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Multi-robot Rendezvous Planning for
Recharging in Persistent Tasks

Neil Mathew Stephen L. Smith Steven L. Waslander

Abstract—This paper addresses a multi-robot scheduling prob-
lem in which autonomous unmanned aerial vehicles (UAVs) must
be recharged during a long term mission. The proposal is to
introduce a separate team of dedicated charging robots that the
UAVs can dock with in order to recharge. The goal is to schedule
and plan minimum cost paths for charging robots such that they
rendezvous with and replenish the UAVs, as needed, during the
mission. The approach is to discretize the 3D UAV flight trajec-
tories into sets of projected charging points on the ground, thus
allowing the problem to be abstracted onto a partitioned graph.
Solutions consist of charging robot paths that collectively charge
each of the UAVs. The problem is solved by first formulating the
rendezvous planning problem to recharge each UAV once using
both, an Integer Linear Program and a transformation to the
Travelling Salesman Problem. The methods are then leveraged
to plan recurring rendezvous’ over longer horizons using fixed
horizon and receding horizon strategies. Simulation results using
realistic vehicle and battery models demonstrate the feasibility
and robustness of the proposed approach.

I. INTRODUCTION

COORDINATED teams of autonomous robots are often
proposed as a means to continually monitor dynamic

environments in applications such as air quality sampling [2],
border security [3] or visual inspections of power plants and
pipe-lines [4]. Such persistent surveillance tasks generally
require the robots to continuously traverse the environment in
trajectories designed to optimize certain performance criteria
such as quality or frequency of sensor measurements taken in
the region [5], [6], [7]. In this work we focus on the case of
a team of multi-rotor UAVs monitoring an environment, in a
scenario such as power-line inspection.

The challenge with using aerial robots in persistent tasks
is that mission durations generally exceed the run time of the
robots, and in order to maintain continuous operation they
must be periodically replenished by recharging stations or
automated battery swap systems that have been demonstrated
in [8] and [9]. As described by Vaughan et al. in [10], in
nonstationary tasks such as surveillance, the location of the
docking station has a significant impact on the task perfor-
mance of the team, since the optimal docking location may
vary over the mission.

A preliminary version of this work appeared as [1].
This research is partially supported by the Natural Sciences and Engineering

Research Council of Canada (NSERC).
N. Mathew and S. L. Waslander are with the Department of Mechanical

and Mechatronics Engineering and S. L. Smith is with the Department of
Electrical and Computer Engineering, all at the University of Waterloo,
Waterloo ON, N2L 3G1 Canada (nmathew@uwaterloo.ca; stephen.smith@
uwaterloo.ca; stevenw@uwaterloo.ca)

Thus, we present a cooperative replenishment strategy for
a team of working robots (UAVs) performing a surveillance
task, using one or more mobile charging robots. Each charging
robot is equipped with a payload of batteries and automated
battery swap systems and the goal is to design routes that
optimally charge each working robot.

The working robots are not required to modify their three-
dimensional surveillance trajectories for rendezvous, so as
to minimize hindrances to the mission objectives caused by
the recharging schedule. We assume that charging robots
possess sufficient energy resources and need not be refuelled
themselves within the planning horizon.

A. Related Work
The problem of persistent coverage and surveillance with

mobile robots, has been investigated in a variety of scenarios
in existing literature, such as a centroidal Voronoi tessellation-
based controller for static coverage [5], optimal velocity
controllers for surveillance along precomputed paths, [6], and
path planning to periodically visit a set of discrete interest
points with varying frequencies of observation [11].

Such persistent surveillance tasks by definition will exceed
the range capabilities of any inspection robot, and therefore
naturally require the inclusion of recharging in their formula-
tions. Derenick et al. [12] propose a modification to [5] that
introduces a combined coverage and energy dependent control
law to drive each robot toward a fixed docking station as their
energy levels become critical. Their work considers only the
static coverage case and there is no notion of charge scheduling
as each agent is assigned a dedicated static charging station.

Contrary to [12], the notion of mobile charging stations has
been studied in literature in the contexts of long term missions
performed by UAVs [13], [14], [15], satellites [16] or general
robotic agents [17]. In [17], Litus et al. consider the problem
of finding a set of meeting points for a set of static working
robots and a single charging robot in a Euclidean plane using
a discrete and continuous optimization approach. In [13], [14],
[15], the authors formulate recharge scheduling with multiple
working agent and a single replenishment agent as combina-
torial optimization problems and solve them using methods
such as integer program formulations, dynamic programming
and heuristic search algorithms.

In our work we will consider a heterogeneous UAV-UGV
team consisting of a team of (potentially heterogeneous)
UAV working robots with varying trajectories and a team of
homogeneous UGV recharging robots similar to the multi-
robot teams described in [18], [19], [20]. For such hetero-
geneous multi-robot teams, Rathinam et al. explore optimal
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path planning for UAVs using variants of the Travelling Sales-
man Problem (TSP) and the Generalized Travelling Salesman
Problem (GTSP) [21], [22], [23], [24] which are well studied
problems in operations research literature and can be solved
using a number of exact, approximate or heuristic algorithms.

In contrast to this literature, we define a recharge scheduling
problem for a scenario where a team of UAVs is required to
persistently monitor an environment in trajectories that are
known within a planning horizon. We discretize the UAV
trajectories into sets of charging locations along the UAV
trajectory where the UAVs can dock with a charging robot,
recharge using an automated battery swap system and take-
off to return to their respective trajectories. These charging
locations along the UAV trajectories correspond to charging
point on the ground to which the charging robots must travel in
order to execute a recharge procedure, and we seek the optimal
selection and ordering of recharge procedures to service the
fleet of aerial vehicles.

We cast the problem as a Generalized Travelling Salesman
Problem (GTSP) for a single charging robot and a Multi-
ple Generalized Travelling Salesman Problem (MGTSP) for
multiple charging robots. We propose solutions based on both
integer linear programs and a transformation to the Travelling
Salesman Problem. The TSP is a well studied problem with
a number of established exact, approximate and heuristic
solution algorithms in operations research literature. One of
the best known algorithms is the Lin-Kernighan heuristic [25]
implemented as the Concorde LinKern TSP solver and an
adaptation proposed by Helsgaun [26] implemented as the Lin-
Kernighan-Helsgaun (LKH) TSP solver. While these heuristics
do not have proven guarantees on sub-optimality, they have
been empirically shown to produce solutions within 2% of the
optimal [27].

In this work we use the Noon-Bean Transformation [28] to
cast the GTSP as an Asymmetric Travelling Salesman Problem
(ATSP) and solve it using the LKH solver. In the case of
the MGTSP, we present a modification to the Noon-Bean
transform to the multiple route computation case, drawing
from operations research literature on graph transformations
for the MTSP [29].

Another body of research that inspired this work is ex-
isting literature on the existence of heterochromatic paths
in k-vertex and k-edge coloured graphs [30], [31]. To the
best of our knowledge, the work that refers to this problem
in the context of coloring resides primarily in the discrete
mathematics community, and deals with determining graph
properties that ensure the existence of long heterochromatic (or
monochromatic) paths in the graph.The work that refers to the
problem as a GTSP resides primarily in the operations research
community, and focuses more on practical (heuristic) solution
techniques. We found the later work more useful for solving
the charging problem, and thus attached the name GTSP to
our work.

B. Contributions

Our approach, in this work, is to position cooperative
recharge scheduling in the space of graph-based optimal

path planning problems. We develop our algorithms in two
stages, first a rendezvous schedule to recharge each working
robot once (single charge cycle), and second, an extension of
the proposed methods to recurring recharges over indefinite
planning horizons (recurring charge cycles). A preliminary
version of this work appeared in [1]. The contributions of this
work are four-fold.

(i) We formulate the cooperative recharge scheduling prob-
lem as a Multiple Generalized Travelling Salesman
Problem (MGTSP) on a partitioned directed acyclic
graph (DAG).

(ii) We present two solutions, first, an optimal Integer Linear
Program method and second, a polynomial transforma-
tion to the Travelling Salesman Problem (TSP) followed
by the application of TSP heuristic solvers in existing
literature.

(iii) We explore potential failure modes for an offline optimal
path planner, investigate the robustness of the schedule
and propose some online strategies to mitigate failures
arising from modelling errors, and stochasticity in the
environment.

(iv) Based on the developed recharge scheduling framework,
we extend the solutions to recurring recharges over
longer planning horizons using receding horizon and
fixed horizon strategies.

The organization of this paper is as follows. Section II intro-
duces the key definitions and nomenclature that are referred to
throughout the paper. Section III formulates the single charge
cycle problem as an NP-hard path planning problem on a parti-
tioned directed acylic graph. Section IV and V then present the
two solution methods employed to compute paths based on an
optimal ILP and TSP transformation respectively. Section VI
examines the extension of the proposed algorithms to longer
planning horizons. Finally, Section VII-C proposes methods
to strengthen the robustness of the plan to stochasticity in
the system and environment. Section VII presents simulation
results to benchmark the performance of optimal and heuristic
solutions.

II. DEFINITIONS AND NOMENCLATURE

A graph G is represented by (V,E, c), where V is the set
of vertices, E is the set of edges and c : E → R is a function
that assigns a cost to each edge in E. In an undirected graph,
each edge e ∈ E is a set of vertices {vi, vj}. In a directed
graph each edge is an ordered pair of vertices (vi, vj) and
is assigned a direction from vi to vj . A partitioned graph is
a graph G with a partition of its vertex set into R mutually
exclusive subsets (V1, . . . , VR) such that ∪iVi = V .

A path in a graph G, is a subgraph denoted by P =
({v1, . . . , vk+1}, {e1, . . . , ek}) such that vi 6= vj for all i 6= j,
and ei = (vi, vi+1) for each i ∈ {1, . . . , k}. The set VP
represents the set of vertices in P and by definition VP ⊆ V .
Similarly a tour or cycle T is a closed path in the graph such
that v1 = vk+1. Finally, a directed acyclic graph (DAG) is a
directed graph in which no subset of edges forms a directed
cycle. With this we can define the following key problems.
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Problem II.1 (The Hamiltonian Path/Tour Problem [32]).
Given a graph G, does there exist a path P that visits every
vertex in G exactly once. Similarly, the Hamiltonian Tour
Problem requires a closed path, T , that satisfies the same
properties.

Problem II.2 (Travelling Salesman Problem (TSP) [33]).
Given a graph G, find a Hamiltonian tour T such that total cost
of

∑
e∈ET

c(e) is minimized, where ET is the set of edges
in T . A symmetric TSP is computed on an undirected graph.
Similarly, an asymmetric TSP is obtained on a directed graph.

Problem II.3 (Generalized Travelling Salesman Problem
(GTSP) [28]). Given a partitioned graph G, find a tour T ,
that visits a single vertex in every vertex set exactly once,
such that the total cost

∑
e∈ET

c(e) of T is minimized, where
ET is the set of edges in T .

Finally, we define the extension of the GTSP to multiple
robots.

Problem II.4 (Multiple Generalized Traveling Salesman Prob-
lem (MGTSP) [34]). Given a partitioned graph G, find a
collection of paths which collectively visit each vertex set
exactly once, with minimum total cost.

III. THE SINGLE CHARGE CYCLE PROBLEM

Given a team of working robots conducting a persistent task,
the goal of this section is to compute an optimal schedule and
path plan for the team of charging robots to rendezvous with
every working robot along its trajectory exactly once.

A. Motion Planning For Charging Robots

Consider an environment, E ⊂ R3, which contains R work-
ing robots, denoted by the set R = {1, . . . , R}. Each working
robot, indexed by r ∈ R, is described by its motion along an
independent known trajectory, Pr(t) ∈ E within a planning
horizon t ∈ [0, Tr] determined by its battery depletion model
and a recharging time window [T r, T r] ⊆ [0, Tr].

The environment also contains M charging robots, denoted
by the set M = {1, . . . ,M}. The charging robots are
constrained to a two-dimensional manifold Ē ⊂ E in the
case of ground robots, although the method could easily be
extended to aerial recharging vehicles operating throughout
the environment. Each charging robot, indexed by m ∈M, is
described by its initial position pm(0) ∈ Ē and its maximum
speed, υ. We assume that all charging robots have the same
maximum speed. The problem is to find optimal paths for the
charging robots, pm(t) in Ē (where |ṗm(t)| ≤ υ) such that
for each r ∈ R, there exists a charging robot m ∈ M and
a time tr ∈ [T r, T r] for which pm(tr) = pr(tr), where pr
denotes the vertical projection of the point Pr(tr) onto the
ground manifold, Ē .

This constraint states that the team of charging robots
must rendezvous at least once with each working robot at a
feasible charging point before the working robot is completely
discharged. Figure 1 illustrates the problem statement with a
team of four working robots following a single path, along
with two charging robots.
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Fig. 1: Four working robots (red triangles) traveling along one path.
For each working robot r, [0, Tr] is denoted by a bold grey line and
[T r, T r], by a bold black line. The two blue charging robots must
meet all working robots on their paths within their charging windows
to guarantee persistent operation.

The continuous-time problem, as stated, requires an opti-
mization over the space of all charging robot trajectories [35].
Hence, discretizing the formulation converts the problem into a
more tractable form and allows the application of graph-based
linear programming techniques to obtain a solution.

B. Discrete Graph Representation

For each working robot r, given that the trajectory Pr(·)
is known over the planning horizon, we can discretize its
charging time window to generate a set of Kr charging times
τr = {tr,1, . . . , tr,Kr

} ⊆ [T r, T r] at which it can be recharged
along its trajectory. The set of charging points on the ground
manifold that result are defined as,

Cr = {(pr(t), t) | t ∈ τr}.

Each charging point (pr(tr,i), tr,i) is described by its time
of occurrence, tr,i, and the projection of the working robots
position, pr(tr,i).

A charging robot, subject to its speed constraints, will
attempt to charge a working robot by arriving at one of its
charging points pr(tr,i), tr,i) ∈ Cr at a time t ≤ tr,i and
staying there until time tr,i such that pm(tr,i) = pr(tr,i).
This definition satisfies the previously stated condition for
a rendezvous in continuous time. Note that for the sake of
simplicity, the formulation assumes instantaneous charge, but
it can be extended directly to the case of nonzero charging
durations at each charging point, as discussed in Remark III.1
.

The discrete problem is one of finding paths for the charging
robots that visit one charging point in each set Cr. We can
encode every possible charging path in a partitioned directed
graph G, defined as follows.

a) Vertices: The vertices, are defined by R + 1 disjoint
vertex sets, V0, V1, . . . , VR. The set V0 is the set of initial
locations of the charging robots. Each vertex in set Vr, for
r ∈ R corresponds to a charging point in Cr, the set of all
charging points for robot r. The complete vertex set is then
V = V0 ∪ V1 ∪ · · · ∪ VR.
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b) Edges: An edge (vi, vj) is added to E, where vi ∈ Vr1
and vj ∈ Vr2 for some r1, r2 ∈ R with r1 6= r2, to E if
there exists a feasible traversable path from charging point
(pr1(tr1,i), tr1,i) to (pr2(tr2,j), tr2,j). That is, if

‖pr2(tr2,j)− pr1(tr1,i)‖
υ

≤ tr2,j − tr1,i. (1)

c) Edge Costs: Each edge e = (vi, vj) ∈ E is associated
with a non-negative cost c(e) that can be chosen based on
the objective of the optimization such as minimizing total
distance travelled by charging robots or total makespan of the
recharging process.
Remark III.1 (Nonzero Charging Durations). For simplicity of
presentation we have assumed that charging occurs instanta-
neously. Thus, if a charging robot performs a rendezvous with
a working robot at charging point (pr(tr,i), tr,i), it can leave
that charging point at time tr,i. We can extend this formulation
to charging points described as triples (pr(tr,i), tr,i,∆tr,i),
where ∆tr,i is the time required for working robot r to descend
to the ground, charge at the ith charging point, and reascend
to resume its trajectory. In this case the charging robot can
leave the charging point at time tr,i + ∆tr,i. The condition to
add an edge in equation 1 then changes to

‖pr2(tr2,j)− pr1(tr1,i)‖
υ

≤ tr2,j − (tr1,i + ∆tr1,i). (2)

Using the autonomous battery swap mechanisms developed
in [8] and [9], and a consistent vertical speed for the UAVs,
it is possible to deterministically define ∆tr,i for most envi-
ronments conducive to surveillance with quadrotor UAVs. The
ROS Gazebo simulation that accompanies this paper justifies
the use of ∆tr1,i in the optimal recharge formulation.

•
As a simple illustrative example, Figure 2(a) shows two

working robots r1 (blue) and r2 (red) following arbitrary
trajectories and one charging robot m1 in an environment
E ⊂ R2. Each robot path is discretized into three charging
points and graph G is constructed on them based on the
feasibility conditions.

In addition to the vertex partition, a special property of G is
that there are no edges between vertices of the same vertex set,
thus making the graph multipartite in nature. Further, since the
edges represent rendezvous conditions between pairs of time-
stamped locations and all edges are directed towards vertices
increasing in time, it is impossible for G to contain any
directed cycles. Hence, by definition G is partitioned directed
acyclic graph (DAG).

C. Optimization on a Partitioned DAG

Given a partitioned DAG G, the goal is to find an optimal
path or set of paths, starting at the m initial locations of
charging robots, that collectively visit each vertex set once, as
shown in Figure 2(b). To characterize the complexity of our
problem, it will be helpful to state this as a decision problem.

Problem III.2 (The One-in-a-set DAG Path Problem). Con-
sider a partitioned DAG G and a partition (V0, V1, . . . , VR) of
V where V0 = {vm|m ∈M}. Does there exist a set of paths

1

(p1(t11),t11)
(p1(t12),t12)

(p1(t13),t13)
T1

T2

(p2(t23),t23)

(p2(t22),t22)(p2(t21),t21)

2

(a) Sampled UAV trajectories and roadmap graph for the
charging robot.

1

2

(p1(t11),t11)
(p1(t12),t12)

(p1(t13),t13)
T1

T2

(p2(t23),t23)

(p2(t22),t22)(p2(t21),t21)

(b) Optimal Recharge Path Solution

Fig. 2: Building a traversal graph for two working robots and one
charging robot. The resulting graph is a directed acyclic graph with
vertex partitions.

P = {P1, . . . , PM} in G, where Pm ∈ P starts at vm ∈ V0,
such that |Vi ∩ VP | = 1 for all i ∈ R ?

We will say that the partitioned DAG G contains One-in-
a-set path(s) if and only if the answer to the corresponding
decision problem is yes.

The One-in-a-set Path problem has been proved to be NP-
hard for the case of undirected, complete, or general directed
graphs, because they contain, as special cases, the undirected
and directed TSP problems, respectively, which are both NP-
hard. Unlike these TSP problems, the One-in-a-set DAG Path
problem consists of a path through a directed acyclic graph,
which is not trivially provable as NP-hard given that the
longest path problem for directed acyclic graphs is solvable in
polynomial time using dynamic programming [36]. However,
in the following section we prove that the One-in-a-set DAG
Path problem is in fact an NP-hard problem.
Remark III.3 (Maximizing the Number of Robots Charged).
For a given number of charging robots and a given discretiza-
tion of working robot paths, there may not exist recharging
paths to charge all robots. In this case, a reasonable approach
is to determine a set of charging paths such that the number
of working robots that are successfully charged is maximized.

This can be accommodated is follows. For working robot
r ∈ R, we add one extra vertex zr to the set Vr. A charging
robot visits this additional vertex only if the corresponding
working robot cannot be charged. We fix C > 0 to be larger
than the longest edge in the graph and add the following
directed edges each with weight C:
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(i) edges from each vertex in the original graph to each zr,
(ii) edges between each pair zr1 and zr1 , where r1, r2 ∈ R

with r1 6= r2.
A solution will traverse through the original DAG for as

many charges as possible, and then will then switch over to
the zr vertices when it cannot charge any more working robots.
The remaining working robots will be visited using their vertex
zr, implying that they are not charged and must land safely.
Since their are no edges from a zr back to the original DAG
vertices, this modification does not generate any cycles.

Notice that if there exists a feasible solution to the original
problem, then no zr vertices will be visited and the problem
is equivalent to Problem III.2. If not all working robots can
be charged, then a One-in-a-set DAG solution to this problem
will minimize the number of uncharged robots. •

D. Hardness of the Discrete Problem

We will prove NP-hardness of the One-in-a-set DAG Path
problem by using a reduction from the NP-Complete Hamil-
tonian path problem [37].

Theorem III.4 (NP-Completeness of Problem III.2). The One-
in-a-set DAG Path problem is NP-Complete.

Proof. Consider an instance of the Hamiltonian path problem
defined on graph G′. We will give a polynomial transformation
of G into a partitioned DAG, G, that is a valid input to the
One-in-a-set DAG Path decision problem.

Given the undirected graph G′, we need to create a DAG
G = (V,E) along with the vertex partition (V0, V1, . . . , VR).
Our approach will be to encode every possible Hamiltonian
path order in G′. The One-in-a-set DAG decision problem will
then have a yes answer if and only if the graph G′ contains a
Hamiltonian path.

Let V ′ = (v1, . . . , vR) and for each r ∈ {1, . . . , R}, let
VR be given by R copies of vr, which we will denote by
Vr := (vr,1, . . . , vr,R). The jth copy of vr will correspond
to all paths in G′ that have vr as their jth vertex. Finally, we
create a (dummy) vertex V0 and define V = V0∪V1∪· · ·∪VR.

Now, we define the edges E as follows. We begin by adding
an the edge (v0, vr,1) to E for each r ∈ {1, . . . , R}. Then for
any two sets Vi and Vj and for k ∈ {1, . . . , R − 1} we add
the edge (vi,k, vj,k+1) if and only if (vi, vj) ∈ E′. Figure
3 illustrates this reduction and shows that a feasible path is
found in the DAG. It is clear that a feasible solution to the
described One-in-a-set DAG Path problem yields a feasible
solution to the Hamiltonian path problem.

This defines the input G to the One-in-a-set DAG decision
problem. It is easy to see that G is acyclic since it has a
topological sort: Define the partial ordering as vi,k ≤ vj,` if
and only if k ≤ ` and note that there is an edge from vi,k to
vj,` only if ` = k + 1. Also, note that G has R2 + 1 vertices.

Finally, we just need to show that G′ contains a Hamiltonian
path if and only if G contains a One-in-a-set path. Suppose
G contains a Hamiltonian path P = vr1vr2 · · · vrR , where
(vij , vij+1) ∈ E for each j ∈ {1, . . . , R − 1}. Then, the path
P = V 0, vr1,1vr2,2 · · · vrR,R is a One-in-a-set path in G since
each edge (vrj ,j , vrj+1,j+1) is in E.

V1

V3

V2

(a) G′ = (V ′, E′)

1

2

3

1 1

2 2

3 3

V1 V2 V3

V0

(b) G = (V,E)

Fig. 3: A reduction of the Hamiltonian Path Problem to the One-in-
a-set DAG Problem. Each color in graph G′ represents an individual
vertex. Each vertex color in graph G′ corresponds to a unique vertex
set in graph G

Conversely, suppose that G contains a One-in-a-set path P .
By the definition of the edges E, the path must be of the
form v0, vr1,1vr2,2 · · · vrR,R. This implies that (vrj , vrj+1) ∈
E for each j ∈ {1, . . . , R− 1} and thus P ′ = vr1 · · · vrR is a
Hamiltonian path in G′.

NP-Completeness of the One-in-a-set DAG decision prob-
lem implies that our recharging optimization problem is NP-
hard. In what follows we present our approach to the problem
from the bottom up. We first formulate the ILP for the
single charging robot case and use it to characterize the
structure of the optimization. We then extend the problem to
include multiple charging robots and investigate algorithmic
alternatives to generate near optimal solutions.

IV. SOLUTION 1: INTEGER LINEAR PROGRAMMING

The One-in-a-set DAG Path problem can be stated as an
integer linear program (ILP) and optimally solved for smaller
instances of the problem. For ease of presentation we first
formulate the ILP for a single charging robot path in a
partitioned DAG.

Given the partitioned graph G with vertex sets
(V0, V1, . . . , VR), we define a decision variable, xij ∈ {0, 1}
with xij = 1 if, in the resulting path, a visit to vertex vi
is followed by a visit to vertex vj , where i ∈ Vr1 , j ∈ Vr2
and r1 6= r2, r1, r2 ∈ R. The cost of the edge traversal xij
is denoted by cij , and is defined as follows. For the edge
e = (vi, vj) (with associated decision variable xij) we define.

cij =

{
c(e), if e ∈ E,

∞, if e /∈ E.
(3)

The start vertex is denoted by index d. The solution path
must end at the dummy vertex denoted with index f . The
single charging robot ILP is now defined as follows.

min
∑
i∈V

∑
j∈V

cijxij (4)



6

subject to ∑
j∈V \V0

xdj = 1 (5)

∑
i∈V \V0

xif = 1 (6)

∑
j∈Vr

∑
i∈V

xij = 1 ∀r ∈ R (7)∑
i∈Vr

∑
j∈V

xij = 1 ∀r ∈ R (8)∑
i,j∈V

(xik − xkj) = 0 ∀k ∈ V \ V0 (9)

xij ∈ {0, 1} ∀i, j ∈ V (10)

The objective function (4) seeks to minimize the total path
cost defined as the travel distance of the charging robot.
Constraint (5) and (6) guarantee that the tour starts at the start
vertex and ends at the finish vertex. Constraint (7) and (8)
ensure that each vertex set is visited only once. Constraint (9)
is a flow constraint to guarantee that the entering and exiting
edge for each vertex set are both incident on the same vertex in
the group. Finally, Constraint (10) specifies binary constraints
on the decision variables xij .

The total number of constraints in this single charging
robot formulation is (2 + 2R+N). The maximum number of
binary decision variables on the edges of a complete graph is
N(N−1). However, given the multipartite graph G, a decision
variable xij exists only if vi and vj belong to different vertex
sets.

Note that the number of variables and constraints grows with
the number of vertices in the graph G. For a given environment
and configuration of working and charging robots, the size
of G is determined by the length of the charging window
[T r, T r] ⊆ [0, Tr], and the density of charging locations along
each robot path.

A. ILP Properties

The optimal solution to the ILP provides a minimum cost
path that passes through each vertex set of a DAG exactly
once. We observe from the formulation that the problem can
be modelled as the Generalized Travelling Salesman Problem
(GTSP) [28] as stated in Problem II.3.

Despite structural similarities to the GTSP, the ILP formu-
lated for the One-in-a-set DAG Path problem introduces a
significantly smaller constraint set than TSP and GTSP routing
problems. This is due to the directed acyclic graph structure. In
particular, the TSP requires subtour elimination constraints to
ensure that the resulting tour does not contain disjoint subtours
in the solution. The most efficient way to eliminate subtours
is to introduce an additional N variables ui, and O(N2)
constraints [38] of the form ui − uj + Nxij ≤ N − 1 for
all 1 ≤ i 6= j ≤ N , where xij is the decision variable on the
edge (vi, vj) ∈ E.

The lack of directed cycles in a DAG eliminates the need for
sub-tour elimination constraints in our formulation. Further,
the multipartite nature of the graph reduces the number of
binary decision variables in the integer program. Due to this

reduction in the number of variables and constraints relative to
a TSP mixed-integer program, we can solve larger problems
with relatively lesser computational effort. In practice, we
observed that problems with an order of magnitude increase
in the number of vertices could be solved in comparable time.

Nevertheless, given the NP-hardness of the problem, op-
timally solving the ILP will not remain computationally
tractable with increasing problem complexity and Section V
describes a heuristic approach to compute near-optimal solu-
tions.

B. ILP Formulation for Multiple Charging Robots

The integer linear program in Section IV can be easily
extended to the multiple charging robot problem, using a three-
index flow formulation. We highlight the differences here and
refer a reader to [1] for more details.

In the extended formulation each charging robot m is
represented by an independent route pm and hence the binary
decision variables on edges are defined as xijm ∈ {0, 1} with
xijm = 1 if, in route pm, the vertex vj is visited after vertex
vi, where i ∈ Vr1 , j ∈ Vr2 , r1 6= r2 and r1, r2 ∈ R. The new
objective function is

min
M∑
m=1

∑
i∈V

∑
j∈V

cijxijm.

Notice that this objective seeks to minimize the total path cost
of all charging vehicles. The number of constraints in this
formulation is (2M + 2R + N) and the number of decision
variables is upper bounded by MN(N − 1).

V. SOLUTION 2: GRAPH TRANSFORMATIONS

In this section we present an alternative to the ILP for-
mulation, which leverages the high quality heuristic solvers
available for the Traveling Salesman Problem. In Section V-A,
we implement a modification to the Noon-Bean transformation
to transform the multiple charging robot problem into an
instance of the TSP that is consistent with similar approaches
in optimal path planning literature [21].
Remark V.1 (Runtime of Reduction to TSP). Given a GTSP
instance consisting of N vertices divided into R mutually
exclusive sets, the Noon-Bean transformation generates a TSP
on N vertices in O(N2) time [28]. To solve the resulting TSP
instance, one can use the Lin-Kernighan heuristic, which is
empirically found to generate solutions in O(N2.2) time [39].
The resulting GTSP solution can then be reconstructed in
O(N) time. •

A. Multi-robot Noon-Bean Transformation

In this section we describe an extension to the Noon-
Bean method to transform the MGTSP into a TSP. The
tranformation, inspired by a similar approach by Rathinam
et al. [21], ensures that the optimal solution to the TSP can
be used to construct the optimal solution to the MGTSP. The
algorithm is implemented to solve the One-in-a-set DAG path
problem for multiple charging robots.
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(a) A sample problem consisting of three working robots
and two charging robots.
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(b) Problem (P2) corresponding to the scenario in Figure 4(a).
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(c) Problem instance (P3), generated using the modified Noon-
Bean algorithm. Red edges represent the Noon-Bean transfor-
mation and blue edges represent new additions in the modified
algorithm.

Fig. 4: The modified transformation for the scenario in Figure 4(a)
using both charging robots m1 and m2.

We begin by stating the One-in-a-set DAG Path problem as
an MGTSP and call this Problem (P2). See Figure 4(b) as an
example. Problem (P2) is an instance of an MGTSP, defined
over a partitioned DAG, G2, with a partition of its vertices V 2

into R+1 sets, (V 2
0 , V

2
1 , . . . , V

2
R). The vertex set V 2

0 contains
M start-depots for charging robots. We seek a set of paths
starting at the depots vid, i ∈ M that visit all the vertex sets

V 2
1 , . . . , V

2
R exactly once.

The transformation converts the MGTSP problem instance
(P2), into a new problem instance (P3) on which a TSP
solution may be computed. Problem (P3) is a TSP defined over
a graph G3. The vertices, V 3, edges E3 and cost function c3

are defined as follows.
(i) Define the set of vertices of G3, as V 3 = V 2. In set V 3

0 ,
add M vertices, vif , i ∈M, as the charging robot route
finish-depots. At each vertex vif , add edges (vj , v

i
f ),

where vj ∈ V 2 \ V 2
0 and assign costs based on the

optimization objective.
(ii) In vertex set V 3

0 , arrange all start-finish depot pairs
(vid, v

i
f ) in an arbitrary sequential ordering to obtain

V 3
0 = {v1d, v1f , v2d, v2f , . . . , vMd , vMf }. Create zero-cost

intraset edges forming a single directed cycle through
all vertices in V 3

0 , in the chosen order. Hence, create
edges (v1d, v

1
f ), (v1f , v

2
d), . . . , (vMd , v

M
f ), (vMf , v

1
d).

(iii) For the definition of all edges (vi, vj) where vi, vj ∈
V 3 \ V 3

0 and i 6= j, use the original Noon-Bean method
presented in [28].

(iv) Add the penalty β >
∑
e∈E3 cij to all edges (vi, vj)

where vi, vj ∈ V 3 \ V 3
0 and i 6= j. Further, add penalty

β to all outgoing interset edges from start-depots vid in
set V 3

0 . Penalty β is not added to any edges incident on
finish-depot vertices in V 3

0 .
Figure 4(c) illustrates the transformed graph G3, for Prob-

lem (P3). The transformed graph G3 defined in Problem
(P3) can now be used to compute the TSP solution using
a variety of freely and commercially available TSP solvers.
The experimental simulations in this work use the LKH solver
based on the Lin-Kernighan Helsgaun heuristic to solve TSP
instances.

B. Correctness of the Multi-Robot Transformation

We will begin by stating the main result, which parallels
that of the original Noon-Bean transformation.
Theorem V.2 (Multi-robot Noon-Bean Theorem). Given a
MGTSP in the form of Problem (P2) with R vertex sets and M
depots, we can transform the problem into a TSP in the form
of Problem (P3). Given a solution Υ3 to Problem (P3), we
can construct a corresponding solution Υ2 to Problem (P2) if∑
e∈EΥ3

c3(e) < (R+ 2)β.

Note, this theorem implies that an optimal solution to the
TSP problem (P3) provides an optimal solution to the MGTSP
problem (P2).

Before proving this result, we highlight the procedure for
constructing the optimal solution Υ2 given the optimal solution
Υ3 to Problem (P3). First, we find the indices of all the finish-
depot vertices used in Υ3. If the indices are {l1, l2, . . . , lM},
pick the vertices immediately following them in the tour as
{l1 +1, l2 +1, . . . , lM +1}. These are the start-depots of each
individual path. Between every pair of start-depot and finish-
depot indices (li+1, li+1), use the Noon-Bean method to select
vertices for each set in {V 2

1 , . . . , V
2
R}. This can be performed

as long as the condition in Theorem V.2 is satisfied.
We now prove Theorem V.2 through a sequence of lemmas.
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Lemma V.3. In any TSP solution to Problem (P3), each start-
depot vertex vid ∈ V 3

0 will be immediately preceded by the
finish-depot vertex, vi−1f ∈ V 3

0 in the chosen cyclic ordering
of vertices in set V 3

0 .

Proof. Every start-depot vid ∈ V 3
0 has an in-degree of one.

Hence a path visiting a start-depot can do so only through the
preceding finish-depot vertex in the given cyclic ordering of
V 3
0 .

This simple result implies that the indices of the finish-depot
vertices will allow us to “cut” a single TSP tour into paths for
each working robot. Lemmas V.4 and V.5 define the method
and conditions under which the TSP solution to Problem (P3)
provides the MGTSP solution to Problem (P2).

Lemma V.4. The optimal TSP solution to Problem (P3) can
be used to construct the optimal MGTSP solution to Problem
(P2).

Proof. According to the modified Noon-Bean transformation,
if an optimal MGTSP solution to Problem (P2), Υ2, is defined
by the set of M paths as,

{{v1d, vj , . . . , vk, v1f}, . . . , {vMd , va . . . , vb, vMf }},

then the corresponding optimal TSP solution Υ3 to the trans-
formed problem (P3) will be,

v1d, vj , vj+1, . . . , vj−1, . . . , vk, vk+1, . . . , vk−1, v
1
f ,

vMd , va, va+1, . . . , va−1 . . . , vb, vb+1, . . . , vb−1, v
M
f , v

1
d

The optimal TSP path visits all vertices in vertex sets
{V 3

1 , . . . , V
3
R} in a clustered manner as shown in the Noon-

Bean transformation. The vertices of set V 3
0 are visited in-

termittently between interset transitions in finish-depot, start-
depot pairs as specified in Lemma V.3. As stated in Lemma
V.3, the TSP tour can be cut into optimal paths for each of
the charging robots. Further, given that each interset edge of
Υ3 has a cost equal to the corresponding interset edge in Υ2,
we can determine that

∑
e∈EΥ3

c3(e) =
∑
e∈EΥ2

c2(e).

We know that an optimal solution (P3) always corresponds
to the optimal solution to (P2). Lemma V.5 extends this result
to define the condition under which a feasible TSP solution to
(P3) can provide a feasible solution to (P2)

Lemma V.5. A feasible TSP solution, Υ3, to Problem (P3)
provides a feasible MGTSP solution, Υ2, to Problem (P2)
given that

∑
e∈EΥ3

c3(e) < (R+ 2)β.

Proof. From the Noon-Bean transformation [28], we know
that a feasible GTSP solution through R + 1 vertex sets
contains R+ 1 interset edges and the cost of a corresponding
TSP solution cannot exceed (R+ 2)β.

In the case of multiple charging robots, the number of inter-
set edges in the solution depends on the number of charging
robot routes. However, since the edges incident on finish-
depots in V 3

0 do not have the penalty, β, added to their cost,
the number of large-cost interset edges in the solution is R+1,
independent of the number of charging robot routes used.

Hence, a feasible solution to Problem (P2) can be constructed
from a solution to Problem (P3), if

∑
e∈EΥ3

c3(e) < (R+2)β.

Combining the three lemmas above we arrive at the final
result of Theorem V.2. Notice that in the case of both Lemma
V.4 and V.5, the cost of the constructed MGTSP solution is
equal to the cost of the TSP solution. Hence,

∑
e∈EΥ3

c3(e) =∑
e∈EΥ2

c2(e).

VI. RECURRING CHARGE CYCLES OVER LONG PLANNING
HORIZONS

This section extends the single recharge cycle problem
to multiple recharge events over a longer mission span by
computing an optimal periodic recharge schedule over the
entire planning horizon. A fixed horizon mixed integer linear
program (MILP) is presented and solved in Section VI-A.
Further, an alternative approach to greatly reduce computa-
tional effort using a receding horizon approach is shown to
empirically perform sufficiently well.

A. Optimal Periodic Recharging

The fixed horizon approach to path planning involves
computing an optimal path over the entire planning horizon.
This approach, although significantly increasing the size of
the problem, guarantees optimality of rendezvous paths over
the lifetime of the mission. As in the single recharge cycle
computation, in the periodic recharging problem, working
robot trajectories are known for the entire planning range
[0, T ]. In this section, however, the objective is to compute
charging robot paths that rendezvous with working robots at a
sequence of charging points such that no working robot runs
out of charge during the mission. The problem is approached
as follows.

1) Challenges: Three main factors distinguish the periodic
charging problem from the single charge cycle problem:

(i) Arrival times of working robots at charging points
cannot be determined a-priori, since they depend on
previous rendezvous’ in their paths.

(ii) The time elapsed between consecutive recharges of each
robot must be constrained to ensure successful continued
operation.

(iii) The variability of arrival times at charging points implies
that the feasibility condition applied on a path between
them, as defined in Equation 2, cannot be predetermined.

2) Approach: Given these considerations, we formulate the
periodic charging problem as an optimization on a partitioned
graph G as follows.

Vertices: Define a set of vertices V that is partitioned into
R + 1 disjoint vertex sets, V0, V1, . . . , VR. The set V0 is the
set of start-depots of the charging robots. The vertices in each
set Vr, r ∈ R, correspond to charging locations in Cr.

The charging point set for periodic charging, Cr =
{pr(t)|t ∈ T} for robot r ∈ R is defined as the set of locations
pr(t) that a robot would visit along its trajectory, given infinite
charge and no recharge stops. The estimated arrival times at
the charging points will be updated as part of the optimization.
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Fig. 5: The periodic MILP representation: An sample problem
instance illustrating charging point discretization and key variables.
A path for charging robot m1 is computed to visit charging point sets
Vr1 and Vr2 , for robots r1 and r2, periodically to ensure yr,i < τr .

Edges: Edge-feasibility is subject to change based on UAV
arrival times at charging points. Hence define all edges (vi, vj)
where vi ∈ Va, and vj ∈ Vb for a, b ∈ R and a 6= b as
valid edges in the periodic charging graph. The edge-feasibility
condition will be applied as a constraint in the optimization.

Costs: The cost on an edge can be defined based on the
optimization objective. In this formulation we consider the
distance between two charging locations.

In addition to the graph G, we introduce two sets of
variables, yr,i and tr,i. The variable, yr,i ∈ R+, stores the
value of the time elapsed since the last recharge of robot
r, at each charging point i in Cr. By placing a bound, τr,
on the maximum value of yr,i, we can ensure that robot r
will always rendezvous with a charging robot before it is
completely discharged. The variable, tr,i ∈ R+, computes the
time of arrival of a UAV r at its charging point i in set Cr.
The value of tr,i is computed at each point taking into account
the service times at charging points chosen for rendezvous’.

A sample instance of the discretized problem for optimal
periodic charging is shown in Figure 5.

We can now formally state the optimal periodic recharging
problem.

Problem VI.1 (Optimal Periodic Charging Problem). Con-
sider a partitioned DAG G with the partition (V0, V1, . . . , VR)
of V where V0 = {vm|m ∈ M}. Find a set of paths
P = {P1, . . . , PM} in G that minimize

∑M
i=1

∑
e∈EPi

c(e)
and satisfy the constraints (i) Pm ∈ P starts at vm ∈ V0, such
that |Vr ∩ VP | ≥ 1 for all r ∈ R and (ii) yr,i < τr for all
r ∈ R and all vi ∈ Vr.

B. Periodic MILP Formulation

Given the problem statement, the periodic charging MILP
can be defined as an extension to the single charge cycle ILP
defined in Section IV. For ease of presentation, the MILP is
formulated to compute a single charging robot path through a
team of UAVs performing a persistent task. The extension to
multiple robots is straightforward as shown in Section IV-B.

The periodic charging MILP refers to a vertex vi with an
index i in the context of the complete vertex list V , as well as

an index within each working robot vertex set Vr. Hence, to
avoid ambiguities in the indices, we define the set of vertex
indices of Vr as IVr

= {1, . . . , |Vr|}, and the set of vertex
indices of V as IV = {1, . . . , N}. Finally, we define the
index function σ : R × IVr

→ IV as a function that takes a
working robot index r ∈ R and the local index of the charging
vertex i ∈ IVr and returns the global index of the vertex in
the complete vertex list IV .

The objective of the periodic charging problem, as inherited
from the single recharge cycle integer program, is to minimize
the total sum of path costs of the charging robots.

min
∑
i∈V

∑
j∈V

cijxij (11)

The constraints of the periodic optimization inherit degree
and flow constraints of the One-in-a-set DAG path problem
and extend the problem definition to fulfill periodic charging.
Constraints (5), (6) and (9) are inherited directly. Set degree
constraints (8) and (9) are modified to form Constraints (12)
and (13) to allow multiple recharge rendezvous’ within each
set Vr of a robot r:∑

j∈Vr

∑
i∈V

xij ≥ 1, ∀r ∈ R (12)

∑
i∈Vr

∑
j∈V

xij ≥ 1, ∀r ∈ R (13)

Constraint (14) computes the value of tr,i, the arrival time
at each charging point, as the sum of the arrival time at the
previous charging point, tr,i−1, the service time sr at the point
if a recharge has taken place, and the travel time, δri−1,i

,
between two consecutive charging points.

tr,i = tr,i−1 + sr
∑
j∈V

xjσ(r,i−1) + δri−1,i ,

∀r ∈ R ∀i ∈ IVr

(14)

Given the value for tr,i at each charging point, an edge
feasibility constraint for every edge in the graph can now be
defined. Constraint (15) is defined as a logical or implication
constraint which ensures that if the value of xσ(r1,i)σ(r2,j) = 1,
signifying an active edge in the solution, then the feasibility
constraint as shown in constraint (15) must be satisfied. Logic
constraints can be reformulated into MILP constraints using
linear relaxations and big-M formulations as shown in [40].

xσ(r1,i)σ(r2,j) = 1 =⇒ tr2,j − tr1,i >
dσ(r1,i)σ(r2,j)

υ
∀r1, r2 ∈ R; r1 6= r2 ∀i ∈ IVr1

∀j ∈ IVr2

(15)

Note that dσ(r1,i)σ(r2,j) is the distance between the two
charging points. The final three constraints (16), (17) and (18)
compute the value of yr,i and ensure that it is bounded by τr.
Constraint (16) computes the value of yr,i at every charging
point, where a rendezvous does not occur, as the sum of yr,i−1
and δri−1,i

.
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∑
j∈V

xjσ(r,i) = 0 =⇒ yr,i − yr,i−1 = δri−1,i

∀r ∈ R ∀i ∈ IVr

(16)

Constraint (17) resets the value of yr,i to 0 at a charging
point chosen for rendezvous. Thus the value of yr,i increments
throughout the charging point set, occasionally resetting to 0
at points where recharge rendezvous’ occur.

∑
j∈V

xjσ(r,i) = 1 =⇒ yr,i = 0

∀r ∈ R ∀i ∈ IVr

(17)

Finally Constraint (18) limits the growth of yr,i to guarantee
that robot r is consistently charged through the mission.

0 ≤ yr,i ≤ τr, ∀r ∈ R ∀i ∈ IVr
(18)

The total number of constraints in this formulation is 2M+
2R+N2 + 5N , of which N2 +N are implication constraints.
Similar to the single recharge cycle ILP defined in Section IV,
the complexity of the fixed horizon problem is influenced by
the number of vertices in the graph G. For a given scenario
of working and charging robots, the size of the G grows with
the length of the planning horizon [0, T ] and the density of
charging locations on each robot path.

This formulation produces a significantly larger constraint
set than the single recharge cycle ILP and as a result, the fixed
horizon MILP quickly becomes intractable for larger problem
instances. An alternative approach to minimize computational
effort is a receding horizon strategy.
Remark VI.2 (Receding Horizon Planning). Receding horizon
(RH) methods have been extensively applied in MILP based
motion planning [41] to minimize computational effort and
enhance robustness of the computed path. In a general receding
horizon formulation, a path plan is computed and implemented
over a shorter time window and then iteratively updated from
the state reached at each re-planning event, for the duration
of the planning horizon. In the context of this problem,
an RH strategy may be employed as an alternative to the
fixed horizon optimization, using an iterative computation of
single cycle recharge paths. The downside of this approach
is that there is no guarantee that every consecutive planning
iteration will generate a feasible path solution. However, with a
good re-planning strategy, and sufficient robustness measures
we argue that this method empirically presents a significant
improvement over the fixed horizon method as described in
Section VII-C and shown in the simulation results in Section
VII.

VII. SIMULATION RESULTS

The optimization framework for this paper was implemented
and tested in simulated experiments generated in two simula-
tion environments, (i) MATLAB R©, to investigate the solution
quality and runtime performance of the proposed algorithms
and (ii) ROS Gazebo to study the robustness of our methods in
a realistic implementation. The mixed integer linear programs

were solved optimally using the IBM CPLEX R© solver and the
TSP heuristic used in the computation was the freely available
LKH Solver [26]. The solutions were computed on a laptop
computer running a 32 bit Ubuntu 12.04 operating system with
a 2.53 GHz Intel Core2 Duo processor and 4GB of RAM.

The simulation environment consists of a test set of planar
trajectories that are assigned to a team of R working robots.
Each working robot r is defined by its assigned trajectory,
current pose, voltage level and battery lifetime Tr. The envi-
ronment also contains a set of M randomly located charging
robots, each defined by an initial position and a maximum
velocity, υ. The goal is to enable the working robots to
persistently traverse their assigned trajectories for the duration
of mission such that the total distance travelled by the charging
robots is minimized.

A. Single Recharge Cycle Path Computation
To benchmark the performance of the TSP-based solver

against the optimal CPLEX solution, we conducted an exper-
iment examining the effect of growth in problem complexity
on the runtime and solution quality for both solvers.

A test set of simulation environments with different path
and robot configurations was created. Given each environment
configuration, the complexity of the path optimization was var-
ied by incrementing the density of charging points along each
working robot trajectory from {10, 20, 30, . . . , 100} charging
points per path. The recharge path was computed several times
for each charging point density level. The resulting runtimes
and path lengths for each environment are normalized to show
trends in performance with growth in problem complexity. The
results are summarized Figure 6 using box plots that show
the spread of results over each charging point density level,
using quartiles (box edges), extreme data points (whiskers) and
outliers (crosses). Boxes for the optimal and heuristic solutions
are plotted adjacently for each x-axis data point.

Figure 6(a) demonstrates the growth in runtime for the
optimal CPLEX solution and the LKH heuristic solution
with a growth in problem complexity. Similarly, Figure 6(b)
demonstrates the trend in path costs for the optimal and
heuristic solutions. The optimal path cost for each simulation
environment is generally consistent for all problem sizes since
the complexity is varied by only increasing the number of
charging points per path. The results show that, on average, as
problem complexity grows, the optimal solver grows exponen-
tially in runtime and the heuristic solver consistently provides
solutions within 10% of the optimal with significant savings
in computational effort.

An example environment is shown in Figure 7, consisting of
eight working robots distributed among eight paths and three
charging robots. The DAG for this problem instance consists of
500 vertices. The optimal solution was computed by CPLEX
in 97 seconds. The heuristic solution was computed by LKH
in 1.2 seconds and resulted in a path cost 7.8% higher than
the optimal cost.

B. Real-World Simulation Environment
In order to observe the effects of uncertainties in the dynam-

ics and controller response of the vehicles on the robustness
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(a) Runtime comparison: Optimal CPLEX (blue) vs. LKH heuristic (green).

(b) Path cost comparison: Optimal CPLEX (blue) vs. LKH heuristic (green).

Fig. 6: Performance comparison of Optimal CPLEX and LKH TSP
heuristic solutions.
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Fig. 7: Comparison of the optimal CPLEX solution (light grey/green
path) against the Modified Noon bean Transform and LKH Heuristic
solution (dark grey/red path). The problem consists of eight working
robots (triangles) on eight paths and three charging robots.

of the computed recharge schedule, we have constructed a
simulation using the ROS/Gazebo environment, with full dy-
namics and control models of quadrotors and ground vehicles
operating on non-planar terrain and with 3D trajectories.

The simulation includes the Gazebo Hector Quadrotor UAV
model and the Gazebo Husky UGV model to simulate the
dynamics of aerial and ground vehicles in operation. In these
simulations we have observed that issues such as nonlinearities
in thrust generation, rotations and controller performance do
not significantly effect the ability of the robots to execute their
recharge plans. This appears to be a result of the difference
in the time scales of the controller performance (which is on
order of seconds) and that of the battery life and recharge
schedule (which is on the order of tens of minutes) [42], [43].
The accompanying video submission shows a representative
simulation. The paths used in this video were chosen for
demonstration purposes, and are not limited by the proposed
approach.

C. Robustness Measures in Offline Plan

Through the real-world simulations, we have observed that
the plans computed offline typically have enough safety mar-
gin in their timings that they remain feasible even with timing
errors that occur in practice (e.g., a charging robot arrives late
for a charging rendezvous). However, we can explicitly build
safety margins into the offline plans to increase robustness.
In this subsection we briefly describe methods for building
safety margins into i) docking and recharge times, and ii)
the UAV battery life estimation. For both sections, the cost
used is the total distance traveled by the recharging vehicles.
In this section we have attempted to create “hard” problem
instances in which small timing deviations result in many
charging failures.

1) Docking and Recharge Time Errors: As shown in equa-
tion (2), the offline plan relies on estimates of the time to
dock and recharge robot r1 at charging point i as ∆tr1,i. When
estimating this time, we can add a safety margin of λ > 0. The
condition for adding an edge to the graph in equation (2) then
becomes ‖pr2 (tr2,j)−pr1 (tr1,i)‖

υ ≤ tr2,j − (tr1,i + ∆tr1,i + λ).
By increasing λ, we increase the robustness of the solu-

tion to uncertainty in docking and charging times. This is
demonstrated in Figure 8, which shows results for a persistent
surveillance mission consisting of two UGVs and four UAVs
along independent paths monitoring a 250000 m2 area. The
UAV battery life is set to 30 minutes and for each value of λ
from 0 to 3 minutes, we execute 20 simulation runs in which
the true docking and recharging time is a uniform random
number between 0.5∆tr1,i and 1.5∆tr1,i. In each simulation
run, we record the number of UAVs that fail to recharge
before reaching zero charge as well as the distance traveled by
UGVs. One can see that by building in a larger safety margin,
we are able to charge all UAVs (even in this adversarially
chosen problem instance), but that comes at the expense of
the distance traveled by each UGV).

2) UAV Battery Life Estimation: In the computation of
an optimal recharge schedule, the battery life of UAV r is
estimated as Tr. This quantity can be estimated using existing
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Fig. 8: Failure count against buffer size λ.
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Fig. 9: Failure count against Trobust.

battery discharge curves for UAVS [44], [45], [46], but will
be subject to errors.

We can build a safety margin into the plan by underesti-
mating the battery life by a value Trobust < Tr, thus requiring
the recharge to occur before Tr−Trobust. We have performed
extensive simulations using varying battery lifetimes and ve-
hicle speeds. A sample set of results is presented in Figure 9
with a team of four UAVs and two UGVs in a 250000m2

environment, and estimated battery lifetimes of 30 minutes
for each UAV. For a set of values of Trobust within 0 and
60% of Tr, we ran 30 simulation runs each with a true battery
lifetime uniformly distributed between 0.7Tr and 1.3Tr.

We see that the safety margin successfully reduces the num-
ber of failures, but at the expense of system performance. Also
note that in practice, we can estimate the battery level in real-
time using Coulomb counting and then re-plan periodically
when the charge remaining deviates from the values used in
planning.

D. Persistent recharging in extended planning horizons

The following simulation experiments examine the receding
horizon and fixed horizon methods of computing recharge
paths over an extended planning horizon. For appropriate
benchmarking, the receding horizon strategy is implemented
by computing the optimal ILP solution at each planning
iteration and compared with the optimal fixed horizon path
over the planning horizon.

TABLE I: Fixed Horizon Runtimes

Horizon (minutes) Runtime Quartiles (seconds)
25% Median 75%

10 0.12 0.33 0.42
15 5.34 10.23 14.04
20 12.65 21.14 45.87
25 91.71 200.14 500.32
30 254.03 401.55 801.39
35 712.28 900.61 +1000
40 968.75 +1000 +1000

TABLE II: Receding Horizon Runtimes

Horizon (minutes) Runtime Quartiles (seconds)
25% Median 75%

10 0.11 0.14 0.18
15 0.12 0.15 0.20
20 0.16 0.20 0.30
25 0.21 0.28 0.38
30 0.25 0.32 0.49
35 0.31 0.43 0.58
40 0.37 0.54 0.68

The computational effort required by the receding horizon
method is significantly less than the fixed horizon strategy
due to a shorter planning window and a much smaller ILP
formulation. For the same reason, however, global optimality is
not guaranteed over the entire planning horizon. To investigate
this trade-off, we conducted an experiment, similar to the
single recharge cycle tests, examine the runtime and solution
quality for both methods.

A test set of simulation environments with different path
and robot configurations was created. For each simulated
environment, the recharge path was computed using both the
receding and fixed horizon methods for a set of different plan-
ning horizons from {10, 15, 20, . . . , 40} minutes assuming the
estimated lifetime of each working robot to be 6 minutes. For
all receding horizon simulations, the replanning window was
chosen to be R/2 rendezvous’ per iteration. The optimization
of each planning strategy was aborted if a solution was not
found in 1000 seconds. The aggregate results for cumulative
runtime and total path cost are summarized in Tables I and
II due to the large differences in results between the two
strategies.

Tables I and II demonstrate the spread in the growth of
runtime for the fixed horizon strategy and the receding horizon
strategy respectively with a growth in planning horizon, using
quartiles, similar to the box plots. For each planning horizon,
the 25th percentile, 75th percentile and median of the runtime
results are shown. Figure 10 compares the normalized path
costs for both methods with a box plot.

The results show that, on average, as problem complexity
grows, the growth in runtime for the fixed horizon solver
is exponential with a wide spread of growth rates based
on the problem configuration. On the contrary, the receding
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Fig. 10: Total path cost: Fixed horizon (dark/black) and Receding
horizon (light/red)

TABLE III: Receding horizon cumulative runtime

Planning window 1 2 4 6 8
Runtime (seconds) 6.14 3.49 2.03 1.41 infeasible

horizon strategy consistently results in a significantly smaller
cumulative runtime even with an optimal ILP solution at each
iteration. On average, the receding horizon method produces
solutions with a total path cost within 20% of the optimal fixed
horizon solution.

We also investigated the effect of varying the planning
window size on the receding horizon strategy. For a set of 8
working robots and 3 charging robots, a test set of simulation
environments with different path configurations and charging
point densities was generated. For each environment, the plan-
ning window was varied from 1 rendezvous to 8 rendezvous’
and the receding horizon solution was computed for each
window size. Tables III and IV show the normalized results of
cumulative runtime and path cost, respectively, averaged over
all the experiments.

It is important to note that in the presented receding horizon
strategy, at each iteration, regardless of planning window, the
optimal recharge path is computed to visit all working robots.
Hence, Table III shows that the cumulative runtime generally
drops as the planning window grows, due to fewer replanning
iterations. However, a larger planning window also increases
the possibility of the path reaching an infeasible solution as
seen with the planning window of 8 rendezvous’ per iteration.
Table IV shows that the cumulative path cost over the planning
horizon is not significantly affected by the size of the planning
window.

TABLE IV: Receding horizon total path cost

Planning window 1 2 4 6 8
Total Path Cost 1.22 1.01 1.23 1.02 infeasible

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the problem of persistent
recharging with coordinated teams of autonomous robots.

We proved that the One-in-a-set DAG problem is NP-
hard and presented a ILP formulation for a single recharge
cycle. We also presented an approach which uses the Noon-
Bean transformation to obtain a TSP problem instance that
can be solved with a TSP heuristic solver. Subsequently,
we proposed a novel modification to the Noon-Bean trans-
formation to address the MGTSP case and find multiple
rendezvous paths for M charging robots. Simulation results
show that the heuristic solution using the Modified Noon-
Bean transformation and LKH solver is a viable alternative that
produces solutions of comparable cost and significant runtime
savings. Finally, we extend the problem to longer planning
horizons using a receding horizon and fixed horizon approach.
Simulations demonstrate the trade-off between optimality and
computational complexity presented by the two alternatives.

Multiple avenues for extension present themselves. The
restriction that working robots cannot be charged except at
fixed charging points could be relaxed to allow for deviation
from the prescribed trajectory to accommodate recharging,
and static charging depots could be added to the formulation
as well. Heterogeneity of ground vehicle speed could be
addressed by expanding the graph definition to have duplicate
nodes for each charging vehicle, so that edge costs could be
made vehicle dependent, but at significant computational cost.
These modifications are left as areas of future work.

The main challenge faced by the receding horizon approach
is ensuring that each subsequent planning iteration admits
a feasible solution. One way to mitigate this issue is to
incorporate terminal constraints for each planning iteration
to ensure continued feasibility of path solutions [47]. Im-
plementing safety constraints in the MILP formulation is a
future direction for this work. In the fixed horizon strategy,
in addition to high computational complexity, another draw-
back is poor robustness to uncertainties or modelling errors.
Since the computation is performed offline, this strategy does
not adapt the charging schedule to incorporate disturbances
and mistiming errors in the execution of the optimal plan.
However, robustness strategies such as reactive rescheduling
[48] may be used to make it an effective planning strategy.
Robustness of optimal path plans is a future direction for this
work.
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