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Abstract. This paper addresses a team of cooperating vehicles per-
forming autonomous deliveries in urban environments. The cooperating
team comprises two vehicles with complementary capabilities, a truck
restricted to travel along a street network, and a quadrotor micro-aerial
vehicle of capacity one that can be deployed from the truck to perform
deliveries. The problem is formulated as an optimal path planning prob-
lem on a graph and the goal is to find the shortest cooperative route
enabling the quadrotor to deliver items at all requested locations. The
problem is shown to be NP-hard using a reduction from the Travelling
Salesman Problem and an algorithmic solution is proposed using a graph
transformation to the Generalized Travelling Salesman Problem, which
can be solved using existing methods. Simulation results compare the
performance of the presented algorithms and demonstrate examples of
delivery route computations over real urban street maps.

1 Introduction

An emerging application for micro-aerial vehicles, such as quadrotors, is in per-
forming autonomous deliveries in urban environments. A number of large re-
tailers have recently announced plans to deploy quadrotors for expedited small
package deliveries. While quadrotors have the potential to significantly enhance
the speed of deliveries in urban environments as well as the distribution of sup-
plies or aid in inaccessible regions, a number of issues such as safety, security and
endurance, still need to be addressed. Current quadrotor systems are limited by
small payload capacities and short operating ranges that severely restrict the
extent and efficiency of an autonomous delivery network. Further, current safety
regulations usually restrict commercial drone flights to only within line-of-sight
of an operator.

In this paper we propose to overcome these limitations by introducing a
heterogeneous delivery team of two cooperating vehicles: a carrier truck and
a carried quadrotor. The role of the truck is to carry a shipment of packages
to be delivered, as well as a docked quadrotor, and the role of the quadrotor
is to carry individual packages from the truck to specific delivery points in the
environment. By requiring the quadrotor to perform only the last leg of the
delivery, both range and line-of-sight limitations are accounted for.

We will assume that the quadrotor has a payload capacity of one package
and hence must return to the truck after each delivery. We also assume that
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the truck is capable of recharging the quadrotor after each delivery and that it
has an operating range sufficient for the entire delivery mission. The goal of this
paper is to propose a framework to compute a minimum cost cooperative route
enabling the quadrotor to visit all delivery points in the environment. To this
end, we will abstract the problem on a graph and formulate the Heterogeneous
Delivery Problem (HDP) as a discrete optimal path planning problem. Solutions
consist of routes, computed for the truck and the quadrotor through the graph,
that minimise the total cost of deliveries.

Related Work: The HDP belongs to a class of problems referred to as Carrier-
Vehicle Travelling Salesman Problems (CV-TSP), extensively studied by Garone
et al. [1] in the context of a marine carrier and an aircraft visiting a set of
locations to conduct a rescue mission in a planar environment. They formulate
a continuous optimization and compute a solution using a sub-optimal heuristic
to split the problem into two tractable subproblems: first, a TSP to compute the
optimal visit order and second, a convex optimization to compute the specific
deployment points for the team in Euclidean space. In contrast, given the discrete
nature of our HDP, we will be able to design a single optimization that computes
cooperative paths for both vehicles.

Cooperative control in heterogeneous multi-robot teams has been investi-
gated for applications like search and rescue, surveillance, and exploration, [2–
4], where robots with complimentary capabilities must accomplish a common
goal. The most relevant are collaborative UAV-UGV teams where UAVs can
rendezvous and dock with UGVs to benefit from the larger payload capacity
and energy resources of UGVs [5, 6]. One of the main challenges with heteroge-
neous systems is the development of cooperative planning algorithms to achieve
a desired objective. Rathinam et al. explore optimal path planning in heteroge-
neous teams using variants of the Travelling Salesman Problem (TSP) and the
Generalized Travelling Salesman Problem (GTSP) [7, 8] which are well studied
problems in operations research literature and can be solved using a number of
exact, approximate or heuristic algorithms. In this work we use the Noon-Bean
Transformation [9] to cast the GTSP as an Asymmetric Travelling Salesman
Problem (ATSP) and solve it using the Lin-Kernighan-Helsgaun (LKH) heuris-
tic solver [10]. Finally, we will draw from existing literature on vehicle routing
and pick-up delivery problems [11–13] to inform our work.

Contributions: The contributions of this paper are threefold. First, we for-
mulate the HDP as a novel adaptation of a carrier-vehicle system in a discrete
environment. Second, we prove NP-hardness of the HDP and present a solution
based on an efficient reduction to the GTSP. Finally, we examine a special case
of the HDP consisting of a single vehicle and multiple static warehouses, called
the Multiple Warehouse Delivery Problem (MWDP). We present two algorithms
for the MWDP, one, using an alternative transformation to the TSP and the
other, a polynomial time exact algorithm to compute an optimal delivery route.

The organization of the paper is as follows. Section 2 formulates the HDP
as an optimal path planning problem in a discrete environment. In Section 3,
the HDP is proved to be NP-hard. Section 4 presents the transformation to
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the GTSP implemented to solve the HDP. Section 5 presents two algorithmic
solutions for the MWDP and finally, Section 6 compares and benchmarks all
proposed algorithms through simulation results.

1.1 Definitions and Nomenclature

A graph is denoted by G = (V,E, c), where V is the set of vertices, E is the set
of edges and c : E → R is a function that assigns a cost to each edge in E. In a
directed graph, each edge is an ordered pair of vertices (vi, vj) and is assigned a
direction from vi to vj . A partitioned graph, G, is a graph with a partition of its
vertex set into ` mutually exclusive sets (V1, . . . , V`) where ∪`i=1Vi = V .

A route over a graph is a sequence of vertices P = (v1, . . . , vk) linked by
edges (vi, vi+1), i = 1, . . . , k − 1. Following [14], a walk is a route such that
no edge is traversed more than once. A path is a route where vi 6= vj for all
i, j ∈ {1, . . . , k−1}. A closed route is a route of any type (e.g. route, walk, path)
where v1 = vk. A tour is closed path that visits all vertices in V exactly once.

Given a complete graph G = (V,E, c), the Travelling Salesman Problem
(TSP) computes a minimum cost tour of G. Given a partitioned complete graph
G = (V,E, c), with a vertex partition (V1, . . . , V`), the Generalized Travelling
Salesman Problem (GTSP) computes a minimum cost closed path, P , that visits
exactly one vertex in each vertex set Vi ⊂ V , i ∈ {1, . . . , `}.

2 The Heterogeneous Delivery Problem (HDP)

The HDP is abstracted on a directed graph G that represents the physical lo-
cations of the delivery points, the location of a warehouse and a set of drivable
routes on a street network. An example HDP graph is shown in Figure 1. The
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Fig. 1. The Heterogeneous Delivery Problem. The street edges (solid lines) are shown
as either single or double arrows, that represent pairs of directed edges. All flight edges
(dashed lines) are bidirectional edges between vertices.

graph G contains the locations of n delivery vertices, denoted by di, in set Vd
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(red vertices in Figure 1), m street vertices, denoted by wi, in set Vw (blue ver-
tices in Figure 1), and a warehouse vertex, w0, where the truck and quadrotor
are initially located. The vertices, edges and costs of G are defined as follows:

Vertices: The vertex set V is defined as a union of three mutually exclusive
subsets V = V0 ∪ Vw ∪ Vd where V0 = {w0}, |Vd| = n, and |Vw| = m.

Edges: The edge set, E, is a union of two mutually exclusive subsets, E =
Ew ∪ Ed. The set Ew contains directed street edges of the form (wi, wj), that
represent shortest routes between street vertices for all wi, wj ∈ Vw. The set Ed
contains pairs of bidirectional flight edges of the form (wi, dj) and (dj , wi), for all
wi ∈ Vw and dj ∈ Vd, if wi is a viable deployment vertex to reach delivery point
dj . These flight edges would have to be computed prior to the first deployment,
taking into account the range and line-of-sight constraints. We define the set
Wdi ⊂ Vw to be the set of viable deployment vertices for each delivery point, di.

Edge Costs: For full generality, we define three types of edge costs for the
truck-quadrotor team. A flight edge in Ed can be traversed only by a quadrotor
between a street vertex, wi, and a delivery vertex, dj . A street edge in Ew may be
traversed by the truck, either carrying the quadrotor or travelling alone. Thus we
define a triple of costs C = (cq, ct, ctq) where cq : Ed → R≥0, assigns a quadrotor
travel cost to flight edges in Ed, ct : Ew → R≥0 assigns a truck travel cost to
street edges in Ew, and ctq : Ew → R≥0 assigns a docked truck-quadrotor travel
cost on street edges in Ew.

We extend the definition of a graph from Section 1.1 to G = (V,E, C), where
C is a triple of costs, and formulate the HDP, on G, as the problem of computing
two routes, for the truck and quadrotor, both starting and ending at vertex w0,
such that the truck, travelling on street edges, stops at a sequence of deployment
points wi ∈ Vw at which the quadrotor can take-off, visit a delivery point, di ∈ Vd
and return to the truck before the next deployment. The goal is for the quadrotor
to visit all n delivery points and minimize the total delivery cost of the mission.

Let the quadrotor’s route be a closed walk Pq along a sequence of unique
edges Eq ⊂ E and let the truck’s route be a tour Pt, with a sequence of edges
Et ⊂ E. Routes Pq and Pt share vertices at which the truck and quadrotor meet
and share edges during docked travel. The HDP can be formalized as follows.

Problem 1 (Heterogeneous Delivery Problem). Given G = (V,E, C), where V =
V0 ∪ Vw ∪ Vd, E = Ed ∪ Ew and C = (ct, cq, ctq), compute a closed walk Pq and
a closed path Pt that start and end at w0, such that (i) Pq visits each di ∈ Vd
exactly once; (ii) Pt is a sequence of deployment vertices that visits each unique
wi ∈ Pq exactly once, and in the order defined by the first visit to each wi in Pq;
and (iii) The routes collectively minimize

∑
e∈Eq\Et

cq(e) +
∑

e∈Et\Eq

ct(e) +
∑

e∈Eq∩Et

ctq(e). (1)
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3 Proof of NP-hardness

To prove NP-hardness of the HDP, we will show that (i) an instance of the TSP
can be reduced to an instance of the HDP, and (ii) an optimal HDP solution
can be used to generate an optimal TSP solution.

Theorem 1. The Heterogeneous Delivery problem is NP-hard.

Proof. Let G′ = (V ′, E′, c′), with |V ′| = n, be an input to the TSP. To prove
(i), we give a polynomial-time transformation of G′ into an input G = (V,E, C)
of the HDP as shown in Figure 2.

v1 v3

v2

(a) G′ = (V ′, E′, c′)

d1

d2

d3

w1

w2

w3

w0

(b) G = (V,E, C)

Fig. 2. A reduction from the TSP on graph G′ to the HDP on graph G.

The HDP is constructed such that each delivery vertex, di ∈ Vd corresponds
to a vertex vi ∈ V ′, and has only one unique viable street deployment vertex
wj ∈Wdi ⊂ Vw. Thus, construct the vertex set V = V0∪Vd∪Vw, where |Vd| = n,
|Vw| = n and V0 contains an additional start vertex w0.

Now for each edge (vi, vj) in E′ with a cost c′(vi, vj), add a sequence of di-
rected edges to E, from di to dj , given by (di, wi), (wi, wj), (wj , dj), denoting
the feasible flight and street edges, and resulting in a total cost of cq(di, wi) +
ctq(wi, wj) + cq(wj , dj). Let cq(e) = 0 for all flight edges e = (di, wi) or e =
(wi, di). For all street edges, e, we set ct(e) = ctq(e) = c′(e). Finally, add bidi-
rectional edges from all wi ∈ Vw to w0 and set c(w0, wi) = 0 and c(wi, w0) = 0.
This transformation defines G, the required input to the HDP.

We can now demonstrate (ii) by showing that an optimal HDP solution, com-
prised of Pq and Pt, corresponds to the optimal TSP solution, P ′. From Figure 2,
note that an HDP solution of the form, Pq = (w0, w1, d1, w1 . . . , wn, dn, wn, w0)
and Pt = (w0, w1, . . . , wn, w0), can be used to generate a TSP tour of the
form P ′ = (v1, . . . , vn, v1) by simply extracting the order of street vertices
(w1, . . . , wn) in Pt, since the truck must visit every wi ∈ Vw to service each
di ∈ Vd. If E′P contains the sequence of edges in P ′, then Et = E′P . Now, since
cq(e) = 0 and ct(e) = ctq(e) = c′(e), we can see that∑

e∈Eq\Et

cq(e) +
∑

e∈Et\Eq

ct(e) +
∑

e∈Eq∩Et

ctq(e) =
∑
e∈E′

P

c′(e).

Thus, the optimal solution to the HDP can indeed be transformed into the
optimal solution of the TSP, completing the proof. ut
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4 Solution Approach

Given the NP-hardness of the HDP and the fact that it contains the TSP as a
special case, our solution approach will be to polynomially transform an instance
of the HDP into a GTSP, such that the optimal GTSP solution provides an
optimal HDP solution of equal cost.

GTSP
HPDP

GTSP solution
HPDP solution

T1G
G1 P1

Pq PtGTSP solver T2

Fig. 3. Graph transformation based solution approach to the HDP.

Referring to Figures 3 and 4, note that the approach will be presented in two
transformations. The first, T1 is a procedure to cast an HDP on graph G as a
GTSP on a partitioned graph G1 = (V 1, E1, c1), where each vertex set V 1

i ∈ V 1

corresponds to a delivery point di ∈ Vd and the vertices in V 1
i correspond to

the set of viable street deployment points, wj ∈ Wdi ⊂ Vw, for each di. Edges
correspond to feasible routes between deliveries. The second transformation, T2,
is a method to extract the HDP solution, Pq, Pt, from a GTSP solution, P 1.
Lemmas 1 and 2 prove the correctness of the transformations.

4.1 Transformation Algorithms

Figure 4 illustrates the graph transformations on a sample HDP instance to
aid in the description. The problem in Figure 4(a) is a simplified version of the
example problem in Figure 1 and contains an environment G = (V,E, C), where
|Vd| = 4 and |Vw| = 8. Figure 4(b) shows the transformed GTSP graph G1, as
well as an optimal solution, P 1, through it. Finally, Figure 4(c) shows how the
GTSP solution can be translated to an HDP solution on G. We will refer to
these figures throughout the descriptions below.

Transformation T1: HDP to GTSP Let the input to transformation T1 be
an instance of the HDP defined on the directed graph G = (V,E, C). The output
of T1 is a partitioned directed graph G1 = (V 1, E1, c1) with V 1 partitioned into
n + 1 mutually exclusive subsets V 1 = {V 1

0 , . . . , V
1
n }, such that V 1 = ∪ni=0V

1
i ,

corresponding to the initial location w0 and each of n delivery vertices.
Algorithm 1 describes the transformation of the input G = (V,E, C) into the

output G1 = (V 1, E1, c1). In the graph G1, the vertex set V 1
0 contains w0, and

each vertex set V 1
i , i = {1, . . . , n}, contains a copy of all street vertices wj ∈ Vw

for which the flight edges (wj , di) and (di, wj) exist in E. We construct E1 as
follows. Consider two street vertices in G1 defined by wi ∈ V 1

a and wj ∈ V 1
b ,

where a 6= b. The edge (wi, wj) is added to E1 if either one of two subsets of
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(a) An HDP instance on G.
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(b) Vertex set construction in G1.
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(c) An optimal HDP Solution.

Fig. 4. Transformation of HDP to GTSP. Figures 4(b) and 4(c) highlight red edges
(quadrotor travel), blue edges (truck travel) and black edges (docked truck-quadrotor
travel).

edges, α = {(da, wi), (wi, wj), (wj , db)}, or β = {(da, wj), (wi, wj), (wj , db)} exist
in E: i.e., if the quadrotor can deliver to da from wi, followed by db from wj .

Figure 5 illustrates this mapping between the edges of E1 and E. The edge
e ∈ E1 maps to either α or β in E between delivery vertices da and db as follows.
In pattern α, shown in Figures 5(a) and 5(b), the quadrotor, having delivered
an item at da from wi, returns to the truck at wi and travels in a docked state to
wj , to be redeployed towards db. In pattern β, shown in Figures 5(c) and 5(d),
the quadrotor, having delivered an item at da from wi travels directly from da
to wj to rendezvous with the truck and pickup the item to be delivered at db.

In Section 4.2, Lemma 1 states that the edge subsets α and β encode all po-
tential truck-quadrotor deployment patterns between any two delivery vertices,
da and db, for a chosen pair of respective street deployment vertices wi and wj .
Thus, deployment patterns α and β present the only two potential edge costs
for edges in E1, and can be computed as follows:

c1α(wi, wj) = cq(da, wi) + ctq(wi, wj) + cq(wj , db)

c1β(wi, wj) = cq(da, wj) + ct(wi, wj) + cq(wj , db)
(2)
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Given these two costs, the minimum cost deployment pattern between wi ∈
V 1
a and wj ∈ V 1

b is chosen and a cost, c1(e) = min{c1α(e), c1β(e)} is assigned to

the edge (wi, wj) ∈ E1. Figure 4(b) illustrates the vertex sets of the constructed
GTSP graph G1 as a result of Algorithm 1.

V1
a

wi

V1
b

wj
c1

(a) Pattern α (GTSP)

da db

wjwi

cq

ctq

cq

(b) Pattern α (HDP)

V1
a

wi

V1
b

wj
c1

(c) Pattern β (GTSP)

da db

wi wjct

cq
cq

(d) Pattern β (HDP)

Fig. 5. Mapping between edges in GTSP and HDP.

Transformation T1 has a runtime complexity of O(n2) and for an HDP with
|Vd| = n and |Vw| = m, it generates a GTSP of size 1 + nm. While this is a sig-
nificant increase in problem size, it represents the worst case with the quadrotor
having an infinite operating range such that for each di ∈ Vd, |Wdi | = m. In
practice, |Wdi | < m and the size of the GTSP is 1 +

∑n
i=1 |Wdi |. The simulation

results in Section 6, Figure 8(d) show how the quadrotor range affects size and
runtime complexity of the GTSP transformation.

The GTSP can now be solved using a variety of solvers in existing literature
and as seen in Figure 4(a), the solution to the GTSP is a closed path of the form
P 1 = (w0, w1, . . . , wn, w0), where w0 is the starting vertex and (w1, . . . , wn) is a
sequence containing one vertex from each set V 1

i ⊂ V 1.

Transformation T2: GTSP Solution to HDP Solution Given the optimal
GTSP solution P 1, the optimal HDP solution composed of a closed walk Pq and
a closed path Pt can be obtained using Algorithm 2 as briefly described below.

Let the computed GTSP solution be defined by the sequence of vertices
P 1 = (w0, w1, . . . , wn, w0) where each vertex wi, i ∈ {1, . . . , n}, belongs to a
unique vertex set V 1

j in G1. Since the optimal deployment pattern for every

pair of deployment points wi ∈ V 1
a and wj ∈ V 1

b was predetermined during the
construction of G1, we can construct Pq by inserting the vertices of the complete
quadrotor path between every consecutive vertex in P 1. Pt can be constructed
by copying all unique street network vertices wi ∈ Vw from Pq in the order in
which they occur in Pq.

In the HDP solution to the example problem, as shown in Figure 4(c),
Pq = (w0, w4, d1, w4, d2, w5, d3, w5, w1, d4, w1, w0) and Pt = (w0, w4, w5, w1, w0).
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Algorithm 1: Graph Transformation: G to G1.

Input: G = (V,E, C)
Output: G1 = (V 1, E1, c1)

1 V 1
0 = V0

2 foreach di ∈ Vd do
3 V 1

i = {wj | wj ∈ Vw, (wj , di) ∈ E, (di, wj) ∈ E}
4 V 1 = {V 1

0 , V
1
1 , . . . , V

1
n }

5 E1 = {(wi, wj)| wi ∈ V 1
a , wj ∈ V 1

b , a 6= b}
6 foreach e = (wi, wj) ∈ E1 where wi ∈ V 1

a , wj ∈ V 1
b do

7 if a = 0 then
8 cq(da, wi) = 0

9 if b = 0 then
10 cq(wj , db) = 0

11 c1α(e) = cq(da, wi) + ctq(wi, wj) + cq(wj , db)
12 c1β(e) = cq(da, wj) + ct(wi, wj) + cq(wj , db)

13 c1(e) = min{c1α, c1β}

Transformation T2 is a linear in time, O(n), algorithm since the deployment
patterns between each consecutive pair of vertices in P 1 were computed in T1.

4.2 Correctness of the Transformation

This section proves that the GTSP transformation encodes all possible HDP
solutions and that the optimal solution to the GTSP can be used to generate
the optimal solution to the HDP.

Lemma 1 follows immediately from the discussion in Transformation T1, that
describes patterns α and β. Thus, if the GTSP solution, P 1, contains the edge
(wi, wj) and pattern α is chosen, then in the HDP solution, Pq will contain a
subsequence of edges {(da, wi), (wi, wj), (wj , db)}. If pattern β is chosen, Pq will
contain a subsequence {(da, wj), (wj , db)}. Pt will contain edge (wi, wj) in both
cases. In the case where da and db share deployment points (i.e. wi = wj), the
truck does not move and hence α = β.

Lemma 1. Deployment patterns α and β are the only two HDP routes between
any two delivery vertices, da and db, given their respective street deployment
points wi and wj.

Lemma 2 validates transformation T2 by showing that any feasible or optimal
GTSP solution P 1 directly corresponds to an HDP solution Pq, Pt.

Lemma 2. Any feasible GTSP tour on G1 corresponds to a pair of feasible HDP
routes on G. Moreover, an optimal GTSP solution corresponds to the optimal
HDP solution of identical cost.
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Algorithm 2: Reconstructing Pq and Pt from P 1.

Input: P 1 = (w0, w1, . . . , wn, w0)
Output: Pq, Pt

1 Pq. append(w0, w1, da), where w1 ∈ V 1
a

2 foreach i ∈ {1, . . . , n− 1} do
3 if c1(wi, wi+1) = c1α(wi, wi+1) then
4 Pq. append(wi, wi+1, db), where wi+1 ∈ V 1

b

5 else
6 Pq. append(wi+1, db), where wi+1 ∈ V 1

b

7 if c1(wn, w0) = c1α(wn, w0) then
8 Pq. append(wn, w0)
9 else

10 Pq. append(w0)

11 foreach wi ∈ Pq do
12 if wi /∈ Pt then
13 Pt. append(wi)

14 Pt. append(w0)

Proof. Each vertex set, V 1
a ⊂ V 1, corresponds to a delivery vertex da ∈ Vd.

Lemma 1 proves that an edge (wi, wj) ∈ E1, where wi ∈ Va and wj ∈ Vb,
represents the lowest cost HDP route from da to db for a respective wi and wj .
Thus the set of edges between all wi ∈ Va and wj ∈ Vb will encode any optimal
route between da and db, and this implies that any feasible GTSP solution on
G1 will correspond to a feasible HDP solution on graph G.

We prove that an optimal GTSP solution provides the optimal HDP solution,
by contradiction, as follows. Consider an optimal GTSP solution of the form
P 1 = (w0, w1, . . . , wn, w0). We know that each edge (wi, wi+1) ∈ P 1, where
wi ∈ Va and wi+1 ∈ Vb represents an optimal subsequence of edges in Pq and Pt,
based on the choice of α or β. Thus, a sub-optimal HDP solution can only be
obtained if P 1 contains (i) a sub-optimal ordering of vertex sets, or (ii) a sub-
optimal selection of vertices in any vertex set. This violates the definition of an
optimal GTSP solution and hence optimality is preserved in the transformation
from P 1 to P . ut

4.3 Characterizing the HDP Solution

In a typical HDP solution, the truck-quadrotor team conducts deliveries in a
clustered manner, with the truck stopping at a sequence of deployment points
given by Pt, such that |Pt| ≤ m, while the quadrotor visits a subset of delivery

vertices Dwi
⊂ Vd, from each wi ∈ Pt, such that ∪|Pt|

i=1Dwi
= Vd.

Given an HDP instance, the structure and total cost of Pt, Pq, and the choice
of deployment patterns between each truck stop depend entirely on the relative
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values of the cost functions cq, ct and ctq in G. Figure 6 qualitatively illustrates
the effect of varying edge cost parameters on the nature of the HDP solution.

Figures 6(a) and 6(b) show two special cases of the HDP solution that arise
when the costs, ct and ctq are greater than cq as follows. When ct � ctq, the
cost of the truck travelling alone is heavily penalized and all deployments oc-
cur using pattern α as seen in Figure 6(a). Conversely, when ctq � ct, docked
truck-quadrotor travel is penalized, making deployment pattern β consistently
preferable to α as shown in Figure 6(b).

(a) ct � ctq > cq (b) ctq � ct > cq

(c) Low truck cost. (d) High truck cost.

Fig. 6. HDP solution characterization based on cq, ct and ctq. All figures show w0 =
(0, 0), delivery points (red vertices), a gridded street network (blue vertices), the truck
path (blue paths) and quadrotor flight paths (green paths).

Finally, Figures 6(c) and 6(d) illustrate the effect of the relative truck and
quadrotor costs on the HDP solution. Low values of ct and ctq relative to cq
encourage greater truck effort in the HDP solution, as in Figure 6(c), while
higher values of ct and ctq relative to cq result in a greater quadrotor effort,
limited by its operating range, as in Figure 6(d).

5 The Multiple Warehouse Delivery Problem (MWDP)

In this section, we further examine the special case of the HDP where all quadro-
tor deployments occur using pattern β, similar to Figure 6(b). A limiting case of
this problem arises when ctq(e) = ∞, and ct(e) = 0 for all e ∈ E, thereby com-
pletely preventing docked travel and assuming that the truck travelling alone
has a zero cost and infinite speed.
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From Figure 5 we can see that, cq(da, wi)+ctq(wi, wj) ≥ cq(da, wj)+ct(wi, wj),
is always true in this case, and hence every edge of Pq in the HDP solution will
be a flight edge of the form e = (wi, dj) or e = (dj , wi), with a cost cq(e). The
total cost of Pt is

∑
e∈Et

ct(e) = 0. Note that a zero cost, infinite speed truck
can be interpreted as a static warehouse at each street vertex and we will define
a special case of the HDP: the Multiple Warehouse Delivery Problem (MWDP),
where a set of delivery requests, Vd = {d1, . . . , dn} must be fulfilled by a single
vehicle from a set of warehouses Vw = {w1, . . . , wm}. Figure 7(a) illustrates an
MWDP graph, G = (V,E, c), where V = V0∪Vw∪Vd, E contains directed edges
(di, wj) for all di ∈ Vd, wj ∈ Vw and edges (wj , di) if wj ∈ Wdi . Cost function,
c : E → R≥0, represents the non-negative travel cost, that satisfies the triangle
inequality. The MWDP is stated in Problem 2.

d1

d2 d4 d5

d6

d3

w1

w2

w3

w0

(a) Sample MWDP problem scenario.

d1

d2 d4 d5

d6

d3

w1

w2

w3

w0

(b) Optimal MWDP solution.

Fig. 7. The Multiple Warehouse Delivery Problem (MWDP).

Problem 2 (Multiple Warehouse Delivery Problem). Given G = (V,E, c), where
V = V0 ∪ Vd ∪ Vw, compute a closed walk P , that starts and ends at w0, such
that each delivery vertex in Vd is visited exactly once.

The MWDP can be solved as an HDP using the methods in Section 4. How-
ever, the downside of this approach is that it results in an increase in the size of
the problem instance as described in Section 4.1. Exploiting the simplifications in
the MWDP, relative to the HDP, we present two improved solution approaches,
first, a graph transformation of the MWDP into a TSP and, second, an exact
algorithm to solve instances with a small, fixed number of warehouses.

5.1 Transformation Algorithm: MWDP to TSP

Since, in the MWDP, the quadrotor uses pattern β for each delivery, there is
only one shortest path between any pair of delivery vertices di and dj , and it
passes through the warehouse vertex wa ∈ Wdj , such that c(di, wa) + c(wa, dj)
is minimized. Therefore, we can cast the MWDP as a TSP, by transforming
an MWDP instance G = (V,E, c), into a TSP instance, G1 = (V 1, E1, c1),
where V 1 = V0 ∪ Vd and E1 contains edges e = (vi, vj), for all vi, vj ∈ V 1.
Now for each edge, (vi, vj), we identify the warehouse wa ∈Wdj that minimizes
c(di, wa) + c(wa, dj), and set the cost c1(vi, vj) = c(di, wa) + c(wa, dj)
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Graph G′ is a TSP instance of size |Vd| = n, which is significant smaller than
the GTSP and can be solved using a number of exact or heuristic algorithms in
existing literature such as the Lin-Kernighan [15] or LKH [10] heuristics. The
TSP solution is a sequence of vertices of the form P 1 = (v0, v1, . . . , vn, v0), from
which an MWDP solution may be obtained by inserting the stored warehouse
vertex wa, between each consecutive pair of vertices {vi, vj} in P 1. An optimal
MWDP solution is illustrated in Figure 7(b).

5.2 Kernel Sequence Enumeration (KSE) Algorithm

Figure 7(b) shows that an optimal MWDP solution will always be of the form
P = (w0, wk1 , d1, wk2 , d2 . . . , wkn , dn, w0), where we have numbered the deliv-
ery points so that they are visited in the order d1, d2, . . . , dn and each ki is
in {1, . . . ,m}. All delivery vertices are visited in sub-sequences, (wki , di, wki+1

)
where wki is the warehouse assigned to service di. Given this property, we iden-
tify two classes of delivery vertices in P , (i) a localized delivery vertex, di, for
which ki = ki+1 and (ii) a transitional delivery vertex, di, for which ki 6= ki+1.
We also say that dn is a transitional delivery vertex since it returns to w0. Two
additional properties of P , that are proven by the triangle inequality are:

1. For every localized delivery vertex di in P , where (wki , di, wki+1
) and ki =

ki+1, we must have that wki = arg minw∈Vw
c(w, di). Thus wki = wki+1

is
the closest warehouse to di.

2. If the path P visits mP < m unique warehouses in Vw, then the number
of transitional delivery vertices |Dt| = mP . This implies that the quadrotor
never revisits a warehouse wki once it has transitioned to warehouse wki+1

with ki+1 6= ki.

Given these properties the following procedure gives us an exact algorithm
for solving the problem:

1. Enumerate all kernel sequences consisting of an ordered subset of warehouses
and a transitional delivery point between each pair of warehouses. In total
there are O(nmmm) possible kernel sequences.

2. For each kernel sequence, create a complete path by assigning all remaining
delivery points as localized deliveries, using their closest warehouse in the
kernel sequence.

3. Output the shortest path among all completed kernel sequences.

To complete each kernel sequence we must compute the closest warehouse
for each remaining delivery point. Since there are at most m warehouses in the
kernel sequence and n delivery points that are not in the kernel sequence, the
complexity of each kernel completion step is O(nm). Therefore, the total runtime
of this brute force algorithm is O

(
(nm)m+1

)
.

Thus, the key point is that the algorithm is polynomial for a fixed number of
warehouses m. For example, if there are three warehouses and a larger number of
delivery points, this exact algorithm runs in O(n4) time, which may be accept-
able, and does not require a transformation to an NP-hard problem. However,
for a larger number of warehouses, this algorithm is less practical.
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6 Simulation Results

The optimization framework for this paper was implemented in MATLAB. The
solutions were computed on a laptop computer running a 32 bit Ubuntu 12.04
operating system with a 2.53 GHz Intel Core2 Duo processor and 4GB of RAM.

The first set of results in Figure 8, presents HDP solutions on a sample
problem instance with 30 delivery points and a gridded terrain with 100 street
vertices in an environment of arbitrary size renv. The key simulation parameters
are ct,cq,ctq and rq, the operating range of the quadrotor, defined as a percentage
of renv, which dictates the size of Wdi for each delivery point di and consequently,
the size of the GTSP. For these results, we set cq to be the Euclidean distance
between vertices and ct(e) = ctq(e) = 3cq(e) for all edges e.
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(a) HDP (rq = 0.3 renv).
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(b) HDP (rq = 0.1 renv).
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(c) MWDP TSP solution.
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Fig. 8. HDP simulation results and GTSP performance

In Figure 8(a), rq = 0.3 renv, which resulted in a GTSP with 170 vertices and
took 5.7 seconds to compute a solution. When rq was reduced to rq = 0.1 renv,
the resulting GTSP contained 82 vertices and took 2.3 seconds to compute the
solution, shown in Figure 8(b). From the Figures 8(a) and 8(b), we can see
that reducing the quadrotor range resulted in a smaller problem size, and an
increasing truck effort, similar to the properties observed in Section 4.3 where a
lower truck cost resulted in longer truck path in the HDP solution. In the limiting
case, the HDP approaches the MWDP special case in Figure 8(c), for which
the TSP method computes a solution in 0.45 seconds. To assess this further,
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Delivery Points
Runtime Solution Quality

GTSP TSP KSE GTSP TSP KSE

3 0.05 0.04 0.06 10.56 10.56 9.95
6 0.20 0.06 1.11 16.21 16.61 16.21
9 0.26 0.14 5.55 30.47 30.20 29.21
12 0.44 0.26 21.46 35.12 34.27 33.52

Table 1. MWDP algorithm comparison. |Vw| = 3.

Figure 8(d) shows the effect of the quadrotor range on the size (right y-axis)
and runtime complexity (left y-axis) of the GTSP solution. Figure 8(e) shows
that for the MWDP case, the TSP of size n presents a faster and more scalable
solution than the GTSP approach as shown by the average growth of runtime
complexity as |Vd| in increased, keeping other parameters and |Vw| constant.

In the case of the MWDP, all three solution methods can be employed with
comparable results in terms of solution quality. While the KSE algorithm is
useful to obtain the optimal MWDP solution for smaller problem sizes it quickly
becomes impractical with greater complexity and the TSP method stands out
as the appropriate approach, as evident in Table 1, which shows runtime and
solution quality results for an MWDP problem with |Vw| = 3 and an increasing
number of delivery points.

Finally, Figure 9 presents a realistic delivery scenario on a Google street map
of a 15 km2 area in a residential neighbourhood in Waterloo, Ontario, Canada.
Figure 9(a) shows an HDP solution for 17 delivery points in contrast to a single
delivery truck conducting deliveries in Figure 9(b). Given a maximum range of
150m for the quadrotor to ensure line of sight, the HDP solution in this problem
instance results in a ≈ 50% reduction in travel distance for the truck.

7 Conclusions

This paper presents a novel adaptation of a heterogeneous carrier-vehicle system
for cooperative deliveries in urban environments. The HDP represents a class
of cooperative carrier-vehicle path planning problems in discrete environments,
applicable to a number of multi-robot systems in scenarios like search and rescue,
surveillance and exploration. In future work, we are interested in generalizing
the HDP to allow multiple simultaneous quadrotor deliveries, scheduled delivery
requests, and dynamic scenarios where new requests arrive during execution.
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