
A Language For Robot Path Planning in Discrete Environments:
The TSP with Boolean Satisfiability Constraints

Frank Imeson Stephen L. Smith

Abstract— In this paper we introduce a new language in
which discrete path planning problems for mobile robots can
be specified and solved. Given an environment represented as
a graph and a Boolean variable for each vertex to represent
its inclusion/exclusion on the path, we consider the problem
of finding the shortest path (or tour) in the graph subject
to a Boolean satisfiability (SAT) formula defined over the
vertex variables. We call this problem SAT-TSP. We show the
expressiveness of this language for specifying complex motion
planning objectives in a discrete environment. We then present
three solution techniques for this problem, including a novel
reduction to the well known traveling salesman problem (TSP).
We present extensive simulation results which compare the
performance of the three solvers on standard benchmarks from
TSP, SAT, and Generalized TSP (GTSP) literature.

I. INTRODUCTION

A key problem in robotics is in providing a natural and ex-
pressive language in which a user can specify a desired task,
and from which a planner can compute a robot motion plan.
A common approach is to represent the environment as a
finite transition system (i.e., a graph) and to specify a task in
a formal language such as linear temporal logic (LTL). Linear
temporal logic contains the usual Boolean operators—and,
or, and not—along with temporal operators—next, always,
eventually, and until. Tools from model checking can then
be used to synthesize a robot motion plan that satisfies the
task specification. Early work looked at finding a satisfying
motion plan for a given task specification [1], [2], and recent
work has looked at optimizing over the set of satisfying
motion plans [3], [4].

The typical problem with these approaches is computa-
tional complexity. The problem of satisfying a general LTL
formula is PSPACE-complete [5]. To combat this, researchers
have proposed to look at fragments of the LTL problem,
such as general reactivity [2] and the fragment introduced
in [6], for which satisfaction and optimization can be per-
formed more efficiently. This highlights the inherent trade-
off between expressivity of the language, and complexity of
computing the solution.

An interesting feature of temporal logic based motion
planning is that it generates plans over an infinite horizon.
This is a result of the temporal operators, “always” and
“eventually”, which specify logic over infinite time. Thus,
any optimization objective must be defined over an infinite
horizon. Common objective functions in LTL problems in-
clude a discounted cost, the average time between a repeating

This research is partially supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

The authors are with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo ON, N2L 3G1 Canada
(fcimeson@uwaterloo.ca; stephen.smith@uwaterloo.ca)

events, or the worst time between repeating events. Of
course, in application, robot plans will be finite in duration.

Many finite path planning problems can be cast as op-
timization problems on graphs. Finding a shortest path
between a start and end vertex can be solved in polynomial
time using Dijkstra’s algorithm. Finding a shortest path that
visits all vertices in a set is known as the travelling salesman
problem (TSP), which is NP-hard. However, if the graph
is metric, then good approximation algorithms exist [7].
Problems that are easily expressed as TSP arise in surveillance
and monitoring applications where a robot needs to visit the
set of all vantage points [8]. A more general problem is
the generalized TSP (GTSP), in which there are several sets
of vertices, and the goal is to find the shortest path that
visits at least one vertex in each set. The GTSP arises in
several applications, including surveillance problems [9], and
even certain instances of temporal logic motion planning [6].
One solution technique for the GTSP is to reduce it to the
standard TSP using the Noon-Bean transformation [10]. In
practice, this technique has been quite successful, and by
leveraging the power of TSP solvers [11], large instances of
the GTSP have been approximately solved with reasonable
efficiency [9].

In this paper we seek to explore the middle-ground be-
tween these two extremes in path planning (i.e., simple graph
path planning vs. LTL planning). To this end, we look at
finding the shortest path in a graph subject to a set of Boolean
constraints on the vertices that indicate their inclusion or
exclusion from the path. We call this problem SAT-TSP. In this
problem we can no longer express temporal (i.e., ordering)
constraints, but the Boolean operators on their own are quite
expressive—Boolean satisfiability (SAT) is an NP-complete
problem, and thus can efficiently express any other problem
in NP. As an example, our problem language can easily
express SAT, TSP, and GTSP instances.

What is interesting, though, is the notion of expressivity.
The decision versions of TSP, SAT, GTSP, and SAT-TSP are
all in the complexity class NP-complete. Thus, they are
all, in a theoretical sense, equally expressive: If we had a
polynomial-time algorithm for one problem, then we would
have a polynomial-time algorithm for all the other problems.
However, practically, we believe that expressing complex
path planning problems as SAT-TSP instances (i.e., in the
SAT-TSP language) is more natural than attempting to encode
them directly as TSP, GTSP, or SAT instances.

The contribution of this paper is follows. We introduce
a new language SAT-TSP to allow a user to more “easily”
express high-level path planning problems. We demonstrate
the expressiveness of this language and we then provide

three methods for solving SAT-TSP instances: 1) an efficient
and novel reduction to TSP, 2) a reduction to the constraint
satisfaction problem (CSP), and 3) a mixed solver approach
which leverages standard SAT and TSP solvers independently.
We provide simulation results benchmarking these three
approaches and give a coarse classification of the types of
problem instances that best suit each solver approach.

The organization of this paper is as follows. In Section II
we provide the necessary background on TSP, GTSP, and
SAT. In Section III we formalize the SAT-TSP problem. In
Section IV we provide the details on the three methods we
use for solving SAT-TSP instances. In Section V we provide
simulation results which shed some light on the regimes in
which each solver excels. In Section VI we discuss some
of the difficulties in solving SAT-TSP and other potential
approaches. Finally, we conclude in Section VII.

II. BACKGROUND

In this paper we present a new language SAT-TSP which
is based on the SAT and TSP languages, and we compare our
generalization to the GTSP. To do so we must first provide the
background on the languages SAT, TSP and GTSP and we also
provide a means of comparing GTSP to TSP, which we do in
the context of expressivity. We also provide background on
the CSP language as we use it later in the paper.

A. Languages

The Boolean satisfiability problem SAT is expressed as a
Boolean formula which contains literals and operators. A
literal is either a Boolean variable (xi) or its negation (¬xi).
The operators are conjunction (∧, and), disjunction (∨, or)
and negation (¬, not) which operate on the literals and other
Boolean formulae. An assignment of the variables (true or
false) will now result in the formula being satisfied or not
(true or false). The conjunctive normal form (Cnf-SAT) is the
standard form of SAT in which the formula F has the form
F = c1∧c2∧· · ·∧cn and each clause ci = li.1∨li.2∨· · ·∨li.|ci|
is a disjunction of literals. The problem language is defined
as follows:

SAT = {〈F 〉 : F is a satisfiable Boolean formula}.
The constraint satisfiability problem CSP consists of a set

of variables, a domain of values, and a set of constraints.
Each constraint is a condition on a subset of the variables that
must be satisfied, some examples are LESSTHAN(x1, x2),
EQUAL(x1, x2) or ALLDIFFERENT(x1, x2). The language is
as follows:

CSP = {〈X,D,C〉 : X is a set of variables, D is a domain
of values and C is a set of constraints, and there exists an
evaluation v : X → D satisfying all constraints in C}.

The travelling salesman problem TSP is traditionally posed
as the following: given a list of cities and distances between
each pair of cities, what is the shortest possible path that the
salesman can take to visit each city exactly once and return
to the first city? GTSP is the variation on the TSP where the
salesman has to visit at least one city in each set of cities. A

tour in a graph that visits each vertex exactly once is called
a Hamiltonian tour. The languages can be written as follows:

TSP = {〈G, c〉 : G = 〈V,E,w〉 is a complete graph with
edge weights w : E → R≥0 and G contains a Hamiltonian
tour with cost at most c}.

GTSP = {〈G,S, c〉 : G = 〈V,E,w〉 is a complete and
weighted graph, S = {S1, S2, ..., Sm} where Si ⊆ V for
each i ∈ {1, . . . ,m}, G contains a tour that visits at least
one vertex in each set Si and has cost at most c}.
The optimization versions of these problems find a solution
that minimizes c.

B. Expressivity

To compare GTSP to TSP we use a concept known as
expressivity.

Definition II.1 (Notions of expressivity). The theoretical
expressivity of a language is the breadth of problems that can
be encoded in the language [12]. The practical expressivity
of a language is an informal notion that captures the ease of
which the problems can be encoded into the language.

In terms of theoretical expressivity, GTSP is no more is
more expressive then TSP. However it can be argued that GTSP

is practically more expressive then TSP. To understand why,
note that there is a trivial reduction from TSP to GTSP: for each
vertex vi ∈ V create a set Si = {vi} and add it to the group
of sets S, yielding a GTSP instance 〈G,S〉 that solves the TSP

problem. On the other hand, the reduction of GTSP to TSP

is a research area, with the Noon-Bean transformation [10]
being one of the most widely used. In literature, the ease of
which a problem is encoded is sometimes measured as the
succinctness of the encoding [13]. But such encodings may
be nontrivial to find. In the comparison between GTSP and
TSP we could easily encode TSP instances as GTSP. However
we do not have a method as easy for encoding GTSP instances
as TSP instances and thus we argue that GTSP is practically
more expressive than TSP. We make a similar argument in
Section III as to how SAT-TSP is more expressive then GTSP

in the practical sense.

III. PROBLEM STATEMENT

Our goals in this paper are two fold: we study TSP

problems with additional constraints of inclusion/exclusion
on the vertices in the TSP graph, and we provide the language
SAT-TSP which can be used to easily express these instances.

To define SAT-TSP we consider a complete and weighted
graph G = (V,E,w), where V = {v1, . . . , vn}. For each
vertex vi ∈ V we associate a Boolean variable xi ∈ {0, 1}.
We write the corresponding set of Boolean variables as
X(V) = {x1, . . . , xn}. Each path in G induces exactly one
assignment to the Boolean variables: xi = 0 if and only if
vi is on the path. Then given a graph G, a SAT formula F
defined over X(V) and a possible set of additional Boolean
variables (which can be used to define extra constraints), our
task is to find the shortest cycle in G that satisfies F . The
language is defined as follows:

SAT-TSP = {〈G,F, c〉 : G = 〈V,E,w〉 is a complete
and weighted graph, F is a Cnf-SAT formula defined over
X(V) along with a possible set of auxiliary variables, and
G contains a cycle that satisfies F and has cost at most c}.

Note, we have defined SAT-TSP as finding the cycle, or tour,
but we could equivalently define the problem as finding the
shortest path.

We claim that SAT-TSP is practically more expressive
and thus more general than GTSP. To show this consider
the following trivial reduction from GTSP to SAT-TSP: given
a GTSP instance 〈G,S, c〉 we construct the formula F =∏|S|

j=1

∑
vi∈Sj

xi, where each Sj is a set in S of the GTSP

instance and now we have a SAT-TSP instance 〈G,F, c〉1. On
the other hand, given an instance of SAT-TSP, there does not
appear to be a straightforward reduction to GTSP.

To demonstrate the expressiveness of SAT-TSP, consider the
following illustrative example.
Example III.1 (Expressivity of SAT-TSP). Let us first con-
sider a GTSP example where a robot has suffered severe
damage to its collection unit and needs to retrieve a set of
parts from different suppliers. The required parts are 1) a
collection scoop, 2) a motor, and 3) a subframe. The robot
can visit suppliers A,B, C for the scoop, suppliers U, V,W
for the motor and X,Y, Z for the subframe. Each supplier
has a physical location on a map as shown in Figure 1 and
the robot must choose a tour with minimal travel distance to
a set of suppliers that retrieves all three parts. This problem
has a natural encoding as a GTSP instance where the sets are
S = {{A,B,C}, {U, V,W}, {X,Y, Z}} and the graph edge
weights are given by travel times between the suppliers.

However, what if the problem contained incompatibilities
in the choices? For example what if the scoop brackets
are incompatible with certain subframes. Let us update our
problem: supplier A has scoops with type 1 brackets, while
B and C have scoops with type 2 brackets. Supplier X
supplies a subframe that accepts type 1 brackets, supplier Y
supplies a subframe that accepts type 2 brackets, and supplier
Z supplies a subframe that accepts type 1 and 2 brackets. It is
not obvious how to express this as a GTSP problem. However,
we can easily encode it as SAT-TSP instance: let G be the
graph with edge weights equal to the Euclidean distances
between suppliers and the formula F = (A∨B ∨C)∧ (U ∨
V ∨W)∧(X∨Y ∨Z)∧((A∧(X∨Z))∨(¬A∧(Y ∨Z))) which
we easily translated to cnf [14] for our language. We also
have the freedom to introduce new (or auxiliary) variables.
In this case we could have represented the choice of bracket
type with a separate variable to aid in readability. �

While the above example is simple, it demonstrates that
complex constraints consisting of dependencies and incom-
patibilities can be easily represented in the SAT-TSP language.

IV. APPROACH

In this section we present three approaches for solving
SAT-TSP instances. The first approach is to reduce SAT-TSP

1Summation is used to represent a series of disjunctions
∑

ai = a1 ∨
a2 ∨ · · · ∨ an, while product is used to represent a series of conjunctions∏

ai = a1 ∧ a2 ∧ · · · ∧ an.

Y

W

B

Z

X

U

V

A

C

GTSP Instance

Y

W

B

Z

X

U

V

A

C

SAT-TSP Instance

Fig. 1: Visual representation of our GTSP and SAT-TSP example. Shapes
represent the different groups, circles for scoop suppliers, squares for motor
suppliers and triangles for subframe suppliers. The colour in each shape
represents the bracket compatibility, grey for type 1 and white for type 2.
The shortest tour is shown for each instance.

instances to TSP instances, which can then be solved using
an existing TSP solver. The second approach reduces SAT-TSP

instances to CSP instances, on which we use an existing
solver to find the optimal solution. The third approach uses a
combination of solvers for SAT and TSP to solve the problem.

In the rest of this section we outline the details of these
three approaches, for which we use the set of symbols xi to
represent the boolean variables in the SAT formula F , cj to
represent the clauses in the formula, lk to represent literals
in a clause and vi to represent vertices in the TSP graph G. In
Section V we compare the performance of these approaches
in simulation.

A. Approach 1: Reduction of SAT-TSP To TSP

For this approach we reduce the SAT-TSP instance to a
series of TSP instances that each have a different starting
vertex vs. After solving each instance we return the optimal
result. This procedure is shown in Algorithm 1.

Algorithm 1: TSP APPROACH(F,G)

1 cmin ←∞
2 Φmin ← ∅
3 for vi ∈ V [G] do
4 G′ ← REDUCE2TSP(F,G, vi)
5 〈Φ, c〉 ← SOLVETSP(G′)
6 if c < cmin and FEASIBLE(F,G,Φ, c) then
7 cmin ← c
8 Φmin ← Φ

9 return 〈Φmin, cmin〉

Algorithm 2: REDUCE2TSP(F,G, vs)

1 H,W ← ∅
2 V [H]← V [H] ∪ {vs, vc1 , vc2 , ..., vcm}
3 for each vi ∈ V [G]/vs do
4 〈H,Wi〉 ← ADDWIDGET(F,G,H, vi)
5 W ←W ∪Wi

6 H ← CONNECTWIDGETS(H,W, vs)
7 return H

The reduction from SAT-TSP to TSP is shown in Algorithms
2, 3 and 4. It consists of the construction of “widgets” that
allow for a TSP instance to represent inclusion/exclusion of
a vertex. For conciseness this reduction does not include
the widgets for auxiliary variables. However, the widgets for
auxiliary variables are constructed in the same manner. The
only difference is the connections between widgets, which in
this case force a solution to traverse all auxiliary widgets at
the end of the tour. This design is inspired by the reduction
from SAT to the Hamiltonian Cycle Problem [15].

Algorithm 3: ADDWIDGET(F,G,H, k)

1 Wk ← {vk.1, vk.2}
2 for each ci ∈ F and each lj ∈ ci do
3 if lj = xk or lj = ¬xk then
4 n← |Wk|
5 Wk ←Wk ∪ {vk.n+1, vk.n+2, vk.n+3}
6 if lj = xk then
7 E[H]← E[H] ∪ {〈vk.n+1, ci〉 , 〈ci, vk.n+2〉}
8 wH(vk.n+1, ci)← 0
9 wH(ci, vk.n+2)← 0

10 else
11 E[H]← E[H] ∪ {〈vk.n+2, ci〉 , 〈ci, vk.n+1〉}
12 wH(vk.n+2, ci)← 0
13 wH(ci, vk.n+1)← 0

14 Wk ←Wk ∪ {vk.|Wk|+1}
15 V [H]← V [H] ∪Wk

16 va ← vk.1
17 for each vb ∈Wk/vk.1 do
18 E[H]← E[H] ∪ {〈va, vb〉 , 〈vb, va〉}
19 wH(va, vb)← 0
20 wH(vb, va)← 0
21 va ← vb

22 return 〈H,Wk〉

A widget is shown in Figure 3. If the widget is traversed
from left to right, then the vertex is included in the solution.
If the widget is traversed from right to left, then the vertex
is excluded. These widgets are also connected to clause
vertices. When the path visits a clause vertex then the
clause is satisfied as shown in Figure 3. The edge weights
connecting widgets to widgets and vertices are shown in
Figure 2.
Remark IV.1 (Creating a Complete Graph). The input to a
TSP solver is a complete graph, and thus for any missing
edges in our construction, we add edges with an infinite cost
to the graph.

We now prove that Algorithm 2 is indeed a reduction. We
begin with a definition and some useful results.
Definition IV.2 (Feasibility). A feasible TSP solution is a
tour that has non-infinite cost.
Lemma IV.3 (Reduction Results). For the reduction from
SAT-TSP to TSP in Algorithms 2, 3, and 4, the following hold:

(i) Algorithm 2 runs in O(|V |2 + |V ||L|) where |V | is

w(1,x)
s1 wx 0.0 wzwy

w(x,1)
wy wz w(y,1)

s1wy

wy
w(y,z) wz 0.0wy s1

Fig. 2: This diagram is a legend of the different edge weights connecting
widgets to widgets and widgets to the start vertex. A widget wy that is white
in colour indicates inclusion of the vertex y and black colour represents
exclusion. The weight function is w(x, y) is with respect to the original
graph G in the SAT-TSP instance.

Algorithm 4: CONNECTWIDGETS(H,W, vs)

1 for each Wi ∈W do
2 E[H]← E[H] ∪ {〈vs, vi.1〉 ,

〈
vi.|Wi|, vs

〉
, 〈vi.1, vs〉}

3 wH(vs, vi.1)← wG(vs, vi)
4 wH(vi.|Wi|, vs)← wG(vi, vs)
5 wH(vi.1, vs)← 0
6 for each Wj/Wi do
7 E[H]← E[H] ∪

{
〈
vi.|Wi|, vj.1

〉
,
〈
vi.|Wi|, vj.|Wj |

〉
,
〈
vi.1, vj.|Wj |

〉
}

8 wH(vi.|Wi|, vj.1)← wG(vi, vj)
9 wH(vi.|Wi|, vj.|Wj |)← wG(vi, vs)

10 wH(vi.1, vj.|Wj |)← 0

11 return H

the number of vertices in G and |L| is the number of
literals in F .

(ii) A feasible TSP tour must traverse a chain from one end
to the other before visiting another widget.

(iii) A feasible TSP tour must visit all included vertex
widgets followed by all excluded vertex widgets.

(iv) A feasible TSP tour translates to a solution for the
SAT-TSP instance.

(v) A SAT-TSP solution translates to a feasible tour for the
TSP instance.

Proof. We will establish each of the five results in turn.
Proof of (i): For lines 2-13 in ADDWIDGET it traverses

the set of literals L, creating widgets of size O(|L|), for lines
17-21 it connects all the widget’s vertices together O(|L|),
and so the total running time of ADDWIDGET is O(|L|).
The CONNECTWIDGETS algorithm populates all edges in
between widgets O(|V |2). The reduction in Algorithm 2
calls the ADDWIDGET Algorithm O(|V |) times and the
CONNECTWIDGETS once and so we have a running time
of O(|V |2 + |V ||L|).

Proof of (ii): Refer to Figure 3 to see that a widget only
has two possible directions (1 → 9 or 9 → 1) for the tour
to visit all of the vertices on the chain. Each path starts and
ends at opposite extremes of the chain and by considering all
possible paths from the vertex before clause c1 to the vertex
after the clause ({2, 3, 4, 5}, {2, 3, c1, 4, 5}, {5, 4, 3, 2}) we
see that there does not exists a feasible tour that can visit

2 3 4 5 6

c1

c2

7 81 9

Exclusion Direction

Inclusion Direction

Fig. 3: Above we show an example of a widget for vertex vi attached to
two clause vertices c1 and c2. The clause c1 contains literal xi and the
clause c2 contains literals ¬xi. A path that traverses the vertices from left
to right (1→ 9) indicates that vi is included in the SAT-TSP tour.

another widget from a clause vertex and since there are no
other connections to widgets, a path must traverse the entire
widget before visiting the next widget.

Proof of (iii): feasible tours include the starting vertex vs,
there are no connections from vs to any excluded vertices,
and there are no connections from any excluded vertices to
any included vertices. Thus all tours must start with vs and
visit all included vertices before the excluded vertices.

Proof of (iv): The traversal direction of the chain indicates
the inclusion or exclusion of the vertex in the tour. Since
the chain must be traversed from one end to the other, the
only clause vertices that can be visited are those that are
satisfied by the direction chosen (inclusion or exclusion) and
since a feasible tour must visit all clause vertices, then the
corresponding SAT instance must be satisfied.

Proof of (v): Construct a tour for the TSP instance to
visit all included vertices followed by the excluded vertices
(arbitrary order). For each clause vertex, find a pair of edges
that the tour can deviate from to visit the clause vertex. This
deviation must exist since there is at least one true literal in
each clause.

Theorem IV.4. (Reduction) Algorithm 2 is a reduction from
SAT-TSP with starting vertex vs to TSP with starting vertex
vs. Specifically the algorithm runs in polynomial time and
there exists a solution to the SAT-TSP instance if and only
if there is a solution to the TSP instance. Moreover, the TSP

and SAT-TSP solutions have equivalent costs and thus have
the same minimum and maximum solutions.

Proof. The proof has two parts, the first part follows directly
from Lemma IV.3. The second part follows from the fact
that a feasible tour visits all included vertices followed by
excluded vertices and the edge weights between included
widgets 〈wi, wj〉 are the same as the edge weights between
vertices 〈vi, vj〉 in the SAT-TSP instance. The edge weight
of the last included vertex vl to any other vertex (including
vs) is wG(vl, vs) which is also the same weight as the edge
〈vl, vs〉 in the SAT-TSP instance and thus the entire tour has
the same cost.

B. Approach 2: Reduction of SAT-TSP To CSP

For this approach we translate the SAT-TSP instance into
CSP instances with a fixed tour length and a maximum cost.

We solve these instances with an existing solver. Once we
have exhausted the search for a tour that has cost less than
our best solution, we return the optimal result. This procedure
is shown in Algorithm 5.

The reduction of SAT-TSP to CSP, consists of reducing SAT

to CSP, TSP to CSP and then constraining the tour to visit all
vertices that the SAT formula has included in the solution.
We used a similar reduction from SAT to CSP as shown in
Walsh [16]. For the TSP reduction, we simply use a set of
variables {t1, t2, ..., ts}, with domain {1, 2, ..., |V [G]|}, and
the constraints that all variables have different values. We
also use a linear equation to constrain a variable cost to
equal the tour cost (as computed from the edge weights).
Finally, we constrain the tour cost to satisfy cost < cmin.
Remark IV.5 (Binary Search). Algorithm 5 constructs CSP

instances that restrict a solution to have cost less than cmin.
This is not an efficient approach as we may explore an
exponential number of solutions. However we find in practice
we are not exploring exponential number of solutions and
binary search takes longer since it takes longer to return a
negative result than a positive result. �

Algorithm 5: CSP APPROACH(F,G)

1 cmin ←∞
2 Φmin ← ∅
3 for s ∈ {1, 2, .., |V [G]|} do
4 while True do
5 〈X,D,C〉 ← REDUCE2CSP(F,G, s, cmin)
6 〈Φ, c〉 ← SOLVECSP(X,D,C)
7 if c < cmin then
8 cmin ← c
9 Φmin ← Φ

10 else
11 break

12 return 〈Φmin, cmin〉

C. Approach 3: MIXED Approach

The MIXED approach uses a SAT solver to exhaustively find
all the solutions of the SAT instance. It then constructs a
sub-graph G′ from G for each solution of the SAT formula,
by removing all vertices that the SAT solution indicates to
exclude. For each sub-graph G′ a TSP solver finds the shortest
tour and the optimal result out of the set of solutions is
returned. This procedure is outlined in Algorithm 6. The
approach is inefficient since the SAT instance may have an
exponential number of solutions. However, we have observed
good performance on a subset of our testbed, and so we use
this approach as a comparison for the other two approaches.

V. RESULTS

In this section we summarize the results of our simulations
and give some insight into the strengths and weaknesses
of our proposed approaches. The simulations were run
on the cloud computing system sharcnet.ca. All the

Algorithm 6: MIXED APPROACH(F,G)

1 cmin ←∞
2 Φmin ← ∅
3 S ← FINDALLSOLNS(F)
4 for each Si ∈ S do
5 G′ ← SUBGRAPH(G,Si)
6 〈Φ, c〉 ← SOLVETSP(G′)
7 if c < cmin then
8 cmin ← c
9 Φmin ← Φ

10 return 〈Φmin, cmin〉

implementations are single threaded and programmed in
python. The python programs are responsible for parsing
the input, translating the instances, invoking external solvers
(LKH [17] for TSP instances1, minisat [18] for SAT instances
and GeCode [19] for CSP instances), timing out the external
solvers if necessary, interpreting the results and measuring
the efficiency.

The instances that we tested on were obtained from three
sources: the TSP instances were obtained from the TSPLIB
[20], of which we used both symmetric and non-symmetric
instances of up to 1300 vertices, the SAT instances were
obtained from SATLIB [21], of which we used a subset of
satisfiable instances with up to 260 variables and the GTSP

instances were obtained from Karapetyan’s GTSPLIB [22],
which contained instances that have up to 1000 vertices.
We combined the TSPLIB and the SATLIB instances in
three different configurations: 1) EASY-SAT, which uses TSP

instances as is from TSPLIB, constructs the SAT formula to
be F =

∏
i∈|V [G]| xi (note, this SAT formula has only one

solution: xi = 1 for each i), 2) EASY-TSP, which uses
SAT instances as is from SATLIB, constructs the complete
graph of the TSP instance to have all the same edge weights
w(vi, vj) = 1 (note, in this graph, every tour corresponding
to a given SAT solution has the same cost), and 3) HARD-
SAT, which uses the SAT instances as is from the SATLIB
library, constructs a graph to be the induced subgraph of a
TSP instance in TSPLIB, where all vertices with index labels
larger then the number of variables in F are excluded.

In the rest of this section we compare the computation
efficiency and soundness of the results (optimality) for our
three approaches.

A. Efficiency

The running time of an algorithm is often considered an
important metric for comparison. Here we compare the run-
ning time of all three approaches. Since the MIXED approach
is not efficient for SAT instances that have exponential number
of solutions, we do not run it on GTSPLIB instances.

Our first comparison seeks to study how well the TSP ap-
proach handles EASY-SAT instances. To do this, we compare

1We also tried exact solvers but found that for the problem instances
under consideration, LKH had significantly better performance.

the running time to the MIXED approach as shown in Figure 4.
The TSP approach implements a Turing reduction that solves
|V [G]| number of instances. In the case of EASY-SAT, each
instance is essentially equivalent. Thus, to remove this aspect
we compare the normalized running time of solving one out
of |V [G]| instances. From Figure 4 we see that this approach
often takes more than 10× the amount of time as the MIXED

approach (which amounts to a single call to a TSP solver).
Most of the TSPLIB instances we have considered are metric.
Unfortunately, even when the SAT instance is trivial, the
reduction from SAT-TSP to TSP will not preserve the metric
property. This, we believe, is the reason for the large increase
in run-time.

 0.1

 1

 10

 100

 0.1 1

T
S

P
 A

pp
ro

ac
h

(s
ec

/s
iz

e)

Mixed Approach (sec)

 easy-sat

Fig. 4: Comparison of the time taken (including reduction) for the TSP
approach with respect to the time taken for the MIXED approach on the set
of EASY-SAT instances. Each data point shows one problem instance in the
EASY-SAT class.

Figure 5 compares the CSP approach to the MIXED ap-
proach. The CSP approach is slower in most of our instances
by many orders of magnitude when compared to the MIXED

approach. However, the CSP approach is able to generate a
solution for most input instances, which we cannot say about
the TSP approach or the MIXED approach. For instance, the
MIXED approach times-out before it is able to find an optimal
solutions to GTSP instances and the TSP approach is not able
to solve any EASY-TSP or HARD-SAT instances, thus those
simulation results are absent in the figures.

We can also see that the CSP approach seems to be able to
handle SAT instances from SATLIB in a comparable amount
of time to the MIXED approach as seen with the EASY-TSP
results, but for the EASY-SAT and HARD-SAT instances it
does much worse, which is an indicator that the CSP approach
is not handling the TSP instances very well.

In Figure 6 we compare the TSP approach to the CSP ap-
proach and as we can see there is no clear winner for EASY-
SAT instances, but CSP does outperforms the TSP approach
on GTSP instances. However if we were to normalize the
TSP results again the TSP approach would do better on the
EASY-SAT instances but no such normalization exists for
GTSP instances.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100 1000 10000 100000

C
S

P
 A

pp
ro

ac
h

(s
ec

)

Mixed Approach (sec)

 easy-tsp
 easy-sat
 hard-sat

Fig. 5: Comparison of the time taken (including reduction) for the CSP
approach with respect to the time taken for the MIXED approach on the
set of input instances: EASY-SAT, EASY-TSP and SATLIB. Each data point
corresponds to one problem instance.

 1

 10

 100

 1000

 10000

 1 10 100 1000

T
S

P
 A

pp
ro

ac
h

(s
ec

)

CSP Approach (sec)

 easy-sat
 gtsp

Fig. 6: Comparison of the time taken (including reduction) for the TSP
approach with respect to the time taken for the CSP approach on the set of
input instances: EASY-SAT and GTSP.

B. Optimality

Another metric for comparing algorithms is the soundness
of the solution, in the case of optimization algorithms a
measure of soundness is whether or not the algorithm returns
the optimal (or best known) result.

For our simulations we have compared the output of all
the approaches as well as included the best known solutions
from the GTSPLIB for our analysis. The first thing we note
is that when the TSP approach or the MIXED approach finds
a solution it is almost always optimal and so we do not
show any graphs for these results. However the CSP approach
does not always obtain the optimal tour, which is due to the
fact that we limit its total computation time. Note that we
also limit the computation time for the TSP approach, but it
usually returns an optimal value or none at all.

In Figure 7 we see that for EASY-TSP instances the CSP

approach is always optimal. Similarly most of the solutions
found for GTSPLIB instances were optimal but we can
see that EASY-SAT and HARD-SAT instances deviated quite
a bit from the best known solution and thus our original
assessment of the TSP approach and the CSP approach being

Solver EASY-SAT EASY-TSP HARD-SAT GTSPLIB
TSP 34% 0% 0% 43%
CSP 4% 71% 17% 90%

MIXED 100% 92% 99% 0%

TABLE I: This table presents the percentage of instances that the respective
approaches were able to obtain the best known solution.

comparable for EASY-SAT instances does not have the same
meaning. In this case we would rather choose a solver with
comparable time and better solutions (the TSP approach).
We also observe this result in Table I, where CSP is only
able to find 4% of the optimal solutions for EASY-SAT
instances. Encouragingly we see that CSP is able to find 71%
of the EASY-TSP optimal solutions and 90% of the GTSPLIB
optimal solutions, but does not perform as well for HARD-
SAT solutions. The TSP approach does not do well overall
but as we can see from Table I it is able to find about 30-
40% of the optimal solutions for EASY-SAT and GTSPLIB.
Not surprisingly the MIXED approach does well on all but
GTSPLIB instances. This motivates the question, might there
exist an efficent mixed approach?

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000

C
S

P
 A

pp
ro

ac
h

S
ol

ut
io

n
(c

os
t)

Best Known Solution (cost)

 easy-tsp
 easy-sat
 hard-sat

 gtsp

Fig. 7: Comparison of the optimal cost found with the CSP solver approach
with the best know solution.

VI. DISCUSSION

Given a SAT solver and a TSP solver, there is some subset
of instances SAT

∗ ⊆ SAT and TSP∗ ⊆ TSP which can be solved
efficiently2.

We have observed that the majority of our instances from
the SATLIB and TSPLIB library are in SAT

∗ and TSP∗. This
implies that our reduction from SAT-TSP to TSP does not in
general map into TSP∗ instances. However since the MIXED

approach does not translate the TSP instance, we expect it to
be handled efficiently, which is what we observed. Recall that
we have stated that the MIXED approach is not efficient and so
we wonder if there is an efficient implementation that avoids
translating the instances and hence avoids the possibility of
mapping an instance in TSP∗ to an instance in TSP \ TSP∗.
The answer to this question is no, and to understand why

2For this argument, we adopt a crude classification of efficiency to be the
set of instances that are on average solved in less then one second.

we present the following theorem, but first we need two
definitions. A sub-instance of a SAT instance F is any SAT

instance F ′ obtained by fixing an assignment to a sub-set
of variables in F . A sub-instance of a TSP instance 〈G, c〉 is
any instance 〈G′, c′〉 where G′ is a complete subgraph of G.
Theorem VI.1. The decision version of SAT-TSP is
NP-complete even when we have access to oracles for the
specific SAT and TSP instances or any of their sub-instances.

This result states that unless P = NP, we have no hope
of finding an efficient algorithm that does not include a
translation of either the SAT instance and or the TSP instance.
We now prove this result:

Proof. To prove the above result let us reduce a known
NP-complete problem to SAT-TSP, namely SET-COVER.

SET-COVER = {〈S, k〉 : S is a collection of subsets of
elements from a finite universe U for which there exists
a subset S′ ⊂ S which covers all the elements in U and
|S′| ≤ k}.

The reduction maps the sets in SET-COVER to vertices in a
complete graph G, in which all edges have a weight of 1.
The inclusion/exclusion of a set Si is indicated by a variable
xi, which is used to ensure that each element uj is covered.
This is accomplished with the formula F =

∏∑
uj∈Si

vi.
Now a minimal solution to the SAT-TSP instance 〈G,F 〉 has
a tour of length l which is also the minimum number of sets
needed to cover all the elements U .

The TSP instance and sub-instances have trivial solutions
(an arbitrarily ordering of the vertices). The SAT instance also
has a trivial solution, which is to arbitrarily pick a variable
to be true in each clause (there are no negative literals), for
a sub-instance, remove all false literals from the formula and
repeat the previously mentioned procedure. These instances
are solved in linear time which is the same time that it would
take an oracle to read off the solution. Thus in this case,
it is as if we have oracles for SAT and TSP, and since the
SET-COVER problem is NP-hard, it must be that SAT-TSP is
NP-hard even when we have oracles for the SAT and TSP

instances or any sub-instances. Since SAT-TSP is in NP then
SAT-TSP is NP-complete.

Despite this negative result, all is not lost. There may still
exist an efficient algorithm that guarantees the result is within
some constant factor of the optimal solution (approximation).
Alternatively, there may exist an efficient algorithm to solve
instances from SAT-TSP

∗ = SAT
∗ + TSP∗ by reducing to

instances in TSP∗ and SAT
∗.

VII. CONCLUSION

To summarize, we have introduced a new problem lan-
guage SAT-TSP which enables us to easily express discrete
robotic path planning problems with complex constraints. We
have provided three approaches to solve SAT-TSP problems
which we have simulated to see how each approach performs
on different types of instances.

We plan to continue our investigation of solving SAT-TSP

instances by using reductions to TSP, SAT and CSP so that

we can better understand what kind of millage we can get
from existing solvers before we turn our attention to custom
solvers. As we discussed in Section VI we are particularly
interested to know if we can construct an efficient algorithm
that reduces SAT-TSP to TSP and SAT instances that are solved
efficiently or if we can find an approximation algorithm that
does not require a translation of the sub-problems (SAT and
TSP).

REFERENCES

[1] C. Belta, V. Isler, and G. J. Pappas, “Discrete abstractions for robot
motion planning and control in polygonal environments,” Robotics,
IEEE Transactions on, vol. 21, no. 5, pp. 864–874, 2005.

[2] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” Robotics, IEEE Trans-
actions on, vol. 25, no. 6, pp. 1370–1381, 2009.

[3] S. L. Smith, J. Tůmová, C. Belta, and D. Rus, “Optimal path planning
for surveillance with temporal-logic constraints,” The International
Journal of Robotics Research, vol. 30, no. 14, pp. 1695–1708, 2011.

[4] E. M. Wolff, U. Topcu, and R. M. Murray, “Optimal control with
weighted average costs and temporal logic specifications,” in Robotics:
Science and Systems, 2012.

[5] A. P. Sistla and E. M. Clarke, “The complexity of propositional linear
temporal logics,” Journal of the ACM (JACM), vol. 32, no. 3, pp.
733–749, 1985.

[6] E. M. Wolff, U. Topcu, and R. M. Murray, “Optimal control of
non-deterministic systems for a computationally efcient fragment of
temporal logic,” in IEEE Conference on Decision and Control, 2013,
to appear.

[7] B. Korte and J. Vygen, Combinatorial Optimization: Theory and
Algorithms, 4th ed., ser. Algorithmics and Combinatorics. Springer,
2007, vol. 21.

[8] Y. Chevaleyre, “Theoretical analysis of the multi-agent patrolling
problem,” in IEEE/WIC/ACM Int. Conf. Intelligent Agent Technology,
Beijing, China, Sep. 2004, pp. 302–308.

[9] K. J. Obermeyer, P. Oberlin, and S. Darbha, “Sampling-based path
planning for a visual reconnaissance unmanned air vehicle,” Journal
of Guidance, Control, and Dynamics, vol. 35, no. 2, pp. 619–631,
2012.

[10] C. Noon and J. Bean, “An efficient transformation of the generalized
traveling salesman problem,” Ann Arbor, vol. 1001, pp. 48 109–2117,
1989.

[11] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the
traveling-salesman problem,” Operations Research, vol. 21, pp. 498–
516, 1973.

[12] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov, “Complexity and
expressive power of logic programming,” ACM Computing Surveys
(CSUR), vol. 33, no. 3, pp. 374–425, 2001.

[13] G. Ausiello and L. Cabibbo, “Expressiveness and complexity of formal
systems,” Functional Models of Cognition, 1999.

[14] M. N. Velev, “Efficient translation of boolean formulas to cnf in formal
verification of microprocessors,” in Proceedings of the 2004 Asia and
South Pacific Design Automation Conference. IEEE Press, 2004, pp.
310–315.

[15] É. Tardos and J. Kleinberg, “Algorithm design,” 2006.
[16] T. Walsh, “Sat v csp,” in Principles and Practice of Constraint

Programming–CP 2000. Springer, 2000, pp. 441–456.
[17] K. Helsgaun, “An effective implementation of the lin–kernighan trav-

eling salesman heuristic,” European Journal of Operational Research,
vol. 126, no. 1, pp. 106–130, 2000.

[18] N. Sorensson and N. Een, “Minisat v1. 13-a sat solver with conflict-
clause minimization,” SAT, vol. 2005, p. 53, 2005.

[19] G. Team, “Gecode: Generic constraint development environment,
2006,” 2008.

[20] G. Reinelt, “Tspliba traveling salesman problem library,” ORSA jour-
nal on computing, vol. 3, no. 4, pp. 376–384, 1991.

[21] H. H. Hoos and T. Stützle, “Satlib–the satisfiability library,” Web site
at: http://www. satlib. org, 1998.

[22] G. Gutin and D. Karapetyan, “A memetic algorithm for the generalized
traveling salesman problem,” Natural Computing, vol. 9, no. 1, pp.
47–60, 2010.

