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Abstract— In this paper we study the problem of scheduling
sensors to estimate the state of a linear dynamical system. The
estimator is a Kalman filter and we seek to optimize the a
posteriori error covariance over an infinite time horizon. We
characterize the exact conditions for the existence of a schedule
with uniformly bounded estimation error covariance. Using this
result, we construct a scheduling algorithm that guarantees that
the error covariance will be bounded if the existence conditions
are satisfied. We call such an algorithm complete. We also show
that the error will die out exponentially for any detectable
LTI system. Finally, we provide simulations to compare the
performance of the algorithm against other known techniques.

I. INTRODUCTION

One technique for monitoring an environmental process
is to deploy a sensor network. Sensor networks have been
used in various applications including determining a robot’s
state [1], tracking the position of a target [2], selecting the
frequency in radar and sonar applications, or monitoring
tasks such as chemical processes [3], seismic activity or toxin
levels at a factory. Sensor scheduling techniques can also be
applied to problems such as adaptive compressed sensing [4].

The collection of data can be done by operating every
sensor continuously; however, when the network has strict
energy constraints this strategy may not be viable. To over-
come these restrictions, sensors can alternate between awake
and asleep modes. To avoid having an incomplete picture of
the phenomenon of interest, the sensing schedule should be
optimized to maximize the information obtained. This is, in
essence, the sensor scheduling problem.

The sensor scheduling problem has received considerable
attention in recent years. In the context of linear Gaussian
systems, a Kalman filter is the optimal estimator in that
it produces an estimate with the least mean square error.
Thus, the Kalman filter is commonly used as the basis for
the sensor scheduling problem. With this setting, the infinite
horizon sensor scheduling problem is studied in [5]. Under
some mild conditions, it is shown that the optimal infinite
horizon schedule is independent of the initial covariance. It is
also shown that the optimal cost can be estimated arbitrarily
closely by a periodic schedule, with a finite period, and that
such a schedule implies that the error covariance approaches
a unique limit cycle. An optimal and semi-optimal algorithm
that use tree pruning techniques are provided in [6].

Numerous approaches have been proposed to tackle the
sensor scheduling problem. In [7], [8], three different ap-
proaches (sliding window, greedy thresholding and random
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selection) are empirically compared; the random selection
method is further analyzed and bounded. In [9] approaches
such as a best step look ahead algorithm, an approach based
on the Viterbi algorithm and by casting the problem as a
duality problem, are studied.

Several methods rely on convex relaxations [10], [11].
However, in [12], [13] the authors show that a greedy algo-
rithm empirically performs better than the method presented
in [11]. The authors also show that the greedy algorithm
gives good performance guarantees on the maximum a pos-
teriori covariance over a single time step of the sensor sched-
ule. A general framework that frames the sensor scheduling
problem as a relaxed quadratic program is presented in [14].
A number of problems that incorporate various network
constraints can be addressed using this framework. The
framework is used to describe and analyze a greedy approach
though the error bound presented is not necessarily uniformly
bounded for unstable systems.

Most of the approaches that exist in literature consider the
optimization problem but either give only empirical results
or bounds that are themselves unbounded over time. We do
not know of any results that attempt to characterize when any
particular sensor schedule will result in a uniformly bounded
sequence of covariance matrices.

Contributions: We give necessary and sufficient conditions
for the existence of an infinite horizon sensor schedule with a
bounded error covariance, which makes a novel connection
to detectability. We then provide a complete algorithm for
sensor scheduling: That is, our algorithm outputs a uniformly
bounded sensor schedule if one exists. The algorithm is a
simple modification to a greedy algorithm.

Organization: We give some background in Section II and
we then formally define our problem in Section III. We give
necessary and sufficient conditions for the existence of a
uniformly bounded schedule in Section IV and then show
how a greedy algorithm can be modified to take advantage of
these conditions in Section V. In SectionVI, we empirically
evaluate the proposed algorithm.

II. PRELIMINARIES

A. Review of Linear Algebra Concepts
Given a square matrix A ∈ Rn×n, we will refer to the null

space of A as N (A). The identity matrix will be referred to
as I . We will use the notation col (M1, . . . ,Mk) to refer to
the matrix formed by stacking the matrices M1, . . ., Mk (all
of which have the same number of columns).

Finally, we will use the following lemma relating to
linearly independent (LI) vectors for some of our proofs.
Lemma II.1. Given a full column rank matrix A ∈ Rm×n
and k ≤ n LI vectors {xi}ki=1. Then {Axi}ki=1 are also LI.



B. Observability and Detectability

Consider the discrete-time linear time varying (LTV) sys-
tem

xt+1 = Atxt, yt = Ctxt.

where xt ∈ Rn and yt ∈ Rm We first look at the linear time
invariant (LTI) case, i.e., At = A and Ct = C. The system is
observable if the value of the initial state can be determined
given a sequence of measurements, yk.

Lemma II.2 (Observability). An LTI system (A,C) is ob-
servable if and only if its observability matrix, Θ, has rank
n, where Θ := col

(
C,CA, . . . , CAn−1

)
.

If the observability matrix is not full rank, i.e., N (Θ) 6=
∅, then the system can be decomposed into observable and
unobservable components. This is known as the standard
form for unobservable systems. Let T =

[
Tō T ′

]
such

that Tō is a matrix whose columns form a basis for N (Θ)
and T ′ is such that rank(T ) = n.

z = T−1x =

[
z1

z2

]
=⇒ zk+1 = Āzk, yk = C̄zk

Ā = T−1AT =

[
Aō A12

0 Ao

]
, C̄ = CT =

[
0 Co

]
,

(1)

Since (1) is just a similarity transform, the system is equiv-
alent to the original system and the eigenvalues of A and Ā
coincide. The advantage of this transform is that (Ao, C

o) is
observable whereas (Aō, 0) is not. Also, if Θ, Θ̄ and Θo are
the observability matrices of (A,C), (Ā, C̄) and (Ao, C

o)
respectively, then Θ̄ = ΘT =

[
0 Θo

]
.

Since the stable modes of a system die out exponentially,
for many practical purpose it suffices for only the unstable
modes to be observable. This generalization of observability
is known as detectability.

Definition II.3 (Detectability). The following are equivalent
for a LTI system: 1) (A,C) is detectable. 2) Aō is stable, i.e.,
no unstable mode is unobservable. 3) For every eigenvector
v of A associated with an unstable eigenvalue, Cv 6= 0. �

Coming back to the general case of a LTV system, the
State Transition Matrix (STM) for t2 ≥ t1 is Φt2,t1 =
Φt2,t2−1Φt2−1,t1 where Φt+1,t = At. We can define the
sequence observability matrix,

B(t, t+ k) = col (Ct, Ct+1Φt+1,t, . . . , Ct+kΦt+k,t) ,

as well as the observability Gramian,

X(t, t+ k) =

k∑
i=0

Φ>t+i,tC
>
t+iCt+iΦt+i,t

= B(t, t+ k)>B(t, t+ k).

Although a generalization of observability can be made,
we are interested in a slightly stricter notion.

Definition II.4 (Uniform Detectability and Observability).
Given a LTV system with STM Φt,t0 and measurement
matrices Ct. The system is uniformly detectable if there

exists non-negative integers s, r and constants α ∈ [0, 1)
and β > 0, such that for all x ∈ Rn and all times t,

||Φt+r,tx|| ≥ α||x|| =⇒ x>X(t, t+ s)x ≥ β||x||2. (2)

Additionally, the system is uniformly observable if there
exists integer s and positive constants β1, β2 such that

0 ≺ β1I � X(t, t+ s) � β2I,

holds in the positive semidefinite sense.1 �

Remark II.5 (Stabilizability). Uniform stabilizability can be
similarly defined. The definition is omitted here and can be
found in [15]. •

III. PROBLEM FORMULATION AND APPROACH

Consider a linear dynamical system with the state transi-
tion matrix given by A and measurement matrix C. Each row
of C corresponds to a single sensor in the sensor network.
For the sensor scheduling problem, we want to pick a set of
k sensors at every time step to make a measurement (i.e., k
rows of C). The problem can be represented by the following
stochastic LTV system,

xt+1 = Axt + wt

yt+1 = Ctxt + vt,
(3)

where t ∈ Z≥0, xt ∈ Rn and yt ∈ Rk. A ∈ Rn×n
and C ∈ Rm×n. The matrix Ct is a subset of k rows of
C. This is the standard sensor selection model, as in [6],
[14]. For ease of presentation, we focus on the case where
k = 1, though our results easily extend to the general case.
Finally, wt (process noise) and vt (measurement noise) are
zero mean Gaussian noise vectors with covariance matrices
W,V ∈ Rn×n, respectively, with W � 0 and V � 0. We
assume that the noises are independent over time.

A Kalman filter uses noisy measurements to estimate the
state in a linear dynamical system; an in depth study can be
found in [16]. The Kalman filter gives the best mean squared
error of the state estimate among all linear estimators. The
following lemma, derived from the results in [15] gives
conditions under which the filter is stable, i.e., the expected
error of the state estimate goes to zero.

Lemma III.1. Assume that the system (A,W
1
2 ) is uniformly

stabilizable. Then the Kalman filter error covariance, Σt|t,
and predictor covariance, Σt+1|t, are bounded if and only if
(A,Ct) is uniformly detectable. Furthermore, the Kalman
filter is exponentially stable only if (A,Ct) is uniformly
detectable.

For k = 1, we choose one sensor at each time step. We can
represent a sensor schedule as σ = (σ0, σ1, . . .), where σt ∈
{1, . . . ,m} is the index of the sensor chosen at time step t.
The problem that we consider is the following: under what
conditions on A and C does there exist a sensor schedule
σ = (σ0, σ1, . . .) that results in the error covariance being
bounded? Moreover, how do we construct such a schedule?

1A symmetric matrix A is denoted to be positive definite (p.d.) as A � 0
and positive semi-definite (p.s.d.) as A � 0.



It is important that the error covariance be bounded since
otherwise the state estimate will never be accurate. Formally,
we seek to keep F (σ) bounded, for some metric F that
measures the covariance.

A. A Modified Detectability Condition

The system under consideration (3) is time varying only
due to the measurement sequence (i.e., the sequence of Ct).
Thus, we can simplify some of the definitions given in
Section II-B. Consider an LTI system (A,C) and a sequence
of measurements σ = (σ0, σ1, . . .), and the corresponding
sequence of measurement matrices (C0, C1, . . .). For a given
time t and time window k, the sequence observability ma-
trix is Bσ(t, t + k) = col

(
Ct, Ct+1A, . . . , Ct+kA

k
)
. The

sequence of measurements σ is uniformly detectable if there
exists non-negative integers s, r and constants α ∈ [0, 1) and
β > 0, such that for all {x ∈ Rn| ‖x‖ = 1} (without loss of
generality since for x = 0 the condition is trivially satisfied)
and all times t,

‖Arx‖ ≥ α =⇒ ‖B(t, t+ s)x‖ ≥ β > 0. (4)

Additionally, the sequence is uniformly observable if there
exists integer s and positive constants β1, β2 such that

0 < β1 ≤ ‖B(t, t+ s)x‖ ≤ β2

⇐⇒ rank(B(t, t+ s)) = n.
(5)

Naturally, a uniformly observable sequence is also uniformly
detectable. We now look at when a schedule is uniformly
detectable and hence yields a bounded error covariance
estimate.

IV. EXISTENCE OF UNIFORMLY DETECTABLE SEQUENCE

The question we now ask is, given an LTI system, does
there exist a sequence of measurements that is uniformly
detectable? It is reasonable to expect that if (A,C) is observ-
able, then a sequence of measurements exists such that the
system is uniformly observable through that sequence. This,
however, is not the case. Consider the trivial example where
A = 0 (and rank(C) = n). Here, rank(B(t, t + s)) = 1
since the second row onwards will be 0. Note that although
the initial state cannot be predicted, the actual progression
after a certain time period can, in fact, be determined.

In this section we show that if (A,C) is detectable,
then the periodic sequence that sequentially repeats each
measurement n times, i.e., each period is σC =
(1, . . . , 1, 2, . . . , 2, . . . ,m, . . . ,m) is uniformly detectable.
Theorem IV.1. If (A,C) is observable and A is full rank,
then the system is uniformly observable through the periodic
sequence σC .

Proof. Let ci be the ith row of C. Define,

Θ = col
(
C,CA,CA2, . . . , CAn−1

)
=


col (c1, . . . , cm)

col (c1A, . . . , cmA)
...

col
(
c1A

n−1, . . . , cmA
n−1
)
 ,

B =


col
(
c1, . . . , c1A

n−1
)

col
(
c2A

n, . . . , c2A
2n−1

)
...

cmA
mn−1

 . (6)

In order for the sequence to be uniformly observable, we
require the existence of (s, β) such that rank(B(t, t+s)) = n
for all t. Take s = 2mn so that the full sequence σC shows
up in the construction of B(t, t+ s); specifically, B(t, t+ s)
will always contain the rows of BAp for some p. Since A
is full rank, showing rank(B) = n is sufficient for uniform
observability. Since it is given that rank(Θ) = n, it suffices
to show that each of the rows of Θ can be written as a linear
combination of the rows in B.

First, define sets to represent the rows of Θ and B.
Let Xi = {ci, ciA, . . . , ciAn−1} for i = 1, . . . ,m.
Note that the rows of Θ comprise of the vectors
in the multiset

⋃m
i=1Xi. Let Xb

i = XiA
(i−1)n =

{ciA(i−1)n, ciA
(i−1)n+1, . . . , ciA

in−1}. So the rows of B
comprise of elements of the multiset

⋃m
i=1X

b
i .

For any particular 1 ≤ i ≤ m, there are ki ≤ n linearly
independent vectors in Xi. Since A is full rank, the set Xb

i

contains k LI vectors too (by Lemma II.1). Also, due to the
Cayley-Hamilton theorem, x ∈ Xb

i =⇒ x ∈ span(Xi).
Any k LI vectors in the span of Xi will themselves span the
space. As a result, every vector in Xi is in span(Xb

i ).

Using this result, we now give a constructive proof that
shows the existence of a uniformly detectable sequence.

Theorem IV.2. If (A,C) is detectable, then the periodic
sequence of measurements σC is uniformly detectable.

Proof. Let T be defined as in (1). Transforming the system
into observable standard form gives the STM Ā with separate
observable and unobservable components. Let z and l be the
number of zero and stable eigenvalues respectively of the
observable component Ao, which is a d× d matrix. Assume
that the generalized eigenvectors of Ao are ordered such that
the ones corresponding to the zero eigenvalues come first,
then the stable and unstable ones. Let V :=

[
v1 . . . vd

]
.

Consider the following transform.

u = Q−1x =


u0

u1

u2

u3

 where Q := T

[
I 0
0 Vd×d

]
n×n

Ã = Q−1AQ =


Aō A12V

0

Aon 0 0
0 Aos 0
0 0 Aou




C̃ = CQ =
[
0 C1 C2 C3

]
(7)

Here, Aos and Aou have stable and unstable eigenvalues
respectively, are both full rank and are composed of Jordan
blocks. Aon is also composed of Jordan blocks and is
nilpotent, so Azon = 0. Also, by definition of detectabil-
ity, Aō is stable. For this system, we can define Θ̃ =[
0 Θ1 Θ2 Θ3

]
and B̃(t, t + s) =

[
0 B1 B2 B3

]
.



Note that
[
Θ1 Θ2 Θ3

]
is full rank since this part cor-

responds to the observable subsystem. For detectability of
the sequence to hold, there should exist (s, r, α, β) such that
(4) is satisfied. Following from (4), we consider only initial
states of unit norm (‖u‖ = 1).

Case 1: u3 = 0 or Aou does not exist (i.e., A is stable): In
this case, only the stable modes are active and so the state
approaches 0 exponentially. As a result, for any α ∈ (0, 1),
there exists r > 0 such that

∥∥∥Ãru∥∥∥ < α for all u.
Case 2: ‖u3‖ > 0: In this case, (s, β) can be chosen so

that
∥∥∥B̃(t, t+ s)u

∥∥∥ ≥ β irrespective of the values of (r, α).

Take s = 2mn so that B̃(t, t+ s) always contains the full
sequence σC . As a result, the sequence observability matrix
for s time steps, B̃(t, t+ s), will always contain the rows of
B̃σÃ

k for some k > 0, where B̃σ , defined similarly to (6),
can be represented as

B̃σ = col
(
c̃1, . . . , c̃1Ãn−1, . . . , c̃mÃmn−1

)

=



0 c11 c12 c13
...

...
...

...

0 c11A
z−1
on

...
...

0 0
...

...
...

...
...

...
0 0 c12A

n−1
os c13A

n−1
ou

...
...

...
...

0 0 cm2 A
mn−1
os cm3 A

mn−1
ou


=:
[
0 B1 B2 B3

]
,

where c̃i is the ith row of C̃. Note that

B̃σÃ
k =

[
0 B1A

k
on B2A

k
os B3A

k
ou

]
.

Also,
[
Θ2 Θ3

]
is full rank and, since both Aos and

Aou are full rank,
[
B2 B3

]
is also full rank (using the

same argument as in the proof of Theorem IV.1) and so is[
B2A

k
os B3A

k
ou

]
. Note that B1A

k
on = 0 for k ≥ z.

Now, without loss of generality, assume that the sequence
σC starts at time t. So, since k = mn ≥ z,

B̃(t, t+ s)u =

[
B1u1 +B2u2 +B3u3

B2A
mn
os u2 +B3A

mn
ou u3

]
=:

[
d1

d2

]
.

Now, d2 = 0 if and only if
[
u2

u3

]
= 0. Given that u3 6= 0, it

follows that
∥∥∥B̃(t, t+ s)u

∥∥∥ ≥ ‖d2‖ > 0. Therefore,

β ≤ min
{u|u1=0,‖u‖=1}

‖B2A
mn
os u2 +B3A

mn
ou u3‖ ,

is an appropriate choice to obtain detectability.

Corollary IV.3 (Necessary condition). If (A,C) is not
detectable, then there does not exist a sequence that is
uniformly detectable.

Proof. If (A,C) is not detectable, then there exists an
eigenvalue-eigenvector pair, (λ, v), of A such that |λ| ≥ 1

and Cv = 0. For any pair (α, r), assuming ‖v‖ = 1,
we must have ‖Arv‖ = |λ|r ≥ 1 > α. So, there has
to exist (s, β) such that ‖B(t, t+ s)v‖ ≥ β for uniform
detectability. However, the rows of B(t, t + s) consist of
vectors of the form ciA

k, for some k, where ci is a row of
C. Now ciA

kv = λkciv = 0 and so B(t, t + s)v = 0 no
matter what the actual sequence is. Therefore, no sequence
of measurements can be uniformly detectable.

Corollary IV.4 (Multiple sensors). For the problem of se-
lecting k measurements per time step, a uniformly detectable
schedule exists if and only if (A,C) is detectable.

This result shows that an LTI system is detectable if and
only if there exists a sensor schedule constructed from the
rows of C that is uniformly detectable (i.e., that yields a
uniformly bounded error covariance). We can now formally
define the notion of a complete sensor scheduling algorithm.

Definition IV.5 (Complete Sensor Scheduling Algorithm).
A sensor scheduling algorithm is complete if for every
detectable LTI system (A,C), the resulting sequence of error
covariance matrices are uniformly bounded for all time. �

Although a schedule can be naively constructed using,
for example, the periodic sequence σC , we now seek an
algorithm that attempts to optimize the error covariance
while at the same time keeping it uniformly bounded.

V. A COMPLETE SENSOR SELECTION ALGORITHM

An interesting question to ask is whether or not the
greedily constructed schedule is uniformly detectable. The
definition of uniform detectability effectively requires that
all unstable modes be observable within a certain amount
of time. Intuitively, the error associated with an unstable
mode will keep growing until some point in time when
a measurement corresponding to it should have the most
benefit to be chosen. Therefore, a reasonable expectation
is that the greedy schedule will lead to a bounded error
covariance.

Example V.1. Consider the pathological system

A = Σ0 = I3×3, C =

1 0 0
0 0.1 0
0 0 0.01

 =:

c1c2
c3

 ,
W =

 0.1 0.13 0.13
0.13 0.41 0.36
0.13 0.36 0.33

 , V = I3×3.

Running the greedy algorithm, the resulting value of the
objective function is plotted in Figure 1. The schedule that
the greedy algorithm outputs does not select measurement
3 until t = 8576. After that, the third sensor is chosen
approximately every 73 time steps. Although the schedule is
uniformly detectable, the time window needed is over 8000
time steps! N

Unfortunately, establishing the boundedness of greedy has
proved difficult. The main reason appears to be relating
the Kalman update performance metric to the sequence
observability matrix. As evident from the previous example,
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Fig. 1. The value of the greedy sequence over time (cf. Example V.1).
The “full” sequence is the value if every measurement is made at all times.

even if the greedy algorithm does produce a uniformly
detectable sequence, it may perform quite poorly. We now
present a modified greedy algorithm that ensures that the
output sequence is uniformly detectable and which attempts
to maintain a relatively tight limit for the number of steps
required to achieve uniform detectability.

The DETECTABLEGREEDY algorithm is given in Algo-
rithm 1. The idea is to make a greedy choice at each iteration
subject to the constraint that the choice of measurement will
increase the rank of the matrix M . This matrix emulates the
sequence observability matrix B(t, t+ s). Once M becomes
full rank, it is reset. As a result, M acts as a sliding
window and the algorithm attempts to keep this window fully
observable. We now show that the algorithm does, in fact,
result in a uniformly detectable schedule.
Remark V.2 (Multiple sensors). The same idea can be used
for selecting multiple sensors per time step, i.e., giving
precedence to measurements that increase the rank of M .
The proof of completeness is similar to the one we now give
for selecting a single sensor per time step. •

Notation: Parenthesis will be used to refer to a certain
time range of M , e.g. M(2, 4) refers to measurements made
at times 2 though to 4. We also reuse notation from the proof

of Theorem IV.2: Asu :=

[
Aos 0
0 Aou

]
, Csu :=

[
C2 C3

]
,

Θsu :=
[
Θ2 Θ3

]
, Bsu :=

[
B2 B3

]
and p = rank(Asu).

Lemma V.3. The rank of the matrix M will increase within
p steps. In other words, consider the matrix at any time such
that rank(M(t, t + k)) < p, then rank(M(t, t + k + p)) ≥
rank(M(t, t+ k)) + 1.

Theorem V.4. Algorithm 1 is complete and thus it produces
a uniformly detectable sequence.

Proof. By Lemma V.3, the maximum size of the M matrix is
p2−p+1. To show the sequence is uniformly detectable, we
can follow an argument similar to the proof of Theorem IV.2.
This can be accomplished by taking s = z + 2p2 and
examining the structure of B̃(t, t + s) (note that the matrix
M in the algorithm corresponds to sections of Bsu(t, t+s)).
The full proof can be found in [17].

Remark V.5 (Complexity of algorithm). The DETECTABLE-
GREEDY algorithm is a greedy algorithm with two extra
steps: check which of the measurements increase rank, and
reduce the M matrix. Following the analysis in [12] for the
greedy part, and noting that finding the rank of a matrix is

Algorithm 1: DETECTABLEGREEDY

Input: F : value function, (A,C,W, V ): system parameters,
T : time horizon.

Output: Sensor schedule with one sensor per time step.

1 Asu :=

[
Aos 0
0 Aou

]
and Csu :=

[
C2 C3

]
(cf. (7)).

2 p← rank(Asu)
3 M ← 0
4 for t = 1 . . . T do

// Use (Asu, Csu) for constructing M
5 foreach row r of Csu do
6 if Appending row r multiplied by the proper power of

Asu increases rank(M) then
7 Mark r as valid.

// Use (A,C) for selection
8 if None of the rows are valid then Greedily select the

best row of C.
9 else Greedily select the best valid row from C.

10 Update M with new measurement.
11 if rank(M) == p then M ← 0

a (better then) O(mn4) operation [18], the total complexity
is therefore O(T (mn2 + n3 +mn2 +mn4)). If we assume
that in practice M will have O(n) rows, the complexity of
the algorithm becomes O(Tmn3). •

Although this shows that the sequence will indeed result
in a bounded error covariance, we do not know what this
bound is or even if it will be better than the regular greedy
approach. However, in simulation, the results of our complete
algorithm appear promising.

VI. SIMULATIONS

Here we present some simulations to investigate the
properties of Algorithm 1 and how detectability impacts
the bound for the error covariance. We also compare the
algorithm to other known techniques. All the simulations are
performed using the average of the trace of the a priori error
covariance,

F (σ) = lim
T→∞

1

T

T−1∑
t=0

trace(Σt+1|t),

For this section, we will refer to the GREEDY algorithm
as G and the DETECTABLEGREEDY algorithm as DG.

In [6], an optimal algorithm to minimize the average
trace of the covariance over a finite horizon is presented.
This, however, is a time consuming operation. Therefore,
we use a sliding window approximation for comparison. The
SLIDINGWINDOW (SW) algorithm is basically an extended
greedy such that the optimal is calculated via brute force over
every nine time steps (this number was chosen merely to
keep the runtime reasonable). This is repeated continuously
until the desired time horizon is met. Note that although the
optimal is achieved over the window size, the approximation
may get worse the larger the time horizon.

We ran simulations for 80 randomly generated systems.
All three algorithms were executed until T = 500 in order to
allow the error covariance to settle to a steady value. We took
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n = m = 3 and A = I . The C and W matrices had all their
entries uniformly randomly distributed in [0, 1] and [0, 5]
respectively. V was a diagonal matrix with the individual
variances chosen uniformly randomly from [0.5, 2].

Figure 2 shows the values of the final covariance for each
algorithm as well as ranking counts of the algorithms. As
we can see, 90% of the time DG algorithm outperforms the
greedy. Although SW was the best in 60% of the instances,
its output is very similar to DG.

Figure 3 shows a sample result for one of the iterations.
The value being plotted is not the average trace but the trace
of the covariance at every time step, i.e., the mean squared
error (MSE). We can see that after an initial transition period,
the covariance update becomes somewhat periodic. Figure 4
shows the amount of fluctuation in cost for each algorithm
for each system once it has reached the steady state value.
As we can see, on average all the algorithms have a similar
amount of fluctuation, though DG was the best in terms of
the worst-case and the spread of data.
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Fig. 4. The variation in the MSE after the covariance settles to a steady
cycle for each system. The mean, max and min are also shown.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

We used the concept of uniform detectability to give
necessary and sufficient conditions for the boundedness of
error covariance resulting from a sensor schedule. We the
presented a complete sensor scheduling algorithm; one which
outputs a bounded sensor schedule if one exists. Finally, we
showed that the error will die out exponentially over a large
or infinite time horizon.

The DETECTABLEGREEDY algorithm outputs a sequence
that is bounded; finding a way to determine the deviation
from optimality (i.e., the actual bound) will help to quantify
the performance. Also, investigating how to use the uniform
detectability condition with other optimization techniques
will help to determine the practicality of this approach.
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