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Abstract

This paper focuses on sensor scheduling for state estimation, which consists of a network of noisy sensors and a discrete-time
linear system with process noise. As an energy constraint, only a subset of sensors can take a measurement at each time step.
These measurements are fused into a common state estimate using a Kalman filter and the goal is to schedule the sensors to
minimize the estimation error at a terminal time. A simple approach is to greedily choose sensors at each time step to minimize
the estimation error at the next time step. Recent work has shown that this greedy algorithm outperforms other well known
approaches. Results have been established to show that the estimation error is a submodular function of the sensor schedule;
submodular functions have a diminishing returns property that ensures the greedy algorithm yields near optimal performance.

As a negative result, we show that most commonly-used estimation error metrics are not, in general, submodular functions.
This disproves an established result. We then provide sufficient conditions on the system for which the estimation error is a
submodular function of the sensor schedule, and thus the greedy algorithm yields performance guarantees.

1 Introduction

Sensor scheduling problems arise in applications in-
volving the long-term estimation of a physical process
through a set of static sensors. Examples include mon-
itoring CO2 concentrations [22] and monitoring water
levels in multiple tanks [21] using a wireless sensor
network. In such long-term deployments, energy con-
sumption is a priority and by turning on only a small
subset of sensors at each time-step, the battery life of
the network can be extended.

Sensor scheduling can be described as follows. We are
given a discrete-time linear dynamical system xt+1 =
Axt + wt, where xt is the n-dimensional state vector
and wt is zero mean Gaussian process noise with known
covariance. The goal is to estimate the state xt through
the use of m sensors. Each sensor takes a noisy scalar
measurement of the state xt, where the noise is zero
mean Gaussian. A known covariance matrix gives the
correlation between sensor noises. At each time step in
this sensor scheduling problem we can activate at most
k < m sensors to take a measurement. Sensors that
are inactive at a particular time step can then sleep,
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extending their battery life. After each time step t, the k
measurements are fused into a single state estimate x̂t|t
with covariance Σt|t using a centralized Kalman filter.

Given an initial covariance Σ0 a terminal time T , and a
sensor schedule σ, the final covariance ΣT |T is uniquely
defined. The quality of a sensor schedule σ is determined
as a function of this final covariance: for example the
trace, the largest eigenvalue, or the determinant. Each
objective can be thought of as a function that takes as
input (Σ0, σ) and outputs a real number. Our goal is to
compute the schedule σ that minimizes/maximizes this
objective function.

Related work: The sensor scheduling problem (or equiv-
alently, the actuator scheduling problem) dates back
at least as far as the early 1970s [2]. Early work cast
the problem in an optimal control framework and com-
puted optimal schedules via dynamic programming.
The drawback with this approach is that the compu-
tation grows exponentially with the terminal time T .
In the last decade there has been a resurgence in work
on sensor scheduling. A catalyst for this was the study
of Kalman filtering with intermittent observations [19].
Based on this work, the authors in [6] provided a method
for stochastically selecting measurements via random
walk on an appropriately optimized Markov chain.

A variety of approaches have since been proposed for
sensor scheduling, including approaches based on con-
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vex optimization [12], quadratic programming [13], and
tree pruning [20]. The work in [13] presents a general
framework that allows one to include more complex net-
work and energy constraints. Recent work has looked at
periodic schedules [15], on the connection between the
sensor selection problem and compressed sensing [3], on
provably complete algorithms [10], and on consensus-
based algorithms that remove the need for a centralized
filter [24].

Greedy algorithms and submodularity: The focus of this
paper is on recent work that has shown advantages of
using simple greedy algorithms for computing sensor
schedules. At each time step t, the greedy algorithm
chooses k sensors to minimize the estimate error at time
t + 1. The procedure begins at time step 1, and is re-
peated until all T time steps of the schedule have been
specified. Being greedy, the approach is computation-
ally efficient and simple to implement. Moreover, it has
been shown [17,18] that the k sensors chosen at a single
time step yield a reduction in estimation error that is
within a constant factor of the optimal reduction. This
property is due to the submodularity [14,4] of the covari-
ance objective function over a single time step. In addi-
tion, empirical results in [17] have shown that the greedy
algorithm often outperforms more computationally in-
tensive alternatives based on convex optimization [12]
over multiple time steps. In [9], a simulation study is
performed for estimating a 31-state dynamical system
that models a temperature diffusion process using sensor
networks containing 20 to 40 sensors. The study com-
pared three algorithms: the greedy algorithm, an opti-
mal schedule based on exhaustive search, and a receding
horizon approximate schedule. They found empirically
that the runtime of the greedy algorithm was orders of
magnitude better than the other two approaches, and
the estimation performance exceeded that of the reced-
ing horizon approach. The authors also provided theo-
retical performance guarantees of the greedy algorithm.

In this paper we explore in more depth the connection
between sensor scheduling, submodularity, and greedy
algorithms. We characterize conditions under which the
greedy algorithm gives provable performance guarantees
by studying the submodularity of sensor scheduling ob-
jective functions.

Contributions: The contributions of this paper are two-
fold. First, we provide negative results to show that most
sensor schedule objective functions are not, in general,
submodular nor monotone functions. This result holds
for objectives including the trace of the covariance, the
maximum eigenvalue and the log of the determinant,
and it disproves the guarantees established in [9]. Sec-
ond, we provide a set of (restrictive) conditions on the
system under which the log of the determinant objec-
tive function is submodular, and thus the greedy algo-
rithm has guaranteed performance. An early version of
this paper appeared at the conference [11]. This paper

expands on the preliminary version in several respects,
including complete proofs of all results, details on the
submodular counterexamples, and a new interpretation
of sensor scheduling in terms of a submodular function
over a matroid constraint in Section 6.1.

2 Preliminaries

In this section we review some essential concepts in sub-
modular set functions from [14,4] and submodular se-
quence functions from [5,1].

2.1 Independence Systems and Matroids

Many combinatorial optimization problems can be for-
mulated as maximizing or minimizing an objective func-
tion f : F → R over a set system (E,F). The setF ⊆ 2E

contains all “allowable” subsets of the base set E. An
independence system is a set system that is closed under
subsets: if A ∈ F then B ⊆ A =⇒ B ∈ F .

Definition 1 (Matroid) An independence system
(E,F) is a matroid if it satisfies the additional property
that if X,Y ∈ F such that |X| > |Y |, then there is an
x ∈ X\Y such that Y ∪ {x} ∈ F .

The uniform matroid is defined by the collection of all
subsets of E with size less then or equal to m ∈ Z+,
i.e., F := {A ⊆ E : |A| ≤ m}. Another example is
the partition matroid. The base set E is partitioned into
n disjoint sets, {Ei}ni=1. Given k ∈ Zn+, the partition
matroid is defined by the collection F := {A ⊆ E :
|A ∩ Ei| ≤ ki,∀i = 1 . . . n}.

2.2 Set Functions

Let E be a finite set. A set function f over E assigns a
value to every subset of E, i.e., f : 2E → R.

Definition 2 (Normalized and Monotone) The
function f is normalized if f(∅) = 0. The function,
f , is monotone non-decreasing if for all A ⊆ B ⊆ E,
f(A) ≤ f(B).

Definition 3 (Submodularity) The function f is
submodular if for all A ⊆ B ⊆ E and for all x ∈ E \ B
we have f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B).

Submodular functions satisfy the property of diminish-
ing marginal returns. That is, the contribution of any ele-
ment x to the total value of a set decreases as the set gets
bigger. More formally, let ∆f (B|A) := f(A∪B)−f(A).
Then, ∆f (x|A) ≥ ∆f (x|B) for all A ⊆ B ⊆ E.
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2.3 Sequence Functions

For our purposes, a sequence A = (a1, . . . , ak), of length
k ∈ Z≥0 consists of k elements from a base set of ele-
ments E, i.e., ai ∈ E. Two sequences A = (a1, . . . , ak)
and B = (b1, . . . , b`) defined over the same base set
can be concatenated into a larger sequence: A ‖ B =
(a1, . . . , ak, b1, . . . , b`). A subsequence of A is a sequence
derived fromA by deleting some elements but not chang-
ing the order of the remaining elements and is denoted
B ⊆ A. A sequence function f defined over a base set E
maps from sequences over E to real numbers. The value
of a sequence function depends on the order of the ele-
ments in the sequence.

Definition 4 (Sequence Monotonicity) The se-
quence function f is monotone non-decreasing if for
all subsequences A of a sequence B, i.e., A ⊆ B,
f(A) ≤ f(B).

For a sequence function f , we define the marginal re-
ward of concatenating a sequence C to a sequence A as
∆f (C|A) := f(A ‖ C) − f(A). The subscript f will be
omitted unless there is ambiguity.

Definition 5 (Sequence Submodularity) The
function f is sequence submodular if for all A ⊆ B, we
have ∆f (C|A) ≥ ∆f (C|B).

2.4 Maximization of Submodular Functions

Greedy algorithms have surprisingly good performance
in maximizing submodular functions. The set greedy al-
gorithm begins with the empty set and repeatedly adds
the element x ∈ E to S that maximizes the marginal re-
turn ∆(x|S) = f(S ∪ {x})− f(S). When maximizing a
submodular function over a matroid (E,F), we add the
element x that maximizes ∆(x|S) subject to the con-
straint that S ∪{x} ∈ F . The sequence greedy algorithm
begins with an empty sequence S, and repeatedly ap-
pends the element x ∈ E that maximizes the marginal
return ∆(x|S) = f(S ‖ x)− f(S).

An α-approximate greedy algorithm with α ≤ 1 finds at
each iteration an element x to add/append to S such
that ∆(x|S) ≥ αmaxx̄ ∆(x̄|S). If α = 1, then we recover
the set/sequence greedy algorithms. Approximate algo-
rithms are important when it is difficult to determine the
true maximizer of the marginal return at each iteration.

We say that an algorithm gives a k-approximation, for
some k < 1 if it is guaranteed to output a solution with
a value of at least k times the optimal.

Lemma 6 (Maximizing a Set Function [14,4])
Consider the problem of maximizing a submodular, non-
negative and monotone function over a matroid. For the
uniform matroid, the α-approximate greedy algorithm

gives a 1− 1
eα approximation. For a general matroid, the

greedy algorithm gives a 1
2 approximation.

The following lemma looks at the sequence equivalent to
a uniform matroid.

Lemma 7 (Maximizing a Sequence Function [1])
Consider a normalized monotone non-decreasing sub-
modular sequence function f defined over the base set
of elements E. The problem of selecting the maximum
value sequence of size T can be approximated to within
1− 1

eα using an α-approximate greedy algorithm.

3 The Sensor Scheduling Problem

Consider a sensor network consisting of m sensors M :=
{1, . . . ,m}, operating in discrete time. Our goal is to es-
timate the state of a linear time invariant (LTI) system.
At each time step t, we can turn on at most k sensors.
The measurements taken at each time step are fused into
a single estimate using a centralized Kalman filter.

We assume that each sensor takes a scalar measurement.
The k sensors selected at time step t can be encoded in

the binary selection matrix St ∈ {0, 1}k×m. Each row of
St contains a single element equal to 1, and each column
contains at most one element equal to 1. The combined
LTI system/sensor network can be written as

xt+1 = Axt + wt
yt+1 = StCxt + Stvt,

(1)

where t ∈ Z≥0, xt ∈ Rn, yt ∈ Rk, A ∈ Rn×n, and
C ∈ Rm×n. The process noisewt and measurement noise
vt are independent zero mean Gaussian vectors with co-
variance matrices W,V ∈ Rn×n such that W,V � 0.
The matrix StC is a k ×m matrix containing k rows of
C corresponding to the k sensors selected at time step t.

The state xt is estimated via the Kalman filter, which
produces a state estimate x̂t|t of xt given the measure-
ments up to and including time t along with the covari-
ance of this estimate Σt|t. Given Σt−1|t−1, the covariance
update consists of two steps: the time update

Σt|t−1 = AΣt−1|t−1A
> +W

:= ρtime(Σt−1|t−1),

and the measurement update,

Σt|t =
(

Σ−1
t|t−1 + C>S>t (StV S

>
t )−1StC

)−1

:= ρmeas(Σt|t−1, St).
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The time and measurement update can be combined to
give

Σt|t =
(
(AΣt−1|t−1A

> +W )−1 +Dt

)−1
, where

Dt = C>S>t (StV S
>
t )−1StC.

(2)

Given a time horizon T , our problem is to compute a
sensor schedule σ = (σ1, . . . , σT ), where σi ⊂M , |σi| =
k for each i ∈ {1, . . . , T}. We seek a schedule σ that
minimizes/maximizes a function F : Rn×n → R of the
final error covariance ΣT |T at the terminal time T .

The initial a posteriori covariance estimate is a positive
definite matrix Σ0 � 0. Given a sensor schedule σ and
a time t ≤ T , we can define a function Ωσt : Rn×n →
Rn×n such that Ωσt (Σ0) = Σt|t. The function is defined
recursively as follows:

Ωσt (Σ0) := ρmeas

(
ρtime

(
Ωσt−1(Σ0)

)
, σt

)
Ωσ0 (Σ0) = Σ0,

(3)

where, with a slight abuse of notation, we have used σt,
which is a subset of sensors k interchangeably with its
corresponding binary selection matrix St. We omit the
argument Σ0 from Ωt where there is no ambiguity. Note
that in this definition the first time update comes be-
fore the first measurement update, so in effect, an initial
measurement is skipped. This can be avoided by using
a “dummy” initial covariance of A−1(Σ0|−1 −W )A−>

where Σ0|−1 is the initial a priori estimate.

Given an initial covariance Σ0, and a covariance metric
F , we seek a schedule σ that optimizes F (ΣT |T ), where
σ contains k sensors per time step. The final covariance
ΣT |T is computed via (3) as ΣT |T = ΩσT (Σ0). To simplify

notation, we write F
(
ΩσT (Σ0)

)
as simply F (σ), with the

understanding that F is evaluated on the covariance ob-
tained via the schedule σ.

Remark 8 (Set or Sequence function) Over a sin-
gle time step, the objective F (·) is simply a set function
mapping a set of k sensors to a value. Over multiple time
steps we need to compute a sequence σ = (σ1, . . . , σT ),
where each σt is a subset of M containing k sensors.
Thus, F (Ωσt ) maps a sequence of length t ≤ T to a value.
In Section 6.1 we discuss an alternative interpretation
as a set function over a matroid.

We are interested in determining conditions under which
sensor scheduling can be posed as the maximization of
a submodular sequence, and thus when an incremental
greedy algorithm can be used to build provably efficient
sensor schedules.

4 Submodularity of the Estimation Error

In this section we show that for most of the commonly
used metrics, the sensor selection problem is not, in gen-
eral, submodular.

4.1 Counterexamples for Submodularity

Given a covariance matrix Σt|t we can define the follow-
ing covariance metrics:

• F1 = − trace(Σt|t)

• F2 = log det(Σ−1
t|t )

• F3 = −max eig(Σt|t)

• F4 = trace(Σ∅t+1|t−Σt+1|t), where Σ∅t+1|t is the covari-

ance obtained from t successive time updates without
any measurements.

We phrase each optimization as a maximization problem
in order to fit with the submodularity literature reviewed
in Section 2.4.

Remark 9 (Performance metrics) If we fix number
p < 1, then the eigenvalues of the covariance matrix are
proportional to the lengths of the axes of the ellipsoid
that contains the estimation error x− x̂ with probability
p [12]. The volume of the confidence ellipsoid is directly
proportional to the log of the determinant of the covari-
ance matrix, which is captured by F2. The mean squared
error is given by the sum of the eigenvalues, which is given
by the trace in F1 and F4. The worst-case error covari-
ance is proportional to the maximum eigenvalue of the
covariance, which is objective F3. A detailed comparison
of performance measures can be found in [23].

In [9], the authors show (see Theorems 2 and 3) that
the function F4 is submodular for a single time step as
well as sequence submodular over multiple time steps (in
the latter, the schedule consists of one sensor per time
step). We give a counterexample to show that this claim
is false. The root of the error appears to be as follows.
The Riccatti equation (2) is known to be monotone [20]
in the sense that if Σt−1|t−1 � Σt−1|t−1, then Σt|t �
Σt|t (i.e., in the positive semidefinite sense). In [9] this
property is incorrectly used to infer monotonicity and
submodularity with respect to the set of sensors chosen.

Example 10 (Single Time Step) Consider the sys-
tem

A =

[
0.5 0

0 0.5

]
, C =

[
1.0 0.5 0.7 0.3

0 0.5 0.3 0.7

]>
,

W = Σ0 = I2×2, V = I4×4.

(4)

Take X1 = {2, 3} ⊂ {2, 3, 4} = X2. Then,
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• ∆F1({1}|X1) = 0.2736 but ∆F1({1}|X2) = 0.2769.
• ∆F3({1}|X1) = 0.1313 but ∆F3({1}|X2) = 0.1927.
• ∆F4({1}|X1) = 0.0684 but ∆F4({1}|X2) = 0.0692.

These results show that none of F1, F2, orF4 are submod-
ular, disproving Theorem 2 of [9].

Moreover, if we take X1 = {1, 3} ⊂ {1, 3, 4} = X2, we
see that ∆({2}|X1) ≥ ∆({2}|X2) for each of the three
functions, showing that the functions are also not super-
modular.

The previous example considered sensor selection over a
single time step and showed that objectives F1, F3, and
F4 are all, in general, not submodular. Unsurprisingly,
the results are even worse over multiple time steps. Using
the sequences σ1 = (1, 4, 1, 4) ⊂ (1, 4, 1, 4, 4) = σ2, and
looking at the marginal change in value of each function
if sensor 4 is chosen in the next time step, we can show
that none of the four metrics are sequence submodular
over multiple time steps.

Remark 11 (A Test for Submodularity?) Given
an LTI system and an initial covariance, a natural ques-
tion is whether we can determine if the associated sensor
scheduling objective function is submodular. Unfortu-
nately, for set functions there is no known polynomial-
time algorithm for testing submodularity [16]. Thus,
unless some special structure of the Kalman update can
be exploited, it is unlikely that there exists an efficient
method to test for set or sequence submodularity of a
particular problem. This motivates the following section
in which we provides checkable conditions for sequence
submodularity.

5 Submodular Sensor Scheduling Conditions

In the previous section we saw that the sensor selection
problem is not, in general, submodular. Over a single
time step, the only objective for which we did not pro-
vide a counterexample was F2. In this section we look
for conditions on which the log det objective function is
submodular.

5.1 Submodularity Over a Single Time Step

The single time-step problem is one of choosing a subset
k of the m measurements. Let σt ⊂M be the k sensors
chosen at time step t. Then, from equation (2), the ob-
jective function is

F (σt) = log det(ρtime(Ωσt−1)−1 +Dt).

In [17] it is shown that if V is diagonal, then this ob-
jective is monotone non-decreasing and submodular in
the selected measurements σt. As a result, the authors

deduce that using a greedy algorithm gives a (1 − 1
e )-

approximation [17, Lemma 1]. However, as stated this
result is technically not correct, as the objective func-
tion is not normalized (i.e., the value of empty set is not
necessarily zero). This yields an additional error term
that depends on the value of the empty set: GREEDY ≥
(1 − 1

e )OPT + F (∅)ε, where ε > 0 depends on k. This
can be fixed by redefining the objective function as

F ′(σt) := log det
(
ρtime(Ωσt−1)

)
F (σt), (5)

where log det(ρtime(Ωσt )) is a normalization factor so
that F (∅) = 0.

Lemma 12 For a single time step, the function F ′(σt)
is monotone non-decreasing, normalized and submodular
function over the base set M .

By this lemma and Lemma 6, picking the best set of k
sensors at a particular time step can be approximated
using a greedy algorithm to within (1− 1

e ) of the optimal.

5.2 Sequence Submodularity Over Multiple Time Steps

We now assume that at each time step the optimal set
of k sensors can be chosen in an attempt to study the
properties of the objective function over multiple time
steps. Given a sensor schedule σ of length t ≤ T , we
define the sequence function to be

F (σ) = F (Ωσt (Σ0)) = log det(Ωσ0 )− log det(Ωσt )

= log
(
det(Σ0) det(Ωσt )−1

)
.

(6)

We assume that A is non-singular and that there is no
process noise, i.e., wt = 0. When these assumptions are
not satisfied, it is easy to construct seemingly trivial ex-
amples for which the objective is not sequence submod-
ular. For example, even for a diagonal and stable A, if
W is nonzero, then the objective will not be sequence
submodular.

Using these assumptions, we can solve the recursive co-
variance update to obtain

Ωσt =

(
(A−>)tΣ−1

0 A−t +

t∑
i=1

(A−>)(t−i)DiA
−(t−i)

)−1

,

(7)
where Dt = C>S>t (StV S

>
t )−1StC is as defined in equa-

tion (2). We are now ready to give conditions on the
function for sequence submodularity. The proof is con-
tained in the appendix.

Theorem 13 For the function (6), the value of the
empty set is 0. Also, with the assumptions that A is full
rank and W = 0, if AΣ0A

> � Σ0 and A>DiA � Di for
all possible measurement matrices, then the function is
monotone non-decreasing and sequence submodular.
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If the conditions of Theorem 13 hold then by Lemma 7,
greedily selecting the measurement matrix at each time
step gives a (1− 1

e )-approximation.

Remark 14 (The restrictiveness of Theorem 13)
In addition to the requirement of no process noise, the
two conditions in Theorem 13 are that AΣ0A

> � Σ0

and A>DiA � Di for all possible measurement matri-
ces. The Lyapunov stability theorem tells us that the
eigenvalues of A have magnitude strictly less than 1 if
and only if there exists P � 0 such that A>PA ≺ P [7,
Thm. 8.4]. Thus, if A is exponentially stable, then we
can pick an initial covariance to satisfy AΣ0A

> � Σ0.
Conversely, if A is unstable then no such Σ0 exists.

The A>DiA � Di conditions in Theorem 13 require
checking

(
m
k

)
matrices. We can ask whether we can de-

sign the sensor network (i.e., the matrix C) such that
A>DiA � Di for all possible measurement matrices.
While it is possible to construct C in certain cases, we
do not yet know of conditions on A for the existence of a
satisfying C, or a method for computing such a C.

5.3 Greedy Approximation

Assuming that the conditions of Theorem 13 are met,
sequentially selecting the set of k sensors at each time
step will give a (1− 1

e )-approximation (≈ 0.6321). How-

ever, there are
(
m
k

)
= O(mk) possible sets of size k. An

alternative is to greedily select k measurements at each
time step. Thus, at given time step we construct a set of
k sensors as in Section 5.1. This is done greedily across
time steps. This approach leads to a faster runtime but
a less tight bound, as shown in the following theorem.

Theorem 15 Consider a sensor scheduling problem sat-
isfying the assumptions of Theorem 13. If the objective
function is given by (6), then the greedy algorithm yields
a schedule with value at least 1− e−(1−1/e) ≈ 0.47 of the
optimal in O(Tkmn2 + Tn3) time.

PROOF. Sequentially selecting the best measure-
ment matrix at each time step corresponds to solv-
ing the optimization problem maxσt ∆(σt|σ[1,t−1]) ≡
maxσt log det(Σ0) det(Ωσt )−1−log det(Σ0) det(Ωσt−1)−1 ≡
maxσt log det(Ωσt−1) det(Ωσt )−1, at each time step, where
σ[1,t−1] is the sensor sequence from 1 to t− 1.

By Lemma 12, since the measurement noise matrix V
is diagonal, building the measurement matrix greed-
ily at a particular time step can be solved to within
(1 − 1

e ) of the optimal using (5) as the objective func-
tion. Let Σgt and Σot be the resulting covariance af-
ter applying the sequence of measurements σ[1,t−1]

and then selecting the greedy and optimal measure-
ments respectively at time step t. Therefore, tak-
ing α = (1 − 1

e ), log det(ρtime(Ωσt−1)) det(Σgt )
−1 ≥

α log det(ρtime(Ωσt−1)) det(Σot )
−1 which implies

log det(Ωσt−1) det(Σgt )
−1 ≥ α log det(Ωσt−1) det(Σot )

−1

+ (α− 1) log det(A)2,

since W = 0 so ρtime(Ωσt−1) = AΩσt−1A
>.

Let σg = (σg1 , . . . , σ
g
T ) be the sequence of measurements

by greedily selecting the k sensors at each time step and
σo = (σo1, . . . , σ

o
T ) be the optimal schedule. Therefore,

∆(σgt |σ
g
[1,t−1]) ≥ αmaxσi ∆(σi|σg[1,t−1]) + ε, where ε =

(α − 1) log det(A)2. Note that if ε = 0, then we can
apply Lemma 7 to deduce that F (σg) ≥ (1− 1

eα )F (σo).
However, since ε 6= 0, we cannot apply this directly.
Instead, we solve for a bound of the greedy schedule
following the proof of Lemma 7 (given in [1]):

∆(σgt |σ
g
[1,t−1]) ≥ αmax

σi
∆(σi|σg[1,t−1]) + ε

≥ α max
σi∈σo

∆(σi|σg[1,t−1]) + ε

≥ α

T
∆(σo|σg[1,t−1]) + ε

≥ α

T

(
F (σo)− F (σg[1,t−1])

)
+ ε.

This implies thatF (σg[1,t]) ≥
α
T F (σo)+(1−α

T )F (σg[1,t−1])+

ε. Solving this recurrence relation,

F (σg) = F (σg[1,T ])

≥
(α
T
F (σo) + ε

) T−1∑
i=0

(1− α

T
)i

= F (σo)
(

1− (1− α

T
)T
)

+
T

α

(
1− (1− α

T
)T
)
ε

≥ F (σo)(1− e−α) +
T

α
(1− e−α)ε.

The only thing that remains is to bound the second
“error” term of T (1 − α−1)(1 − e−α) log det(A)2 ≈
(−0.2727)T log det(A)2 in this expression: To do this,
note that since Σ0 � 0,

AΣ0A
> � Σ0 =⇒ det(AΣ0A

>) ≤ det(Σ0)

=⇒ det(A)2 ≤ 1 =⇒ log det(A)2 ≤ 0.

As a result,F (σg) ≥ (1−e−α)F (σo) and substituting the
value of α gives the constant factor bound of ≈ 0.4685.

For the complexity, there are kmT iterations; for each
of the T time steps, k measurements need to be selected
from a set of m. The optimization for each time step
can be performed so as to avoid repeated calculation
of inverses and determinants [17]. With this method,
the a posteriori covariance matrix and its objective
value can be computed in O(n2mk) per time step. The
time update requires two matrix multiplications which
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naively require O(n3) time. Therefore, the total runtime
is O(Tkmn2 + Tn3). 2

6 Future Directions and Conclusions

Finally, we present an alternative interpretation of sen-
sor scheduling as a set function over a matroid, which
presents an interesting avenue for future work, along
with some conclusions.

6.1 Sensor Scheduling as a Set Function over a Matroid

We have focused on the sequential greedy algorithm in
which k sensors are chosen for time step 1, followed by
k for time step 2, and so on until the scheduled is com-
pleted. The corresponding notion of submodularity is se-
quence submodularity. An alternative greedy algorithm
can be posed based on set submodularity. The idea is
to begin with a schedule σ = (σ1, . . . , σT ) where each
σt = ∅ and for kT iterations do the following:

(1) for each time slot t in 1 to T with |σt| < k and for
each sensor s in M not already in σt

(2) add s to σt and call the new schedule σ′

(3) calculate the increase F (Ωσ
′

T )− F (ΩσT )
(4) update σ to schedule with maximum increase

This is the greedy algorithm over a partition matroid
defined as follows: Create T distinct copies of the sensor
set M , denoted M1, . . . ,MT , and define the base set as
E = ∪Tt=1Mt, which contains Tm elements. Define the
independent sets to be F = {A ⊆ E : |A ∩ Mt| ≤
k, ∀t ∈ {1, . . . , T}}. Then, the goal is to find the set inF
that maximizes a function of the final covariance ΣT |T .
If the objective is submodular and monotone increasing
over the matroid, then by Lemma 6 the above algorithm
would give a 1/2 approximation to the optimal schedule.

We have determined some properties of this algorithm,
and plan to continue our investigation in future work.
First, we have found simple counterexamples for sub-
modularity over this matroid by i) setting W = V =
Σ0 = I; ii) randomly generating A and C as 3 × 4 and
6 × 4 matrices with each entry uniform between zero
and one; and iii) using a schedule of length T = 2 and
k = 3 sensors per time step. Second, the algorithm re-
quires significantly more computation than the sequen-
tial greedy since i) at each iteration, each of the mT ele-
ments in the base set must be considered (in contrast to
just m elements per iteration of the sequential greedy);
and ii) the objective at each iteration is a function of
ΣT |T , and thus T time and measurement updates must
be performed each time a new sensor is added. However,
the algorithm is polynomial time, and the conditions for
submodularity to hold over the matroid appear to be
less strict than those for sequence submodularity.

6.2 Conclusions

In this paper, we studied the problem of using an energy
constrained sensor network to estimate the state of an
uncertain process. We showed that contrary to recent
work, the sensor schedule objective is not, in general,
a submodular function. We then provided a set of suf-
ficient and easily checkable conditions under which the
sensor schedule objective is sequence submodular. If the
objective is sequence submodular, the greedy algorithm
performs within approximately ≈ 0.47 of the optimal.

A Proofs of Main Results

We begin by establishing the following lemma.

Lemma 16 Given a positive semidefinite matrix P ,
then for all integers j, l such that 0 ≤ j < l, the following
hold: (1) If XPX> � P then X lP (X>)l � XjP (X>)j;
(2) If XPX> � P then X lP (X>)l � XjP (X>)j.

PROOF. The two statements are symmetric and so we
will just prove the first; the proof of the second is the
same except with the inequalities reversed. We first show
by induction that XiP (X>)i � Xi−1P (X>)i−1. The
statement holds for i = 1. Assume it holds for i = k.
Following the same argument as in [8, Obs. 7.1.6], we
know that given that A,B � 0 and C ∈ Cn×m, we have
A � B =⇒ C∗AC � C∗BC As a result,

XkP (X>)k � Xk−1P (X>)k−1 =⇒
XXkP (X>)k(X>) � XXk−1P (X>)k−1X>.

Therefore, the claim holds for i = k + 1. Applying this
recursively creates a sequence of orderings and the state-
ment to be proven follows. 2

PROOF. [Proof of Theorem 13] The value of empty set

is easy to see, F (Ω∅0(Σ0)) = log
(

det(Σ0) det(Σ−1
0 )
)

= 0.

Take A ⊂ B where B is a sequence of measurements.
Let B = (1, . . . , b), with the corresponding measure-
ments {Di}i∈B , and {A(i)}ai=1 are the indices in B that
are part of A. Note that by definition of a subsequence,
A(i) < A(i+1) for all i, i.e., the order in which elements
appear in B must be the same as the order in which
they appear in A. For monotonicity, the requirement is
F (A) ≤ F (B):

log
(

det(Σ0) det(ΩAa )−1
)
≤ log

(
det(Σ0) det(ΩBb )−1

)
⇐⇒ det(ΩAa ) ≥ det(ΩBb )

7



For submodularity, the requirement is F (A‖x)−F (A) ≥
F (B ‖ x)− F (B). This can be written as,

log det(ΩAxa+1)−1 − log det(ΩAa )−1

≥ log det(ΩBxb+1)−1 − log det(ΩBb )−1

which is satisfied if and only if

log
(

det(ΩAxa+1)−1 det(ΩAa )
)
≥ log

(
det(ΩBxb+1)−1 det(ΩBb )

)
.

Now, applying the covariance update (3), we have

ΩAxa+1(Σ0) = Ωx1(ΩAa ) =
(
(AΩAaA

>)−1 +Dx

)−1
,

ΩBxb+1(Σ0) = Ωx1(ΩBb ) =
(
(AΩBb A

>)−1 +Dx

)−1
.

Substituting back and multiplying both sides by
det(A) det(A>), the condition for submodularity be-
comes

det(AΩAaA
>)det((AΩAaA

>)−1 +Dx)

≥ det(AΩBb A
>)det((AΩBb A

>)−1 +Dx).

Thus, we have submodularity if and only if the fol-
lowing is satisfied det(I + (AΩAaA

>)Dx) ≥ det(I +
(AΩBb A

>)Dx) Taking Dx := L>L (since Dx � 0) and
applying the matrix determinant lemma 2 , the con-
dition becomes det(I + (LA)ΩAa (LA)>) ≥ det(I +
(LA)ΩBb (LA)>). A sufficient condition for both mono-
tonicity and submodularity to hold then is ΩAa � ΩBb .
Applying (7), this is equivalent to

(A−>)aΣ−1
0 A−a +

a∑
i=1

(A−>)(a−i)DA(i)A
−(a−i)

� (A−>)bΣ−1
0 A−b +

b∑
j=1

(A−>)(b−j)DjA
−(b−j).

(A.1)

Now, let’s look at the individual terms in inequal-
ity (A.1). We have Σ0 � 0 and a ≤ b. Assuming that
AΣ0A

> � Σ0 we can apply Lemma 16 to find that
AaΣ0(A>)a � AbΣ0(A>)b. Taking the inverse of both
sides (which requires that A is full rank) we obtain

(A−>)aΣ−1
0 A−a � (A−>)bΣ−1

0 A−b.

For every A(i), the term DA(i) will appear on both sides
of inequality (A.1). We can show that (a− i) ≤ (b− j).
Since A ⊂ B, the first element of A (i = 1) can be at
most in position b − a + 1 in B. Similarly, the second
element in A can be at most in position b− a+ 2 in B.

2 Given An×n, Un×k and Vn×k, if A−1 exists, then det(A+
UV >) = det(I + V >A−1U) det(A). If A = I, this is
Sylvester’s Theorem of Determinants.

Therefore, the inequality j ≤ b− a+ i holds. Assuming
thatA−>DA(i)A

−1 � DA(i), since we know thatDA(i) �
0, we can apply Lemma 16 again to obtain

(A−>)a−iDA(i)A
−(a−i) � (A−>)b−jDA(i)A

−(b−j).

Note that the conditionA−>DA(i)A
−1 � DA(i) is equiv-

alent to A>DA(i)A � DA(i).

Therefore, under the assumptions made, the inequality
(A.1) holds and the function is monotone non-decreasing
and submodular. 2

Acknowledgements

This research is partially supported by the Natural Sci-
ences and Engineering Research Council of Canada.

References

[1] S. Alaei and A. Malekian. Maximizing sequence-submodular
functions and its application to online advertising. CoRR,
abs/1009.4153v1, 2010.

[2] M. Athans. On the determination of optimal costly
measurement strategies for linear stochastic systems.
Automatica, 8(4):397–412, 1972.

[3] A. Carmi and P. Gurfil. Sensor selection via compressed
sensing. Automatica, 49(11):3304 – 3314, 2013.

[4] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. An analysis
of approximations for maximizing submodular set functions
- II. In Polyhedral Combinatorics, volume 8 of Mathematical
Programming Studies, pages 73–87. 1978.

[5] D. Golovin and A. Krause. Adaptive submodularity:
theory and applications in active learning and stochastic
optimization. Journal of Artificial Intelligence Research,
42(1):427–486, 2011.

[6] V. Gupta, T. H. Chung, B. Hassibi, and R. M. Murray.
On a stochastic sensor selection algorithm with applications
in sensor scheduling and sensor coverage. Automatica,
42(2):251–260, 2006.

[7] J. P. Hespanha. Linear systems theory. Princeton University
Press, 2009.

[8] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge
University Press, 2010.

[9] M. F. Huber, A. Kuwertz, F. Sawo, and U. D. Hanebeck.
Distributed greedy sensor scheduling for model-based
reconstruction of space-time continuous physical phenomena.
In Int. Conf. on Information Fusion, pages 102 –109, 2009.

[10] S. T. Jawaid and S. L. Smith. A complete algorithm for
the infinite horizon sensor scheduling problem. In American
Control Conference, pages 437–442, Portland, OR, June 2014.

[11] S. T. Jawaid and S. L. Smith. On the submodularity of sensor
scheduling for estimation of linear dynamical systems. In
American Control Conference, pages 4139–4144, Portland,
OR, June 2014.

[12] S. Joshi and S. Boyd. Sensor selection via convex
optimization. IEEE Transactions on Signal Processing,
57(2):451–462, 2009.

8



[13] Y. Mo, R. Ambrosino, and B. Sinopoli. Sensor selection
strategies for state estimation in energy constrained wireless
sensor networks. Automatica, 47(7):1330–1338, 2011.

[14] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis
of approximations for maximizing submodular set functions
- I. Mathematical Programming, 14:265–294, 1978.

[15] L. Orihuela, A. Barreiro, F. Gómez-Estern, and F. R. Rubio.
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