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Abstract— In this paper, we study the problem of using an
energy constrained sensor network to estimate the state of a
linear dynamical system. The state estimate is computed using
a Kalman filter and the goal is to choose a subset of sensors
at each time step so as to minimize the a posteriori error
covariance. Recent work has indicated that the simple greedy
algorithm, which chooses the sensor at each time step that
maximizes the error covariance reduction, outperforms many
other known scheduling algorithms. In addition, it has been
suggested that the cost function mapping a sensor sequence to
an error covariance cost is submodular; this would imply that
the greedy algorithm provides a near optimal sensor schedule.

As a negative result, we show that the sensor schedule cost
is not, in general, a submodular function. This contradicts
an established result. We argue that given a linear dynamical
system, it is computationally intractable to determine if it will
yield a submodular cost. Thus, we provide sufficient and easily
checkable conditions under which the dynamical system yields
a submodular cost, and thus performance guarantees for the
greedy schedule.

I. INTRODUCTION

Consider the problem of estimating the time evolution of
a physical process: for example, the variation of temperature
in a lake or ocean, or the spread of an algae bloom on
the surface of a body of water. A common way to monitor
such a process is to deploy a network of static sensors. An
example is the Argo array [1], which consists of thousands of
nodes deployed throughout the global oceans. To obtain the
best estimate of the physical process, one option is to have
every sensor on and collecting data at all times. However,
for long-term deployments, where energy-consumption is a
priority, this may not be viable. A proposed alternative is to
turn on only a small subset of the sensors at each time step
(where time has been discretized). The estimation problem
then becomes one of sensor scheduling. Recent work has
suggested that a simple greedy approach for selecting sensors
to turn on is competitive with the best known algorithms [2].
In this paper we investigate this in detail.

The sensor scheduling problem has received considerable
attention in recent years. In [3], the authors look at the prob-
lem of using a Kalman filter in the case where measurements
are available at each time step with a certain probability.
It is shown that the error covariance will be bounded only
if the probability of receiving a measurement is above a
certain critical value. In [4], the authors provide a method
for stochastically selecting measurements for a Kalman filter,
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based on an intelligently constructed probability distribution,
to minimize the expected steady state error covariance.

In [5], a convex relaxation based approach is given to
pick measurements for parameter estimation. However, in
[2] this approach is empirically shown to be perform worse
than a greedy algorithm when optimizing the maximum
a posteriori. In [2], the authors also show that a greedy
algorithm gives a constant factor approximation, since the
objective is submodular. In [6] this approach is extended to
randomly dropped measurements.

A general framework for sensor scheduling in state esti-
mation is presented in [7]. A number of cost functions can be
optimized in this framework, including the final covariance,
the average covariance, and the cost of a finite horizon
LQG regulator. Network constraints can also be included.
The problem is framed as a relaxed quadratic program. A
greedy approach is also given, but the error bound is not
necessarily constant for unstable systems. In [8], optimal and
near-optimal sensor scheduling algorithms are given that rely
on tree pruning techniques.

The sensor scheduling problem arises in several applica-
tions. In [9], the problem of monitoring CO2 using a wireless
sensor network is demonstrated. The authors use a convex
relaxation to approximate the optimal a posteriori covariance
for a Kalman filter. The sensor scheduling problem is com-
bined with the controller problem in [10] to demonstrate an
application for controlling the water level in multiple tanks.

The contributions of this paper are two fold. First, we
provide a negative result, showing that the sensor sched-
ule cost is not, in general, a submodular nor a monotone
function. This result holds for most objectives including the
trace of the covariance and the log of the determinant of
the covariance, and it disproves an established result in [11].
Second, we provide sufficient and easily checkable condi-
tions (although, very restrictive) under which the dynamical
system yields a submodular cost, and thus performance
guarantees for the greedy schedule.

Organization: In Section III we define the problem. In
Section IV we provide the main negative results on submod-
ularity and in Section V we provide sufficient conditions
when the objective is the log of the determinant of the a
posteriori covariance matrix.

II. PRELIMINARIES

In this section we review some essential concepts in
submodular set and sequence functions.

A. Independence Systems
A large class of combinatorial optimization problems can

be formulated as the maximization or minimization of an



objective function f : F → R over a set system (E,F).
The set E is the base set of all elements and F ⊆ 2E . An
independence system is a set system that is closed under
subsets (i.e., if A ∈ F then B ⊆ A =⇒ B ∈ F). A useful
class of independence systems are called matroids.

Definition II.1 (Matroid). An independence system (E,F)
is a matroid if it satisfies the additional property that if
X,Y ∈ F such that |X| > |Y |, then ∃x ∈ X\Y with
Y ∪ {x} ∈ F .

The uniform matroid is defined by the collection of all
sets of size less then or equal to m ∈ Z+, i.e., F := {A ⊆
E : |A| ≤ m}. Another example is the partition matroid.
The base set is composed of n disjoint sets, {Ei}ni=1. Given
k ∈ Zn+, the matroid is defined by the collection F := {A ⊆
E : |A ∩ Ei| ≤ ki,∀i = 1 . . . n}.

B. Sequences

For our purposes, a sequence A = (a1, . . . , ak), k ∈ Z≥0
consists of elements from a base set of elements E, i.e., ai ∈
E. The length of a sequence, |A|, is the number of elements
in the sequence: if A = (a1, . . . , ak), then |A| = k. Two
sequences A = (a1, . . . , ak) and B = (b1, . . . , b`) defined
over the same base set can be concatenated into a larger
sequence: A ‖ B = (a1, . . . , ak, b1, . . . , b`). A subsequence
of A is a sequence derived from it by deleting some elements
but not changing the order of the remaining elements, e.g.,
B = (a3, a5) is a subsequence of A, and is denoted B ⊆ A.

C. Set Functions

Let E be a finite set. A set function, f , defined over E
assigns a value to every subset of E, i.e., f : 2E → R.

Definition II.2 (Normalized and Monotone). The function
f is normalized if f(∅) = 0. The function, f , is monotone
non-decreasing if for all A ⊆ B ⊆ E, f(A) ≤ f(B).

Definition II.3 (Submodularity). The function f is submod-
ular if f(S)+f(T ) ≥ f(S∪T )+f(S∩T ), for all S, T ⊆ E.

Submodular functions satisfy the property of diminishing
marginal returns. That is, the contribution of any element x
to the total value of a set decreases as the set gets bigger.
More formally, let ∆f (B|A) := f(A ∪B)− f(A). Then,

∆f (x|A) ≥ ∆f (x|B), ∀A ⊆ B ⊆ E.

D. Sequence Functions

A sequence function defined over a base set E is one that
takes in a sequence over E, and outputs a number in R. Note
that this is different from a set function in that the order of the
elements in the sequence matters, i.e., f

(
(a, b)

)
6= f

(
(b, a)

)
.

The definitions in the previous section can also be applied
to sequence functions. Let E be a finite set and f a function
defined on sequences derived from E.

Definition II.4 (Monotonicity). The function, f , is monotone
non-decreasing if for all subsequences A of a sequence B,
i.e., A ⊆ B, f(A) ≤ f(B). Similarly, it is monotone non-
increasing if f(A) ≥ f(B). If neither of these conditions
hold, then the function is non-monotone.

The concept of submodularity can also be applied to
sequence functions. Denote the marginal value of appending
a sequence C to a sequence A as ∆f (C|A) := f(A ‖ C)−
f(A), where A ‖ C is the concatenation of A and C.
Definition II.5 (Submodularity). The function f is submod-
ular if ∆f (C|A) ≥ ∆(C|B), for all A ⊆ B.

The subscript f will be omitted unless there is ambiguity.

E. Submodular Function Optimization
An effective method for maximizing a submodular func-

tion (set or sequence), is the greedy algorithm. This algorithm
begins with an empty set S and repeatedly adds the element
x of E to S that maximizes the marginal return ∆(x|S).
Lemma II.6 (Maximizing Over a Matroid, [12], [13]). Con-
sider the problem of maximizing a submodular, non-negative
and monotone non-decreasing function over a matroid. For
the uniform matroid, the greedy algorithm gives a 1 − 1

e
approximation. For a general matroid, the greedy algorithm
gives a 1

2 approximation.
At times, we may not be able to find the most valuable

item from the base set, but rather one that is close to the
optimal. This motivates the idea of α-approximate greedy.
Definition II.7 (α-approximate Greedy). Consider an objec-
tive function f defined over an independence system (E,F).
For α ∈ (0, 1], an α-approximate greedy algorithm greedily
constructs an approximation to the maximum value basis by
selecting at each iteration i an element gi such that

∆(gi|Gi−1) ≥ α max
e∈E\Gi−1

Gi−1∪{e}∈I

∆(e|Gi−1),

where Gi =
⋃i
j=0 gj and g0 = ∅.

For the case of a sequence submodular functions, the fol-
lowing lemma quantifies the greedy algorithms performance
over the sequence equivalent to a uniform matroid.
Lemma II.8 (Maximizing a Sequence [14]). Consider a
normalized monotone non-decreasing submodular sequence
function f defined over the base set of elements E. The
problem of selecting the maximum value sequence of size
T can be approximated to within 1 − 1

eα using an α-
approximate greedy algorithm.

III. THE SENSOR SCHEDULING PROBLEM

Consider a sensor network consisting of m sensors M :=
{1, . . . ,m}, operating in discrete time. Our goal is to esti-
mate the state of a linear time invariant (LTI) system. To do
this, we can turn on at most k sensors at each time step t. We
assume that the measurements taken by each sensor at each
time step are fused into a single estimate. This is commonly
performed at a fusion center.

To formalize this problem, the combination of the LTI
system and sensor network can be written as

xt+1 = Axt + wt

yt+1 = StCxt + Stvt,
(1)

where t ∈ Z≥0, xt ∈ Rn, yt ∈ Rk, A ∈ Rn×n, and
C ∈ Rm×n. The process noise wt and measurement noise vt



are zero mean and independent Gaussian noise vectors with
covariance matrices W,V ∈ Rn×n such that W,V � 0.

Each row of the C matrix corresponds to a single sensor,
and thus we assume that each sensor takes scalar measure-
ments. The k sensors selected at time step t are encoded in
the binary selection matrix St ∈ {0, 1}k×m. Each row of St
contains only a single element that is equal to 1, and every
column contains at most one element that is equal to 1. Thus,
StC is a k×m matrix containing k rows of C corresponding
to the k sensors selected at time step t.

To estimate the state xt of the dynamical system, we use
the Kalman filter. To this end, let us define two functions
ρT : Rn×n → Rn×n (we use T for time and > for transpose)
and ρMX : Rn×n → Rn×n, where X is a set of sensors from
which we can construct St, as

ρT (Σt−1|t−1) := AΣt−1|t−1A
> +W

ρMX (Σt|t−1) := Σt|t−1 − Σt|t−1C
>S>t (StCΣt|t−1C

>S>t

+ StV S
>
t )−1StCΣt|t−1

=
(

Σ−1t|t−1 + C>S>t (StV S
>
t )−1StC

)−1
.

The covariance update for the Kalman filter consists of two
steps: the time update, Σt|t−1 = ρT (Σt−1|t−1), results in
the a priori estimate, and the measurement update, Σt|t =
ρMX (Σt|t−1), gives the a posteriori estimate. It is known that
the Kalman filter gives the best mean squared error of the
state estimate among all linear estimators.

Given a time horizon T , our problem is to compute a
sensor schedule σ = (σ1, . . . , σT ), where σi ⊂M , |σi| = k
for each i ∈ 1, . . . , T . We seek a schedule σ that maximizes
a function of the information matrix Σ−1T |T . This is equivalent
to minimizing a function of the error covariance ΣT |T .

The initial a posteriori covariance estimate is a positive
definite matrix Σ0 � 0. Given a sensor schedule σ and a
time t ≤ T , we can define a function Ωσt : Rn×n → Rn×n
such that Ωσt (Σ0) = Σt|t. The function is defined recursively
as follows:

Ωσt (Σ0) := ρMσt (ρ
T (Ωσt−1(Σ0)))

=
(
(AΩσt−1(Σ0)A> +W )−1 +Dt

)−1
,

Ωσ0 (Σ0) = Σ0,

Dt := C>S>t (StV S
>
t )−1StC,

(2)

where St is the binary selection matrix given by the k sensors
in σt and Dt is defined for convenience. We will omit the
initial covariance parameter for Ωt from now on unless there
is ambiguity. Note that in this definition the first time update
comes before the first measurement update, so in effect,
an initial measurement is skipped. This can be avoided by
using a “dummy” initial covariance of A−1(Σ0|−1−W )A−>

where Σ0|−1 is the initial a priori estimate.
Formally, we seek to optimize F (ΩσT (Σ0)), for some

covariance metric F , under the constraint that at most k
sensors can be chosen at each time step. For the rest of this
section, F (Ωσt (Σ0)) and F (σ) will be used interchangeably
to refer to the value of the covariance after running the
sequence σ.

Remark III.1 (Set or Sequence function). When optimizing
over multiple time steps, the objective is a sequence function
since the time steps generate an ordered sequence of mea-
surements. Over a single time step the objective is a simply
a set function. •

We are interested in characterizing the conditions under
which sensor selection can be posed as a submodular opti-
mization problem. This will allow us to apply known results
in submodular set function optimization to obtain bounds for
various algorithms such as the greedy algorithm.

IV. SUBMODULARITY OF THE KALMAN UPDATE

In this section we show that for most of the commonly
used metrics, the sensor selection problem is not, in general,
submodular. We then comment on the difficulty of determin-
ing whether or not a particular system is submodular.

A. Counterexamples for Submodularity

We consider the following sensor scheduling functions,
where the objective is maximization:
• F1 = − trace(ΣT |T )
• F2 = log det(Σ−1T |T )

• F3 = −max eig(ΣT |T )

• F4 = trace(Σ∅T+1|T − ΣT+1|T ), where Σ∅t|t−1 is the
final covariance if no sensors are selected.

The following remark gives some intuition about these
metrics.
Remark IV.1 (Performance metrics). The eigenvalues of
covariance matrix are proportional to the lengths of the axes
of the ellipsoid that contains the estimation error x − x̂
with a certain probability [5]. The volume of the confidence
ellipsoid is directly proportional to the determinant of the
covariance matrix, which is captured by F2. The mean
squared error is given by the sum of the eigenvalues of the
covariance matrix, which is equivalent to its trace, as in F1

and F4. The worst-case error covariance is proportional to
the maximum eigenvalue of the covariance, which is objec-
tive F3. A detailed comparison of performance measures can
be found in [15].

Since we are investigating the submodularity of sensor
scheduling, we phrase each optimization as a maximization
problem for which the results in Section II-E would apply.

•
In [11], the authors show (see Theorems 2 and 3, [11]) that

the function F4 is submodular for a single time step as well
as over multiple time steps (in the latter, the schedule consists
of one sensor per time step). We give a counterexample to
show that this claim is false.
Example IV.2 (Single Time Step). Consider the system

A =

[
0.5 0
0 0.5

]
, C =

[
1.0 0.5 0.7 0.3
0 0.5 0.3 0.7

]>
,

W = Σ0 = I2×2, V = I4×4.

(3)

Take X1 = {2, 3} ⊂ {2, 3, 4} = X2. So, ∆F1({1}|X1) =
0.2736 but ∆F1

({1}|X2) = 0.2769. Also ∆F3
({1}|X1) =

0.1313 but ∆F3
({1}|X2) = 0.1927. Also ∆F4

({1}|X1) =



0.0684 but ∆F4
({1}|X2) = 0.0692. These results contradict

the decreasing marginal benefits property of submodularity,
and disprove Theorem 2 of [11]. In fact, if we take X1 =
{1, 3} ⊂ {1, 3, 4} = X2, we will see that ∆({2}|X1) ≥
∆({2}|X2) for each of the three functions. This means that
they are also not supermodular. N

The previous example considered sensor selection over a
single time step and showed that objectives F1, F3, and F4

are all, in general, not submodular. Unsurprisingly, the results
are even worse over multiple time steps. Using the sequences
σ1 = (1, 4, 1, 4) ⊂ (1, 4, 1, 4, 4) = σ2, and looking at the
marginal change in value of each function if sensor 4 is
chosen in the next time step, we can show that none of the
four metrics are submodular.

B. A Test for Submodularity?

An interesting question is, given an LTI system of the form
of (1), and an initial covariance, can we determine whether
or not the cost function associated with the sensor scheduling
problem will be submodular? The system model (1) induces
a cost function F . The function maps sequences σ to real
numbers. Thus, more generally, we can ask, given a sequence
(or set) function, is it computationally tractable to determine
whether or not it is submodular?

For set functions, there is no known polynomial time
algorithm [16]. Since every set function can be expressed as
a sequence function, this result also implies that no tractable
algorithm exists for testing sequence submodularity. Without
any additional structure on the sequence function, one would
have to exhaustively check the submodularity definition for
every possible sequence B and subsequence A. Therefore,
it appears likely that, unless some particular structure of the
Kalman update can be exploited, we can not in general even
test whether or not a sensor scheduling problem will be
submodular. This motivates the following section in which
we provide a set of easily checkable sufficient conditions on
the system for which the cost is submodular.

V. SUBMODULAR SENSOR SCHEDULING CONDITIONS

In the previous section we saw that the sensor selection
problem is not, in general, submodular. Over a single time
step, the only objective for which we did not provide a coun-
terexample was F2. In this section we look for conditions on
which the log det objective function is submodular.

A. Single Time Step

The single time-step problem is one of choosing a subset k
of the m measurements. This problem is addressed in [2], and
here we provide a small correction to their result. The authors
show that log det(ρT (Ωσt−1)−1 + MX) is monotone non-
decreasing and submodular in the selected measurements1

assuming that V is a diagonal matrix. As a result, the
authors deduce that using a greedy algorithm gives a (1− 1

e )-
approximation [2, Lemma 1]. As stated, this result does

1Here X is the set of sensors to be chosen at time t and MX – through
an abuse of notation – is the corresponding measurement matrix, similar to
the one defined in (2).

not hold, as the objective function is not normalized (i.e.,
the value of empty set is not necessarily zero). giving
an additional error term that depends on the initial value:
GREEDY ≥ (1 − 1

e )OPT + G(∅)ε, where ε > 0 depends
on k. The fix, however, is very simple. We can define a new
objective function,

Gt+1(X) := log det(ρT (Ωσt )) det(ρT (Ωσt )−1 +MX), (4)

where det(ρT (Ωσt )) is a normalization factor so Gt(∅) = 0.
Lemma V.1. For a single time step, the function Gt(X)
is monotone non-decreasing and submodular with an initial
value of 0.

By this lemma, picking the best set of sensors at a
particular time step can be approximated using a greedy
algorithm to within (1− 1

e ) of the optimal [12].

B. Multiple Time Steps

We now assume that at each time step the optimal sensor
can be chosen in an attempt to study the properties of the
objective function over multiple time steps. We will use
the following extension of (4) as the objective function for
multiple time step optimization,

F (σ) = F (ΩσT (Σ0)) = log det(Ωσ0 )− log det(ΩσT )

= log
(
det(Σ0) det(ΩσT )−1

)
.

(5)

We assume that A is non-singular and that there is no
process noise, i.e., wt = 0. When these assumptions are not
satisfied, it is easy to construct seemingly trivial examples
for which the cost is not submodular. For example, even for
a diagonal and stable A, if W is nonzero, then the cost will
not be submodular.

Using these assumptions, we can solve the recursive
covariance update to obtain

Ωσt =

(
(A−>)tΣ−10 A−t +

t∑
i=1

(A−>)(t−i)MiA
−(t−i)

)−1
.

(6)
The proof of the following Lemma is omitted and can be
found in [17].
Lemma V.2. Given a positive semidefinite matrix P , then for
all nonnegative integers j, l such that 0 ≤ j < l, the follow-
ing hold: 1) If XPX> � P then X lP (X>)l � XjP (X>)j;
2) If XPX> � P then X lP (X>)l � XjP (X>)j .
Theorem V.3. For the function (5), the value of the empty
set is 0. Also, with the assumptions that A is full rank and
W = 0, if AΣ0A

> � Σ0 and A>MiA �Mi for all possible
measurement matrices, then the function is monotone non-
decreasing and submodular.

Proof. The value of empty set is easy to see, F (Ω∅0(Σ0)) =
log det(Σ0) det(Σ−10 ) = 0.

Take A ⊂ B where B is a sequence of measurements.
Let B = (1, . . . , b), with the corresponding measurements
{Mi}i∈B , and {A(i)}ai=1 are the indices in B that are part
of A. Note that by definition of subsequence, A(i) < A(i+1)
for all i, i.e., the order in which elements appear in B must
be the same as the order in which they appear in A.



For monotonicity, the requirement is F (A) ≤ F (B):

log det(Σ0) det(ΩAa )−1 ≤ log det(Σ0) det(ΩBb )−1

⇐⇒ det(ΩAa ) ≥ det(ΩBb )

For submodularity, the requirement is F (A‖x)−F (A) ≥
F (B ‖ x)− F (B). This can be written as,

log det(ΩAxa+1)−1 − log det(ΩAa )−1

≥ log det(ΩBxb+1)−1 − log det(ΩBb )−1

which is satisfied if and only if

log det(ΩAxa+1)−1 det(ΩAa ) ≥ log det(ΩBxb+1)−1 det(ΩBb ).

Now, applying the covariance update formula (2), we have

ΩAxa+1(Σ0) = Ωx1(ΩAa ) =
(
(AΩAaA

>)−1 +Mx

)−1
,

ΩBxb+1(Σ0) = Ωx1(ΩBb ) =
(
(AΩBb A

>)−1 +Mx

)−1
.

Substituting back and multiplying both sides by
det(A) det(A>), the condition for submodularity becomes

det(AΩAaA
>)det((AΩAaA

>)−1 +Mx)

≥ det(AΩBb A
>)det((AΩBb A

>)−1 +Mx).

Thus, we have submodularity if and only if the following is
satisfied det(I + (AΩAaA

>)Mx) ≥ det(I + (AΩBb A
>)Mx)

Taking Mx := L>L (since Mx � 0) and applying the
matrix determinant lemma2, the condition becomes det(I +
(LA)ΩAa (LA)>) ≥ det(I + (LA)ΩBb (LA)>). A sufficient
condition for both monotonicity and submodularity to hold
then is ΩAa � ΩBb . Applying (6), this is equivalent to

(A−>)aΣ−10 A−a +

a∑
i=1

(A−>)(a−i)MA(i)A
−(a−i)

� (A−>)bΣ−10 A−b +

b∑
j=1

(A−>)(b−j)MjA
−(b−j).

(7)

Now, let’s look at the individual terms in inequality (7).
We have Σ0 � 0 and a ≤ b. Assuming that AΣ0A

> �
Σ0 we can apply Lemma V.2 to find that AaΣ0(A>)a �
AbΣ0(A>)b. Taking the inverse of both sides (which requires
that A is full rank) we obtain

(A−>)aΣ−10 A−a � (A−>)bΣ−10 A−b.

For every A(i), the term MA(i) will appear on both sides
of inequality (7). We can show that (a− i) ≤ (b− j). Since
A ⊂ B, the first element of A (i = 1) can be at most in
position b−a+1 in B. Similarly, the second element in A can
be at most in position b−a+2 in B. Therefore, the inequality
j ≤ b−a+i holds. Assuming that A−>MA(i)A

−1 �MA(i),
since we know that MA(i) � 0, we can apply Lemma V.2
again to obtain

(A−>)a−iMA(i)A
−(a−i) � (A−>)b−jMA(i)A

−(b−j).

2Given An×n, Un×k and Vn×k . Assuming A−1 exists, det(A +
UV >) = det(I + V >A−1U) det(A). For the special case of A = I ,
this is just Sylvester’s Theorem of Determinants.

Note that the condition A−>MA(i)A
−1 � MA(i) is equiva-

lent to A>MA(i)A �MA(i).
Therefore, under the assumptions made, the inequality

(7) holds and the function is monotone non-decreasing and
submodular.

If the conditions of Theorem V.3 hold then by Lemma II.8,
greedily selecting the measurement matrix at each time step
gives a (1− 1

e )-approximation.
Remark V.4 (The restrictiveness of Theorem V.3). In addition
to the requirement of no process noise, the two conditions
in Theorem V.3 are that AΣ0A

> � Σ0 and A>MiA � Mi

for all possible measurement matrices.
The first condition is related to the stability of A. The

theorem for Lyaponov stability of discrete time systems
states that the eigenvalues of A have magnitude strictly less
than 1 if and only if there exists P � 0 such that A>PA ≺ P
[18, Thm. 8.4]. Thus, if A is exponentially stable, then we
can pick an initial covariance to satisfy AΣ0A

> � Σ0.
Conversely, if A is unstable then no such Σ0 exists.

The A>MiA � Mi conditions in Theorem V.3 require
checking

(
m
k

)
matrices. We can ask whether we can design

the sensor network (i.e., the matrix C) such that A>MiA �
Mi for all possible measurement matrices. Although it is
possible to construct C for certain cases, we do not yet know
of explicit conditions on A for the existence of a satisfying
C, or a general method for computing such a C. •

C. Greedy Approximation

Assuming that the conditions of Theorem V.3 are met,
sequentially selecting the best measurement matrix at each
time step will give a (1 − 1

e )-approximation (≈ 0.6321).
One drawback is that there are

(
m
k

)
= O(mk) possible

measurement matrices at each step. An alternative approach
is to greedily select k measurements at each time step. Thus,
at given time step we construct a set of k sensors as in
Section V-A. This is done greedily across time steps. This
approach leads to a faster runtime but a less tight bound, as
shown in the following theorem.

Theorem V.5. Consider the sensor scheduling problem such
that W = 0, V is diagonal, A is full rank, AΣ0A

> � Σ0

and A>MiA � Mi for all possible measurement matrices

Mi. Using (5) as the objective function leads to a 1− 1

e1−1/e
-

factor approximation in O(Tkmn2 + Tn3) time if the k
sensors are chosen greedily at each time step.

Proof. Sequentially selecting the best measurement
matrix at each time step corresponds to solving
the optimization problem maxσt ∆(σt|σ[1,t−1]) ≡
maxσt log det(Σ0) det(Ωσt )−1−log det(Σ0) det(Ωσt−1)−1 ≡
maxσt log det(Ωσt−1) det(Ωσt )−1, at each time step, where
σ[1,t−1] is the sensor sequence from 1 to t− 1.

By Lemma V.1, since the measurement noise matrix V
is diagonal, building the measurement matrix greedily at a
particular time step can be solved to within (1 − 1

e ) of the
optimal using (4) as the objective function. Let Σgt and Σot
be the resulting covariance after applying the sequence of



measurements σ[1,t−1] and then selecting the greedy and
optimal measurements respectively at time step t. Therefore,
taking α = (1 − 1

e ), log det(ρT (Ωσt−1)) det(Σgt )
−1 ≥

α log det(ρT (Ωσt−1)) det(Σot )
−1 which implies

log det(Ωσt−1) det(Σgt )
−1 ≥ α log det(Ωσt−1) det(Σot )

−1 +
(α − 1) log det(A)2, since W = 0 so ρT (Ωσt−1) =
AΩσt−1A

>.
Let σg = (σg1 , . . . , σ

g
T ) be the sequence of measurements

by greedily selecting the k sensors at each time step and
σo = (σo1, . . . , σ

o
T ) be the optimal schedule. Therefore,

∆(σgt |σ
g
[1,t−1]) ≥ αmaxσi ∆(σi|σg[1,t−1]) + ε,where ε =

(α − 1) log det(A)2. Note that if ε = 0, then we can
apply Lemma II.8 to deduce that F (σg) ≥ (1 − 1

eα )F (σo).
However, since ε 6= 0, we cannot apply this directly. Instead,
we solve for a bound of the greedy schedule by imitating
the proof of Lemma II.8 (given in [14]).

∆(σgt |σ
g
[1,t−1]) ≥ αmax

σi
∆(σi|σg[1,t−1]) + ε

≥ α max
σi∈σo

∆(σi|σg[1,t−1]) + ε

≥ α

T
∆(σo|σg[1,t−1]) + ε

≥ α

T

(
F (σo)− F (σg[1,t−1])

)
+ ε.

This implies that F (σg[1,t]) ≥
α
T F (σo)+(1− α

T )F (σg[1,t−1])+
ε. Solving this recurrence relation,

F (σg) = F (σg[1,T ])

≥
(α
T
F (σo) + ε

) T−1∑
i=0

(1− α

T
)i

= F (σo)
(

1− (1− α

T
)T
)

+
T

α

(
1− (1− α

T
)T
)
ε

≥ F (σo)(1− e−α) +
T

α
(1− e−α)ε.

Therefore, the greedy schedule is within a factor of (1−e−α)
of the optimal but there is an error term of T (1−α−1)(1−
e−α) log det(A)2 ≈ (−0.2727)T log det(A)2. Note, how-
ever, that since Σ0 � 0,

AΣ0A
> � Σ0 =⇒ det(AΣ0A

>) ≤ det(Σ0)

=⇒ det(A)2 ≤ 1 =⇒ log det(A)2 ≤ 0.

As a result, F (σg) ≥ (1 − e−α)F (σo) and substituting the
value of α gives the constant factor bound of ≈ 0.4685.

For the complexity, there are kmT iterations; for each
of the T time steps, k measurements need to be selected
from a set of m. The optimization for each time step can
be performed intelligently to avoid having to repeatedly
calculate inverses and determinants. This results in a runtime
of O(n2mk) per time step [2] such that the output is the a
posteriori covariance matrix. The time update requires two
matrix multiplications which naively require O(n3) time.
Therefore, the total runtime is O(Tkmn2 + Tn3).

VI. CONCLUSIONS

In this paper, we studied the problem of using an energy
constrained sensor network to estimate the state of a linear

dynamical system. We showed that contrary to recent work,
the sensor schedule cost is not, in general, a submodular
function. We then provided a set of sufficient and easily
checkable conditions under which the sensor schedule cost is
submodular. If the cost is submodular, the greedy algorithm
performs within approximately 1/2 of the optimal.

For future work we would like to determine the exact com-
plexity of testing whether or not a function is submodular. It
appears that such a test is computationally intractable, but to
the best of our knowledge this has not been formally shown.
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