
Multi-Robot Task Planning and Sequencing using the SAT-TSP Language

Frank Imeson Stephen L. Smith

Abstract— The SAT-TSP language was recently proposed [1]
for expressing and solving high-level robotic path planning
problems. In this paper we show how different constraints
that commonly appear in path planning problems, such as set
constraints, counting constraints, and ordering constraints can
all be expressed in the SAT-TSP language. We also show how
the language can be used to express multi-robot path planning
problems. We evaluate our existing solver approaches on test
problems that include a variety of complex constraints and we
demonstrate the language through a ROS implementation. We
also provide a new approach that reduces the SAT-TSP lan-
guage to the generalized traveling salesman problem language.
We show that this new approach outperforms our existing
approaches on problems that contain one-on-a-set constraints.

I. INTRODUCTION

High-level path planning arises in many robotic applica-
tions, from surveillance and monitoring for security and law
enforcement, to pickup and delivery problems in automated
warehousing. Much of the difficulty arises in finding a
language in which the problems can be specified, and for
which an algorithm exists to compute optimal (or near
optimal) paths for the robot. Researchers often leverage a
set of common languages for their high-level path planning
problems, such as the traveling salesman problem (TSP), the
generalized traveling salesman problem (GTSP) and Linear
Temporal Logic (LTL).

The TSP language is commonly used to minimize the
path length through a set of waypoints, such as reducing
the amount of motion of a robotic arm [2], minimizing the
path to search an area [3], or patrolling an environment [4].
The GTSP language is often used to express one-in-a-set
problems where, for example, pictures need to be taken
of several different objects, and each object can be viewed
from one of several vantage points [5]. The LTL language
has traditionally been used for general tasks in which there
are constraints on the time-evolution of the robot [6], [7].
More recent work has used LTL to specify optimization
problems that also include time-evolution constraints [8]. In
addition, the generalized TSP has been leveraged to solve
some fragment problems of the LTL language [9].

The practical design goals for a new language is to find a
balance between the expressivity of the language, i.e., what
problems can be easily expressed, and the computational ef-
ficiency of the solvers, i.e., what problems can be efficiently
solved. In [1] we introduced the new language SAT-TSP to
allow for the natural expression of logic and transition costs
— both commonly needed for path planning problems. The

This research is partially supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

The authors are with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo ON, N2L 3G1 Canada
(fcimeson@uwaterloo.ca; stephen.smith@uwaterloo.ca)

language does this by taking as input a graph G, a Boolean
formula F and a budget c. The input instance is satisfiable if
there exists a tour on the graph G of cost less than or equal
to c such that a vertex is included in the tour if and only
it’s corresponding variable in the solution to F is assigned
true. The SAT-TSP language is expressive in the practical
sense, because it is easy to express logic and transition costs.
However, one may be unfamiliar with how to express logic
constraints in the SAT language or how the combination of
the SAT formula and the TSP graph can be used to express
more complex problems. In this paper we aim provide a
series of examples that demonstrate the expressivity of the
language by showing how common path planning problems
and constraints can be expressed in the SAT-TSP language.

We also introduce a new approach to better handle GTSP

instances. In [1] we have shown that all our existing solver
approaches have difficulty on GTSP problems. However, these
problems occur frequently in monitoring/surveillance appli-
cations [5], [9] and in problems where vehicles have non-
trivial dynamics [10]. Our new approach consists of reducing
the SAT-TSP language to the GTSP language, which we show
performs well on GTSP instances and continues to perform
well even when the GTSP instance has some additional SAT

constraints.
The contributions of this paper are as follows. We provide

a new reduction of the SAT-TSP language to the GTSP language
and evaluate the performance of this approach. We also
provide a series of application examples that demonstrate
how to express robotic path planning problems in the SAT-TSP

language. Specifically, we demonstrate expressions of set
constraints, counting constraints, ordering constraints and
multi-robot path planning problems. We also provide a video
demonstration of our ROS implementation on a subset of
these applications using Gazebo [11].

II. BACKGROUND

In this section we review the previous work [1] and some
background concepts. The concepts reviewed include the
SAT, TSP, GTSP and SAT-TSP languages.

The Boolean satisfiability problem SAT is expressed as
a Boolean formula that contains literals and operators. A
literal is either a Boolean variable (xi) or its negation (¬xi).
The operators conjunction (∧, and), disjunction (∨, or) and
negation (¬, not) operate on the literals and other Boolean
formulae. An assignment of the variables (true or false)
results in the formula being satisfied (true) or not (false).
SAT = {〈F 〉 : F is a satisfiable Boolean formula}.

The traveling salesman problem (TSP) is traditionally
posed as the following problem: given a set of cities and
distances between each pair of cities, find the shortest
possible path that the salesman can take to visit each city

exactly once and return to the first city. The generalized
traveling salesman problem (GTSP) is an extension of TSP

to allow for sets of cities such that a solution only visits one
city in each set.
TSP = {〈G, c〉 : G = 〈V,E,w〉 is a complete graph with

edge weights w : E → R≥0. Then G contains a cycle that
visits every vertex exactly once with cost at most c}.

GTSP = {〈G,S, c〉 : G = 〈V,E,w〉 is a complete and
weighted graph, V = S1 ∪S2 ∪ ...∪Sm and Si ∩Sj = ∅ for
every pair Si, Sj ∈ S. Then G contains a cycle that visits
exactly one vertex in each set Si and has cost at most c}.

We introduced the language SAT-TSP in [1]. It is a combi-
nation of the SAT and TSP language, such that the subset of
the variables {x1, x2, . . . , x|V |} in the SAT instance represent
the inclusion/exclusion of vertices in the TSP tour.

SAT-TSP = {〈G,F, c〉 : G = 〈V,E,w〉 is a complete
and weighted graph, F is a Boolean formula with variables
X such that |X| ≥ |V |. Then there exists a satisfying
assignment of X and G contains a cycle of {vi ∈ V |xi = 1}
with cost at most c}.

III. A GTSP APPROACH FOR SOLVING SAT-TSP

In this section we present the translation of a SAT-TSP

instance 〈G,F, c, vs〉 to a GTSP instance 〈G′, S′〉, where
vs ∈ V is assumed to be in the SAT-TSP solution. Each
assumption for vs ∈ V is tested, until either a solution is
found or an unsatisfiable result is returned. The translation
reduces clauses and variable assignments to sets. A graph G′

is also created to accommodate the sets and mimic transitions
in G. In the graph G′ we create two vertices vTi , v

F
i for each

variable xi ∈ X , which we refer to as the root vertices.
We also create a vertex for every literal in the formula,
specifically the vertex vTi,a refers to the literal xi in clause a
and vFi,b refers to the literal ¬xi in clause b. These vertices are
referred to as the vertex literals and we use them to encode
each clause ca as a set {vδi,a ∈ V ′} for δ ∈ {T, F} and fixed
a. We also have a set {vTi , vFi } for each variable xi ∈ X to
ensure either a true or false assignment.

Before we continue with the construction of graph G′, let
us create to two sets of vertices V ′α = {vTk ∈ V ′|vk ∈ V }
and V ′β = {vδk ∈ V ′|vδk 6∈ V ′α} for δ ∈ {T, F}, to help us
describe how the root vertices are connected. We use these
sets to explicitly describe how the root vertices pertaining to
included vertices V ′α in G′ are connected as V is in G and
that the remaining root vertices V ′β are fully connected with
zero weight edges. Then these two sets are connected in such
a way to allow for the solution tour to close with the same
cost as it would in the SAT-TSP instance. Figure 1 shows a
small example of the connections between root vertices and
the following list explicitly enumerates the details of these
connections:

1)
〈
vTi , v

T
j

〉
∈ E′ with weight w(vi, vj) for vTi , v

T
j ∈ V ′α

if and only if 〈vi, vj〉 ∈ E
2)
〈
vδi , v

θ
j

〉
∈ E′ with weight 0 for vδi ∈ V ′β , vθj ∈ V ′β \vδi

3)
〈
vTi , v

δ
j

〉
∈ E′ with weight w(vi, vs) for vTi ∈

V ′α, v
δ
j ∈ V ′β

4)
〈
vδi , v

T
s

〉
∈ E′ with weight zero for vδi ∈ V ′β , vTs ∈ V ′α

Fig. 1: This figure shows an example of the connections between the root
vertices in the GTSP graph instance. Every vertex vTi ∈ V ′

α connects to
every vertex in vδj ∈ V ′

β with edge weight w(vi, vs) and every vδi ∈ V ′
β

connects to vertex vTs ∈ V ′
α with zero edge weight. The dotted edges all

have zero edge weights.

Fig. 2: This figure shows an example of the connections between the root
vertex and it’s literals. The vertices connected with dotted edges have zero
edge weight and the solid edges have weight w(vTi , v

T
j).

Each vertex root vδi is connected to it’s vertex literals vδi,a
with zero weight edges and that group of vertex literals is
fully connected to each other with zero weight edges. Fur-
thermore a vertex literal is connected to other root vertices
if and only if it’s root vertex is connected. Figure 2 shows
a small example of the vertex literal connections and the
following list explicitly enumerates these connections:

1)
〈
vδi , v

δ
i,a

〉
∈ E′ with weight 0 for vδi , v

δ
i,a ∈ V ′

2)
〈
vδi,a, v

δ
i,b

〉
∈ E′ with weight 0 for vδi,a ∈ V ′, vδi,b ∈

V ′ \ vδi,a
3)
〈
vδi,a, v

θ
j

〉
∈ E′ with weight w′(vδi , v

θ
j) for vδi,a ∈

V ′, vθj ∈ V ′ \ vδi if and only if
〈
vδi , v

θ
j

〉
∈ E′

This construction ensures that a vertex literal vδi,a can only
be visited if the vertex vδi is first visited.

In the special case that the set of literal vertices {vδi,a ∈
V ′} for fixed i and fixed δ ∈ {T, F} has cardinally one,
then the root vertex can be replaced with the vertex literal.
Proper book keeping will be needed to reflect this change.
Lemma III.1. The following hold for the GTSP translation:

(i) The instance is constructed in O(|X∪L|2) time, where
X is the set of variables in F and L is the set of literals
in F .

(ii) A GTSP solution translates to a solution for the SAT-TSP

instance.
(iii) A SAT-TSP solution including vs in the solution trans-

lates to a solution for the GTSP instance.

Proof. We will establish each of the three results in turn.
Proof of (i): The graph G′ has 2|X| + |L| vertices and

thus at most O(|X ∪ L|2) edges. The sets have 2|X| + |L|
elements. Since the graph and the sets are constructed with
no additional calculations the translation requires O(|X ∪
L|2) time to construct.

Proof of (ii): Given a GTSP solution ζ = ζδ1 , ζ
δ
2 , ζ

δ
3 , it

translates to a SAT-TSP solution as follows: For every ζδi = vδj ,

if δ = T assign xj = 1 otherwise assign xj = 0 (False).
Construct the SAT-TSP tour as η = ζ1, ζ2, ζ3, . . . for all
ζδi = vTj if vj ∈ V — preserve the ordering of ζi in the
tour. This assignment and tour η is a solution to the SAT-TSP

instance. Each variable in F only has one assignment since
only one vertex in the set {vTi , vFi } can be visited and each
clause c is satisfied by this assignment since there is a vertex
literal visited in each clause set that corresponds with a true
literal in the clause. The cost constraint is satisfied since
the GTSP tour has the same cost as the SAT-TSP tour. This is
apparent from the construction of G′, the cost to transition
from an included vertex to an included vertex is the same
as transitioning from vertex to vertex in G and the cost to
transition from an included vertex to a non-included vertex
is the same as transitioning back to the starting vertex.

Proof of (iii): Given a SAT-TSP solution ζ = ζ1, ζ2, . . . , ζm
for the tour and a set of assignments for variables xi ∈ F .
The solution translates to GTSP solution as follows: construct
the tour of the included root vertices (V ′α) followed by the
rest of the root vertices (V ′β). Then traverse the tour and
insert visits to vertex literals vδi,a in between root vertices
if no other vσj,a has been visited in the clause set. This tour
is a solution to the GTSP problem instance since for each
clause there must exist at least one true literal, thus the
corresponding set has at least one vertex literal it could visit
in each clause set(for no additional cost). Finally the sets
{vTi , vFi } are visited only once since every variable xi only
has one assignment. The cost constraint is satisfied since the
costs are the same as discussed in (ii).

Theorem III.2. This translation is a reduction from SAT-TSP

to GTSP with vertex vs assumed to be in the solution.
Specifically, the translation requires polynomial time and
there exists a solution to the SAT-TSP instance if and only if
there is a solution to the GTSP instance. Moreover, the GTSP

and SAT-TSP solutions have the same costs and thus have the
same minimum and maximum solutions.

Proof. The proof follows directly from Lemma III.1 and by
the construction of the graph — it has edges with the same
costs.

IV. APPLICATIONS

In this section we demonstrate how to use the SAT-TSP

language by expressing a set of example path planning
problems in the SAT-TSP language. The SAT-TSP language is
comprised of both the SAT and TSP languages and as a rule
of thumb the SAT language expresses logic well and the TSP

language expresses transition costs well.
In the rest of this section we demonstrate the expression of

set constraints, counting constraints, ordered constraints and
multi-robot constraints in the SAT-TSP language. All of these
constraints can be combined with each other or with any
other set of constraint expressible in the SAT-TSP language.

A. Sets Constraints

Many problems often have set constraints. To express set
constraints in SAT-TSP we start with an example, suppose we
have a set S = {e1, e2, . . . , en} and we wish to include

A
B S

COUT

XOR gate:

AND gate:

Fig. 3: Adder circuit: Takes Boolean input variables A and B, outputs
summation S and the carry out bit COUT .

at least one of these elements in the solution. This is
accomplished by adding the clause (xe1 ∨ xe2 ∨ · · · ∨ xen)
to the formula, where xei represents the inclusion/exclu-
sion of ei in the solution. Suppose instead we wish to
include exactly one element from this set. Then the formula
(
∨n
i=1(xei

∧n
j=1,j 6=i ¬xej)) encodes this constraint, where

the notation
∨n
i=1 represents disjunction of the series of

elements over index i and the notation
∧n
j=1 represents the

conjunction of the series of elements over index j. We may
also be interested in creating set constraints that visit at most
one in a set (possibly none). This is done by adding the
clause: (¬xe1 ∨ ¬xe2 ∨ · · · ∨ ¬xen) to the exactly one in a
set constraint formula. The at least one in a set constraint
yields a formula of size O(n) and the exactly one in a set
or at most one in a set constraint has size O(n2).

We can introduce additional variables to create more so-
phisticated yet efficient set constraints. For example suppose
we have the set of items {o1, o2, . . . , o6}, where the items
(o1 and o2) are square in shape, (o3 and o4) are cylindrical,
(o5 and o6) are spherical, (o1, o3 and o5) are red in color
and (o2, o4 and o6) are green. Then we may wish for the
robot to collect one of each shape, all of the same color. To
express this problem we first create two indicator variables
xr and xg to represent the collection of at least one red
and at least one green item respectively. Then the following
set of clauses encode the above constraints. The clauses
(xo1 ∨ xo2) ∧ (xo3 ∨ xo4) ∧ (xo5 ∨ xo6) constrains the
solution to contain at least one of each shape, the clauses
(xr ∨ xg) ∧ ((xr ∧ ¬xg) ∨ (¬xr ∧ xg)) restricts the choice
of color to either red or green (exactly one in a set) and the
clauses ((xo1 ∨xo3 ∨xo5) =⇒ xr)∧((xo2 ∨xo4 ∨xo6) =⇒
xg) constrain the color indicator variables to be true if an
item of that color is visited.

B. Counting Constraints

We can also express counting constraints as a Boolean
formula. To construct the formula we look to digital circuits
for inspiration. Figure 3 shows a digital adder circuit that
takes two inputs A and B, adds them together and outputs the
sum S and the carry bit COUT . To construct a larger adder
circuit, we chain a series of basic adder circuits together as
shown in Figure 4.

Suppose we wish for our robot to collect three items from
the set of red items o1, o2, o3, o4. Then we can construct
a circuit to count the number of collected items, Figure 4
shows the summation circuit counting the red items for the
least significant digit of the count. The circuit takes as inputs,
signals that represents the inclusion (high for included, low
for excluded) and outputs the zero bit r0 used in the binary
representation of the count (number of true inputs = r0 +

Fig. 4: A sub-circuit of the red counter circuit that represents the the least
significant digit of the count.

2r1 + 22r2). The carry out bits x4, x5 and x6 are used as
input for the next significant digit summation circuit.

To constrain the red count to be exactly three, the follow-
ing clauses (r0)∧ (r1)∧ (¬r2) are added to the SAT formula.

Each significant digit in the counting circuit requires n−1
adders for n inputs, which adds up to n(n− 1)/2 adders for
the entire circuit. The transformation of the circuit to a SAT

formula is linear [12]. Therefore, counting constraints on n
variables requires a formula of size O(n2).

Instead of an exact count, we may have instead wanted to
constrain the count to be three or less. To accomplish this
we would force the most significant bits to be false (the third
bit and up) by adding the following clauses to the formula:
(¬r2). Or if one wanted a greater than constraint one would
count the number of low (false) inputs and negate the higher
bits.

C. Ordering Constraints

The SAT-TSP language can also be used to express ordering
constraints of the form vi < vj (vi must precede vj). To do
so, the knowledge of a starting vertex vs is required (first
vertex in solution tour), if one does not have this knowledge
then a separate reduction can be done for each vs ∈ V and
the best result is returned.

This method produces a SAT-TSP instance 〈G′, F ′〉. The
graph G′ is constructed with |V \{vs}| copies of the induced
subgraph of G with vertices V \ {vs}. Each copy represents
a level and has it’s own set of unique labels. The solution
can only traverse the levels in sequential order. As such, the
vertices in level λ are labeled vλi . Vertex vs is added to the
graph as v0s to represent the starting vertex vs on level 0. Each
adjacent level is connected in increasing order with directed
edges and each vertex is also connected back to v0s . Figure 5
shows a small example of the connections and the following
list explicitly enumerates the details of these connections:

1)
〈
vλi , v

λ
j

〉
∈ E′ with weight w(vi, vj) for vλi , v

λ
j ∈ V ′

if and only if 〈vi, vj〉 ∈ E
2)
〈
vλi , v

λ+1
j

〉
∈ E′ with weight w(vi, vj) for vλi , v

λ+1
j ∈

V ′ if and only if 〈vi, vj〉 ∈ E
3)
〈
vλi , v

0
s

〉
∈ E′ with weight w(vi, vs) for vλi ∈ V ′ if

and only if 〈vi, vs〉 ∈ E
The entire graph has O(|V |2) vertices and O(|V ||E|)

edges.
To ensure at most one vertex in the set of copies

{v1i , v2i , . . . , v
|V \{vs}|
i } is visited for every vi ∈ V we add

the at most one constraint to the formula for each set as
described in Section IV-A, which contributes O(|V |3) literals

Fig. 5: An example of how levels (copies of G) are connected in the SAT-TSP
graph G′. The bold arrows indicate that every vertex connected to the tail
end of the arrow is connected to every vertex connected to the head of the
arrow.

to the formula F ′. To ensure the vertex orderings are not
violated we add negation clauses to disallow any vertex
pair that violates any ordering. For example suppose vertex
va must precede vertex vb in the solution, then we negate
every combination of vλa and vσb such that λ ≥ σ (negation
clause: ¬(xvλa ∧ xvσb)). There are O(|V |2) such negation
clauses for each ordering constraint. In the case that we
have a precedence constraint for a set of vertices A =
{va1 , va2 , . . . , va|A|} and a set B = {vb1 , vb2 , . . . , vb|B|},
such that every vertex va ∈ A must precede every vertex
vb ∈ B, then we can use indicator variables to reduce the
number of negation clauses from O(|A||B||V |2) to O(|V |2).

To demonstrate let us create the set of indicator variables
xλA ∈ {x0A, x1A, . . . , x

|V |
A } and xλB ∈ {x0B , x1B , . . . , x

|V |
B } to

represent if a vertex in set A or B is visited on level λ
respectively. Then we can negate the indicators instead of
the vertex pairs to produce only O(|V |2) negation clauses.
This is done with the clauses: ¬(xλA ∧ xσB) for all λ ≥ σ.
The indicator variable x1A is constrained with the clauses
(x1va1 ∨x

1
va2
∨ . . .∨x1va|A|

) =⇒ x1A and the other indicators
are likewise constrained to add to the formula size O(|V |2)
literals. Therefore using this method keeps the size of the
ordered constraint formula down to O(|V |2).

A solution to the above SAT-TSP expression will satisfy the
orderings since all sub-graphs derived from solutions to the
SAT formula cannot violate the ordering. The solution also
has the equivalent cost since the corresponding transition in
G′ are equivalent to the original graph G.

D. Multiple Robots
Many multi-robot path planning problems can be ex-

pressed in the SAT-TSP language. Specifically, we can express
problems consisting of heterogeneous robots with different
capabilities. We can also express location-robot conflicts that
state which locations must be visited by the same robot
or which locations cannot be visited by the same robot.
Capability constraints can be as simple as a location vi
can be visited by a robot only if the robot possesses a
set of capabilities a(vi). Alternatively, the requirements of
location vi can be some arbitrarily complex SAT formula
of the abilities. The location-robot constraints may also be
arbitrarily complex.

Given a problem with V = {v1, v2, . . . , v|V |} locations,
R = {r1, r2, . . . , r|R|} robots, a transition graph Gx, a start
and a finish location vxs , v

x
f and a set of abilities a(rx) ⊆

{a1, a2, . . . , ao} for each robot x. We setup the SAT-TSP

instance 〈G′, F ′〉 by first constructing the graph G′ as the
union of the robot’s transition graphs G1 ∪G2 ∪ . . .∪G|R|,
with all incoming edges to the set of start locations and all
outgoing edges from the set of finish locations removed and
then for each robot rx we connect the finish vertex vxf to the
next robot’s start vertex vx+1

s with zero weight.
The formula F ′ requires an at-most-one-in-a-set con-

straint for each set of variables representing the set
{v1i , v2i , . . . , v

|R|
i } for each vi ∈ V — no two robot’s

are allowed to visit the same vertex. Then the instance is
constrained to start with the the first robot’s start vertex and
finish with the last robot’s finish vertex. Now the instance
is setup to to handle the set of ability and location-robot
constraints. As an example of a multi-robot path planning
problem that can be expressed in this way, refer to Section V
where we restrict a class of items (shapes) from the robot’s
abilities and we restrict visiting more than one location that
contains an item of the same color.

V. SIMULATIONS

In this section we present a set of simulations to bench-
mark the GTSP approach against the CSP approach found
in [1]. We choose to compare the GTSP approach against
the CSP approach because it is our most successful solver
on general SAT-TSP instances. In each simulation we have
a set of locations for one or more robots to visit. At each
location (excluding the home locations) there is an item for
the robot to retrieve. This item has both shape and color.
There are three possible shapes: cube, ball or cylinder and
eight possible colors: red, green, blue. . . . Both the shape and
color aspects are used to help constrain the problems. The
robot is then tasked with finding a tour of minimum length
that collects a set of items to satisfy the problem constraints.
For example, find a minimum length tour that collects one
cube, one ball and one cylinder.

In the rest of this section we present four types of path
planning problems, the two simulated physical environments
used for the problems, and the performance results of the
GTSP and CSP approaches on these problems. We have also
provided an attachment video that demonstrates two problem
solutions in the ROS environment.

A. The Environments

To construct problems that resemble real-world robotic
applications we convert the following environments to graphs
with edge weights that represent the shortest distance in free
space between locations (the geodesic distance) to be used
in our simulations.

1) The Unit Square: Shown on the left of Figure 6, the
robot is able to move within the two dimensional space
x ∈ [0, 1] and y ∈ [0, 1]. The locations are randomly
placed within the square. There is one location dedicated to
each robot as home, the rest of the locations are for items.
Each item location has an item of random shape and color.
This type of environment emulates the types of problem
environments that have little to no obstacles for the robot
to avoid and little to no predictability of the tasks.

*

*

**

*
*

*

*

*

*

*
*

*

*

*

(a) Square Environment

*
* *

*
* *

*
* *

*
* *

*
* *

*
* *

*
* *

*
* *

(b) Pod Environment

Fig. 6: The two environments used for testing. Each environment represents
a two dimensional space. The robot can drive in the white areas, black areas
are obstacles. The small dots represent the item locations.

2) The Pod Environment: Shown on the right of Figure 6,
there are eight circular “pods”, each of which contains three
item locations — 24 item locations in total. There is a prede-
termined set of items: one of each shape/color combination.
The set of items are randomly distributed among the 24
item locations and a home location near the center of the
environment is added for each robot. This environment is
meant to emulate the office or industrial environment where
there is a predetermined set of locations and tasks. This
environment is also used in our ROS simulation.

B. The Problems
The set of problems we use in our simulations are the

set of applications we demonstrated in Section IV. Each
problem uses the shape and color information to construct
the constraints. The problems are as follows.

1) Sets: The robot must retrieve one item of each shape
(cube, ball, cylinder). The set of items the robot brings back
must all have the same color.

2) Counting: The robot must retrieve one cube, two balls
and three cylinders.

3) Ordered: The robot must retrieve one cube, two balls
and three cylinders. All cubes must be visited before balls
and all balls must be visited before cylinders.

4) Two Robots: The robots must retrieve one cube, two
balls and three cylinders. The first robot cannot pickup up
cubes, the second robot cannot pickup balls and no robot can
pickup more than one item of the same color.

C. GTSP Simulations
To explore how well the GTSP approach works, we con-

structed a series of randomly generated GTSP instances with
100 vertices divided into a random number of sets ranging
from 10 to 20. The graph is generated from our unit
square environment and the GTSP instance is encoded as a
SAT-TSP instance. We then add a series of randomly generated
negation constraints. The constraints negate pairs of vertices
in separate sets (both vertices cannot appear in the solution).
The addition of these clauses help us explore how the solver
performance degrades (if at all) as the instance transitions
from a GTSP instance to a more constrained problem.

D. The Results
The results we show in this section are from the solver

approaches GTSP and CSP. We show the cost of the best
solutions and the time to find these solutions.

TABLE I: This table presents the time taken for the GTSP and CSP solvers
to find the optimal solution in the square environment. Results are averaged
over ten runs. The size of the problem indicates how many locations are in
the problem and a ’-’ is used to indicate that no solution was found.

Time (seconds)
Problem Size GTSP CSP
Sets 20 48.4 0.572
Sets 50 105 45.2
Counting 20 - 40.1
Counting 50 - 486
Ordered 10 - 42.4
Two Robots 20 48.5 0.806
Two Robots 50 105 39.9

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 50 100 150 200 250 300 350 400

S
ol

ve
r

T
im

e
(s

ec
)

Additional Literals

GTSP
CSP

Fig. 7: This graph plots the solver times of the GTSP approach and the CSP
approach with respect the number of added literals to the GTSP instance.

The CSP solver we used is Gecode’s flatzinc’s inter-
preter [13]. The GTSP solver we use is a custom solver
based on large neighborhood search, which is currently being
developed by the authors and appears competitive with the
state-of-the-art solvers [14], [15].

Table I shows average time of the two approaches on the
application problems. As we can see the GTSP approach did
not perform as well as the CSP approach on our application
problems. Typically, the solver took both more time and
yielded a lower quality solution. This is likely due to the
fact that the transformation to GTSP produces many zero
and infinite cost edges, which is typically challenging for
neighborhood search-based solvers. In general neither the
GTSP or CSP approach was able to find optimal solutions for
the larger ordered instances.

As we can see in Figures 7 and 8 the GTSP approach
performs better on problems that initially have some structure
similar to a GTSP. These figures compare CSP to GTSP

performance for instances that are more or less constrained
GTSP instances (more or less additional literals). These figures
also show that as the problem becomes more constrained,
the benefit of choosing the GTSP approach diminishes and
as in the case of our application examples the problem is
constrained enough to warrant the choice of the CSP approach
over the GTSP approach.

VI. CONCLUSION

We have provided a series of application examples to
help the user understand what types of problems can be ex-
pressed in the SAT-TSP language and what types of problems
the SAT-TSP solvers handle well. We have also provided a

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 50 100 150 200 250 300 350 400

R
at

io
 o

f T
ou

r
C

os
t

Additional Literals

CSP/GTSP

Fig. 8: This graph plots the CSP:GTSP cost ratio with respect to the number
of additional literals in the GTSP instance.

new approach to solving SAT-TSP instances that works well
on problems that have structure similar to GTSP instances.
Specifically, we have shown that when the user has a GTSP

instance with some additional constraints, then the GTSP

approach is a good place to start.

REFERENCES

[1] F. Imeson and S. L. Smith, “A language for robot path planning in
discrete environments: The tsp with boolean satisfiability constraints,”
in Proceedings of the IEEE Conf. on Robotics and Automation, 2014.

[2] A. Zavichi, K. Madani, P. Xanthopoulos, and A. A. Oloufa, “Enhanced
crane operations in construction using service request optimization,”
Automation in Construction, vol. 47, pp. 69–77, 2014.

[3] H. Choset, “Coverage for robotics–a survey of recent results,” Annals
of mathematics and artificial intelligence, vol. 31, no. 1-4, pp. 113–
126, 2001.

[4] Y. Chevaleyre, “Theoretical analysis of the multi-agent patrolling
problem,” in IEEE/WIC/ACM Int. Conf. Intelligent Agent Technology,
Beijing, China, Sep. 2004, pp. 302–308.

[5] K. J. Obermeyer, P. Oberlin, and S. Darbha, “Sampling-based path
planning for a visual reconnaissance unmanned air vehicle,” Journal
of Guidance, Control, and Dynamics, vol. 35, no. 2, pp. 619–631,
2012.

[6] C. Belta, V. Isler, and G. J. Pappas, “Discrete abstractions for robot
motion planning and control in polygonal environments,” Robotics,
IEEE Transactions on, vol. 21, no. 5, pp. 864–874, 2005.

[7] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” Robotics, IEEE Trans-
actions on, vol. 25, no. 6, pp. 1370–1381, 2009.

[8] S. L. Smith, J. Tůmová, C. Belta, and D. Rus, “Optimal path planning
for surveillance with temporal-logic constraints,” The International
Journal of Robotics Research, vol. 30, no. 14, pp. 1695–1708, 2011.

[9] E. M. Wolff, U. Topcu, and R. M. Murray, “Optimal control of
non-deterministic systems for a computationally efficient fragment of
temporal logic,” in IEEE Conf. on Decision and Control, 2013.

[10] J. Le Ny, E. Feron, and E. Frazzoli, “On the dubins traveling salesman
problem.” IEEE Transactions on Automatic Control, vol. 57, no. 1, pp.
265–270, 2012.

[11] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in Intelligent Robots and Sys-
tems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International
Conference on, vol. 3. IEEE, 2004, pp. 2149–2154.

[12] M. N. Velev, “Efficient translation of boolean formulas to cnf in formal
verification of microprocessors,” in Proceedings of the 2004 Asia and
South Pacific Design Automation Conference. IEEE Press, 2004, pp.
310–315.

[13] G. Team, “Gecode: Generic constraint development environment,
2006,” 2008.

[14] G. Gutin and D. Karapetyan, “A memetic algorithm for the generalized
traveling salesman problem,” Natural Computing, vol. 9, no. 1, pp.
47–60, 2010.

[15] C. Noon and J. Bean, “An efficient transformation of the generalized
traveling salesman problem,” Ann Arbor, vol. 1001, pp. 48 109–2117,
1989.

