
A Language For Robot Path Planning in Discrete Environments:
The TSP with Boolean Satisfiability Constraints

Frank Imeson Stephen L. Smith

Abstract— In this paper we introduce a new language in
which discrete path planning problems for mobile robots can
be specified and solved. Given an environment represented as
a graph and a Boolean variable for each vertex to represent
its inclusion/exclusion on the path, we consider the problem
of finding the shortest path (or tour) in the graph subject
to a Boolean satisfiability (SAT) formula defined over the
vertex variables. We call this problem SAT-TSP. We show the
expressiveness of this language for specifying complex motion
planning objectives in a discrete environment. We then present
three solution techniques for this problem, including a novel
reduction to the well known travelling salesman problem (TSP).
We present extensive simulation results which compare the
performance of the three solvers on standard benchmarks from
TSP, SAT, and Generalized TSP (GTSP) literature.

I. INTRODUCTION

A key problem in robotics is in providing a natural and
expressive language in which a user can specify a desired
task, and from which a planner can compute a robot motion
plan. A common approach is to represent the environment
as a finite transition system (i.e., a graph) and specify a task
in a formal language such as linear temporal logic (LTL).
Linear temporal logic contains the usual Boolean operators—
and, or, not—along with temporal operators—next, always,
eventually, and until. Early work looked at finding a sat-
isfying motion plan for a given task specification [1], [2]
and recent work has looked at optimizing over the set of
satisfying motion plans [3], [4].

A typical problem with the LTL language is computa-
tional complexity—satisfying an LTL formula is PSPACE-
complete [5]. To combat this, researchers have proposed to
look at fragments of the LTL language, such as general reac-
tivity [2] and the fragment introduced in [4], for which satis-
faction and optimization can be performed more efficiently.
This highlights the inherent trade-off between expressivity of
the language, and the complexity of computing a solution.

An interesting feature of temporal logic based motion
planning is that it generates plans over an infinite horizon.
This is a result of the temporal operators, “always” and
“eventually”, which specify logic over infinite time. Thus,
any optimization objective must be defined over an infinite
horizon. Common objective functions for LTL problems are
discounted costs, average time between repeating events,
or the worst time between repeating events. Of course, in
application, robot plans will be finite in duration.

Many finite path planning problems can be cast as op-
timization problems on graphs. Finding a shortest path

This research is partially supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

The authors are with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo ON, N2L 3G1 Canada
(fcimeson@uwaterloo.ca; stephen.smith@uwaterloo.ca)

between a start and end vertex can be solved in polynomial
time using Dijkstra’s algorithm. Finding a shortest path that
visits all vertices in a set is known as the travelling salesman
problem (TSP), which is NP-hard. However, if the graph
is metric, then good approximation algorithms exist [6].
Problems that are easily expressed as TSP arise in surveillance
and monitoring applications where a robot needs to visit the
set of all vantage points [7]. A more general problem is the
generalized TSP (GTSP), in which there are several sets of
vertices, and the goal is to find the shortest path that visits
at least one vertex in each set. The GTSP naturally arises in
several applications, including surveillance problems [8], and
even certain instances of temporal logic motion planning [4].

In this paper we seek to explore the middle-ground be-
tween these two extremes in path planning (i.e., simple graph
path planning vs. LTL planning). To this end, we look at
finding the shortest path in a graph subject to a set of Boolean
constraints on the vertices that indicate their inclusion or
exclusion from the path. We call this problem SAT-TSP. In this
problem we can no longer express temporal (i.e., ordering)
constraints, but the Boolean operators on their own are quite
expressive—Boolean satisfiability (SAT) is an NP-complete
problem, and thus can efficiently express any problem in NP.

What is interesting, though, is the notion of expressivity.
The decision versions of TSP, SAT, GTSP, and SAT-TSP are all
in the same complexity class, NP-complete. Thus, they are
all, in a theoretical sense, equally expressive – if we had a
polynomial-time algorithm for one problem, then we would
have a polynomial-time algorithm for all the other problems.
However, we believe that expressing complex path planning
problems of this nature is more naturally achieved using the
SAT-TSP language instead of attempting to encode them with
the TSP, GTSP, or SAT language.

The contribution of this paper is follows. We introduce
a new language SAT-TSP to allow a user to more “easily”
express a class of high-level path planning problems. We
demonstrate the expressiveness of this language and provide
three methods for solving SAT-TSP instances: 1) an efficient
and novel reduction to TSP, 2) a reduction to the constraint
satisfaction problem (CSP), and 3) a mixed solver approach
which leverages standard SAT and TSP solvers independently.
We provide simulation results benchmarking these three
approaches and give a coarse classification of the types of
problem instances that best suit each solver approach.

II. BACKGROUND

In this paper we present a new language SAT-TSP which
is based on the SAT and TSP languages, and we compare our
generalization to the GTSP language. To do so we must first
provide background on the languages SAT, TSP and GTSP and

provide a means of comparing GTSP to TSP, which we do in
the context of expressivity.

A. Languages

The Boolean satisfiability problem SAT is expressed as a
Boolean formula which contains literals and operators. A
literal is either a Boolean variable (xi) or its negation (¬xi).
The operators are conjunction (∧, and), disjunction (∨, or)
and negation (¬, not) which operate on the literals and other
Boolean formulae. An assignment of the variables (true or
false) will now result in the formula being satisfied or not
(true or false). The conjunctive normal form (CNF-SAT) is the
standard form of SAT in which the formula F has the form
F = c1∧c2∧· · ·∧cn and each clause ci = li.1∨li.2∨· · ·∨li.|ci|
is a disjunction of literals. The problem language is defined
as follows:

SAT = {〈F 〉 : F is a satisfiable Boolean formula}.
The travelling salesman problem TSP is traditionally posed

as the following: given a list of cities and distances between
each pair of cities, what is the shortest possible path that the
salesman can take to visit each city exactly once and return
to the first city? GTSP is the variation on the TSP where the
salesman has to visit at least one city in each set of cities. A
tour in a graph that visits each vertex exactly once is called
a Hamiltonian tour. The languages can be written as follows:

TSP = {〈G, c〉 : G = 〈V,E,w〉 is a complete graph with
edge weights w : E → R≥0 and G contains a Hamiltonian
tour with cost at most c}.

GTSP = {〈G,S, c〉 : G = 〈V,E,w〉 is a complete and
weighted graph, S = {S1, S2, ..., Sm} where Si ⊆ V for
each i ∈ {1, . . . ,m}, G contains a Hamiltonian tour that
visits at least one vertex in each set Si and has cost at
most c}.
The optimization versions of TSP and GTSP finds a solution
that minimizes c.

B. Expressivity

To compare GTSP to TSP we use a concept known as
expressivity. Theoretical expressivity represents the breadth
of problems that can be encoded in the language [9], which is
the same as the problem’s complexity class. However there
is an informal notion of expressivity which measures how
practical the language is to use.

In terms of theoretical expressivity, GTSP is no more or less
expressive than TSP but it can be argued that GTSP is more
expressive than TSP in the practical sense. This is apparent
since the GTSP language can easily express a TSP instance
via a trivial reduction1 and it can also express one in a set
TSP problems. Conversely to express GTSP problems as TSP

problems we have an entire area of research dedicated to
the subject – the Noon-Bean transformation [10] being one
of the most widely used. This indicates how non-trivial this
task is. We thus concluded that GTSP is more expressive in

1For each vertex vi ∈ V create a set Si = {vi} and add it to the group
of sets S, yielding a GTSP instance 〈G,S〉 that solves the TSP problem.

the practical sense and we will make a similar argument in
Section III as to how SAT-TSP is more expressive than GTSP.

III. PROBLEM STATEMENT

Our goals in this paper are two fold: we study TSP

problems with additional constraints of inclusion/exclusion
on the vertices in the TSP graph, and we provide the language
SAT-TSP which can be used to easily express these instances.

To define SAT-TSP we consider a complete and weighted
graph G = (V,E,w), where V = {v1, . . . , vn}. For each
vertex vi ∈ V we associate a Boolean variable xi ∈
{0, 1}, when the tour visits vi the assignment of xi is one,
zero otherwise. We write the corresponding set of Boolean
variables as X(V) = {x1, . . . , xn}. Given a graph G, a
SAT formula F defined over X(V) and a possible set of
additional Boolean variables (which can be used to define
extra constraints), our task is to find the shortest cycle in G
that satisfies F . The language is defined as follows:

SAT-TSP = {〈G,F, c〉 : G = 〈V,E,w〉 is a complete and
weighted graph, F is a CNF-SAT formula defined over X(V)
along with a possible set of auxiliary variables. Then G
contains a Hamiltonian cycle over V ′ ⊆ V of cost at most c
and there exists a satisfying assignment of X(F) such that
X(V ′) = 1 and X(V/V ′) = 0}.

We have defined SAT-TSP as finding a cycle, but we could
equivalently define the problem as finding a path.

We claim that SAT-TSP is more expressive than GTSP in
the practical sense and thus more general. To show this
consider the following trivial reduction from GTSP to SAT-TSP:
given a GTSP instance 〈G,S, c〉 we construct the formula
F =

∏|S|
j=1

∑
vi∈Sj

xi, where each Sj is a set in S of the
GTSP instance and now we have a SAT-TSP instance 〈G,F, c〉1.
On the other hand, given an instance of SAT-TSP, there does
not appear to be a straightforward reduction to GTSP.

Y

W

B

Z

X

U

V

A

C

GTSP Instance

Y

W

B

Z

X

U

V

A

C

SAT-TSP Instance

Fig. 1: Visual representation of our GTSP and SAT-TSP example. Shapes
represent the different groups, circles for scoop suppliers, squares for motor
suppliers and triangles for subframe suppliers. The colour in each shape
represents the bracket compatibility, grey for type 1 and white for type 2.
The shortest tour is shown for each instance.

To demonstrate the expressiveness of SAT-TSP, consider the
following illustrative example.
Example III.1 (Expressivity of SAT-TSP). Let us first con-
sider a GTSP example where a robot has suffered severe
damage to its collection unit and needs to retrieve a set of

1Summation is used to represent a series of disjunctions
∑

ai = a1 ∨
a2 ∨ · · · ∨ an, while product is used to represent a series of conjunctions∏

ai = a1 ∧ a2 ∧ · · · ∧ an.

parts from different suppliers. The required parts are 1) a
collection scoop, 2) a motor, and 3) a subframe. The robot
can visit suppliers A,B, C for the scoop, suppliers U, V,W
for the motor and X,Y, Z for the subframe. Each supplier
has a physical location on a map as shown in Figure 1 and
the robot must choose a tour with minimal travel distance to
a set of suppliers that retrieves all three parts. This problem
has a natural encoding as a GTSP instance but what if the
problem contained incompatibilities in the choices?

Consider the senario where the scoop bracket is incompati-
ble with certain subframes: supplier A has scoops with a type
1 bracket, while suppliers B and C have scoops with a type
2 bracket, supplier X supplies a subframe that accepts a type
1 bracket, supplier Y supplies a subframe that accepts a type
2 bracket, and supplier Z supplies a subframe that accepts
type 1 or a 2 bracket. It is not obvious how to express these
additional constraints into the GTSP language. However, we
can easily encode this as a SAT-TSP instance: let G be the
graph with edge weights equal to the travel times between
suppliers and the formula F = (A∨B∨C)∧(U ∨V ∨W)∧
(X ∨ Y ∨ Z) ∧ ((A ∧ (X ∨ Z)) ∨ (¬A ∧ (Y ∨ Z))) which
we easily translate to CNF-SAT [11] for our language. �

While the above example is simple, it demonstrates that
complex constraints consisting of dependencies and incom-
patibilities can be easily represented in the SAT-TSP language.

IV. APPROACH

In this section we give an overview of our three approaches
for solving SAT-TSP instances. In our explanation we use the
set of symbols xi to represent the boolean variables in the
SAT formula F , cj to represent the clauses in the formula, lk
to represent literals in a clause and vi to represent vertices
in the TSP graph G.

A. Approach 1: Reduction of SAT-TSP To TSP

To reduce SAT-TSP to TSP we have constructed a Cook
reduction ?? called REDUCE2TSP that translates a SAT-TSP

instance into a TSP instance that forces vs to be the starting
vertex. Since we do not know which vertices are included
in the optimal tour, we check all n possibilities for vs, and
then return the optimal result. This procedure is shown in
Algorithm 1.

Algorithm 1: TSP APPROACH(F,G)

1 〈Φmin, cmin〉 ← 〈∅,∞〉
2 for vs ∈ V [G] do
3 G′ ← REDUCE2TSP(F,G, vs)
4 〈Φ, c〉 ← SOLVETSP(G′)
5 if c < cmin then
6 〈Φmin, cmin〉 ← 〈Φ, c〉

7 return 〈Φmin, cmin〉

The procedure REDUCE2TSP shown in Algorithm 2
constructs a set of “widgets” for each vertex, this allows
the TSP language to represent the inclusion or exclusion
of a vertex in the SAT-TSP language depending on which

direction the widget is traversed as illustrated in Figure 2.
Clause vertices are appropriately connected to the widgets to
indicate satisfaction or not – if every clause vertex is visited
then F is satisfied. The addition of padding vertices between
sections of the chain connected to clause vertices ensures that
a feasible tour that visits a clause vertex must immediately
return to the chain – thus the path only enters and exits the
chain from the extremes (not the middle).

The inner connections between widgets are constructed
to only allow a tour of the following form: first the start
vertex (vs) is visited, then all included vertices are visited
followed by all excluded vertices. The connections and their
weights shown in Figure 3 will produce a tour of the same
cost as the corresponding SAT-TSP tour. Take special note of
the connection cost between included widget y and excluded
widget z (bottom left corner of figure), this is the closer cost
between the last included vertex and the start vertex.

For conciseness this reduction does not include the widgets
for auxiliary variables. However, the widgets for auxiliary
variables would be constructed in the same manner, with the
inner connections forcing these widgets to be visited at the
end of the tour. This design is inspired by the reduction from
SAT to the Hamiltonian Cycle Problem [12].

2 3 4 5 6 7 81 9

Exclusion Direction

Inclusion Direction

Fig. 2: Above we show an example of a widget for vertex vi attached to
two clause vertices c1 and c2. The clause c1 contains literal xi and the
clause c2 contains literals ¬xi. A path that traverses the vertices from left
to right (1→ 9) indicates that vi is included in the SAT-TSP tour.

Remark IV.1 (Creating a Complete Graph). The input to a
TSP solver is a complete graph, and thus for any missing
edges in our construction, we add edges with infinite costs
to the graph.

We now prove that Algorithm 2 is indeed a reduction. We
begin with a definition and some useful results.
Definition IV.2 (Feasibility). A feasible TSP solution is a
tour that has non-infinite cost.
Lemma IV.3 (Reduction Results). For the reduction from
SAT-TSP to TSP in Algorithm 2 the following hold:

(i) Algorithm 2 runs in O(|V ||L| + |V |2) where |V | is
the number of vertices in G and |L| is the number of
literals in F .

(ii) A feasible TSP tour must traverse a chain from one end
to the other before visiting another widget.

(iii) A feasible TSP tour must visit all included vertex
widgets followed by all excluded vertex widgets.

(iv) A feasible TSP tour translates to a solution for the
SAT-TSP instance.

(v) A SAT-TSP solution translates to a feasible tour for the
TSP instance.

Algorithm 2: REDUCE2TSP(F,G, vs)

1 Create graph H with vertices {vs, vc1 , vc2 , ..., vcm}
2 for each vi ∈ V [G]/vs do
3 Ci ≡ {cj ∈ F |xi ∈ cj or ¬xi ∈ cj}
4 Create a widget of length 3|Ci|+ 3

// Clause vertices connected to the
widget are spaced with one
vertex in between

5 for each cj ∈ C do
6 if xi ∈ cj then
7 Connect cj to widget using included edges
8 else
9 Connect cj to widget using excluded edges

// I(wi, in) ≡ input vertex of widget i
for inclusion, conversely X(wi, in)
represents exclusion

10 for each vi ∈ V [G]/vs do
11 Connect:
12 vs to I(wi, in), cost wG(vs, vi)
13 I(wi, out) to vs, cost wG(vi, vs)
14 X(wi, out) to vs, cost 0
15 for each vj ∈ V [G]/{vs, vi} do
16 Connect:
17 I(wi, out) to I(wj , in), cost wG(vi, vj)
18 I(wi, out) to X(wj , in), cost wG(vi, vs)
19 X(wi, out) to vs, cost 0

20 return H

Proof. We will establish each of the five results in turn.
Proof of (i): In Algorithm 2, lines 3-9 traverses the set

of literals L to create a widget, doing at most O(|L|) work.
Lines 10-19 populates the inner connections between widgets
O(|V |2). Thus the entire algorithm does at most O(|V ||L|+
|V |2) work.

Proof of (ii): Refer to Figure 2 for a concrete example:
this widget only has two possible directions (1 → 9 or
9 → 1) for a tour. Each path starts and ends at opposite
extremes of the chain and by considering all possible paths
from the vertex before clause c1 to the vertex after the
clause ({2, 3, 4, 5}, {2, 3, c1, 4, 5}, {5, 4, 3, 2}) we see that
there does not exists a feasible tour that visits another widget.
Since this argument holds for any clause, a tour must traverse
the entire widget before visiting another widget.

Proof of (iii): Feasible tours include the starting vertex vs,
there are no connections from vs to any excluded vertices
and there are no connections from any excluded vertices to
any included vertices. Thus all tours must start with vs and
visit all included vertices before excluded vertices.

Proof of (iv): The traversal direction of the chain indicates
the inclusion or exclusion of the vertex in the tour. Since
the chain must be traversed from one end to the other, the
only clause vertices that can be visited are those that are
satisfied by the direction chosen (inclusion or exclusion) and
since a feasible tour must visit all clause vertices, then the

Fig. 3: This diagram is a legend of the different edge weights connecting
widgets to widgets and widgets to the start vertex. A widget wy that is white
in colour indicates inclusion of the vertex y and black represents exclusion.
The function wG(x, y) maps edge tuples to real valued weights found in
graph G of the SAT-TSP instance.

corresponding SAT instance must be satisfied.
Proof of (v): Construct a tour for the TSP instance to visit

all included vertices followed by excluded vertices (arbitrary
order). For each clause vertex, find a pair of edges that the
tour can deviate from to visit the clause vertex. This deviation
must exist since there is at least one true literal in each clause.

Theorem IV.4. (Reduction) Algorithm 2 is a reduction from
SAT-TSP to TSP with vertex vs assumed to be in the tour.
Specifically the algorithm runs in polynomial time and there
exists a solution to the SAT-TSP instance if and only if there
is a solution to the TSP instance. Moreover, the TSP and
SAT-TSP solutions have equivalent costs and thus have the
same minimum and maximum solutions.

Proof. The proof has two parts, the first part follows directly
from Lemma IV.3. The second part follows from the fact
that a feasible tour visits all included vertices followed by
excluded vertices and the edge weights between included
widgets 〈wi, wj〉 are the same as the edge weights between
vertices 〈vi, vj〉 in the SAT-TSP instance. The edge weight of
the last included vertex vl to any other vertex (including vs)
is wG(vl, vs). Thus the set of non-zero edges weights are
equivalent which implies the costs are equivalent.

B. Approach 2: Reduction of SAT-TSP to the Constraint
Satisfaction Problem

To reduce SAT-TSP to the constraint satisfaction problem
(CSP) [13] we have constructed a Cook reduction that trans-
lates the SAT-TSP instance into a CSP instance with a fixed
tour length l, i.e., solutions must have l vertices in the tour.
Since we do not know the length of the optimal tour, we
compare all |V [G]| possibilities and return the best solution.
This reduction uses techniques from [13] to translate the SAT

formula and basic techniques to translate the TSP instance
and combine the two; as such we omit the details here.

C. Approach 3: MIXED Approach

A naive approach to solving SAT-TSP instances is to solve
the (SAT and TSP) instances separately. We have implemented
this approach by first enumerating all solutions of the SAT

formula, then for each solution constructing a sub-graph
G′ ⊆ G of the included vertices, and finally computing
the TSP tour on the subgraph. We call this approach the
MIXED approach. This is a naive approach since there may

exist an exponential number of solutions to the SAT formula.
However, for many instances in which the SAT formula has
few solutions, this approach will perform well, and so we
use it as a comparison for the other two approaches.

V. RESULTS

In this section we show simulation results for four types of
instances: 1) EASYSAT-HARDTSP, which uses TSP instances
from TSPLIB [14] and constructs the SAT formula to be
F =

∏
i∈|V [G]| xi; 2) HARDSAT-EASYTSP, which uses

SAT instances from SATLIB [15] and constructs a complete
graph to have all the same edge weights w(vi, vj) = 1;
3) HARDSAT-HARDTSP, which uses SAT instances from
the SATLIB library and constructs a subgraph from a TSP

instance in TSPLIB, where all vertices with index labels
larger then the number of variables in F are excluded; and
4) GTSP instances obtained from GTSPLIB [16] are reduced
to SAT-TSP using the reduction from Section II-B. We use the
LKH solver for TSP instances, the MINISAT solver for SAT

instances, and GeCode for CSP instances.

A. Optimality

Given enough time, each approach would yield the optimal
answer. However due to time limitations we cap the solver
time of each sub-instance to 60 seconds. Due to this time
restriction the results are not always found and when they
are, they may be sub-optimal. We have used data from all
three approaches as well as the data from the GTSPLIB to
compile the best know results.

In our simulations we have observed that a solution from
the TSP or the MIXED approach is almost always optimal
but the CSP approach will produce sub-optimal solutions for
EASYSAT-HARDTSP and HARDSAT-HARDTSP instances.

We also note that no one approach is able to find solutions
for all of our libraries as shown in Table I. In fact the
reduction to TSP seems to produce difficultly for the TSP

solver even when the SAT formula is easy, the CSP solver
does not seem to be very effective at finding an optimal tour
for TSP problems and the mixed approach does not work on
GTSP instances since there are often exponential number of
solutions to enumerate.

The positive results are that the CSP approach seems
to work well on HARDSAT-EASYTSP and GTSPLIB in-
stances. For hard SAT formulae—formulae with a few or no
solutions—the mixed approach works very well, motivating
the question, might there exist an efficient mixed approach?

EASYSAT HARDSAT HARDSAT
Approach HARDTSP EASYTSP HARDTSP GTSPLIB

TSP 34% 0% 0% 43%
CSP 4% 71% 17% 90%

MIXED 100% 100% 99% 0%

TABLE I: This table presents the percentage of instances that were able to
obtain the best known solution for the respective approaches .

B. Efficiency

Our first comparison seeks to study how well the TSP

approach handles EASYSAT-HARDTSP instances. Ideally the

 0.1

 1

 10

 100

 0.1 1 10 100

T
S

P
 A

pp
ro

ac
h

(s
ec

/s
iz

e)

Mixed Approach (sec)

 EasySat-HardTsp

Fig. 4: Comparison of the (normalized) time taken for the TSP approach with
respect to the time taken for the MIXED approach on the set of EASYSAT-
HARDTSP instances. Each data point shows one problem instance in the
EASYSAT-HARDTSP library.

solver performance would compare to that of the MIXED

approach since the added complexity is trivial. However
due to the Cook reduction the TSP approach solves |V [G]|
instances and so for a fair comparison the results shown in
Figure 4 are normalized. With this normalization we see that
this approach is often 10× slower than the MIXED approach.

We conjecture that the loss of efficiency is due to the
loss of the metric property of the TSP instances (most TSP

instances in TSPLIB are metric and the LKH solver works
well with metric instances). Unfortunately the reduction from
SAT-TSP to TSP does not preserve the metric property even
for trivial SAT instances.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100 1000 10000 100000

C
S

P
 A

pp
ro

ac
h

(s
ec

)

Mixed Approach (sec)

 HardSat-EasyTsp
 EasySat-HardTsp
 HardSat-HardTsp

Fig. 5: Comparison of the time taken (including reduction) for the CSP
approach with respect to the time taken for the MIXED approach on the set
of input instances: EASYSAT-HARDTSP, HARDSAT-EASYTSP and SATLIB.
Each data point corresponds to one problem instance.

Figure 5 compares the CSP approach to the MIXED ap-
proach. The CSP approach is slower on most of our instances
by many orders of magnitude when compared to the MIXED

approach, but it is comparable on the HARDSAT-EASYTSP,
which is somewhat expected as CSP solvers are known to be
competitive with SAT solvers [13]. We also note that our CSP

approach is not implementing heuristics that take advantage
of the metric property found in many TSP instances and so

we are not surprised that a native TSP solver (MIXED ap-
proach) greatly outperforms this approach on the EASYSAT-
HARDTSP.

VI. DISCUSSION

Given a SAT solver and a TSP solver, there is a subset
of instances SAT

∗ ⊆ SAT and TSP∗ ⊆ TSP which can be
solved efficiently2. We have observed that the majority of
our instances from the SATLIB and TSPLIB library are
in SAT

∗ and TSP∗. This implies that our reduction from
SAT-TSP to TSP does not in general map into TSP∗ instances.
However since the MIXED approach does not translate the
TSP instance, we expect it to be handled efficiently, which
is what we observed. Recall that the MIXED approach is
not in general efficient and so we wonder if there is an
efficient implementation that avoids translating the instances
and hence avoids the possibility of mapping an instance
in SAT-TSP

∗ to an instance in TSP \ TSP∗. The answer to
this question is no, as shown in the following theorem,
but first we need two definitions. A sub-instance of a SAT

instance F is any SAT instance F ′ obtained by fixing an
assignment to a sub-set of variables in F . A sub-instance of
a TSP instance 〈G, c〉 is any instance 〈G′, c′〉 where G′ is a
complete subgraph of G.
Theorem VI.1. The decision version of SAT-TSP is
NP-complete even if for each SAT-TSP instance we have
access to oracles for the SAT instance, the TSP instance or
any of the SAT or TSP sub-instances.

This result states that unless P = NP, we have no hope
of finding an efficient algorithm that does not include a
translation of either the SAT instance and or the TSP instance.
We now prove this result:

Proof. To prove the above result let us reduce a known
NP-complete problem to SAT-TSP, namely SET-COVER.

SET-COVER = {〈S, k〉 : S is a collection of subsets of
elements from a finite universe U for which there exists
a subset S′ ⊂ S which covers all the elements in U and
|S′| ≤ k}.

The reduction maps the sets in SET-COVER to vertices in a
complete graph G, in which all edges have a weight of 1.
The inclusion/exclusion of a set Si is indicated by a variable
xi, which is used to ensure that each element uj is covered.
This is accomplished with the formula F =

∏∑
uj∈Si

xi.
Now a minimal solution to the SAT-TSP instance 〈G,F 〉 has
a tour of length l which is also the minimum number of sets
needed to cover all the elements U .

The TSP instance and sub-instances have trivial solutions
(an arbitrarily ordering of the vertices). The SAT instance or a
sub-instance has a trivial solution, which is to arbitrarily pick
an unassigned variable to be true in each clause (there are
no negative literals). Both SAT and TSP instances are solved
in linear time which is the same time that it would take an
oracle to read off the solutions. Thus in this case, it is as if we
have oracles for our instances and sub-instances, and since

2For this argument, we adopt a crude classification of efficiency to be the
set of instances that are on average solved in less then one second.

the SET-COVER problem is NP-hard, it must be that SAT-TSP

is NP-hard even when we have oracles for our SAT and TSP

instances (or any sub-instance). Since SAT-TSP is in NP then
SAT-TSP is NP-complete.

VII. CONCLUSION

We introduced a new problem language SAT-TSP which
enables us to easily express discrete robotic path planning
problems with complex constraints. We provided three ap-
proaches and evaluated them on different types of instances
through simulation.

We plan to continue our development of solver(s) for
SAT-TSP by use of reductions (to TSP, SAT and CSP) to better
understand what kind of millage we can get from existing
solvers before turning to a custom solver. We are particularly
interested to know if we can construct an efficient algorithm
that reduces SAT-TSP

∗ to TSP∗ and or SAT
∗ instances. We are

also interested in exploring approximation algorithms that do
not require a translation of the sub-problems (SAT and TSP).

REFERENCES

[1] C. Belta, V. Isler, and G. J. Pappas, “Discrete abstractions for robot
motion planning and control in polygonal environments,” Robotics,
IEEE Transactions on, vol. 21, no. 5, pp. 864–874, 2005.

[2] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” Robotics, IEEE Trans-
actions on, vol. 25, no. 6, pp. 1370–1381, 2009.

[3] S. L. Smith, J. Tůmová, C. Belta, and D. Rus, “Optimal path planning
for surveillance with temporal-logic constraints,” The International
Journal of Robotics Research, vol. 30, no. 14, pp. 1695–1708, 2011.

[4] E. M. Wolff, U. Topcu, and R. M. Murray, “Optimal control of
non-deterministic systems for a computationally efficient fragment of
temporal logic,” in IEEE Conf. on Decision and Control, 2013.

[5] A. P. Sistla and E. M. Clarke, “The complexity of propositional linear
temporal logics,” Journal of the ACM (JACM), vol. 32, no. 3, pp.
733–749, 1985.

[6] B. Korte and J. Vygen, Combinatorial Optimization: Theory and
Algorithms, 4th ed., ser. Algorithmics and Combinatorics. Springer,
2007, vol. 21.

[7] Y. Chevaleyre, “Theoretical analysis of the multi-agent patrolling
problem,” in IEEE/WIC/ACM Int. Conf. Intelligent Agent Technology,
Beijing, China, Sep. 2004, pp. 302–308.

[8] K. J. Obermeyer, P. Oberlin, and S. Darbha, “Sampling-based path
planning for a visual reconnaissance unmanned air vehicle,” Journal
of Guidance, Control, and Dynamics, vol. 35, no. 2, pp. 619–631,
2012.

[9] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov, “Complexity and
expressive power of logic programming,” ACM Computing Surveys
(CSUR), vol. 33, no. 3, pp. 374–425, 2001.

[10] C. Noon and J. Bean, “An efficient transformation of the generalized
traveling salesman problem,” Ann Arbor, vol. 1001, pp. 48 109–2117,
1989.

[11] M. N. Velev, “Efficient translation of boolean formulas to cnf in formal
verification of microprocessors,” in Proceedings of the 2004 Asia and
South Pacific Design Automation Conference. IEEE Press, 2004, pp.
310–315.

[12] J. Kleinberg and É. Tardos, Algorithm design. Addison-Wesley, 2006.
[13] T. Walsh, “Sat v csp,” in Principles and Practice of Constraint

Programming–CP 2000. Springer, 2000, pp. 441–456.
[14] G. Reinelt, “Tspliba traveling salesman problem library,” ORSA jour-

nal on computing, vol. 3, no. 4, pp. 376–384, 1991.
[15] H. H. Hoos and T. Stützle, “Satlib–the satisfiability library,” Web site

at: http://www. satlib. org, 1998.
[16] G. Gutin and D. Karapetyan, “A memetic algorithm for the generalized

traveling salesman problem,” Natural Computing, vol. 9, no. 1, pp.
47–60, 2010.

