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Abstract— This paper considers a class of distributed sub-
modular maximization problems in which each agent must
choose a single strategy from its strategy set. The objective
is to maximize a submodular function of the strategies chosen
by each agent. However, each agent has only partial information
on the choices of other agents when making its decision.
The main objective of this paper is to investigate how the
limitation of information about the strategy sets or actions
of other agents affects the performance when agents make
choices according to a local greedy algorithm. In particular, we
provide lower bounds on the performance of greedy algorithms
for submodular maximization, which depend on the clique
number of the graph. We also characterize graph-theoretic
upper bounds in terms of the chromatic number of the graph.
Finally, we demonstrate how certain graph properties limit the
performance of the greedy algorithm.

I. INTRODUCTION

Many scenarios in multi-agent systems involve situations
where the actions of the individual agents contribute to a
common objective function, for which each agent has only
local information. A well-studied class of such problems is
the distributed optimization problem [1], [2], [3], [4], [5],
[6], [7], [8], [9], where the main objective is to optimize a
sum of some functions, each one available to an individual
agent. Unlike this setting, here we consider a collaborative
scenario where the agents choose an action from a private
discrete strategy set and the goal is to maximize a common
objective function defined over the set of actions chosen
by each agent. In other words, the total strategy set is
partitioned into (disjoint) subsets, each available only to an
individual agent. This paper considers a subclass of interest,
where the common objective function is additionally assume
to be submodular. This assumption holds in a variety of
applications of interest, including problems in distributed
sensor coverage [10], [11], information gathering [12], and
facility location [13].

Building on the early classic work on sumbodular opti-
mization [14], [15], [16], [17], there has been a recent surge
of activity on this subject, mainly due to its wide set of ap-
plications to areas of computer science, see for example [13]
and references therein. It is well known that the submodular
maximization problem is NP-hard [16] (unlike submodular
minimization, which can be solved in polynomial time [16]).
However, good approximation algorithms exist; in particular,
when the submodular function is normalized and monotone,
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a simple greedy algorithm, yields a solution that is within
a multiplicative factor of (1 − 1/e) of the optimal. The
distributed problem we consider in this paper can be captured
as a partition matroid constraint; in particular, there is a
bound on the cardinality of the intersection of the solution
set and the strategy set of each individual agent. It has been
shown [14] that maximizing a normalized and monotone
submodular function subject to a matroid constraint can
be approximated to within 1/2 using the simple greedy
algorithm. More recently [18] a randomized algorithm has
been proposed for this problem, which yields an improved
approximation of (1− 1/e).

The key feature that differentiates the problem under
study in this paper from the classic setting of submodular
maximization is the limitations on the information available
to a decision maker about the actions of others. Similar to the
literature on distributed optimization, in order to achieve any
reasonable performance, agents need to share information
about their actions. The main objective of this paper is to
investigate how much information is required to guarantee
a certain performance, and what limitations are put on the
performance by the topology of the communication graph
between agents.

Distributed submodular maximization has recently gener-
ated a lot of interest in the context of large-scale maximiza-
tion [19], [20], [21], where the main goal is to partition the
data set into subsets, each of which is maximized separately,
and then the overall solution is refined through additional
computations by a central node. In our work, however,
we envision scenarios where the limitations imposed on
individual agents is physical (for example, being able to
only estimate data in a neighbourhood). This paper is also
somewhat related to the recent work [10], where the role of
limitation of information in submodular optimization is stud-
ied in the context of coverage problem, for the cases where
agents have full information or no information. Here, we
address the limitations imposed by the information network
topology. Finally, part of our work is related to the so-called
“local greedy algorithms”, which is studied in the classical
paper [15], as we describe in details later. The proofs are
omitted due to space limitations and will appear elsewhere.

Statement of Contributions

We consider a class of distributed submodular maximiza-
tion problems in which each agent has a strategy set from
which it must choose a single strategy. The objective is
to maximize a submodular function of the set of strategies
chosen by each agent. The group of agents take decisions se-
quentially, having available to them only partial information
about the actions takes by the previous agents. The partial na-



ture of the available information is cast as a directed acyclic
graph. Our main objective in this paper is to characterize the
fundamental limitations that partial information imposes on
the performance of local greedy algorithms. We first show
that the well-known 1

2 lower bound on the performance
of greedy algorithms for submodular maximization can be
obtained using the so-called clique graph structures, in spite
of the fact that none of the agents have access to the whole
strategy set. We provide a general lower bound based on
the clique number of the graph, and also provide lower
bounds for graph topologies with multiple interconnected
cliques. We then move on to our next objective, which is
characterizing graph-theoretic upper bounds on the perfor-
mance of the greedy algorithms. We tackle this objective
by considering two problem statements. In the first one, we
characterize fundamental limitations on the performance of
the greedy algorithms on a given graph topology in terms
of its chromatic number. Our second result demonstrates
how achieving a certain guaranteed performance imposes
limitations on the topology of the underlying graph. We
characterize the gap between these two bounds, and show
how they can be used to efficiently compute limitations of
greedy algorithms for scenarios with partial information.

II. PRELIMINARIES

Many combinatorial optimization problems can be phrased
as a submodular maximization problem. The problem can be
stated as follows. Consider a base set of elements E, and let
2E be the power set of E, containing all of its subsets. Then
a function f : 2E → R≥0 is submodular if it possesses the
property of diminishing returns: For all A ⊆ B ⊆ S, and for
all x ∈ S \B we have

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B).

We refer to f(A ∪ {x}) − f(A) as the marginal reward
of x given A, and denote it by ∆(x|A). In addition to
submodularity, we will consider functions that possess two
further properties:

(i) Monotonicity: For all A ⊆ B ⊆ E, we have f(B) ≥
f(A); and

(ii) Normalization: f(∅) = 0.
Given a normalized submodular function f defined over

a base set E containing |E| = n elements, along with
a positive integer k < n, the submodular maximization
problem can be stated as

max
S⊂E

f(S) (1)

subject to |S| ≤ k. (2)

It is well known that this optimization problem is NP-hard.
It contains as a special case several well known combinatorial
optimization problems including MAX CUT and FACILITY
LOCATION. Even when the function is monotone, the prob-
lem is still NP-hard, and contains as a special case MAX
k-COVER.

When the submodular function is normalized and mono-
tone, a simple greedy algorithm, in which a solution is built

incrementally by adding the element x to S that maximizes
∆(x|S) yields a solution that is within a multiplicative factor
of (1 − 1/e) ≈ 0.63 of the optimal. In addition, it is
shown in [22] that MAX k-COVER cannot be approximated
to a factor better than (1 − 1/e), unless P = NP. This
implies that the greedy algorithm provides the best possible
approximation.

In place of the constraint (2), one can use a more general
form of constraint known as a matroid. The constraint in (2)
defines the uniform matroid in which S must belong to
{A ⊆ E : |A| ≤ k}. Another commonly used matroid
constraint in optimization is the partition matroid defined as
follows: Let E be a base set of elements, and partition E
into n disjoint sets E1, . . . , En and let k1, . . . , kn be positive
integers. Then allowable sets are members of {A ⊆ E :
|A ∩ Ei| ≤ ki}. It has been shown [14] that maximizing a
normalized and monotone submodular function subject to a
matroid constraint can be approximated to within 1/2 using
the simple greedy algorithm.

III. PROBLEM STATEMENT

We begin by introducing a centralized version of the
submodular maximization problem studied in this paper.

Consider the following submodular maximization prob-
lem. We are given n disjoint sets Xi, i ∈ {1, . . . , n},
X = ∪iXi, and a submodular monotone and normalized
function f : 2X → R≥0. We wish to solve

max
S⊆X

f(S)

subject to
|S ∩Xi| ≤ 1 for each i ∈ {1, . . . , n}. (3)

This is a submodular maximization problem over a partition
matroid, and thus from Section II, the optimal solution can be
approximated to within a multiplicative factor of 1/2 using
the simple greedy algorithm [14].

A. Distributed Optimization Problem

In this paper we consider a collaborative submodular
analogue of (3).

Problem 3.1 (Distributed submodular maximization): We
are given n agents, or players V = {1, . . . , n}. Each agent
has an action set of strategies Xi, and must choose one
strategy xi ∈ Xi. We define X = ∪iXi and are given a
normalized and monotone increasing submodular function
f : 2X → R≥0. The goal is for the agents to each choose
an xi ∈ Xi such that f(x1, . . . , xn) is maximized.

We consider the case where agents choose their strategies
in a sequential manner, starting with agent 1 and ending
with agent n. Each agent i ∈ V has access to a subset of the
strategies that have been chosen by agents {1, . . . , i−1}. This
information is encoded in a directed acyclic graph (DAG)
G = (V,E) where all edges (i, j) ∈ E satisfy i < j. Note
that every DAG can be topologically sorted, and thus there
always exists a labeling of the vertices of G in which i < j
for all (i, j) ∈ E. A complete DAG is a DAG for which no
edge can be added without creating a cycle. A clique in G



is a subgraph of G that is complete. The clique number of
a DAG G is the number of vertices in its largest clique, and
is denoted ω(G).

We define the in-neighbors of agent i as

N (i) = {j ∈ V | (j, i) ∈ E},

and thus the information available to agent i when choosing
its strategy is

Xin(i) = {xj | j ∈ N (i)}.

In this paper we study the performance of the greedy al-
gorithm in which agent i chooses its strategy xi to maximize
its marginal reward relative to its limited information Xin(i):

xi = argmaxx∈Xi
∆
(
x | Xin(i)

)
. (4)

In the case where multiple strategies have equal marginal re-
ward, the greedy algorithm selects one maximizer arbitrarily.

Given a set of strategies {x1, . . . , xn} for the n agents,
the overall objective can be written as a sum of marginal
rewards as

f(x1, . . . , xn) =

n∑
i=1

∆(xi | {x1, . . . , xi−1}), (5)

where {x1, . . . , x0} is defined to be the empty set.
Note that while xi that maximizes its marginal reward

relative to Xin ⊆ {x1, . . . , xi−1}, its contribution to the
overall objective value is given by the marginal reward
relative to {x1, . . . , xi−1}. The main goal of this paper
is to investigate how this lack of information affects the
performance of the greedy algorithm. It is worth mentioning
that a version of (4) with synchronous updates can also be
analyzed in a similar fashion. Moreover, the assumption on
the strategy sets being disjoint can be removed, and all of the
following results continue to apply; due to space constraints
we will address this issue at length elsewhere.

IV. THE SEQUENTIAL DISTRIBUTED GREEDY
ALGORITHM: LOWER BOUND

Throughout this section, we assume that the strategy sets
are disjoint. The agents take their decisions sequentially in
increasing order according to their index. We start with a
scenario where the agents do not observe the strategies of the
agents that have taken action prior to them (see Figure 1(a)).
The decision of Agent i ∈ V is then

xi = argmaxx∈Xi
∆(x|∅).

Suppose that {x∗1, x∗2, . . . , x∗n} be the solution of (3), where
x∗i ∈ Xi for each i ∈ {1, . . . , n}. We have that

f(x1, . . . , xn) ≥ f(xi) ≥ f(x∗i ),

for all i ∈ {1, . . . , n}, i.e.,

f(x1, . . . , xn) ≥ 1

n

n∑
i=1

f(x∗i ) ≥
1

n
f(x∗1, . . . , x

∗
n).

It is easy to observe that this lower bound is tight and cannot
be improved. A natural problem is hence to investigate if

this lower bound on the performance can be improved when
the agents can observe (perhaps partially) the decisions of
the preceding agents before making decisions. Consider the
scenario where agent i observes the decision of all agents in
the set Ii = {1, . . . , i− 1}. The information that each agent
has access to before taking its decision is best represented
by Figure 1(b). In this case, the decision for agent i from (4)
becomes

xi = argmaxx∈Xi
∆(x|{x1, . . . , xi−1}). (6)

1 2 3 n

(a)

1 2 3 n

(b)

Fig. 1. (a) shows a scenario with no observation and (b) shows a scenario
where each agents observes the decisions of all the preceding agents.

The performance of the strategy proposed by (6) can
be deduced from the so-called “local greedy algorithms”,
which is studied in the classical paper [15, Theorem 4.1].
The proof presented in [15] relies on a clever use of linear
programming. Here we obtain this result using a different
technique, which relies on the next result.

Lemma 4.1: Consider Problem 3.1 and let
(x∗1, x

∗
2, . . . , x

∗
n) be an optimal solution. Suppose that

players sequentially update their strategies (x1, . . . , xn)
according to (6). Then, for all 1 ≤ k ≤ n, we have that

f(x1, . . . , xk) ≥ f(x∗1, . . . , x
∗
k)− f(x1, . . . , xk−1). (7)

Using Lemma 4.1, we can obtain the following bound on
the performance of the local greddy algorithm.

Theorem 4.2: Consider Problem 3.1 and let
(x∗1, x

∗
2, . . . , x

∗
n) be an optimal solution. Suppose that

players sequentially update their strategies (x1, . . . , xn)
according to (6). Then

f(x1, . . . , xn) ≥ 1

2
f(x∗1, . . . , x

∗
n).

We next present a consequence of this result which holds
for any general directed acyclic graph.

Corollary 4.3: Consider Problem 3.1 and let
(x∗1, x

∗
2, . . . , x

∗
n) be an optimal solution. Suppose that

players sequentially update their strategies (x1, . . . , xn)
according to (4) on a directed acyclic graph G. Then,

f(x1, . . . , xn) ≥ 1

(n− ω(G)) + 2
f(x∗1, . . . , x

∗
n),

where ω(G) is the clique number of G.
The proof of this result follows from Theorem 4.2, and
the fact that the remaining n − ω(G) agents cannot have
a performance worst than 1

n−ω(G) of their optimal.
Note that if we take a complete DAG and delete a single

edge, it’s clique number reduces from n to n− 1, and from
Corollary 4.3, our lower bound decreases from 1/2 to 1/3.
The reason for this is that we have not made any assumptions
on the relative contribution of each player to the total reward.



The one agent that is removed from the clique may contribute
more to the total reward than all n−1 other agents combined.

A. Interconnected Cliques of Full Information

In general, it is not clear how the availability or lack of
information about the decisions of other agents influences
the lower bound on the performance of local greedy algo-
rithms. In this sub-section, we extend the result obtained in
Theorem 4.2 to a scenario with multiple cliques, where the
agent’s in each clique have access to the decision of the last
agent in each the last clique that takes decision prior to them.
We present this result next.

Theorem 4.4: Consider Problem 3.1 and let
(x∗1, x

∗
2, . . . , x

∗
n) be an optimal solution. Suppose that

first players {1, . . . ,m} and players in {m + 1, . . . , n}
form two cliques with the only observation from the first
clique available to the players of the second clique being
the choice of player m. Suppose that players sequentially
update their strategies (x1, . . . , xn) according to (4). Then
we have that

f(xm, . . . , xn) ≥1

2
f(x∗m, . . . , x

∗
n)

+
1

2
(f(xm, xm+1)− f(x∗m, x

∗
m+1)).

Moreover, we have that

f(x1, . . . , xn) ≥ 1

4
f(x∗1, . . . , x

∗
n).

Remark 4.5 (Comparison with isolated cliques):
Suppose that there is no communications between agents in
the two cliques. Then, since

f(x1, . . . , xm) ≥ 1

2
f(x∗1, . . . , x

∗
m), and

f(xm+1, . . . , xn) ≥ 1

2
f(x∗m+1, . . . , x

∗
n),

using submodularity and monotonicity, we conclude that
f(x1, . . . , xn) ≥ 1

4f(x∗1, . . . , x
∗
n). In this sense, Theorem 4.4

captures a scenario where the overall performance can only
get enhanced by having access to more information; in fact,
as shown in (??), the performance can be improved by
1
4 (f(xm, xm+1) + f(x∗m)− f(x∗m, x

∗
m+1)) ≥ 0. •

The result presented in Theorem 4.4 is extendable to the
case of more than two cliques, with the tail agent in each
clique broadcasting its decision to the next clique. The proof
is similar and will not be provided here.

Theorem 4.6: Consider Problem 3.1 and let
(x∗1, x

∗
2, . . . , x

∗
n) be an optimal solution. Suppose that

agents are partitioned into κ ∈ Z≥2 cliques as

{1, . . . ,m1}, {m1 + 1, . . . ,m2}, · · · {1, . . . ,mκ},

with the only information available from other cliques to the
agent’s in (i+ 1)’s clique being the choice of agent mi, i ∈
{1, . . . , κ}. Suppose that players sequentially update their
strategies (x1, . . . , xn) according to (4). Then

f(x1, . . . , xn) ≥ 1

2κ
f(x∗1, . . . , x

∗
n).

As noted in Remark ??, the results of this section are
extendable to the case where the information exchange is

synchronous. We postpone a detailed discussion of syn-
chronous updates to a future work.

V. UPPER BOUNDS USING COLOURING

In this section we determine upper bounds on the per-
formance of the sequential greedy algorithm. We study
two cases: 1) a graph dependent submodular function that
exploits information on graph topology; and 2) a global
submodular function that provides bounds for all graphs.
We will see that these two cases are essentially equivalent
to computing an optimal and a greedy coloring [23] of the
graph, respectively. The second case also allows us to extract
graph properties that limit performance.

A. Background on Graph Coloring

Given a graph G = (V,E) with |V | = n, a coloring
is a function c : V → {1, . . . , n} such that for every
(u, v) ∈ V , we have c(u) 6= f(v). The vertex-coloring
problem is to find a coloring c : V → {1, . . . , k} such that
k is minimized. That is, the goal is to color the vertices of
the graph with the minimum number of colors such that no
pair of adjacent vertices have the same color. The optimum
value of k is called the chromatic number of the graph G
and is often denoted by χ(G). The problems of computing
a minimum coloring or equivalently of determining the
chromatic number of a graph are NP-hard [23].

B. Upper Bound via Adversarial Choice of Function

In this sub-section we consider the following problem:
Given a graph G = (V,E), can we construct a submodular
function fG , exploiting information of the graph for which
we can upper bound the performance of greedy algorithm?
Given a graph G = (V,E), we construct action sets and a
submodular function as follows. Let c : V → {1, . . . , k}
be an optimal coloring of G and where χ(G) = k is the
chromatic number of G. Given a coloring, we define the set
of vertices of color ` ≤ k as

V` = {v ∈ V | c(v) = `}.

We use this coloring to construct strategy sets Xi for each
agent i ∈ V and the submodular function f : 2X → R≥0.
For each agent i, we define

Xi = {ai, bi},

and let X = ∪iXi. We define the function f through its
marginal rewards. To that end, let S ⊂ X be a set such that
|S∩Xi| ≤ 1 containing decision for a subset of the n agents
in V . Then, the marginal reward of ai is defined as

∆(ai|S) =

{
0 if aj ∈ S for some j ∈ Vc(i),
1 otherwise.

The marginal reward of bi is defined is ∆(bi|S) = 1, for
all i ∈ V . Then, given a set S = {s1, . . . , sm} ⊂ X with
|S ∩Xi| ≤ 1, we define

f(S) =

m∑
i=1

∆
(
si|{s1, . . . , si−1}

)
. (8)



Remark 5.1 (Non-disjoint Action Sets): Note that we can
equivalently define this function over non-disjoint action sets.
Let X = {a, b1, . . . , bn} and define Xi = {a, bi}. Then
given a set S ⊂ X , we define f(S) = |S|. Notice that
this function is modular. Given a tuple containing agent
strategies (x1, . . . , xn), we define the set of unique strategies
as S = {x1, . . . , xn} and evaluate f(S) as the reward. This
definition is equivalent to the disjoint definition above as
discussed in Section ??. •
With this function we obtain the following result.

Proposition 5.2: Consider Problem 3.1, where f is given
by (8), and let (x∗1, x

∗
2, . . . , x

∗
n) be an optimal solution.

Suppose that players sequentially update their strategies
(x1, . . . , xn) according to (4). Then,

f(x1, . . . , xn) ≤ χ(G)

n
f(x∗1, . . . , x

∗
n).

C. Upper Bound via Universal Function

The upper bound in the previous section required a
submodular function f that depended on the graph. In the
following, we propose a single function, independent of the
graph topology, and analyze its performance for all graphs.
This allows us to state a few simple properties of graphs that
limit its performance.

The base set of the function is X = {e1, . . . , em} where
m ≥ n and we let Xi = X for each agent i. Given a
choice xi ∈ Xi for each agent i, the value of the submodular
function is

f(x1, . . . , xn) = | ∪i {xi}|. (9)

That is, the value is given by the number of unique elements
of X chosen by the agents. Clearly, an optimal solution is
any one in which each agent chooses a different element
from X , yielding a value of n. Under the greedy algorithm,
agent i will compute its marginal reward as

∆(ej | Xin(i)) =

{
1 if ej /∈ Xin(i)

0 if ej ∈ Xin(i),

and thus agent i will choose any strategy ej such that ej /∈
Xin(i). Suppose that each agent i breaks ties by choosing the
strategy with lowest index. Then, we can write the greedy
choice for agent i as

xi = min{ej ∈ {1, . . . ,m} | ej /∈ Xin(i)}. (10)

Our next result relates the performance of the greedy
algorithm on this function to properties of the underlying
graph.

Proposition 5.3: Consider the submodular function in (9)
and any graph G = (V,E). If the greedy algorithm finds a
solution within k/n of the optimal for some k > 0 then each
of the following properties hold:

(i) there is a vertex in G with in-degree of at least k − 1;
(ii) for each ` ∈ {1, . . . , k} there are at least ` agents with

in-degree of at least k − `;
(iii) the number of edges in G is at least k(k − 1)/2.

Notice that the sequence of strategy choices in (10)
provides a simple and efficient algorithm for computing a

performance upper bound for a given graph. For complete-
ness, we give the details in Algorithm 1.

Algorithm 1 Greedy Algorithm Upper Bound
Input: A directed acyclic graph G = (V,E).
Output: An upper bound on the approximation ratio of

greedy algorithm on G.
1: Topologically sort the vertices V
2: for each v ∈ V :
3: Set value[v] = 0
4: for each v ∈ V in topological order :
5: Set value[v] to smallest integer k such that for

each u ∈ N (i), value[u] 6= k.
6: return 1

|V | maxv∈V value[v]

Complexity of Algorithm 1: The complexity of Algo-
rithm 1 is O(|V | + |E|). The topological sort can be
performed in O(|V | + |E|) time. The only detail is to
implement line 5: in linear time, which essentially computes
the smallest element not in an array. This can be done using
two passes through the array of in-neighbor values. In the
first pass, we populate a Boolean array of length |N (i)|. All
entries of the array are initialized to false, and the jth
entry is then reset to true if and only if there is a vertex
u ∈ N (i) with value[u] = j. In the second pass, we scan
the Boolean array for the first false entry. This is the smallest
value that is not chosen by an in-neighbor. Thus, the total
computation time for the for-loop in line 4: is O(|E|).

D. Gap Between Adversarial and Universal Upper Bounds

The strategies chosen by each agent for the submodular
function in (9) provides a coloring of the graph G. That is,
the vertices V` := {i ∈ V | xi = e`} are those colored
with color `. By construction, there are no edges between
vertices of the same color. This implies that the adversarial
upper bound is tighter than the universal upper bound, which
utilizes the minimum number of colors.

A key question is how large the gap can be between the
two upper bounds. In general it can be arbitrarily large.
To see this, consider the following bipartite directed graph
G = (V,E) consisting of n = 2m vertices, where V =
{u1, . . . , um}∪{w1, . . . , wm}. The graph contains all edges
(ui, vj) such that i < j and all edges (vi, uj) such that
i < j along with the edge (um, wm). An example is shown
in Figure 2. For this graph, under Algorithm 1, the vertex
wm chooses strategy em+1. Thus, we have that

(i) the chromatic number of G is 2, and thus the adversarial
upper bound is 2/n.

(ii) Algorithm 1 returns 1/2 + 1/(2m).
However, the advantage of Algorithm 1 is that it is a

simple linear-time algorithm for computing an upper bound
on achievable performance of a given graph topology. In
contrast, the adversarial function of Section V-B provides
a much tighter upper bound, but requires solving an NP-
hard problem. An interesting connection to note is that
Algorithm 1 is essentially computing a greedy coloring of
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Fig. 2. A bipartite graph on eight vertices. The graph is colored using just
two colors, and its chromatic number is two. Under (10), vertex w4 will
select strategy e5, and thus Algorithm 1 will output 5/8.

G, where vertices are considered in topological order. It is
known that in general a greedy coloring does not provide a
constant factor approximation to the minimum coloring [23].

E. Comparison of Lower and Upper Bounds

In Section IV we provided lower bounds on the per-
formance of greedy algorithm (6) for any monotone, nor-
malized, submodular function. This consisted of results for
several graph topologies, and a general result based on
the clique number of the graph. Table I compares these
lower bounds with the upper bounds obtained from Propo-
sition 5.2 and Algorithm 1. Given a graph topology, the
lower bound provides a minimum performance guarantee
for all submodular functions. In constrast, the upper bounds
provide limitations on performance for a specific (worst-
case) submodular function.

Graph Lower χ(G) Upper Alg. 1 Upper
Empty 1/n 1/n 1/n

Complete acyclic 1/2 1 1
Interconnected cliques 1/2κ 1/κ+ 1/n 1/κ+ 1/n

General DAG 1
n−ω(G)+2

χ(G)/n Alg. 1

TABLE I
COMPARISON BETWEEN THE LOWER BOUND IN SECTION IV AND THE

TWO UPPER BOUNDS FOR THREE GRAPH TOPOLOGIES.

The entires in Table I for the interconnected cliques graph
assume κ cliques, each of size n/κ.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a distributed setting for a class of sub-
modular maximization problems under matroid constraints,
where the strategy set is partitioned into private strategy
sets assigned to a group of agents. We have investigated
the limitations that the lack of information about the ac-
tions of other agents can impose on the performance of
local greedy algorithms. Investigating the applications of
distributed submodular optimization, obtaining tighter upper
bounds for more homogeneous classes of submodular func-
tions, and investigating under what additional assumptions
on the submodular functions one can generalize the lower
bounds provided in this paper are interesting avenues of
future research.
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