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Planning Paths for Package Delivery in
Heterogeneous Multi-Robot Teams
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Abstract—This paper addresses the task scheduling and path
planning problem for a team of cooperating vehicles performing
autonomous deliveries in urban environments. The cooperating
team comprises two vehicles with complementary capabilities,
a truck restricted to travel along a street network, and a
quadrotor micro-aerial vehicle of capacity one that can be
deployed from the truck to perform deliveries. The problem is
formulated as an optimal path planning problem on a graph
and the goal is to find the shortest cooperative route enabling
the quadrotor to deliver items at all requested locations. The
problem is shown to be NP-hard. A solution is then proposed
using a novel reduction to the Generalized Traveling Salesman
Problem, for which well-established heuristic solvers exist. The
heterogeneous delivery problem contains as a special case the
problem of scheduling deliveries from multiple static warehouses.
We propose two additional algorithms, based on enumeration
and a reduction to the traveling salesman problem, for this
special case. Simulation results compare the performance of
the presented algorithms and demonstrate examples of delivery
route computations over real urban street maps.

Note to Practitioners—This work presents a viable approach
to optimizing delivery routes for a coordinated team consisting
of a small aerial vehicle and a large ground vehicle. The large
ground vehicle provides long-range transport and support while
the small aerial vehicle completes the final leg of each delivery,
thereby reducing overall delivery time and fuel consumption.
The approach exploits well known methods from algorithmic
graph theory, to efficiently identify route savings that can be
achieved with the team over conventional single truck delivery.
Results are presented for multiple city environments, with clear
improvements in delivery time and total distance travelled
observed.

Index Terms—Optimal Path Planning, Generalized Traveling
Salesman Problem, Urban Delivery, Unmanned Aerial Vehicles.

I. INTRODUCTION

An emerging application for micro-aerial vehicles (MAVs)
is in performing autonomous deliveries in urban environments.
Indeed, preliminary studies of delivery costs per kilometer
seem to indicate that such an application is not only possible,
but may represent a significant savings for small packages [1].
As a result, a number of large retailers have recently an-
nounced plans to deploy MAVs for expedited small package
deliveries. While MAVs have the potential to significantly
enhance the speed of deliveries in urban environments as
well as the distribution of supplies or aid in inaccessible
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regions, a number of practical issues such as safety, security
and vehicle design still need to be addressed. Current MAV
systems are limited by small payload capacities and short
operating ranges that severely restrict the extent and efficiency
of an autonomous delivery network. Further, current safety
regulations usually restrict commercial drone flights to only
within line-of-sight of an operator.

In this paper, we propose to overcome these limitations by
introducing a heterogeneous delivery team of two cooperating
vehicles: a carrier truck and a carried MAV, such as a
quadrotor. The role of the truck is to carry a shipment of
packages to be delivered, as well as a docked MAV, and the
role of the MAV is to carry individual packages from the truck
to specific delivery points in the environment. By requiring
the MAV to perform only the last leg of the delivery, both
range and line-of-sight limitations can be accommodated. This
team architecture requires customized planning algorithms to
efficiently exploit the complementary capabilities of the two
vehicle types, and these algorithms are the focus of this work.

We assume that the MAV has a payload capacity of one
package and hence must return to the truck after each delivery.
We also assume that the truck is capable of recharging the
MAV after each delivery and that it has an operating range
sufficient for the entire delivery mission. We envision that
recharging will be done via battery swap to minimize the
delay between flights. These swaps could be done either by
a human operator, or by using autonomous battery swapping
mechanisms [2], [3].

The goal of this paper is to propose a framework to compute
a minimum cost cooperative route enabling the MAV to
visit each delivery point in the environment as efficiently as
possible. To this end, we will abstract the problem on a graph
and formulate the Heterogeneous Delivery Problem (HDP) as
a discrete optimal path planning problem. Solutions consist of
routes, computed for the truck and the quadrotor through the
graph, that minimize the total cost of deliveries.

A. Contributions

The contributions of this paper are threefold. First, we
formulate the HDP as a novel adaptation of a carrier-vehicle
system in a discrete environment. Second, we prove NP-
hardness of the HDP and present a solution based on an
efficient reduction to the Generalized Traveling Salesman
Problem (GTSP). The GTSP can then be solved using ex-
isting heuristic solvers. Finally, we examine a special case
of the HDP consisting of a single vehicle and multiple static
warehouses, called the Multiple Warehouse Delivery Problem
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(MWDP). We present two algorithms for the MWDP, one,
using an alternative transformation to the Traveling Salesman
Problem (TSP) and the other, a polynomial time exact algo-
rithm to compute an optimal delivery route.

A preliminary version of this paper appeared as the con-
ference paper [4]. This paper extends the conference version
with a more comprehensive review of related work, detailed
proofs of all results, a modified reduction to the GTSP to
enable computation of minimum-time delivery paths, and new
simulation results to investigate the advantages of the proposed
delivery team.

B. Related Work
The complementary capabilities of aerial and ground ve-

hicles has led to many works that propose coordinated team
operations. Cooperative control in heterogeneous multi-robot
teams has been investigated for applications like search and
rescue, surveillance, and exploration, target tracking and map-
ping [5], [6], [7], [8], where robots with complimentary
capabilities must coordinate actions to accomplish a common
goal. A recent survey [9] presents five separate categories
of UAV/UGV coordination problems including docking, map-
ping, distributed target tracking, formation control and task
assignment, of which task assignment [10] is the most relevant
to this work.

One of the main challenges with heterogeneous robotic
systems is the development of planning algorithms to complete
tasks efficiently. Collaborative UAV-UGV teams have been
proposed for persistent surveillance, where UAVs can occa-
sionally rendezvous and dock with UGVs to benefit from the
larger payload capacity and energy resources of UGVs [11],
[12]. Similarly, UAV-UGV teams have been proposed for
precision agriculture, where ground vehicle are said to mule
the aerial vehicles to convenient access points around the fields
from which to most quickly collect high-value plant health
data [13].

The HDP can be categorized as a static Vehicle Routing
Problem (VRP) with coordination constraints between the
two vehicles, and many problems within this class have been
studied [14], [15]. We do not consider dynamic or stochas-
tic variants [16], as the team structure requires all delivery
packages to be loaded into the ground vehicle in advance. As
detailed in the survey [15], these problems are solved using a
wide-variety of custom solver approaches, each tailored to the
specific problem assumptions. Approaches include mixed inte-
ger programming, branch-and-bound, branch-and-price, meta-
heuristics, and column generation. Unlike the prior work, the
HDP solution methods proposed in this work take advantage
of the tightly coupled nature of the team motion over the graph
to convert the problem to a single-vehicle generalized traveling
salesman problem (GTSP), such that more efficient solvers can
be employed. In particular, we able to directly apply highly-
optimized TSP solvers [17] that can exploit the geometric
structure of the problem rather than relying on general purpose
IP solvers.

Because of this coupled nature, the HDP can also be
considered a part of class of problems referred to as Carrier-
Vehicle Traveling Salesman Problems (CV-TSP), extensively

studied [18], [19], [20] in the context of a marine carrier
and an aircraft visiting a set of locations to conduct a rescue
mission in a planar environment. The CV-TSP is defined as a
continuous optimization for which solutions can be computed
using a sub-optimal heuristic to split the problem into two
tractable subproblems: first, a TSP to compute the optimal
visit order and second, a convex optimization to compute
the specific deployment points for the team in Euclidean
space. In [13], a similar class of TSP with neighbourhoods
problems are studied for UAV/UGV teams collecting precision
agriculture data.

In this work, by selecting a purely discrete formulation for
the HDP, a single optimization can be employed that com-
putes cooperative paths for both vehicles over large problem
instances. We solve this optimizing through a novel reduction
to the GTSP. The GTSP and its special case, the TSP, are both
NP-hard [21]. A commonly-used method for solving the GTSP
is the Noon-Bean Transformation, which reduces a GTSP
to a Traveling Salesman Problem (TSP), for which a wide
variety of algorithms can be applied. If the TSP edge lengths
satisfy the triangle inequality, then there exist constant-factor
approximation algorithms for the TSP. The best known is
Christofides’ algorithm [22], which gives a 3/2-factor approxi-
mation in O(n3) time, where n is the number of vertices in the
graph. In practice, methods based on Lin-Kernighan heuristic
are very effective and have been shown empirically to obtain
high-quality solutions in O(n2.2) time [23]. The most widely
used implementation is the Lin-Kernighan-Helsgaun (LKH)
heuristic [17]. Exact solvers also exist for the TSP, such as
the Concorde solver [23], which has solved problems on tens
of thousands of vertices. The exact solvers, however, are not
guaranteed to run in polynomial time. Finally, heuristic solvers
have been developed specifically for the GTSP [24]. The GTSP
appears in several different path planning problems in which
multiple robot configurations can be used to complete a given
task, including persistent surveillance [11], and heterogeneous
or multi-vehicle TSPs [25].

Organization: The organization of the paper is as follows.
Section II formulates the HDP as an optimal path planning
problem in a discrete environment. In Section III, the HDP is
proved to be NP-hard. Section IV presents the transformation
to the GTSP implemented to solve the HDP. Section V
presents two solutions for the MWDP and finally, Section
VI compares and benchmarks all proposed algorithms in
simulation.

C. Definitions and Nomenclature

A graph G = (V,E, c), consists of a set of vertices V , a set
of edges E, and a function c : E → R that assigns a cost to
each edge in E. In a directed graph, each edge is an ordered
pair of vertices (vi, vj) and is assigned a direction from vi to
vj . A partitioned graph, G, is a graph with a partition of its
vertex set into ` disjoint sets (V1, . . . , V`) where ∪`i=1Vi = V .

In this paper, we define a route in a graph to be any sequence
of vertices P = (v1, . . . , vk) linked by edges (vi, vi+1), i =
1, . . . , k − 1. Following [26], a walk is a route such that no
edge is traversed more than once. A path is a route where
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vi 6= vj for all i, j ∈ {1, . . . , k− 1}. A closed route is a route
in which v1 = vk. A tour is closed path that visits all vertices
in V exactly once.

Given a complete graph G = (V,E, c), the Traveling
Salesman Problem (TSP) computes a minimum cost tour
of G. Given a partitioned complete graph G = (V,E, c),
with a vertex partition (V1, . . . , V`), the Generalized Traveling
Salesman Problem (GTSP) computes a minimum cost closed
path, P , that visits exactly one vertex in each vertex set
Vi ⊂ V , i ∈ {1, . . . , `}.

II. THE HETEROGENEOUS DELIVERY PROBLEM (HDP)
The Heterogeneous Delivery Problem (HDP) is defined on

a directed graph G that represents the physical locations of
the delivery points, the location of a warehouse and a set of
drivable routes on a street network. An example HDP graph
is shown in Figure 1. The graph G contains the locations of

�✁
�✂

�✄

�☎

�✆

�✝

�✞

�✟

�✠

✡✠

✡✂

✡✄

✡✞

✡✟

✡✝

✡✆

Fig. 1. The Heterogeneous Delivery Problem. The street edges (solid lines)
are shown as either single or double arrows, that represent pairs of directed
edges. All flight edges (dashed lines) are bidirectional edges between vertices.

n delivery vertices, denoted by di, in set Vd (red vertices in
Figure 1), m street vertices, denoted by wi, in set Vw (blue
vertices in Figure 1), and a warehouse vertex, w0, where the
truck and quadrotor are initially located. The m street vertices
can be thought of as pre-selected locations at which the truck
can safely stop to deploy the quadrotor. The vertices, edges
and costs of G are defined as follows:

Vertices: The vertex set V is defined as a union of three
disjoint subsets V = V0∪Vw∪Vd where V0 = {w0}, |Vd| = n,
and |Vw| = m.

Edges: The edge set, E, is a union of two disjoint subsets,
E = Ew∪Ed. The set Ew contains a directed street edge of the
form (wi, wj) for every pair of street vertices wi, wj ∈ Vw, and
thus the induced subgraph over the vertex set Vw is complete.
These edges represent the shortest routes between each pair of
street vertices. The set Ed contains pairs of bidirectional flight
edges of the form (wi, dj) and (dj , wi), for all wi ∈ Vw and
dj ∈ Vd, if wi is a viable deployment vertex to reach delivery
point dj . These flight edges would have to be computed prior
to the first deployment, taking into account the range and line-
of-sight constraints. We define the set Wdi ⊂ Vw to be the set
of viable deployment vertices for each delivery point, di.

Edge Costs: For full generality, we define three types
of edge costs for the truck-quadrotor team. The reason for

defining the three different costs will become more apparent
in Section IV-C. A flight edge in Ed can be traversed only by
a quadrotor between a street vertex, wi, and a delivery vertex,
dj . A street edge in Ew may be traversed by the truck, either
carrying the quadrotor or traveling alone. Thus we define a
triple of costs C = (cq, ct, ctq) where cq : Ed → R≥0, assigns
a quadrotor travel cost to flight edges in Ed, ct : Ew →
R≥0 assigns a truck travel cost to street edges in Ew, and
ctq : Ew → R≥0 assigns a docked truck-quadrotor travel cost
on street edges in Ew. Since the street edges Ew represent
shortest paths between street vertices, we assume that the edge
costs ct and ctq each satisfy the triangle inequality.

We extend the definition of a graph from Section I-C to
a multi-weighted graph G = (V,E, C), where C is a triple
of costs. We formulate the HDP on G as the problem of
computing a route for the truck and a route for the quadrotor,
such that the truck stops at a sequence of delivery points
wi ∈ Vw at which the quadrotor can take-off, visit a delivery
point di ∈ Vd and return to the truck before the next
deployment. The goal is for the quadrotor to visit all n delivery
points and minimize the total delivery cost of the mission.

To make this definition more precise, let the quadrotor’s
route be a closed walk Pq along a sequence of unique edges
Eq ⊂ E and let the truck’s route be a tour Pt, with a sequence
of edges Et ⊂ E. Routes Pq and Pt share vertices at which
the truck and quadrotor meet and share edges during docked
travel. The HDP can be formalized as follows.

Problem II.1 (Heterogeneous Delivery Problem). Given G =
(V,E, C), where V = V0 ∪ Vw ∪ Vd, E = Ed ∪ Ew and
C = (ct, cq, ctq), compute a closed walk Pq and a closed path
Pt that start and end at w0, such that (i) Pq visits each di ∈ Vd
exactly once; (ii) Pt is a sequence of deployment vertices that
visits each unique wi ∈ Pq exactly once, and in the order
defined by the first visit to each wi in Pq; and (iii) The routes
collectively minimize

∑
e∈Eq\Et

cq(e) +
∑

e∈Et\Eq

ct(e) +
∑

e∈Eq∩Et

ctq(e). (1)

Remark II.2 (Objectives in the HDP). Objective (1) can be
used to capture metrics such as fuel consumption. In this
setting, the costs ct and ctq capture the fuel consumed by the
truck, and would typically be equal. The cost cq captures the
fuel consumed by the quadrotor, and would likely be negligible
when compared to the truck fuel consumption. However, the
freedom of having the three costs ct, ctq , and ct allows one
to penalize certain aspects of the solution, or achieve certain
desirable properties in the truck and quadrotor routes, and this
will be investigated further in Section IV-C. In Section IV-D
we discuss the minimum-time objective. �

III. PROOF OF NP-HARDNESS

To prove NP-hardness of the HDP, we will show that (i)
an instance of the TSP can be reduced to an instance of the
HDP, and (ii) an optimal HDP solution provides an optimal
TSP solution.
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(b) G = (V,E, C)

Fig. 2. A reduction from the TSP on graph G′ to the HDP on graph G.

Theorem III.1. The Heterogeneous Delivery problem is NP-
hard.

Proof. Let G′ = (V ′, E′, c′), with |V ′| = n, be an input to the
TSP. To prove (i), we give a polynomial-time transformation
of G′ into an input G = (V,E, C) of the HDP as shown in
Figure 2.

The HDP is constructed such that each delivery vertex,
di ∈ Vd corresponds to a vertex vi ∈ V ′, and has only one
unique viable street deployment vertex wj ∈Wdi ⊂ Vw. Thus,
construct the vertex set V = V0 ∪ Vd ∪ Vw, where |Vd| = n,
|Vw| = n and V0 contains an additional start vertex w0.

Now for each edge (vi, vj) in E′ with a cost c′(vi, vj),
add a sequence of directed edges to E, from di to dj , given
by (di, wi), (wi, wj), (wj , dj), denoting the feasible flight and
street edges, and resulting in a total cost of cq(di, wi) +
ctq(wi, wj) + cq(wj , dj). Let cq(e) = 0 for all flight edges
e = (di, wi) or e = (wi, di). For all street edges, e, we set
ct(e) = ctq(e) = c′(e). Finally, add bidirectional edges from
all wi ∈ Vw to w0 and set c(w0, wi) = 0 and c(wi, w0) = 0.
This transformation defines G, the required input to the HDP.

We can now demonstrate (ii) by showing that an optimal
HDP solution, comprised of Pq and Pt, corresponds to the
optimal TSP solution, P ′. From Figure 2, note that an HDP so-
lution of the form, Pq = (w0, w1, d1, w1 . . . , wn, dn, wn, w0)
and Pt = (w0, w1, . . . , wn, w0), can be used to generate a TSP
tour of the form P ′ = (v1, . . . , vn, v1) by simply extracting
the order of street vertices (w1, . . . , wn) in Pt, since the truck
must visit every wi ∈ Vw to service each di ∈ Vd. If E′P
contains the sequence of edges in P ′, then Et = E′P . Now,
since cq(e) = 0 and ct(e) = ctq(e) = c′(e), we can see that∑
e∈Eq\Et

cq(e) +
∑

e∈Et\Eq

ct(e) +
∑

e∈Eq∩Et

ctq(e) =
∑
e∈E′

P

c′(e),

completing the proof.

IV. SOLUTION APPROACH FOR HDP

Given that the HDP is NP-hard, our method for solving the
problem will be to look for reductions to an NP-hard problem
for which good solvers exist. In what follows we present
an efficient reduction to the Generalized Traveling Salesman
Problem (GTSP). We proceed by giving the details of the
reduction, and then showing that an optimal GTSP solution
provides an optimal HDP solution of equal cost.

Referring to Figures 3 and 4, note that the approach will be
presented in two transformations. The first, T1 is a procedure
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Fig. 3. A high-level schematic of the solution approach for the HDP.

to cast an HDP on graph G as a GTSP on a partitioned
graph G1 = (V 1, E1, c1), where each vertex set V 1

i ∈ V 1

corresponds to a delivery point di ∈ Vd and the vertices in
V 1
i correspond to the set of viable street deployment points,
wj ∈ Wdi ⊂ Vw, for each di. Edges correspond to feasible
routes between deliveries. The second transformation, T2, is
a method to extract the HDP solution, Pq, Pt, from a GTSP
solution, P 1. Lemmas IV.1 and IV.2 prove the correctness of
the transformations.

A. Reduction to the GTSP

Figure 4 illustrates the graph transformations on a sample
HDP instance to aid in the description. The problem in Figure
4(a) is a simplified version of the example problem in Figure
1 and contains an environment G = (V,E, C), where |Vd| = 4
and |Vw| = 8. Figure 4(b) shows the transformed GTSP graph
G1, as well as an optimal solution, P 1, through it. Finally,
Figure 4(c) shows how the GTSP solution can be translated
to an HDP solution on G. We will refer to these figures
throughout the descriptions below.
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(a) An HDP instance on G.
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(c) An optimal HDP Solution.

Fig. 4. Transformation of HDP to GTSP. Figures 4(b) and 4(c) highlight red
edges (quadrotor travel), blue edges (truck travel) and black edges (docked
truck-quadrotor travel).

1) Transformation T1: HDP to GTSP : Let the input to
transformation T1 be an instance of the HDP defined on the
directed graph G = (V,E, C). The output of T1 is a partitioned
directed graph G1 = (V 1, E1, c1) with V 1 partitioned into
n + 1 disjoint subsets V 1 = {V 1

0 , . . . , V
1
n }, such that V 1 =

∪ni=0V
1
i , corresponding to the initial location w0 and each of

n delivery vertices.
Algorithm 1 describes the transformation of the input G =

(V,E, C) into the output G1 = (V 1, E1, c1). In the graph G1,
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Fig. 5. Deployment patterns α and β used in creating the edge weights in
the GTSP graph G1.

the vertex set V 1
0 contains w0, and each vertex set V 1

i , i =
{1, . . . , n}, contains a copy of all street vertices wj ∈ Vw for
which the flight edges (wj , di) and (di, wj) exist in E.

We construct E1 as follows. In line 5 of Algorithm 1, we
add an edge to E1 between every pair of street vertices wi ∈
V 1
a and wj ∈ V 1

b , where a 6= b. The edge will have a finite
cost if either one of two subsets of edges,

α = {(da, wi), (wi, wj), (wj , db)}, or
β = {(da, wj), (wi, wj), (wj , db)}

exist in E: i.e., if the quadrotor can deliver to da from wi,
followed by db from wj .

Figure 5 illustrates this mapping between the edges of E1

and E. The edge e ∈ E1 maps to either α or β in E between
delivery vertices da and db as follows. In pattern α, shown in
Figures 5(a) and 5(b), the quadrotor, having delivered an item
at da from wi, returns to the truck at wi and travels in a docked
state to wj , to be redeployed towards db. In pattern β, shown in
Figures 5(c) and 5(d), the quadrotor, having delivered an item
at da from wi travels directly from da to wj to rendezvous
with the truck and pickup the item to be delivered at db.

In Section IV-B, Lemma IV.1 states that the edge subsets α
and β encode all potential truck-quadrotor deployment patterns
between any two delivery vertices, da and db, for a chosen
pair of respective street deployment vertices wi and wj . Thus,
deployment patterns α and β present the only two potential
edge costs for edges in E1, and can be computed as follows:

c1α(wi, wj) = cq(da, wi) + ctq(wi, wj) + cq(wj , db)

c1β(wi, wj) = cq(da, wj) + ct(wi, wj) + cq(wj , db)
(2)

Given these two costs, the minimum cost deployment pat-
tern between wi ∈ V 1

a and wj ∈ V 1
b is chosen and a cost,

c1(e) = min{c1α(e), c1β(e)}

is assigned to the edge (wi, wj) ∈ E1. This calculation is
performed in lines 6-13 of Algorithm 1. Figure 4(b) illustrates
the vertex sets of the constructed GTSP graph G1 as a result
of Algorithm 1.

Run-time: For an HDP with |Vd| = n delivery vertices and
|Vw| = m street vertices, the the corresponding GTSP problem
contains at most 1 + nm vertices, and thus O(n2m2) edges.
The time to compute the GTSP graph is linear in the size of

Algorithm 1: Graph Transformation: G to G1.
Input: G = (V,E, C)
Output: G1 = (V 1, E1, c1)

1 V 1
0 = V0

2 foreach di ∈ Vd do
3 V 1

i = {wj | wj ∈ Vw, (wj , di) ∈ E, (di, wj) ∈ E}
4 V 1 = {V 1

0 , V
1
1 , . . . , V

1
n }

5 E1 = {(wi, wj)| wi ∈ V 1
a , wj ∈ V 1

b , a 6= b}
6 foreach e = (wi, wj) ∈ E1 where wi ∈ V 1

a , wj ∈ V 1
b do

7 if a = 0 then
8 cq(da, wi) = 0

9 if b = 0 then
10 cq(wj , db) = 0

11 c1α(e) = cq(da, wi) + ctq(wi, wj) + cq(wj , db)
12 c1β(e) = cq(da, wj) + ct(wi, wj) + cq(wj , db)

13 c1(e) = min{c1α, c1β}

the graph.
Note, however that this worst-case bound is attained only for

a quadrotor having sufficiently large operating range such that
each delivery vertex can be reached from every street vertex,
i.e., |Wdi | = m for all di ∈ Vd. In many applications, where
the quadrotor is limited to line-of-site deployments, we expect
|Wdi | to be O(1) and the size of the GTSP 1+

∑n
i=1 |Wdi | to

be O(n), giving a transformation that runs in O(n2) time. The
simulation results in Section VI, Figure 11 further explore the
effect of quadrotor range on the size and the runtime of the
GTSP transformation.

The GTSP can now be solved using a variety of solvers in
existing literature and as seen in Figure 4(a), the solution to the
GTSP is a closed path of the form P 1 = (w0, w1, . . . , wn, w0),
where w0 is the starting vertex and (w1, . . . , wn) is a sequence
containing one vertex from each set V 1

i ⊂ V 1.
2) Transformation T2: GTSP Solution to HDP Solution:

Given the optimal GTSP solution P 1, the optimal HDP
solution composed of a closed walk Pq and a closed path Pt
can be obtained using Algorithm 2 as briefly described below.
The algorithm computes the quadrotor path Pq (lines 2-11)
and then computes the truck path Pt from the ordering of the
street vertices in Pq (lines 12-15).

Let the computed GTSP solution be defined by the sequence
of vertices P 1 = (w0, w1, . . . , wn, w0) where each vertex
wi, i ∈ {1, . . . , n}, belongs to a unique vertex set V 1

j in
G1. Since the optimal deployment pattern for every pair of
deployment points wi ∈ V 1

a and wj ∈ V 1
b was predetermined

during the construction of G1, we can construct Pq by inserting
the vertices of the complete quadrotor path between every
consecutive vertex in P 1. The truck path Pt can be constructed
by copying all unique street network vertices wi ∈ Vw from
Pq in the order in which they occur in Pq .

In the HDP solution to the example
problem, as shown in Figure 4(c), Pq =
(w0, w4, d1, w4, d2, w5, d3, w5, w1, d4, w1, w0) and
Pt = (w0, w4, w5, w1, w0). Transformation T2 is a linear in
time, O(n), algorithm since the deployment patterns between
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Algorithm 2: Reconstructing Pq and Pt from P 1.

Input: P 1 = (w0, w1, . . . , wn, w0)
Output: Pq, Pt

1 Initialize Pq and Pt as empty lists
2 Pq. append(w0, w1, da), where w1 ∈ V 1

a

3 foreach i ∈ {1, . . . , n− 1} do
4 if c1(wi, wi+1) = c1α(wi, wi+1) then
5 Pq. append(wi, wi+1, db), where wi+1 ∈ V 1

b

6 else
7 Pq. append(wi+1, db), where wi+1 ∈ V 1

b

8 if c1(wn, w0) = c1α(wn, w0) then
9 Pq. append(wn, w0)

10 else
11 Pq. append(w0)

12 foreach wi ∈ Pq do
13 if wi /∈ Pt then
14 Pt. append(wi)

15 Pt. append(w0)

each consecutive pair of vertices in P 1 were computed in T1.

B. Correctness of the Transformation

This section proves that the GTSP transformation encodes
all possible HDP solutions and that the optimal solution to
the GTSP can be used to generate the optimal solution to the
HDP.

Lemma IV.1 follows immediately from the discussion in
Transformation T1, that describes patterns α and β and the fact
that there is a street edge between all pairs of street vertices.
Thus, if the GTSP solution, P 1, contains the edge (wi, wj)
and pattern α is chosen, then in the HDP solution, Pq will
contain a subsequence of edges {(da, wi), (wi, wj), (wj , db)}.
If pattern β is chosen, Pq will contain a subsequence
{(da, wj), (wj , db)}. Pt will contain edge (wi, wj) in both
cases. In the case where da and db share deployment points
(i.e. wi = wj), the truck does not move and hence α = β.
Lemma IV.1. Deployment patterns α and β are the only two
HDP routes between any two delivery vertices, da and db,
given their respective street deployment points wi and wj .

Lemma IV.2 validates transformation T2 by showing that
any feasible or optimal GTSP solution P 1 directly corresponds
to an HDP solution Pq, Pt.
Lemma IV.2. Any feasible GTSP tour on G1 corresponds to
a pair of feasible HDP routes on G of equal cost. Moreover,
an optimal GTSP solution corresponds to the optimal HDP
solution.

Proof. Consider a feasible GTSP tour on G1. By definition,
this tour visits all vertex sets V 1

a ⊂ V 1, and uses edges with
finite cost to travel between vertex sets. Since each vertex set
corresponds to a delivery vertex da ∈ Vd, the corresponding
quadrotor route visits all delivery points. By Lemma IV.1, each
edge (wi, wj) ∈ E1 in the GTSP tour, where wi ∈ Va and
wj ∈ Vb, has cost equal to that of the lowest cost HDP route

from da to db for the respective wi and wj (as given by the
minimum of the two deployment patterns α and β). Thus, the
feasible GTSP solution on G1 corresponds to a unique HDP
solution on G of equal cost.

We prove that an optimal GTSP solution provides the
optimal HDP solution, by contradiction, as follows. Con-
sider an optimal GTSP solution of the form P 1 =
(w0, w1, . . . , wn, w0). We know that each edge (wi, wi+1) ∈
P 1, where wi ∈ Va and wi+1 ∈ Vb represents an optimal
subsequence of edges in Pq and Pt, based on the choice
of α or β. Thus, a sub-optimal HDP solution can only be
obtained if P 1 contains (i) a sub-optimal ordering of vertex
sets, or (ii) a sub-optimal selection of vertices in any vertex
set. This violates the definition of an optimal GTSP solution
and hence optimality is preserved in the transformation from
P 1 to P .

C. Altering the HDP Solution Through Edge Weights

In a typical HDP solution, the truck-quadrotor team con-
ducts deliveries in a clustered manner, with the truck stopping
at a sequence of deployment points given by Pt, such that
|Pt| ≤ m, while the quadrotor visits a subset of delivery ver-
tices Dwi

⊂ Vd, from each wi ∈ Pt, such that ∪|Pt|
i=1Dwi

= Vd.
Given an HDP instance, the structure and total cost of Pt,

Pq , and the choice of deployment patterns between each truck
stop depend entirely on the relative values of the edge weights
cq , ct and ctq in G. Figure 6 qualitatively illustrates the effect
of varying edge cost parameters on the nature of the HDP
solution.

Figures 6(a) and 6(b) show two special cases of the HDP
solution that arise when the costs, ct and ctq are greater than cq
as follows. When ct � ctq , the cost of the truck traveling alone
is heavily penalized and all deployments occur using pattern
α as seen in Figure 6(a). Conversely, when ctq � ct, docked
truck-quadrotor travel is penalized, making deployment pattern
β consistently preferable to α as shown in Figure 6(b).

Finally, Figures 6(c) and 6(d) illustrate the effect of the
relative truck and quadrotor costs on the HDP solution. Low
values of ct and ctq relative to cq encourage greater truck effort
in the HDP solution, as in Figure 6(c), while higher values of
ct and ctq relative to cq result in a greater quadrotor effort,
limited by its operating range, as in Figure 6(d).

D. Minimum-Time HDP Solutions

In the case where ct, ctq , and cq correspond to travel times
rather than fuel costs, the more relevant objective is the time to
perform the n deliveries. The key difference when computing
the time of a HDP route is that when the truck and quadrotor
travel simultaneously (as in deployment pattern β of Figure 5),
we should take the maximum of these travel times, rather than
the sum.

We can solve this problem through a small modification of
the edge weights in the GTSP graph G1. Let us denote the min-
time graph as G

1
= (V

1
, E

1
, c1). Its vertex set and partition

are identical to that of G1. The edge (wi, wj) is added to E
1
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(a) ct � ctq > cq (b) ctq � ct > cq

(c) Low truck cost ct, ctq � cq . (d) High truck cost: ct, ctq � cq

Fig. 6. HDP solution characterization based on cq , ct and ctq . All figures
show w0 = (0, 0), delivery points (red vertices), a gridded street network
(blue vertices), the truck path (blue paths) and quadrotor flight paths (green
paths).

�✁ �✂

✄☎✄✆

✝✞

✝✟✞

✝✞

(a) Pattern α for min-time.

�✁
�✂

✄☎ ✄✆✝✞

✝✟

✝✟

(b) Pattern β for min-time.

Fig. 7. Deployment patterns α and β used for the min-time formulation.

if either one of two subsets of edges,

α = {(wi, da), (da, wi), (wi, wj)}, or

β = {(wi, da), (da, wj), (wi, wj)}

exist in E. The cost of the edge is defined to be

c1α(wi, wj) = cq(wi, da) + cq(da, wi) + ctq(wi, wj)

c1
β
(wi, wj) = max

{
cq(wi, da) + cq(da, wj),

ct(wi, wj)
} (3)

The cost of the edge in G
1

is then, c1(e) = min{c1α(e), c1β(e)}.
The new deployment patterns and associated edge weights are
illustrated in Figure 7.

Notice that we now “cut” the HDP solution into pieces at
street vertices instead of delivery vertices. An edge in G

1

represents the following: the quadrotor and truck begin at
wi, the quadrotor delivers to da, and the team finishes at wj
(moving there together or separately), where the quadrotor
picks up the package for delivery at db. The advantage
to this approach for the minimium-time formulation is that
the simultaneous travel of the quadrotor and truck between
street vertices is contained on a single edge, creating edge
weights that are independent of one another. In the original
G1 definition, simultaneous travel would be split over two
edges, creating coupling between edge weights of different

�✁

�✂ �✄
�☎

�✆

�✝

✞✁

✞✂

✞✝

✞✟

(a) Sample MWDP problem scenario.

�✁

�✂ �✄
�☎

�✆

�✝

✞✁

✞✂

✞✝

✞✟

(b) Optimal MWDP solution.

Fig. 8. The Multiple Warehouse Delivery Problem (MWDP).

edges. Our original cut formulation proves useful, however,
when considering the multiple warehouse delivery problem
variant of the HDP, as discussed in Section V.

After this modification, an optimal GTSP solution on G
1

will correspond to minimum-time HDP routes for the truck
and quadrotor. The truck path Pt is given by the sequence
of warehouses in the GTSP solution. The quadrotor path Pq
is obtained by inserting the appropriate deployment pattern
between each warehouse.

V. THE MULTIPLE WAREHOUSE DELIVERY PROBLEM
(MWDP)

Consider the case in which each street vertex is a static
warehouse. The truck is no longer a part of the problem, and
the goal is to find a quadrotor route that alternately visits street
vertices (i.e., warehouses) and delivery vertices. We call this
problem the Multiple Warehouse Delivery Problem (MWDP),
where a set of delivery requests, Vd = {d1, . . . , dn} must be
fulfilled by a single vehicle from a set of warehouses Vw =
{w1, . . . , wm}.

It is possible to note that the MWDP is a special case of the
HDP, in which we set ctq(e) =∞, and ct(e) = 0 for each edge
e ∈ E. In doing this, we prevent docked travel and assume
that the truck travels alone with zero cost (i.e., infinite speed.)
From Figure 5 we can see that, cq(da, wi) + ctq(wi, wj) ≥
cq(da, wj)+ ct(wi, wj), is always true in this case, and hence
every edge of Pq in the HDP solution will be a flight edge of
the form e = (wi, dj) or e = (dj , wi), with a cost cq(e). The
total cost of Pt is

∑
e∈Et

ct(e) = 0.
Figure 8(a) illustrates an MWDP graph, G = (V,E, c),

where V = V0 ∪ Vw ∪ Vd, E contains directed edges
(di, wj) for all di ∈ Vd, wj ∈ Vw and edges (wj , di) if
wj ∈ Wdi . Cost function, c : E → R≥0, represents the non-
negative travel cost, that satisfies the triangle inequality. The
MWDP is stated in Problem V.1.

Problem V.1 (Multiple Warehouse Delivery Problem). Given
G = (V,E, c), where V = V0 ∪ Vd ∪ Vw, compute a closed
walk P , that starts and ends at w0, such that each delivery
vertex in Vd is visited exactly once.
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Since the MWDP is a special case of the HDP, it can
be solved using the methods in Section IV. However, the
downside of this approach is that it results in an increase in
the size of the problem instance as described in Section IV-A.
Exploiting the simplifications in the MWDP relative to the
HDP, we present two improved solution approaches. First, we
present a transformation of the MWDP into a TSP and, second,
we present an exact algorithm to solve instances with a small,
fixed number of warehouses. This problem is similar to the
TSP with refueling constraints [27], with the key difference
being that the quadrotor is required to return to a warehouse
(refueling depot) after each delivery. As such, we will be able
to exploit this additional structure to develop more efficient
algorithms.

A. Transformation Algorithm: MWDP to TSP

Since, in the MWDP, the quadrotor uses pattern β for
each delivery, there is only one shortest path between any
pair of delivery vertices da and db, and it passes through the
warehouse vertex wi ∈ Wdb , such that c(da, wi) + c(wi, db)
is minimized. Therefore, we can cast the MWDP as a TSP,
by transforming an MWDP instance G = (V,E, c), into a
TSP instance, G1 = (V 1, E1, c1), where V 1 = V0 ∪ Vd
and E1 contains edges e = (va, vb), for all va, vb ∈ V 1.
Now for each edge, (va, vb), we identify the warehouse
wi ∈ Wdb that minimizes c(da, wi) + c(wi, db), and set the
cost c1(va, vb) = c(da, wi) + c(wi, db)

Graph G′ is a TSP instance of size |Vd| = n, which is
significant smaller than the GTSP and can be solved using a
number of exact or heuristic algorithms in existing literature
such as the Lin-Kernighan [28] or LKH [17] heuristics. The
TSP solution is a sequence of vertices of the form P 1 =
(v0, v1, . . . , vn, v0), from which an MWDP solution may be
obtained by inserting the stored warehouse vertex wi, between
each consecutive pair of vertices {va, vb} in P 1. An optimal
MWDP solution is illustrated in Figure 8(b).

B. Kernel Sequence Enumeration (KSE) Algorithm

Figure 8(b) shows that an optimal MWDP solution will
always be of the form

P = (w0, wk1 , d1, wk2 , d2 . . . , wkn , dn, w0),

where we have numbered the delivery points so that they are
visited in the order d1, d2, . . . , dn and each ki is a warehouse
index in {1, . . . ,m}. All delivery vertices are visited in
sub-sequences, (wki , di, wki+1

) where wki is the warehouse
assigned to service di. Given this property, we identify two
classes of delivery vertices in P ,

1) a localized delivery vertex, di, for which ki = ki+1, and
2) a transitional delivery vertex, di, for which ki 6= ki+1.

We also say that dn is a transitional delivery vertex since it
returns to w0. Two additional properties of P , that can be
easily proven by the triangle inequality are:

1) For every localized delivery vertex di in P , where
(wki , di, wki+1

) and ki = ki+1, we must have that
wki = argminw∈Vw

c(w, di). Thus wki = wki+1
is the

closest warehouse to di.

Fig. 9. The left figure shows a kernel sequence consisting of transitional
deliveries. The right figure shows the completion of this sequence with
localized deliveries.

2) If the path P visits mP < m unique warehouses in
Vw, then the number of transitional delivery vertices
|Dt| = mP . This implies that the quadrotor never
revisits a warehouse wki once it has transitioned to
warehouse wki+1 with ki+1 6= ki.

From the second property, we can define a kernel sequence
to be the sequence transitional deliveries (each consisting the
start warehouse, delivery vertex, and end warehouse) in the
quadrotor path. Based on this, the following procedure gives
us an exact algorithm for solving the MWDP:

1) Enumerate all kernel sequences consisting of an ordered
subset of warehouses and a transitional delivery point
between each pair of warehouses. In total there are
O(nmmm) possible kernel sequences.

2) For each kernel sequence, create a complete path by
assigning all remaining delivery points as localized
deliveries, using their closest warehouse in the kernel
sequence.

3) Output the shortest path among all completed kernel
sequences.

An example kernel sequence and its completion is shown in
Figure 9.

To complete each kernel sequence we must compute the
closest warehouse for each remaining delivery point. Since
there are at most m warehouses in the kernel sequence
and n delivery points that are not in the kernel sequence,
the complexity of each kernel completion step is O(nm).
Therefore, the total runtime of this brute force algorithm is
O
(
(nm)m+1

)
.

Thus, the key point is that the algorithm is polynomial for
a fixed number of warehouses m. For example, if there are
three warehouses and n delivery points, this exact algorithm
runs in O(n4) time, which may be acceptable, and does not
require a transformation to an NP-hard problem. However, for
a larger number of warehouses, this algorithm is less practical.

VI. SIMULATION RESULTS

The optimization framework for this paper was implemented
in MATLAB. The solutions were computed on a laptop
computer running a 32 bit Ubuntu 12.04 operating system with
a 2.53 GHz Intel Core2 Duo processor and 4GB of RAM. To
solve TSP instances, we used the LKH solver [17], which is
a heuristic that quickly produces high-quality, but in general
suboptimal solutions. To solve GTSP instances, we reduced
the problem to a TSP using the Noon-Bean transformation,
and then called LKH on the TSP instance.

Figure 10 presents HDP solutions on a sample problem
instance with 30 delivery points and a gridded environment
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(a) HDP (rq = 0.3 renv).
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(b) HDP (rq = 0.1 renv).
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(c) MWDP TSP solution.

Fig. 10. Subfigures (a) and (b) show solutions for the HDP as a function of
the quadrotor range. Subfigure (c) shows the MWDP solution in which each
street vertex is a static warehouse.

with 100 street vertices in an environment of arbitrary size
renv. The key simulation parameters are ct, cq , ctq and rq , the
operating range of the quadrotor, defined as a percentage of
renv, which dictates the size of Wdi for each delivery point
di and consequently, the size of the GTSP. For these results,
we set cq to be the Euclidean distance between vertices and
ct(e) = ctq(e) = 3cq(e) for all edges e.
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Fig. 11. The size of the GTSP graph and computation time for the HDP
shown in Figure 10.

In Figure 10(a), rq = 0.3 renv, which resulted in a GTSP
with 170 vertices and took 5.7 seconds to compute a solution.
When rq was reduced to rq = 0.1 renv, the resulting GTSP
contained 82 vertices and took 2.3 seconds to compute the
solution, shown in Figure 10(b). From the Figures 10(a) and
10(b), we can see that reducing the quadrotor range resulted in
a smaller problem size, and an increasing truck effort, similar
to the properties observed in Section IV-C where a lower truck
cost resulted in longer truck path in the HDP solution. In the
limiting case, the HDP approaches the MWDP special case in
Figure 10(c), for which the TSP method computes a solution
in 0.45 seconds. To assess this further, Figure 11 shows the
effect of the quadrotor range on the size (right y-axis) and
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Fig. 12. A comparison of the GTSP and TSP approaches to the MWDP for
the MWDP shown in Figure 10.

Delivery Runtime Solution Quality
Points GTSP TSP KSE GTSP TSP KSE

3 0.05 0.04 0.06 10.56 10.56 9.95
6 0.20 0.06 1.11 16.21 16.61 16.21
9 0.26 0.14 5.55 30.47 30.20 29.21
12 0.44 0.26 21.46 35.12 34.27 33.52

TABLE I
ALGORITHM COMPARISON FOR THE MULTIPLE WAREHOUSE DELIVERY

PROBLEM WITH THREE WAREHOUSE (I.E., |Vw| = 3).

runtime complexity (left y-axis) of the GTSP solution for the
environment shown in Figure 10. The runtime on each instance
is dominated by that of LKH, which internally performs 10
runs for a given instance. Figure 12 shows that for the MWDP
case, the TSP of size n presents a faster and more scalable
solution than the GTSP approach as shown by the average
growth of runtime complexity as |Vd| in increased, keeping
other parameters and |Vw| constant.

In the case of the MWDP, all three solution methods can be
employed with comparable results in terms of solution quality.
While the KSE algorithm is useful to obtain the optimal
MWDP solution for smaller problem sizes, it quickly becomes
impractical as the number of warehouses grows and the TSP
method stands out as the appropriate approach. This is evident
in Table I, which shows runtime and solution quality results for
an MWDP problem with |Vw| = 3 and an increasing number
of delivery points.

Figure 13 presents a realistic delivery scenario on a Google
street map of a residential neighbourhood in Waterloo, Ontario,
Canada. Figure 13(a) shows an HDP solution for 17 delivery
points in contrast to a single delivery truck conducting deliv-
eries in Figure 13(c). Given a maximum range of 150m for
the quadrotor to ensure line of sight, the HDP solution in this
problem instance results in approximately a 50% reduction in
travel distance for the truck and thus the fuel consumption
(assuming that the fuel consumption of the quadrotor is
negligible when compared to the truck). Finally, Figure 13(b)
shows the minimum-time version of the optimal solution.
Given, a quadrotor speed of 30 km/hr, a landing time of 30
seconds per landing (deliveries and return to truck), and a truck
speed of 40 km/hr, the optimal solution completes all deliveries
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(a) HDP truck-quadrotor solution with the mini-
mum fuel objective.

(b) HDP truck-quadrotor delivery route with the
minimum-time objective.

(c) Truck delivery route.

Fig. 13. HDP solutions for deliveries in a neighborhood of Waterloo, Ontario.

in one hour and twenty three minutes. For this example, the
HDP solution results in approximately a 35% reduction in
travel time compared to the single truck solution shown in
Figure 13(c). To make this comparison we assume that the
delivery time for each parcel from truck to door is 30 seconds.

VII. CONCLUSIONS

This paper presents a novel adaptation of a heterogeneous
carrier-vehicle system for cooperative deliveries in urban envi-
ronments. The HDP represents a class of cooperative carrier-
vehicle path planning problems in discrete environments,
applicable to a number of multi-robot systems in scenarios
like search and rescue, surveillance and exploration. In future
work, we are interested in generalizing the HDP to allow
multiple simultaneous quadrotor deliveries, quadrotors with
capacity larger than one, and dynamic scenarios where new
requests arrive during execution.
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