
Robot Monitoring for the Detection and Confirmation of Stochastic Events

Ahmad Bilal Asghar Stephen L. Smith

Abstract— In this paper we consider a robot patrolling
problem in which events arrive randomly over time at the
vertices of a graph. When an event arrives it remains active
for a random amount of time. If that time active exceeds a
certain threshold, then we say that the event is a true event;
otherwise it is a false event. The robot(s) can traverse the graph
to detect newly arrived events, and can revisit these events in
order to classify them as true or false. The goal is to plan robot
paths that maximize the number of events that are correctly
classified, with the constraint that there are no false positives.
We show that the offline version of this problem is NP-hard. We
then consider a simple patrolling policy based on the traveling
salesman tour, and characterize the probability of correctly
classifying an event. We investigate the problem when multiple
robots follow the same path, and we derive the optimal (and
not necessarily uniform) spacing between robots on the path.

I. INTRODUCTION

Consider the following motivating example. A robot tra-

verses a parking lot, issuing tickets to vehicles that have

overstayed the allowed amount of parking time T . If a

vehicle has been present for more than T time after it was

first spotted by the robot, then it gets a ticket. However, there

is a possibility that some vehicles overstay their allowed

parking time but leave before the robot tickets them. Our

goal is to define a monitoring policy for the robot which

minimizes the number of un-ticketed, overstaying vehicles.

The event detection and confirmation problem considered

in this paper is as follows. A robot or a group of robots patrol

a weighted graph by traversing its edges. Events arrive at the

vertices and remain active for a randomly distributed amount

of time. If an event remains active for more than a given time

T > 0, then we say it is a true event, otherwise it is a false

event. For a robot to verify that an event is true, it must first

detect the event by visiting the vertex, and then must revisit

the vertex at least T time units later to confirm the event.

Thus, the goal is for the robots to maximize the expected

number of true events that are successfully confirmed. This

is a classification problem in which false positives are not

permitted: Each event is initially classified as false, and it

can be classified as true only if it is confirmed.

Related work: While the proposed event detection and

confirmation problem has not, to our knowledge, been di-

rectly studied there are several closely related problems. In

the patrolling problem [1], [2], [3], the goal is to monitor an

environment or boundary using one or more robots/sensors.

The performance criteria is to minimize the maximum time

between visits to any region in the environment. In [1],
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the problem is considered for multiple robots, and it is

shown that good patrolling performance can be achieved by

computing a single traveling salesman tour (TSP) [4], and

then equally distributing the robots along this tour.

In [5] the patrolling is extended to environments in which

each region has a different importance level, and the goal is

to minimize the time between visits to a region, weighted

by that regions importance. The work in this paper can be

thought of as a natural extension of patrolling in which an

action must be taken if an event is detected during the patrol

(that action being confirmation).

Our problem is also related to the TSP with time win-

dows [6], [7], where the input is a graph along with a time

window assigned to each vertex. The goal is to find the

shortest tour that visits each vertex exactly once, and within

its time window. We show that the event confirmation aspect

of our problem is closely related to TSP with time windows,

since each event must be confirmed at least T time units

after detection, but before the event expires.

Another closely related problem is the pickup and delivery

problem [8], where one seeks to pickup a set of customers

at their desired origin locations and drop them off at their

desired destination locations, all within their specified time

windows. Our problem can be thought of as a variation

in which the pickup time (i.e., the event arrival time) is

unknown to the robot, the pickup and destination locations

coincide, and the dropoff time window depends on the time

that the pickup occurred (i.e., the event was detected).

The stochastic aspect of the problem bears a close resem-

blance to dynamic vehicle routing (DVR) [9], where spatially

distributed customers arrive stochastically over time, and the

goal is to minimize the expected time between a customers

arrival and the time it is visited by a vehicle. The most closely

related work in this area is [10], in which the customers exit

the system if they are not visited within a time window.

However, DVR differs from the proposed work in three

regards: i) the environment is a Euclidean space rather than a

graph, ii) the customer is known to the vehicles upon arrival,

and iii) a second confirmation visit is not required.

Contributions: In this paper we introduce the event de-

tection and confirmation problem. There are three main

contributions. First, we characterize the complexity of the

problem by relating its offline counterpart to the TSP with

time windows. Second, we propose a simple periodic visit

strategy based on the TSP and analyze the probability of

confirming a true event. Third, we give some insight into

the multi-robot problem, and show that unlike traditional

patrolling [1] when robots are all placed on the same path,

it is not always optimal for them to be equally spaced.



A. Preliminaries

We require a few basic properties of the Poisson and expo-

nential distributions [11]. The exponential distribution with

parameter µ is a continuous distribution with a probability

density function f(x) = µe−µx if x ≥ 0 and f(x) = 0
otherwise.

A Poisson process with parameter λ is a stochastic count-

ing process such that the time between successive events

is exponentially distributed. The expected number of event

arrivals in a time interval [t1, t2] is λ(t2 − t1). The Poisson

process also satisfies the property of stationary increments

where the number of arrivals in an interval of time is

independent of the number of arrivals prior to that interval.

The following result will be useful in our analysis.

Lemma I.1 (Poisson Arrival Time Distribution, [12]). Given

that k events arrived in the time interval (a, b], the times

t1, t2, . . . , tk of these arrivals, considered as unordered ran-

dom variables, are independent and uniformly distributed on

(a, b].

A consequence of this result is that if we know an

event arrived in an interval of time, then its arrival time is

uniformly distributed over that time interval.

II. PROBLEM STATEMENT AND HARDNESS

In this section we introduce the event detection and

confirmation problem and we characterize its hardness.

A. Problem Statement

The Event Detection and Confirmation problem is defined

on an undirected weighted graph G = (V,E,w), where V
is the vertex set, E is the set of edges and w : E → R

represents edge weights. The vertices depict the locations

to be monitored by m ≥ 1 robots. We take the metric

closure [5] of G in order to obtain a complete graph, in

which the length of each edge is equal to the shortest path

distance in the original graph. For simplicity we will refer

to this complete graph as G = (V,E,w).
Events arrive at each vertex v ∈ V according to a Poisson

random process [11] with a parameter λv . Similarly, we

assume that the activity period of an event at vertex is

exponentially distributed with parameter µv.1 The events are

distinct and they can be identified by the robots. Moreover,

only one event can be active at a vertex at a time. The

arrivals and active times of events at different vertices are

independent.

There is also a critical time T as input to the problem.

We call an event a true event if it remains active for at least

time T . The robots, while on their patrolling path, perform

two tasks: detection and confirmation. The detection of an

event is discovering it for the first time at a vertex, and the

confirmation is observing an event at a vertex after it has

been active for at least time T . The robots can classify an

1In queueing theory, the Poisson distribution and exponential distribution
are often used to model customer arrival rates and customer service times,
respectively [13]. Most of the analysis in this paper holds for more
general distributions: the ability to obtain closed-form expressions, however,
leverages these specific distributions.

Fig. 1. The events remaining active until t′ + T are true, but they cannot
be confirmed unless they stay until (n+ 2)τ .

event as true if and only if they confirm that event. Notice

that if a true event becomes inactive before being confirmed,

it cannot be classified by the robot as a true event.

When a robot reaches a vertex in its tour, it faces one of the

following scenarios: i) The vertex is empty: then the robot

can delete the event from its database which was recorded

to be at that vertex (if any); ii) There is a new event at the

vertex: then the robot stores it against that vertex with the

current time stamp; iii) There is an event at the vertex which

was detected some previous check at that vertex: In this case

the robot looks up the time stamp of that event and compares

it with current time to see whether it is a true event or not.

Event detection and confirmation problem: Find pa-

trolling paths for the robots to minimize the probability of

incorrectly classified events. The problem does not allow the

robots to classify a false event as true, so the optimization

task can be stated as maximizing the probability of correctly

classified true events.

Proposition II.1 (Hardness of Offline Problem). The prob-

lem of finding a feasible tour for the off-line version (with

the arrival times and activity periods of events available

beforehand) of Event Detection and Confirmation Problem

is NP-Complete.

Due to space considerations, the proof [?] is omitted from

this paper. Since it is computationally intractable to even

determine a feasible patrolling path given all the problem

data beforehand, we do not expect there to exist a tractable

algorithm for optimally solving the on-line problem. In the

following section we look at the probability of confirmation

at a single vertex in the graph. Using this we can analyze

the performance of a policy based on a TSP tour.

III. ANALYSIS FOR A SINGLE VERTEX

Let us consider a deterministic patrolling policy which

periodically visits each vertex, and let the visit period for

a vertex v be τ . Inter-arrival and staying times of events at

vertex v are distributed exponentially with the parameters λ
and µ respectively (we drop the subscript v in this section

for simplicity of notation). Since the arrival and departure

process at a vertex are independent of the states of other

vertices, we can focus the analysis on a single vertex.

A. Confirmation Avoiding Interval for True Events

Our end goal is to maximize the probability of correctly

classified true events. There is a chance that a true event

becomes inactive without being confirmed, because the robot

does not know the exact arrival time of the event and it can

only visit the vertex of the event periodically. In the following

we characterize the time interval on which a true event can

become inactive and avoid confirmation.

Proposition III.1 (False Negatives). Suppose an event ar-

rives at a vertex between two consecutive visits made by the

robot at 0 and τ , and the arrival time of the event is given



by t′ ∈ (0, τ ]. Then, if that event becomes inactive in the

time interval
(

t′ + T, (n+ 2)τ
)

, where (1)

n =

{

T
τ
− 1, if T is a multiple of τ

⌊

T
τ

⌋

, otherwise,
(2)

it will be a true event which can not be confirmed.

Proof. The starting point of the interval (t′ + T, (n + 2)τ)
is trivial since the event will become true after t = t′ + T .

For the end point, notice that the robot detected the event

at t = τ , and it will only be able to confirm the event on

times that are integer multiples of τ . By the definition of n,

nτ < T ≤ (n + 1)τ . So when the robot observes the same

event at (n+2)τ , it confirms that is has been there for more

than T , since (n+2)τ − τ = (n+1)τ ≥ T . Moreover, there

can be cases for some T and t′ when t′ + T < (n+ 1)τ , as

shown in Figure ??, but since the robot detected the event

at τ and (n + 1)τ − τ = nτ < T , the robot does not know

that the event has been active for more than T and cannot

confirm it.

The events which become inactive in the interval (1) will

be true events, but cannot be correctly classified by the robot

as true. We will use this fact along with the exponential active

times of the events in the following section to calculate the

chances of correctly classifying a true event.

B. Probability of Correctly Classifying True Events

The events which were detected at t = τ will be classified

as true if they remain active until t = (n+2)τ , as shown in

Proposition III.1. If the robot detects an event, then it knows

that the event arrived in the interval between the last two

visits to its vertex. By the property of stationary increments,

the time scale can be shifted to say that the arrival time of

the event is given by t′ ∈ (0, τ ]. Using the consequence of

Lemma I.1, the arrival time t′ is uniformly distributed over

(0, τ ]. We write this distribution of t′ in (0, τ ] as

f(t′) =
1

τ
for t′ ∈ (0, τ ]. (3)

We will use this uniform density along with the interval(1)

to find the probability of confirming true events.

Proposition III.2 (Probability of Successful Classification).

The probability of confirming a true event at vertex v with

arrival rate λ, departure rate µ, and a robot with visit period

τ is

P [confirm|v] =
e−µ[(n+2)τ−T ](eµτ − 1)

µτ
, (4)

where n is defined in (2).

Proof. According to the confirmation avoiding interval given

in (1), the events arriving at time t′ ∈ (0, τ ] and departing

after (n + 2)τ will be confirmed by the robot. Using

the exponential staying time distribution ,we can find the

probability of confirming a true event given that it arrived at

time t′ ∈ (0, τ ].

P [confirm|v and t’] =

∫

∞

(n+2)τ

µe−µ(t−t′)dt

∫

∞

T

µe−µtdt

,

= e−µ[(n+2)τ−T ]eµt
′

(5)

The numerator in (5) represents the events that will stay

long enough to be confirmed, and the denominator represents

all the events that are true. Using the arrival time density in

the interval (0, τ ] from (3), we can un-condition the arrival

time.

P [confirm|v] =

∫ τ

0

P [confirm|v and t’] f(t′)dt′,

which gives us the desired expression.

The Event Detection and Confirmation problem seeks to

maximize the number of true events that are confirmed. So,

one would want to maximize the probability given in (4). We

will extend this expression to the complete path and then try

to maximize the probability of confirming true events over

the whole graph.

IV. A SINGLE ROBOT POLICY BASED ON THE TSP

In this section, we will derive the expression for the

probability of confirming true events over the graph, and

then use it in a special case to recommend a policy based

on the TSP tour of the graph.

A. Probability of Correct Classification for the Tour

We start with the analysis of any patrolling policy with

possibly different periodic visit times to vertices, and then

specialize the equation for the case when the periodic visit

times to the vertices are equal and the events’ activity period

is governed by the same process for all the vertices.

Using equation (4), for a vertex v with arrival and depar-

ture rates given by λv and µv respectively, the robot visiting

that vertex with a period τv will confirm true events on that

vertex with a probability given by

P [confirm|v] =
e−µ[(nv+2)τv−T ](eµvτv − 1)

µvτv
,

where nv =

{

T
τv

− 1, if T is a multiple of τv
⌊

T
τv

⌋

, otherwise,

(6)

Proposition IV.1 (Probability Expressions). The probability

of correctly classifying true events for the periodic tour is

given by

P [confirm] =

∑

v P [confirm|v]λv
∑

v λv

, (7)

where P [confirm|v] is given in equation (6). Moreover,

in the special case where τv = τ , and µv = µ, for all v ∈ V ,
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Fig. 2. The probability of correctly classifying true events versus τ , with
T = 1, µ = 1.

then

P [confirm] =
e−µ[(n+2)τ−T ](eµτ − 1)

µτ
,

where n =

{

T
τ
− 1, if T is a multiple of τ

⌊

T
τ

⌋

, otherwise.

(8)

Proof. We want to remove the condition of arrival being on

a certain vertex v from equation (6). We know that

P [confirm] =
∑

v

P [confirm|v]P [arrival at v] .

Since the arrivals of events at different vertices are in-

dependent processes, the probability of arrival of an event

being on vertex v is

P [arrival at v] =
λv

∑

v λv

.

Therefore,

P [confirm] =

∑

v P [confirm|v]λv
∑

v λv

.

If we consider the special case when µv = µ, τv = τ, ∀v ∈
V , then P [confirm|v] is same for all the vertices, and can

be factored out of the summation, giving us equation (8).

Remark IV.2 (Dependence on λ). Since the number of total

events as well as confirmed events depend on λ , the

probability expression (8) is independant of λ. •

B. Policy based on a TSP tour

Expression (8) holds for a periodic tour of the graph and

a TSP tour minimizes the time τ for a given speed of the

robot. However, there are cases when decreasing the robot

speed and thus increasing τ results in a higher probability.

This is due to the discontinuity of n in equation (2) and

can be seen in Figure 2. Intuitively it means that timing the

visits such that T is a multiple of τ decreases the chances

of missing the confirmation of true events. Based on this

observation, we arrive at following single robot policy.

Policy for a Single Robot:

(i) Calculate the TSP tour of the graph, and find the

minimum time τmin to complete that tour by the robot

at its maximum speed.

(ii) Decrease τmin to the nearest divisor of T , and call it

τpeak .

(iii) Calculate the probability from equation (8) for τ =
τmin and τ = τpeak and choose the period with higher

probability.

Remark IV.3 (Omitting Vertices from Tour). Equation (7)

suggests that missing some vertices on the tour can give a

better probability. An instance of the problem can be easily

constructed where missing a far away vertex from the tour

will result in a much lower τ for the other vertices and

hence increase the probability of correctly classifying true

events over the whole graph. However, such policies raise

the possibility that “intelligent” events would begin to choose

this unvisited vertex more frequently, altering the arrival

rates. This becomes a problem in game theory, and thus we

leave it for future work. •

V. MULTIPLE ROBOTS

In this section we consider the case of multiple robots. We

assume that the communication graph between the robots is

strongly connected, so that any two robots can communicate

without significant delay. Thus, we can assume that the

database containing all active events is shared among the

robots. This means that it is possible to have robot i detect

an event and robot j confirm it.

A. Specializing Robot Capabilities

One possible solution in the multi-robot case is to utilize

specialization in which a robot performs exclusively detec-

tion, or exclusively confirmation.

Definition V.1 (Specialized robot capability). We say that a

robot is a detection (confirmation) robot if it is capable of

performing only event detections (confirmations).

First, it is easy to see that specialization cannot be optimal.

In specializing we eliminate the possibility of a confirmation

robot detecting an event, even if it is the first robot to visit

the vertex after the events’ arrival. Similarly, we eliminate

the possibility of a detection robot confirming an event.

However, there are cases where specialization may be

required, for example, if the sensors needed for detection

and confirmation differ. The following simple lemma shows

that when specializing, detection is the bottleneck.

Lemma V.2 (Specialization among robots). Given nd detec-

tion robots, confirmation can be performed optimally using

only nd confirmation robots.

Proof. Let the paths followed by the nd detection robots

be P1, . . . , Pnd
. We then create nd confirmation paths by

placing a confirmation robot on each detection path, but with

a time lag of exactly T seconds.

An event that is detected on a given path Pi will be

confirmed optimally exactly T time units later by the corre-

sponding confirmation robot.



P [confirm] =











1
µτ

(e−µ((n+1)τ−T )(eµtlag (1− e−µτ )), tlag ≤ T − nτ,
1
µτ

(e−µ((n+1)τ−T )(eµtlag + eµ(τ−tlag) − 2), T − nτ < tlag ≤ (n+ 1)τ − T,
1
µτ

(e−µ((n+1)τ+tlag−T )(eµτ − 1), tlag > (n+ 1)τ − T.

(10)

P [confirm] =











1
µτ

(e−µ((n+1)τ−T )(eµtlag (1− e−µτ )), tlag ≤ (n+ 1)τ − T,
1
µτ

(e−µ((n+1)τ−T )(2 − e−µtlag − e−µ(τ−tlag)), (n+ 1)τ − T < tlag ≤ T − nτ,
1
µτ

(e−µ((n+1)τ+tlag−T )(eµτ − 1), tlag > T − nτ.

(11)

The consequence of this result is that detection is the bot-

tleneck when looking at specialized robots. Thus, in this case,

one can use existing techniques to design patrolling paths

for detection, and then use Lemma V.2 for the confirmation

paths. In the next section we focus on the more complex

case in which each robot can both detect and confirm.

B. Optimal Spacing Between Robots on a Common Path

In this section we look at the case where each robot can

both detect and confirm events. We focus on the special case

in which there are two robots moving along the same tour,

with a period of τ > 0. We seek the optimal spacing of

these two robots along the tour. We discuss the extension to

m robots at the end of this section.

To this end, define the variable to optimize as tlag which

is the time lag between the first and second robot on the

common tour. Since the robots travel the tour with period

τ , we have tlag ∈ (0, τ). Consider an event that arrives at a

vertex at time t′ ≥ 0. We can shift the time scale such that

t′ ∈ [0, τ).
Then, let us consider the earliest possible time that this

event can be detected and confirmed: we call these times tdet
and tconf , respectively, where tconf ≥ tdet+T and tdet ≥ t′.

If these times are known, then the probability of confirm-

ing a true event, given that it arrives at time t′ is

P [confirm|t′] =
P [active > tconf − t′]

P [active > T ]

=
e−µ(tconf−t′)

e−µT

= eµt
′

e−µ(tconf−T ), (9)

where we have used the fact that an event’s active time

is exponentially distributed with parameter µ. Now, we

can calculate tdet and tconf as a function of tlag using the

following two cases, each containing two sub-cases.

Case 1: If t′ ∈ (0, tlag] then tdet = tlag.

(i) If tlag + T ≤ (n + 1)τ then the earliest time that the

event can be confirmed is tconf = (n+ 1)τ .

(ii) If tlag + T > (n+ 1)τ , then the earliest time that the

event can be confirmed is tconf = (n+ 1)τ + tlag.

Case 2: If t′ ∈ (tlag, τ ] then tdet = τ .

(i) If τ + T ≤ (n + 1)τ + tlag i.e., tlag ≥ T − nτ , then

the earliest time that the event can be confirmed is

tconf = (n+ 1)τ + tlag.

(ii) If tlag < T − nτ , then the earliest time that the event

can be confirmed is tconf = (n+ 2)τ .

Based on the four cases and equation (9), we can compute

the probability of detection as a function of tlag as

P [confirm] =

∫ τ

0

P [confirm|t′] f(t′)dt′,

where f(t′) is the uniform distribution from equation (3).

When evaluating this integral, there are two more cases:

• If T − nτ ≤ (n+ 1)τ − T we get equation (10).

• If T − nτ > (n+ 1)τ − T , we get equation (11).

Now, from these expressions we can optimize tlag. Notice

that in the case when tlag = τ/2, the expressions in (10)

and (11) both simplify to equation (8) with τ replaced

by τ/2.

Proposition V.3 (Optimal value of tlag). The equations (10)

and (11) achieve their global maxima at one (or more) of

the following points: i) tlag = τ
2 ; ii) tlag = T − nτ ; or iii)

tlag = (n+ 2)τ − T .

Proof. The equations (10) and (11) are piecewise continuous

and have discontinuities at points tlag = T − nτ and

tlag = (n + 2)τ − T . The continuous pieces defined on the

first and third interval of the equations are strictly monotone

and achieve their maximum values at the discontinuities. The

third continuous part has an extremum at tlag = τ
2 . Thus its

maximum lies either at τ
2 or at one of the discontinuities.

These values of tlag will optimize the probability for a

given value of τ . However, as we observed in the single

robot case, decreasing the speed of the robot to increase τ
to a divisor of 2T can result in a higher probability. Based

on this, we arrive at the following policy for two robots:

Policy for Optimizing the Spacing of Two Robots:

(i) Evaluate the expression (10) or (11) depending on

whether T − nτ ≤ (n+ 1)τ − T or not, at the points

tlag = τ/2, tlag = T − nτ and tlag = (n+ 2)τ − T .

(ii) Decrease τ to the nearest divisor of 2T , call it τn and

evaluate equation (11) at tlag = τn/2.

(iii) Choose the lag which gives maximum probability

among the above four candidates.

The following remark discusses the extension to m robots.

Remark V.4 (Generalizing to m robots). In the case that there

are m robots, there are m−1 variables tlag to optimize. The



number of cases to consider becomes too large to complete

the same analysis. However, based on the observations made

for two robots, the following can be said for the n-robot case:

(i) If τ/m is a multiple of T , then equally space the robots

on the path.

(ii) If τ < mT , decrease τ to the nearest divisor of mT
and using this new period, equally space the robots.

(iii) If τ > mT , choose the spacing such that the robots

follow each other by a time lag of T .

This policy follows from the observation that in the two robot

case this procedure often yields the optimal tlag. However,

it is not, in general guaranteed to find the optimal spacing.•

VI. APPLICATION EXAMPLE

Let us apply the patrolling policies derived above to an

actual parking lot situated at a market place near University

of Waterloo. The vehicles parked at the parking spots will

serve as events at the vertices of a graph and overstaying

vehicles will be considered true events. For the purposes of

simulation, we assume the expected staying time of vehicles

to be around 75 minutes and the allowed parking time to be

two hours. This gives µ = 1
75 and T = 120. Moreover, the

length of the patrolling path based on a TSP tour is calculated

to be approximately 870 meters.

We assume the robot has a maximum speed of 1 m/s,

which gives a minimum tour period of 14.5 minutes. The

probability of ticketing for a tour with this period comes

out to be 0.7905 from equation (8). However, if we increase

the period to 15 minutes by decreasing the speed of robot

to 0.967 m/s, using equation (8) the probability increases to

0.9063 — an increase of 14.6%.

In case of two robots, the probability of ticketing an

overstaying vehicle using a period of 14.5 minutes and the

robots equally spaced will be 0.9128 from equation (11)

. But, if one robot follows the other with a time lag of

T − nτ = 4 minutes or (n + 1)τ − T = 10.5 minutes,

then the probability increases to 0.9221. However, there is

still room for improvement. If both the robots decrease their

speed to make their period a multiple of T and then follow

each other with a lag of τ/2 = 7.5 minutes, the probability

will be 0.9515 which can be calculated using equation (11).

This example and Figure 3 show that a lag of τ/2
often results in a better probability, and even if it does not,

optimal lag provides very little advantage. However, when

τ > 2T (large environments), optimal lag provides much

better results.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we considered a robot patrolling problem

called the event detection and monitoring problem. We

characterized the probability of confirming a true event for a

TSP tour. We also gave some initial insights into the multiple

robot problem.

For future work we would like to compare the performance

of a TSP tour with that of a min-max latency tour [5], where

visit frequency can be proportional to the event arrival rate at

a given vertex. We would also like to study the problem from
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Fig. 3. The probability of ticketing overstaying vehicles as a function of
τ for 1) a single robot, 2) two robots with lag of τ/2, and 3) two robots
with optimized lag. Here T = 120, and µ = 1/75.

a game theoretic perspective, where the events distribution

may change as a function of the patrolling policy. In this case

we need to look at randomizing the path, in order to decrease

its predictability. Randomized policies have been considered

in perimeter patrolling problems [2], and thus will form a

solid basis on which to build.
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