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Abstract— We propose a linear programming-based method
of interval observer design for systems with uncertain but
bounded model parameters and initial conditions. We assume
that each uncertain parameter in the system model is bounded
by conservative guaranteed bounds, and tighter conditional
bounds. We define a class of systems by the number of con-
servative bounds required to bound all uncertain parameters.
Using robust optimization, we solve a single linear program
per class of systems to obtain gains for the interval observer.
A conservative upper bound on the worst-case steady-state
performance of the interval observers over the specified class
of systems is minimized.

I. INTRODUCTION

In scenarios such as high-volume manufacturing of low-
cost devices, there are many systems characterized by similar
dynamics, whose parameters vary within known bounds.
Each system is characterized by the same dynamical model
with uncertain parameters. We consider scenarios wherein
the bounds on specific parameters can be tightened for certain
systems. For example, if higher-quality components are used
to construct a batch of devices. We address the problem
of state estimator design for such systems. We propose
a method of optimal interval observer (IO) design using
robust optimization. We define a class of systems using
the number of conservative bounds required to bound all
uncertain parameters of the system dynamics. Only a single
optimization is performed per class of systems.

An IO comprises an upper and lower observer, whose
trajectories bound those of the system states from above
and below, respectively. IOs are useful when the system
dynamics are highly uncertain, making classic observers
(e.g., Luenberger, high-gain) unreliable. One of the earliest
dynamical IOs was described in [1], where they were de-
signed for a wastewater treatment management system. IOs
have also been applied to population dynamics [1], algae
cultures [2], and pharmacokinetics [3]. IOs are attractive in
biotechnological applications due to the large parametric and
measurement uncertainty inherent to biological systems. IOs
can be applied to a large class of dynamical systems, e.g.,
any system with bounded state trajectories [1], and any stable
linear system with additive disturbances, by using a time-
varying change of coordinates [4]. Necessary and sufficient
conditions for the existence of IOs, yielding systematic
optimal design procedures, were identified for positive linear
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systems in terms of matrix inequalities in [5], and for
a more general class of nonlinear systems with bounded
uncertainties in terms of linear constraints in [6]. The linear
constraints identified in [6] were used to develop the linear
programs (LPs), which we extend in this paper. Specifically,
we account for uncertainty in the coefficients of these LPs.

Given an instance of a convex optimization problem with
uncertain coefficients, if even relatively small deviations
from nominal coefficient values, called perturbations, are not
accounted for, classic optimization methods may generate
solutions that are far-from-optimal, or even infeasible when
implemented [7]. Robust optimization generates deterministi-
cally feasible solutions under deterministic set-based models
of uncertainty at the expense of increased cost in the nominal
problem. Associated with each model of uncertainty is a
budget of uncertainty [7], which characterizes the class of
problem instances for which the robust solution will be
deterministically feasible, as well as the potential deviation
from optimality of the solution to the nominal problem. For
LPs, several models of uncertainty have been considered.
The ellipsoidal [8] and norm [9] models of uncertainty
consider various norms of perturbed vectors and matrices of
coefficients. Notwithstanding a special case in [9], the robust
problem formulations under these models of uncertainty are
second order cone programs. The cardinality constrained
model of uncertainty [10], used in this paper, considers
the cardinality of coefficients that are perturbed from their
nominal values. The robust formulation is implemented as
an LP. Robust optimization has seen varied application,
including antenna [11] and circuit [12] design, constrained
stochastic linear-quadratic control [13], and wireless channel
power control [14]. The reader is referred to [7] for a
comprehensive review of the robust optimization literature.

We propose a method of IO design using the linear
programming-based method of [6] and the robust optimiza-
tion method of [10]. We define a class of systems in terms of
the number of perturbed coefficients in the robust formulation
of the LP of [6]. The designer can tune the robustness of the
solution to improve the bounds on the steady-state error of
the proposed IO.

The contributions of this paper are: 1) a novel application
of cardinality constrained robust optimization to the design
of dynamical observers; 2) a tunably robust interval observer
design method; 3) an empirical study of the proposed ob-
server’s performance.



A. Notation and Terminology

Given a matrix M ∈ Rm×n, the notation Mj denotes the
jth column of M and M−> is the transpose of its inverse.
Given two vectors v1 ∈ Rm and v2 ∈ Rn, define the column
vector col(v1, v2) :=

[
v>1 v>2

]> ∈ Rm+n; the col function
extends to an arbitrary number of arguments; applied to a
matrix M ∈ Rm×n, col(M) := col(M1, . . . ,Mn) ∈ Rmn.
The Kronecker delta δij equals 0 if i 6= j, and 1 if i = j. A
matrix M ∈ Rn×n is said to be Metzler if all its off-diagonal
elements are nonnegative. Given a matrix M ∈ Rn×n and a
locally Lipschitz function ξ : Rn × R→ Rn, the dynamical
system ẋ(t) = Mx(t)+ξ(x, t) is said to be positive if x(0) ≥
0 implies x(t) ≥ 0 for all t ≥ 0. When applied to vectors
or matrices, the relations >,<,≥,≤ are taken elementwise.
Given matrices A ∈ Rm×n and B ∈ Rm×n, the relation
A � B is defined as A ≤ B, with Aij < Bij for at least one
pair (i, j). Given a scalar c ∈ R, vector v ∈ Rn, or matrix
M ∈ Rn×n, the operator | · | is the elementwise absolute
value. Given a set S, its cardinality is denoted by |S|. We
define n := {1, . . . , n}.

II. PROBLEM STATEMENT AND PROPOSED APPROACH

A. Problem Statement

We consider systems of the form

ẋ = Ax+ ξ(x, t), y = Cx, x(0) = x0, (1)

where x ∈ Rn is the state vector, A ∈ Rn×n, ξ : Rn ×
R→ Rn, y ∈ Rp is the output, and C ∈ Rp×n. We assume
existence and uniqueness of solutions for x(t) for all t ≥ 0.
We impose the following standing assumptions on (1).
Assumption 1 (Boundedness of Solutions). There exists a
known constant κ ∈ Rn such that κ ≥ | supt≥0 x(t)|.
Assumption 2 (Uncertainty in Initial Conditions). There
exist known constants x0, x0 ∈ Rn, such that x0 ≤ x0 ≤ x0.
Assumption 3 (Uncertainty in Nonlinear Dynamics). There
exist known constants ξ, ξ ∈ Rn, such that ξ ≤ ξ(x, t) ≤ ξ,
for all t ≥ 0 and all −κ ≤ x ≤ κ.
Assumption 4 (Uncertainty in System Matrix). There exist
known matrices A, A↑, A

↓
, A ∈ Rn×n, such that A ≤

A↑ ≤ A
↓ ≤ A and A ≤ A ≤ A. Further, Aij ≤ A

↓
ij and

Auv ≥ A↑uv holds for a subset of pairs (i, j), (u, v). The pairs
(i, j), (u, v) for which these inequalities hold are unknown
at design time, but the number of pairs for which they do
not hold is known.

The matrices (A,A), and (A
↓
, A↑) are called the outer

bounds and inner bounds of A, respectively.
Definition II.1. System (1) belongs to uncertainty class
U(u, l) if there exist matrices (Au, Al) such that Al ≤ A ≤
Au, A

↓ ≤ Au ≤ A, and A ≤ Al ≤ A↑ with at most u

elements of Au satisfying Auij > A
↓
ij and at most l elements

of Al satisfying Aluv < A↑uv .
The class U(u, l) contains all systems for which A can

be upper bounded using at most u outer bounds from A,
and lower bounded using at most l outer bounds from A.

An interval observer (IO) comprises an upper observer with
state estimates x̂u that bounds the true states x from above,
and a lower observer with state estimates x̂l that bounds the
true states from below, i.e., for all t ≥ 0, x̂l(t) ≤ x(t) ≤
x̂u(t). This is called the interval property, and for it to
be satisfied, the interval error e := x̂u − x̂l must satisfy
positivity. If the evolution of the interval error is governed
by positive dynamics, then by Assumption 2 we can choose(
x̂u(0), x̂l(0)

)
:= (x0, x0) to satisfy the interval property.

Problem II.2. Given constants u and l, design an IO whose
maximum steady-state interval error, over the uncertainty
class U(u, l), is minimized with respect to the `1-norm, i.e.,
‖ē‖1 := lim supt→∞ ‖e(t)‖1.

In this problem we know only the class U(u, l) when
designing the IO. At runtime, to implement the observer,
we must know a pair of matrices (Au, Al) satisfying Defini-
tion II.1 to properly define the observer’s dynamics to satisfy
the interval property.

B. Proposed Approach
Solving Problem II.2 is challenging; even in the simplest

case where all outer bounds must be used, i.e., u, l = n2,
only approximate solutions are known [6, Theorem 4.2].
We too solve an approximation of Problem II.2, drawing
upon the theory of [6] and [10]. As explained in Section IV-
B, we consider an uncertainty class generated by how the
uncertainty in A appears in the proposed IO design LP; this
class contains conservative characterizations of uncertainty
that are not physically realizable. Consequently, we minimize
a conservative upper bound on ‖ē‖1, which is at least as great
as the maximum ‖ē‖1 over the uncertainty class.

We use the linear programming-based IO design method
of [6] to address optimality, and apply the robust optimization
method of [10] to optimize over the given uncertainty class.

III. BACKGROUND

A. Linear Programming-Based Interval Observers
In [6], an IO is constructed for system (1) with dynamics

˙̂xu = Ax̂u + L(y − Cx̂u)− (A−A)φ(x̂u) + ξ

˙̂xl = Ax̂l + L(y − Cx̂l)− (A−A)ψ(x̂l) + ξ(
x̂u(0), x̂l(0)

)
= (x0, x0),

(2)

where ψ(x) := 1
2

(
x + |x|

) [
φ(x) := 1

2

(
x − |x|

)]
retains

the positive [negative] elements of x and maps the negative
[positive] elements to 0.

System (2) is an IO for (1), if and only if the following
LP is feasible [6, Theorems 3.1, 4.3].
Problem III.1.

minimize:
[
2(A−A)κ + ξ − ξ

]>
λ

subject to: A
>
λ− C>Z1n = −1n

A> diag(λ)− C>Z + βI ≥ 0n×n

λ > 0n

The gain matrix L of (2) is defined as

L := diag(λ)−1Z>. (3)



The first and second constraints ensure that
(
A − LC

)
is Hurwitz for all A ≤ A, and Metzler for all A ≥ A,
thereby ensuring stability and positivity of the linear interval
error dynamics, respectively. We refer to the first and second
constraints as the Hurwitz and Metzler constraints, respec-
tively. The third constraint relates to the first two, and derives
from positive linear systems theory [6]. In implementation,
we constrain λ ≥ ε1n, where ε > 0 is arbitrarily small, so
the feasible region is closed.

The cost function of Problem III.1 is an upper bound on
the `1-norm of the steady-state supremum of the interval
error [6, Theorem 4.2],

‖ē‖1 ≤ −
[
2(A−A)κ + ξ − ξ

]>
(A− LC)−>1n. (4)

B. Cardinality Constrained Robust Optimization

In [10], a method is proposed for protecting against
varying numbers of perturbed coefficients, given an LP of
the following form.
Problem III.2.

minimize: c>q
subject to: Eq ≤ b

l ≤ q ≤ u,

where E ∈ Rm×n, b ∈ Rm, and q, l, u, c ∈ Rn.
We assume that only E is uncertain. The set Ji, i ∈ m,

contains the indices of the uncertain coefficients in constraint
i. If j ∈ Ji, i ∈ m, then the jth coefficient of the ith
constraint lies in the interval [Eij − Êij , Eij + Êij ]. The
values of the perturbation terms Êij ≥ 0 are known for all
i, j. The protection levels and Γi ∈ Z≥0

1, i ∈m, specify the
number of perturbed coefficients to protect against in the ith
constraint. The vector Γ := col(Γ1, . . . ,Γm) specifies only
the cardinalities of the sets of protected coefficients — it
does not specify individual coefficients to be protected.

The robust formulation of Problem III.2, as developed
in [10], is given in Problem III.3.
Problem III.3.

minimize: c>q

subject to:
n∑
j=1

Eijqj + Ωi
(
q,Γi

)
≤ bi i ∈m

l ≤ q ≤ u,
where, for i ∈m,

Ωi
(
q,Γi

)
:= max
{Si|Si⊆Ji,|Si|≤Γi}

{∑
j∈Si

Êij |qj |

}
. (5)

If qj > 0 [qj < 0], then Eij is perturbed in the positive
[negative] direction. Notice that Ωi ≥ 0, i ∈ m. The set Si
contains the indices of perturbed coefficients in constraint i.
Maximizing over Si identifies the set of coefficients whose
perturbation maximizes the left-hand side of constraint i.

If Γi = 0, i ∈ m, then Ωi
(
q,Γi

)
= 0, i ∈ m, and

Problem III.3 reduces to Problem III.2.
1We restrict Γi to Z≥0, but extension to R≥0 is straightforward [15].

Problem III.3 has an equivalent linear formulation [10,
Theorem 1], which is used for computations.

IV. ROBUST INTERVAL OBSERVERS

If the inner bounds (A
↓
, A↑) are used in Problem III.1

instead of the outer bounds (A,A), then the set of feasi-
ble solutions is enlarged, thereby potentially reducing the
attainable minimum cost. However, the inner bounds cannot
be used unless A↑ ≤ A ≤ A

↓
. By casting Problem III.1

in the framework of Problem III.3, we develop a tunably
robust interval observer (RIO). The designer specifies the
robustness of the solution via a tuning parameter, defined
by the number of elements of A that violate Aij ≤ A

↓
ij ,

and the number of elements of A that violate Auv ≥ A↑uv .
As the number of elements of A that violate Aij ≤ A

↓
ij and

Auv ≥ A↑uv increases, the set of feasible solutions is reduced,
thereby potentially increasing the attainable minimum cost.

A. Robust Formulation of the Interval Observer Problem

In the proposed robust formulation of Problem III.1, we
define the inner bounds (A

↓
, A↑) to be the nominal bounds

on A. Thus, in the robust framework of Problem III.3,
the inner bounds (A

↓
, A↑) define the nominal constraint

coefficients. Define ∆A := A − A
↓
, ∆A := A↑ − A;

these matrices define the perturbations to the coefficients in
the robust LP. Coefficients corresponding to A

↓
ij [A↑ij] are

perturbed to A
↓
ij + ∆Aij = Aij [A↑ij −∆Aij = Aij].

We allow perturbations to be applied independently to
each of the 2n2 elements of (A

↓
, A↑). This requires that

the robust formulation of Problem III.1 have exactly one
decision variable per element of A

↓
and A↑. We introduce the

variables λ, λ ∈ Rn×n, where λij [λij] corresponds to A
↓
ij

[A↑ij]; perturbing the coefficient of λij [λij] is interpreted

as perturbing A
↓

upward [A↑ downward]. Define Λ :=
col(λ, λ) ∈ R2n2

. Since Λ is 2n2-dimensional, the sets of
indices of uncertain coefficients is Ji ⊆ 2n2, i ∈ (n2 + n),
with cardinalities bounded by |Ji| ≤ n, i ∈ n, and |Ji| ≤ 1,
i ∈ {n+ 1, . . . , n2 + n}.

Since the Hurwitz constraint of Problem III.1 is an equal-
ity, we characterize the effect of the protection process
of [10] on equality constraints with uncertain coefficients.

Proposition IV.1. If constraint i in Problem III.3 is an
equality constraint with at least one uncertain coefficient
(Ji 6= ∅) and a nonzero protection level (Γi > 0), then
Problem III.3 is infeasible.

Proof. An equality
∑
j Eijqj = bi can be formulated as two

simultaneous inequalities:
∑
j Eijqj ≤ bi, −

∑
j Eijqj ≤

−bi. Let the index of the second constraint be i′. The robust
formulation is

∑
j Eijqj + Ωi

(
q,Γi

)
≤ bi, −

∑
j Eijqj +

Ωi′(q,Γi′) ≤ −bi. Adding the inequalities yields Ωi(q,Γi)+
Ωi′(q,Γi′) ≤ 0, which is feasible only if Γi = Γi′ = 0.

In light of Proposition III.3, in the robust version of Prob-
lem III.1 we must replace the equality Hurwitz constraint



with an inequality. We propose the following cardinality
constrained robust version of the IO design problem from [6].
Problem IV.2.

minimize:
[
2(A−A)κ + ξ − ξ

]>
λ

subject to: A
↓>
i λi − C>i Z1n + Ωi(λi,Γi) ≤ −1

− (A↑jiλji − C
>
i Zj + δijβ) + Ωr(λi,Γr) ≤ 0

λ > 0n

λi = λi = λ i, j ∈ n, r = ni+ j.

Remark IV.3. If p ≤ n, then the linear implementation of
Problem IV.2 has

(
3n2+n(p+1)+1+

∑n2+n
1 |Ji|

)
∈ O(n2)

decision variables and constraints [10]. ♦

Let J := {J1, . . . , Jn2+n} be the set of indices of
uncertain coefficients, and |J | := col

(
|J1|, . . . , |Jn2+n|

)
.

Theorem IV.4. If Γ = |J |, then Problems III.1 and IV.2 are
equivalent.

To prove Theorem IV.4, we first prove that if Γ = |J |, then
the coefficients in both problems are equal. We then prove
that if Problem III.1 is feasible, then the Hurwitz constraint
in Problem IV.2 is satisfied with equality at optimality.
Lemma IV.5. If Γ = |J |, then Problems III.1 and IV.2 have
the same coefficients.

Proof. Lemma IV.5 follows from the definitions of λ, λ, A
↓
,

A↑, and the perturbations (5) in Problem IV.2.

Proposition IV.6. Any feasible solution to Problem III.3 for
given Γ, is also a feasible solution for any Γ′ � Γ.

Proof. If q is feasible in Problem III.3, then
∑n
j=1Eijqj +

Ωi(q,Γi) ≤ bi, i ∈ m. Since Γ′i ≤ Γi implies Ω(q,Γ′i) ≤
Ωi(q,Γi), we have

∑n
j=1Eijqj+Ωi(q,Γ

′
i) ≤

∑n
j=1Eijqj+

Ωi(q,Γi) ≤ bi.
By Lemma IV.5, if Γ = |J |, then Problems III.1 and IV.2

have equal coefficients, so any feasible solution to Prob-
lem III.1 is feasible in Problem IV.2 for Γ ≤ |J |.

Lemma IV.7. If Problem III.1 is feasible and Γ = |J |,
then the Hurwitz constraint of Problem IV.2 is satisfied with
equality at optimality.

Proof. Let (λ, Z, β) be optimal in Problem III.1. By
Lemma IV.5, Problem IV.2 has the same coefficients and
constraints as Problem III.1, except its Hurwitz constraint is
an inequality instead of an equality. Therefore, the feasible
region of Problem IV.2 is a superset of that of Problem III.1,
thus

[
2(A−A)κ + ξ − ξ

]>
λ ≥

[
2(A−A)κ + ξ − ξ

]>
λ′.

By Proposition IV.6,
(
λ, col(λ, . . . , λ), Z, β

)
is feasible in

Problem IV.2, and satisfies its Hurwitz constraint with equal-
ity. For α > 1, the solution

(
αλ, α col(λ, . . . , λ), αZ, αβ

)
is

feasible in Problem IV.2, and satisfies its Hurwitz constraint
with inequality, and has cost

[
2(A−A)κ + ξ − ξ

]>
(αλ) >[

2(A−A)κ + ξ− ξ
]>
λ. Therefore,

(
λ, col(λ, . . . , λ), Z, β

)
is optimal in Problem IV.2.

Proof of Theorem IV.4. By Lemma IV.5, if Γ = |J |, then
Problems III.1 and IV.2 have the same coefficients, and

by Lemma IV.7, the Hurwitz constraint of Problem IV.2 is
satisfied with equality at optimality. Therefore, if Γ = |J |,
then Problems III.1 and IV.2 are equivalent.

B. Class of Systems Considered

We now clarify the class of systems considered by Prob-
lem IV.2. Let the protection levels Γ be fixed. Denote the
set of subsets of Ji with cardinality no greater than Γi by
Ji := {J ′i | J ′i ⊆ Ji, |J ′i | ≤ Γi}, if Γi = 0, then Ji := ∅;
define the set of these sets J := {J1, . . . ,Jn2+n}. Let
S := {S1, . . . , Sn2+n} be an element of J . Given pairs
(A
↓
, A↑), (A,A) ∈ Rn×n ×Rn×n satisfying Assumption 4,

define Ξ : J → Rn×n × Rn×n, S 7→ (Au, Al), where
Auji =

{
Aji if i ≤ n, j ∈ Si;A

↓
ji otherwise

}
, Alji ={

Aji if i, j ≤ n, j ∈ Sni+j ;A↑ji otherwise
}

.
Using Ξ we define the set-valued mapping A : Zn

2+n
≥0 →

Rn×n × Rn×n,Γ 7→
{

(Au, Al) : (∃ S ∈ J )
(
Ξ(S) =

(Au, Al)
)}

. A(Γ) is the set of perturbed A matrix pairs
(Au, Al) for which the optimal solution to Problem IV.2 is
deterministically feasible.

To solve Problem II.2 exactly, we must specify protection
levels such that u [l] coefficients defined by A

↓
[A↑] are

protected against perturbations. But this is not possible in
the framework of Problem III.3, whose protection levels are
specified per constraint.

C. Robust Interval Observer Dynamics and Performance

Assume Problem III.1 is feasible. Let L(Γ) be the set
of gain matrices L constructed using optimal solutions to
Problem IV.2 for a given Γ. By Theorem IV.4, the set of L
matrices generated by Problem III.1 is L(|J |).

We propose the following robust interval observer (RIO),
whose gain matrix (3) is constructed using an optimal
solution to Problem IV.2.

˙̂xu = Aux̂u + L(y − Cx̂u)− (Au −Al)φ(x̂u) + ξ

˙̂xl = Aux̂l + L(y − Cx̂l)− (Au −Al)ψ(x̂l) + ξ(
x̂u(0), x̂l(0)

)
= (x0, x0), (Au, Al) ∈ A(Γ).

(6)

We now present our main result.

Theorem IV.8. Given a system of the form (1) satisfying
Assumptions 1, 2, 3, and 4, and protection levels Γ � |J |, if
the proposed RIO (6) is constructed with (Au, Al) = Ξ(S)
such that Al ≤ A ≤ Au, then it results in a smaller upper
bound on ‖ē‖1 than the IO (2).

Proof. By Lemma IV.5 and Proposition IV.6, the feasible
region of Problem IV.2 is a superset of that of Problem III.1.
Problems IV.2 and III.1 have the same cost function, there-
fore the optimal cost of Problem IV.2 is less than or equal to
that of Problem III.1. By (4), the cost upper bounds ‖ē‖1.

Remark IV.9. If only x0 is uncertain, i.e., A = A
and ξ(x, t) ≡ ξ(y, t), then an IO similar to (6) can be
constructed [15], such that ‖ē‖1 = 0. An LP similar to
Problem IV.2, is used to design the L matrix. The observer’s
transient error is minimized, specifically

∫∞
0
‖e(t)‖1dt. ♦



D. Implementation

We now delineate and illustrate the design process of the
proposed RIO (6). 1) Identify x0, x0, A, A, A

↓
, A↑, κ;

2) using the mapping Ξ defined in Section IV-B, identify
the elementwise smallest Γ such that there exists a pair
(Au, Al) ∈ A(Γ), such that Al ≤ A ≤ Au, for all
possible system matrices A; 3) solve Problem IV.2 using
the constraint λ ≥ ε1n, where ε > 0 is an arbitrarily small
constant; 4) using the optimal λ and Z, construct the observer
gain matrix L := diag(λ)−1Z>; 5) construct the RIO (6)
with (Au, Al) from step 2, and L from step 4.

Steps 2 and 5 minimize the attainable optimum cost while
ensuring the interval property. The RIO is optimal in that the
maximum cost, which upper bounds ‖ē‖1, over all system
matrix pairs (Au, Al) ∈ A(Γ) is minimized.

For the class A(Γ), we solve Problem IV.2 once, i.e.,
design one L. The original IO (2) is guaranteed to be optimal
for only (A,A), and would need to be optimized for each
system matrix pair in A(Γ).
Example IV.10. To illustrate the proposed approach, we
construct and implement a RIO for the system (1), with

A =

−3.4 0.7 0.5
0.7 −3.4 1
0.7 0.9 −3.8

 C =

[
0.9 0.4 0.6
0.8 0.3 0.3

]
ξ = 0.05 sin

(
x>13

)
13 x0 =

[
−2.5 −1.1 1.3

]>
.

We define the constants x0 = x0 + 0.3|x0|, x0 = x0 −
0.3|x0|, ξ = −ξ = (0.05)13, κ = (10.718)13

2. Define

A = A + 0.4|A|, A = A − 0.4|A|, A↓ = A + 0.1|A|,
A↑ = A − 0.1|A|, thus yielding the cost vector

[
2(A −

A)κ+ξ−ξ
]

=
[
78.985 87.56 92.704

]>
. In Problem IV.2,

only the coefficients of the variables λ and λ, which are
the elements of A

↓
and A↑, respectively, are uncertain. The

indices of uncertain coefficients are those corresponding to
nonzero elements of ∆A = ∆A = 0.3|A|. This yields
J1 = {1, 2, 3}, J2 = {4, 5, 6}, J3 = {7, 8, 9}, Ji = {6 + i},
i ∈ {4, . . . , 12}. We set ε = 10−6.

Define κ(L,Au, Al) to be the evaluation of (4), which
upper bounds ‖ē‖1 of an IO with dynamics (6), if Al ≤
A ≤ Au. We compare the objective values of the optimal
solutions to Problems III.1 and IV.2, and the maximum
bounds on ‖ē‖1 effected by the solutions to Problems III.1
and IV.2, as computed by (4), over the class A(Γ), i.e.,(

1−
max

(Au,Al)∈A(Γ)
κ(LRIO ,A

u,Al)

max
(Au,Al)∈A(Γ)

κ(L,Au,Al)

)
, where the fraction’s

numerator and denominator are the upper bound on ‖ē‖1
of (6) and (2), respectively, over A(Γ). The reductions in
these values seen by using the proposed RIO (6), constructed
with arg max(Au,Al) κ(LRIO , A

u, Al), over the IO (2), con-
structed with arg max(Au,Al) κ(L,Au, Al), i.e., each ob-
server is constructed with the pair (Au, Al) that maximizes
its upper bound on ‖ē‖1 as computed by (4), are in Table I.
Since Γ is 12-dimensional, to facilitate presentation, we
define the simulation parameters ΓH ,ΓM ∈ Z≥0. The

2Derived using input-output stability theory [16, Corollary 5.2].

protection levels for the Hurwitz and Metzler constraints
are set to ΓH and ΓM , respectively, i.e., Γi = ΓH , i ∈
{1, 2, 3}, and Γi = ΓM , i ∈ {4, . . . , 12}. Plots of the trial
ΓH = 3,ΓM = 0 are in Figure 1, where the proposed RIO
exhibits improved steady-state and transient behaviour over
the original IO on their respective worst-case (Au, Al).

TABLE I
IMPROVEMENT IN WORST-CASE VALUES (%) FOR EXAMPLE IV.10.

ΓH ΓM Cost Bound ‖ē‖1
0 1 43.8 43.9 0.00

1 0 36.7 41.1 28.6
1 14.8 18.0 3.73

2 0 30.0 33.0 31.0
1 2.34 4.69 3.23

3 0 28.6 28.8 29.0

In Table I, the reductions in optimal cost, bounds on ‖ē‖1
and ‖ē‖1 over the class A(Γ) are as high as 43.9%, 43.9%
and 31.0%, respectively. 4

V. MONTE CARLO ANALYSIS

We conduct a Monte Carlo analysis to characterize the per-
formance improvement seen by using the proposed RIO (6)
instead of the IO (2).

The elements of the matrices A,A,A
↓
, A↑ ∈ Rn×n are

seeded by uniform random variables on the intervals Ãij ∈
[0, 1], i, j ∈ n, i 6= j, Ãii ∈ [−2n,−n], i ∈ n, which ensures
the Hurwitz property. The seed matrix Ã ∈ Rn×n is modified
to generate the system matrices such that ‖A − A‖1 = 1,
which provides consistency in the cost coefficients across
trials, and A

↓ − A↑ ≥ 2
n31n×n, which precludes constraint

coefficients being arbitrarily close to 0. The matrix C ∈
Rp×n is generated as a uniform random variable on the
interval C ∈ [0, 1]p×n. The initial conditions x0, x0 ∈ Rn are
seeded by the uniform random variable x0 ∈ [−n, n]n, and
are set to x0 = x0+ 1

2n1n, x0 = x0− 1
2n1n, which guarantees

‖x0−x0‖1 = 1. We define the constants ξ = −ξ = (0.1)1n,
κ = 2max(|x0|, |x0|), where max is taken elementwise. We
simulate the dynamical system ẋ = Ax + δ sin(x>1n)1n,
y = Cx, where δ is generated as a uniform random variable
on the interval δ ∈ [−0.1, 0.1]. This system can be viewed
as a stable LTI system ẋ = Ax + Bu, where B := I
and |u(t)| ≤ |δ|, which satisfies Assumption 1. The system
is simulated for t ∈ [0, 100] using MATLAB’s ode15s.
The plant is assumed to be at steady-state at t = 100. If
κ � maxt∈[0,100] |x(t)|, or if Problem III.1 is infeasible,
then the trial is discarded.

Due to the potentially large dimension of Γ, we define
the simulation parameter Γ? ∈ Z≥0. The protection levels
for the Hurwitz constraints are set to Γi = min

(
Γ?, |Ji|

)
,

i ∈ n, and a randomly populated set I ⊆ {n+ 1, . . . , n2 +
n} of cardinality nΓ?, contains the indices of the Metzler
constraints whose protection levels are set to 1. Thus nΓ?

elements of A
↓
, and nΓ? elements of A↑, are perturbed in

each trial.
Ten thousand trials are conducted for representative com-

binations of n, p, and Γ?. In each trial, Problems III.1
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Fig. 1. RIO x̂ and original IO x̂? constructed with their respective worst-case (Au, Al) over A
(

col(3, 3, 3,09)
)
.

and IV.2 are solved for the same parameters, and the percent
differences between their costs, worst-case costs over the

class A(Γ), i.e., 100

(
1−

max
(Au,Al)∈A(Γ)

κ(LRIO ,A
u,Al)

max
(Au,Al)∈A(Γ)

κ(L,Au,Al)

)
,

and true ‖ē‖1 values on the worst-case (Au, Al) are recorded.
These metrics’ means µ and standard deviations σ are in
Table II.

TABLE II
IMPROVEMENT IN COST, WORST-CASE BOUND, AND ‖ē‖1 (%).

n p Γ? Cost Bound ‖ē‖1
µ σ µ σ µ σ

2

1 1

4.20 6.06 4.18 6.00 3.17 5.66
3 6.30 7.09 6.29 7.09 4.42 6.74
4 6.81 7.63 6.81 7.64 4.74 7.37

5

1

1

6.82 7.56 6.83 7.58 4.77 7.28
2 4.56 1.90 4.59 1.96 2.77 2.58
3 3.24 1.43 3.33 1.69 2.18 2.72
4 1.27 0.944 1.37 1.48 1.02 3.57

5 4

2 0.776 0.811 0.835 1.12 0.784 3.85
3 0.511 0.626 0.520 0.753 0.430 6.85
4 0.267 0.480 0.280 0.624 0.257 3.23

The improvements in all three metrics correlate negatively
with the protection levels Γ? and number of outputs p, and
positively with the number of states n. The proposed RIO (6)
is most effective when p is much smaller than n. Thus,
the proposed RIO is a more attractive solution for more
complex plants, i.e., large n, and when few measurements are
available, i.e., p is low. Lastly, the standard deviation exceeds
the mean for most parameter combinations, suggesting the
performance of the RIO is highly plant-dependent.

VI. CONCLUSIONS

We applied the robust optimization method of [10] to
the linear programming-based IO design procedure of [6] to
solve an approximation of Problem II.2. We proved that the
cost of the proposed RIO design LP is strictly less than that
of the original IO. The Monte Carlo analysis suggests that
the cost reduction effected by the proposed RIO correlates
positively with the number of states, and negatively with
the number of outputs. However, the standard deviations of
the cost reduction were high, indicating that the reduction is
highly dependent upon the specific system being observed.

Future work should identify a method of coupling specific
cost and constraint perturbations, as this would allow for

optimality and feasibility to be guaranteed over the same
class of systems. Analytic bounds on the cost reduction
effected by using the proposed RIO over the IO of [6] should
be identified. Also, an objective function should be identified
for simultaneous optimization of transient and steady-state
performance.

REFERENCES
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