z
T−1(z)

∣∣∣∣
z=T (x̂)

S(Θ)−1C>(x̂1−y).

(7)
The applicability of the observer from [11] is contingent

upon four hypotheses.
H1 T is a diffeomorphism from Ω onto T (Ω).
H2 The function ϕ(z) in (5) can be extended from Ω to all

of Rn by a C∞ function, globally Lipschitz on Rn.
H3 System (4) is observable for any bounded input.
H4 gi(z), i = 1, . . . , n in (5) is globally Lipschitz.
We show in Sections IV and V-A that the SCR model satisfies
these assumptions on an appropriately defined compact set Ω.

IV. MODEL ANALYSIS

In this section, the SCR system (3) is shown to evolve only
within a positively invariant subset Ω ⊂ Rn. We therefore
are interested in solving the observation problem only on
this set, hereinafter referred to as the observation subset. We
characterize the observation subset Ω and address the validity
of H1 and H4 on the SCR system (3).

A. Observation Subset

Our goal is to define the observation subset Ω such that
it is positively invariant under the dynamics of (3) and such
that all x ∈ Ω make physical sense. The concentration of
NOx emissions cannot exceed the maximum NOx output of
a given engine, dmax > 0. The NH3 slip is constrained by
NH3,max . As a ratio, θ takes values between 0 and 1. The
natural choice of the observation subset is therefore

Ω := {x ∈ Rn : x1,i ∈ (0, dmax ), x2,i ∈ (0, 1),

x3,i ∈ (0,NH3,max ,i), i = 1, . . . , N}.
(8)

We first characterize the value of NH3,max ,i that ensures Ω
is positively invariant for (3).

Proposition IV.1. Let

NH3,max ,i :=
1

α

i∑
k=1

r3,k + umax . (9)

If x(0) ∈ Ω as defined in (8), then x3,i < NH3,max ,i,∀t ≥ 0.

Proof. A function f : R → R is either unbounded as its
argument tends to ±∞, or its extrema are at critical points.
We first examine ẋ3,i as x3,i → ±∞

lim
x3,i→±∞

ẋ3,i = r4,ix3,i(x2,i − 1)− αx3,i. (10)

On the closure of Ω, Ω̄, x2,i ∈ [0, 1]. Therefore, if x3,i is
positive [negative], then (10) is negative [positive] for large
|x3,i|, meaning that x3,i cannot approach ∞ [−∞]. So the
maximum of x3,i must be at a critical point, i.e., ẋ3,i = 0

x3,i

∣∣
ẋ3,i=0

=
r3,ix2,i + αx3,i−1

r4,i(1− x2,i) + α
. (11)

We see that x3,i is maximized at x2,i = 1, x3,i−1 =
NH3,max,i−1, yielding

NH3,max ,i =
r3,i

α
+ NH3,max ,i−1. (12)

Letting x3,0 := u and recursively solving (12) yields (9).

To establish that Ω ⊂ Rn is positively invariant, we prove
that its closure Ω̄ is positively invariant. If Ω̄ is positively
invariant then its interior, Ω, is also positively invariant [12].
Proposition IV.2. The set Ω defined in (8) is positively
invariant under the dynamics (3) for x(0) ∈ Ω.

Proof. We prove the proposition by examining ẋj,i on ∂Ω,
where j = 1, 2, 3 and i = 1, . . . , N . We first examine the
lower bound of x3,i, ẋ3,i

∣∣
x3,i=0

= r3,ix2,i + αx3,i−1 ≥ 0.
Letting x3,0 := u, we have that minx3,i−1 αx3,i−1 = 0.
Therefore, x3 cannot cross its lower bound on Ω̄. Since (11)
is a critical point and a maximum, x3 cannot cross its upper
bound on Ω̄ and x3 cannot exit Ω̄. We next examine x1,i.
First the upper bound, ẋ1,i

∣∣
x1,i=dmax

= −r1,idmaxx2,i −
α(dmax − xi−1) ≤ 0. Letting x1,0 := d, we have that
maxxi−1

(dmax − xi−1) = 0. Therefore, x1,i cannot cross
its upper bound on Ω̄. We next examine the lower bound
of x1,i ẋ1,i

∣∣
x1,i=0

= αx1,i−1 ≥ 0. Therefore, x1,i cannot
cross its lower bound on Ω̄ and x1,i cannot exit Ω̄. We next
examine the bounds of x2,i, beginning with the lower bound,
ẋ2,i

∣∣
x2,i=0

= βr4,ix3,i ≥ 0. Therefore, x2,i cannot cross its
lower bound on Ω̄. We next examine the upper bound of x2,i

ẋ2

∣∣
x2,i=1

= −β(r2,i + r1,ix1,i + r3,i) < 0. Therefore, x2,i

cannot cross its upper bound on Ω̄ and x2,i cannot exit Ω̄.
Therefore, Ω̄ is positively invariant and so is Ω.

For technical reasons that will be made clear in Section V-
A, we redefine the observation subset to be a closed-set
contained in Ω whose boundaries are arbitrarily close to ∂Ω,
i.e., if δ > 0 is small, redefine the observation subset to be

Ωδ := {x ∈ Rn : xi ∈ [xi(Ω) + δ, xi(Ω)− δ], i = 1, . . . , n},
(13)

which is illustrated in Figure 2, for N = 1 (n = 3). Realis-

x̂1

x̂2

x̂3

Ωδ

Ωδ

Fig. 2. An illustration of the sets Ω (interior of the light grey polytope),
Ωδ (closure of the dark grey polytope).



tically, the SCR system does not operate on the boundaries
of Ω, as this means that the engine is deactivated, no urea is
being injected, or large amounts of urea are being injected
at low load. We therefore make the following assumption.
Assumption 1. There exists a δ̄ > 0 such that for all δ ∈
(0, δ̄) the set (13) is non-empty and positively invariant for
system (3).

B. Extended Luenberger Hypotheses

To verify the local observability of (3) on Ωδ ,
we examine its observability codistribution dO(x) :=[
dh(x) dLfh(x) · · · dLn−1

f h(x)
]>
.

We will show that for any number of cells N > 0, dO(x)
is full rank on an open and dense subset of Ωδ . Since the
dynamics of (3) differ between N = 1 and N = 2, we first
prove the claim for both N = 1 and N = 2. In the following
discussion, it is assumed that x(0) ∈ Ωδ .

Proposition IV.3. For N ∈ {1, 2} and any x ∈ Ωδ the
observability codistribution dO(x) is full rank.

Proof. Let N = 1, dO(x) is singular if either of ∂Lfh(x)
∂x2

=

−r1x1,
∂L2

fh(x)

∂x3
= βr1r4x1(x2 − 1) vanishes. Therefore,

observability is lost when x1 = 0 or x2 = 1. These values
are not contained in the set Ωδ , therefore, dO(x) is full rank
on Ωδ .

The expressions involved in the proof for N = 2 are
lengthy, so we omit the proof for N = 2.

We now use an induction argument to show that dO(x) is
full rank on an open and dense subset of Ωδ for any N >
0. Since the computational tractability of dO(x) decreases
rapidly with increasing N , we use the method of analysis
proposed in [13, Lemma 5]. We first create a copy of (3):
˙̄x = f(x̄)+Bu, ȳ = h(x̄). Defining a state perturbation term
x̃ := x− x̄ and defining the differential output ỹ := y− ȳ, we
examine the zero-dynamics, i.e., ỹ = 0, of the differential-
algebraic-system

ẋ = f(x) +Bu

˙̃x = f(x) +Bu− f(x− x̃)−Bu = f(x)− f(x− x̃)

0 = h(x)− h(x− x̃) = x̃1,N ,
(14)

which is the difference between (3) and its copy, with equal
outputs enforced. If all solutions to (14) require x̃ ≡ 0,
then (3) is observable. Additionally, if dO is full rank,
then (3) is locally observable and x̃ ≡ 0 on the locally
observable subset of the state space [13].

Proposition IV.4. All solutions to (14) require x̃ ≡ 0.

Proof. By Proposition IV.3 system (3) is locally observable.
Therefore, for N ∈ {1, 2}, locally, the only solution to (14)
is x̃ ≡ 0. As our induction hypothesis, assume that for N =
i − 1 > 2, the only solution to (14) is x̃ ≡ 0. This implies
that ˙̃xj,i−1, x̃j,i−1 = 0, j = 1, 2, 3.

For (3), it is sufficient to examine ˙̃x and ỹ
˙̃x1,i = x̃1,ir1,i(x̃2,i − x2,i)−x̃2,ir1,ix1,i − α(x̃1,i − x̃1,i−1)

˙̃x2,i = −β(r2,i(x̃2,i − x2,i)− r1,i(x̃1,i − x1,i)(x̃2,i − x2,i)

− r4,i(x̃3,i − x3,i)(x̃2,i − x2,i + 1)

+ r3,i(x̃2,i − x2,i))− β(r2,ix2,i + r4,ix3,i(x2,i − 1)

+ r3,ix2,i + r1,ix1,ix2,i)

0 = x̃1,N .
(15)

We now prove the claim for N = i. Since the algebraic
constraint x̃1,N = 0 implies that ˙̃x1,N = 0, substituting
˙̃x1,i, x̃1,i, x̃j,i−1 = 0, j = 1, 2, 3 into ˙̃x1,i in (15) yields
0 = −x̃2,ir1,ix1,i. Since x1,i > 0 on Ωδ , x̃2,i must be
identically 0, implying that ˙̃x2,i = 0. With this additional
constraint, we solve ˙̃x2,i = 0 in (15) for x̃3, yielding
0 = r4,ix̃3,i(x2,i−1). Since x2,i < 1 on Ωδ , hence x̃3,i ≡ 0.
Therefore x̃ ≡ 0 is the only solution to (14) for N = i.

Corollary IV.5. For any N > 0 the SCR system (3) satisfies
H3, and H1 is satisfied in a neighbourhood of every point
in an open and dense subset of Ωδ .

Proof. By [13, Lemma 5], the SCR system (3) is locally
observable on Ωδ for any N > 0. Furthermore, by [14,
Corollary 3.35], dO(x) is full rank on an open and dense
subset of Ωδ . Since dT (x) = dO(x), by the inverse function
theorem, T is a diffeomorphism in a neighbourhood of every
point in an open and dense subset of Ωδ for any N , thereby
satisfying H1 in a neighbourhood of almost every point in
Ωδ . In (14), the x̃ dynamics do not depend on u. This
implies that there exists no choice of u for which there are
indistinguishable dynamics, therefore H3 is satisfied.

V. OBSERVERS FOR THE SCR SYSTEM
In this section we define and characterize the dynamics of

the proposed observer. The continuous-time dynamics of the
observer are defined using the ELO discussed in Section III.
By Assumption 1, the states of the SCR system (3) are
physically constrained to remain within certain bounds. But
the estimates are not constrained to lie within Ω. Thus,
we modify the dynamics of the ELO such that when the
estimate x̂(t) is on the boundary of Ωδ , the components of
the vector field ˙̂x(t) pointing out of Ωδ are set to 0, thereby
preventing the state estimates from leaving Ωδ . Exponential
convergence is guaranteed by switching to the ELO dynamics
and estimates if the distance between the two observers
exceeds a determined tolerance. Physical intelligibility of the
state estimates is attained by applying a projection to the
ELO estimates.

A. Extended Luenberger Observer
We construct the observer using a single cell model, i.e.,

N = 1. The vector field of the single cell model is identical
to (2). For notational simplicity, we omit the cell index. The
diffeomorphism T is given by

T (x) =

 x1

−x1(α+ r1x2)
x1(α+ r1x2)2 + βr1x1γ(x)





where γ(x) := (r2 + r3 + r1x1)x2 + (x2 − 1)r4x3, and

T−1(z)

=

 z1

− z2+αz1
r1z1

−z1z3+z22−β((r2+r3)z1z2+αr1z
3
1+(αr2+αr3+r1z2)z21)

βr4z1(z2+αz1+r1z1)

 .
Putting the system into the form of (5) by
applying T (x) to f(x) in (3), we obtain ϕ(z) =
num(ϕ(z))/

(
r1z

2
1(z2 + αz1 + r1z1)

)
. The functions

T−1(z) and ϕ(z) are not well defined at z1 = 0 nor
z2 = −(α + r1)z1. The former requires x1 = 0 and the
latter requires x2 = 1, neither of which are contained in
Ωδ . Therefore, T−1(z) and ϕ(z) are well defined on Ωδ .
Applying T to g(x) = B in (3), we obtain

G(z) =

 α 0
αz2
z1

0
αz3−αβr1z1(z2+αz1)

z1
−αβr4(z2 + αz1 + r1z1)

.
(16)

Using the set Ωδ (13), we can address H2 and H4.
Proposition V.1. If Assumption 1 holds then the SCR sys-
tem (3) satisfies H2 and H4.

Proof. Let δ ∈ (0, δ̄) and define Ωδ by (13). This set is
compact and positively invariant by assumption, so the states
of (3) are confined to a compact set, i.e., the state space of (3)
compact, which is sufficient to satisfy H2 [11].

The mapping (16) is locally Lipschitz on Ω and is there-
fore locally Lipschitz on Ωδ ⊂ Ω. Since Ωδ is compact, it
follows that (16) is Lipschitz on Ωδ , satisfying H4.

Therefore H1–H4 are satisfied and the observer (7) can
be constructed for (3) on Ωδ . The exponential decay of the
estimation error ε := x̂− x is characterized in [11] by

‖ε(t)‖ ≤ K(Θ) exp(−Θt/3)‖ε(0)‖, (17)

where K : R>0 → R>0 and ε(0) := x̂(0)− x(0).

B. Projected Observer
Although the observer (7) has been shown to be applicable

to (3) and, by construction, to be exponentially stable, its
state estimates are not necessarily physically meaningful.
Given an estimate x̂, define the projection

proj(x̂,Ωδ) := arg min
p∈Ωδ

‖p− x̂‖, (18)

which yields the closest point to x̂ on Ωδ . We propose a
“projected observer”, constructed by augmenting (7) with
a “published estimate” χ. This observer’s dynamics are
identical to (7), but include the output χ = proj(x̂,Ωδ),
which is used for feedback control.

In addition to proj(x̂,Ωδ) always being a physically pos-
sible value, it is guaranteed to be at least as good an estimate
as x̂. Since Ωδ is convex, the estimate is necessarily improved
by replacing it with the closest point in Ωδ . Hence, the
estimation error ε′ := proj(x̂,Ωδ)− x of (18) is necessarily
smaller than ε = x̂ − x for x̂ /∈ Ωδ . Since (18) reduces to
proj(x̂,Ωδ) = x̂ for x̂ ∈ Ωδ , we have

(∀x ∈ Rn)(∀x̂ ∈ Rn)(∀t ≥ 0), ε′(t) ≤ ε(t). (19)

C. Naı̈ve Saturation Implementation

We now characterize a so-called “saturated” observer,
whose estimates are denoted by x̂?, whose estimates are
forced to remain in the set Ωδ . We modify (7) to obtain

˙̂x?(t) = f(x̂?) +B
[
d u

]>
− ∂

∂z
T−1(z)

∣∣∣∣
z=T (x̂?)

S(Θ)−1C>(x̂?1 − y)

˙̂x?i (t) = 0,
if x̂?i = xi(Ωδ) and ˙̂x?i (t) < 0,

or x̂?i = xi(Ωδ) and ˙̂x?i (t) > 0, i = 1, . . . , n.
(20)

If the saturated observer’s estimates are in Ωδ , its dynamics
are the same as (7), but augmented with the logic ˙̂x?i (t) =
0, i = 1, . . . , n when the estimate is on the boundary of
Ωδ , thereby preventing it from leaving Ωδ . This modification
permits the estimates to “slide” along the boundaries of Ωδ
without crossing over them. A risk of this behaviour is that
if ˙̂x?i for any i is orthogonal to Ωδ when x̂?i is saturated and
the plant has reached equilibrium, x̂? will no longer evolve
with time, thereby precluding ε? := x̂? − x→ 0 as t→∞.

Consider the saturated Luenberger observer for the system

ẋ =

[
−3 1
1 −5

]
x, y = x1, x(0) =

[
1
2

]
, x̂(0) =

[
0
0

]
Ωδ = {x ∈ R2 : x1 ∈ [−10−3, 1], x2 ∈ [−10−3, 2]},

(21)

with the observer poles placed at {−1,−2}. As seen in
Figure 4, x̂?1 does not converge to the equilibrium value
x1 = 0, but to 1. Note that in equilibrium that x = [ 0 0 ]>,
so the LCx term in the ˙̂x? dynamics vanishes. The state
estimate x̂? converges to [ 1 0 ]>. At this point, the vector
field is pointing out of Ωδ , rendering further evolution of x̂?1
impossible, thereby precluding convergence.

D. Switching Observer

To address the convergence issue illustrated in Section V-
C, we take advantage of the ELO’s known error bound (17)
and run the ELO in parallel with the saturated observer (20).
The proposed observer is of the same form as (20), aug-
mented with a published output as described in Section V-B,

χ(t)=

{
x̂?(t), if ‖x̂?(t)−x̂(t)‖≤γB(t)ε∞

proj(x̂,Ωδ), otherwise,
(22)

where B(t) := K(Θ) exp(−Θt/3), x̂? and proj(x̂,Ωδ)
are as defined in (20) and (18), respectively, ε∞ :=
supx∈Ωδ

‖χ(0) − x‖, and tuning parameter γ ∈ R≥0. Note
that ε∞ ≥ ‖ε(0)‖ for any x(0), x̂(0) ∈ Ωδ .

Theorem V.2. The estimation error of (22) satisfies ‖χ(t)−
x(t)‖ ≤ (1 + γ)K(Θ) exp(−Θt/3)ε∞.

Proof. There are two cases in (22). First, we address the
case χ(t) = proj(x̂,Ωδ). By (17) we have ‖x̂(t)− x(t)‖ ≤
K(Θ) exp(−Θt/3)‖ε(0)‖ ≤ K(Θ) exp(−Θt/3)ε∞ ≤ (1 +
γ)K(Θ) exp(−Θt/3)ε∞, for γ ≥ 0. By (19), we have
‖χ(t) − x(t)‖ = ‖proj(x̂,Ωδ) − x(t)‖ ≤ ‖x̂(t) − x(t)‖,
verifying the theorem in the first case.
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Fig. 3. A comparison of the ELO (7) to the switched observer (22).
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Fig. 4. x1(t) for the saturated Luenberger observer for system (21).

Second, we address the case χ(t) = x̂?(t). By the triangle
inequality ‖x̂?(t) − x(t)‖ ≤ ‖x̂?(t) − x̂(t)‖ + ‖x̂(t) −
x(t)‖. Applying (22) and (17) to the first and second right-
hand side terms, respectively, we have ‖x̂?(t) − x(t)‖ ≤
γB(t)ε∞ + B(t)‖ε(0)‖ ≤ γB(t)ε∞ + B(t)ε∞ = (1 +
γ)K(Θ) exp(−Θt/3)ε∞.

VI. SIMULATIONS

To illustrate our results, we simulate both the ELO (7) and
the switched observer (22) for a single cell engine model.
The plant’s initial conditions are x1(0) = d = 0.01, x2(0) =
0, x3(0) = 0. We choose Θ = 1, α = 5, β = 1/157, and using
the reaction rate parameters from [15], r1 = 0.8034, r2 =
0.005885, r3 = 0.6307, r4 = 1.0122× 104. A constant u =
0.01 is applied at time t = 0. Both observers are initialized
at x̂(0) = χ(0) = x(Ωδ), with δ = 10−6.

As seen in Figure 3, both observers converge rapidly.
However, the ELO’s estimates for x̂2 and x̂3 initially take
negative values and x̂1 exhibits a relatively high overshoot,
exceeding x1(0) = d. Because of the switched dynamics
of our proposed observer, χ2 and χ3 remain non-negative,
which expedites convergence of all three state estimates.

VII. CONCLUSIONS

We introduced a switched nonlinear observer (22) whose
dynamics are defined as an augmented version of the ob-
server proposed in [11]; those components of the state
estimate’s vector field pointing out of an invariant set vanish
on the boundary of this invariant set. We showed that the
proposed observer is exponentially stable and that the bound

on its rate of convergence is the same as that of the observer
in [11]. We verified in simulation that the saturation effect
can significantly improve the performance of the observer.
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