
Stochastic Patrolling in Adversarial Settings

Ahmad Bilal Asghar Stephen L. Smith

Abstract— In this paper, we consider a patrolling problem in
adversarial environments where intruders use the information
about a patrolling path to increase chances of successful attacks.
We use Markov chains to design randomized patrolling paths
on graphs. We present four different intruder models, each
of which use information about the patrolling path in a
different manner. We characterize the expected rewards for
those intruder models as a function of the Markov chain that
is being used for patrolling. We show that minimizing the
reward functions is a non-convex optimization problem. We
propose a pattern search based algorithm to determine a locally
optimal patrolling strategy. We also show that for a certain
type of intruder, a deterministic patrolling policy given by an
orienteering tour of the graph is the optimal patrolling strategy.

I. INTRODUCTION

Consider a marketplace where a security agent is patrolling
at night to prevent thefts. The thief may have more incentive
to rob a jewelry shop than a grocery shop. If the patrolling
path of the agent is predictable, a potential thief can study
the path, and time the theft to avoid being detected. As a
simple example, assume that the patrolling agent takes a
round of the market and visits each shop once every 45
minutes. If the thief requires half an hour to steal, he can
commit the crime without being detected. Moreover, if the
patrolling agent visits the grocery shop as often as the jewelry
shop, the thief would make an attempt at the more valuable
location. So, in such a case, randomizing the patrolling path
can increase the surveillance quality of the area. Another
relevant example is in border patrol [1], [2] where an intruder
can time its crossing of the border in order to infiltrate
unnoticed. We study the effects of randomizing the patrolling
path in the presence of such intruders and attempt to design
the paths that optimize the surveillance quality for a given
environment.

Related work: There is a substantial amount of work
related to design of patrolling policies for surveillance of
environments. For deterministic paths, there is a breadth of
work considering both single and multiple robots [3], [4],
[5], [6]. In [7] the authors discuss deterministic monitoring
strategies to minimize the weighted latency of the path. The
path visits the vertices with higher weight more often. Our
work looks at a similar problem, but considers intelligent
intruders and thus we consider non-deterministic paths.

Srivastava et al. [8] advocate random patrolling paths by
showing that it is hard to find deterministic strategies that sat-
isfy the surveillance criterion of visiting vertices proportional

This research is partially supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

The authors are with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo ON, N2L 3G1 Canada
(abasghar@uwaterloo.ca; stephen.smith@uwaterloo.ca)

to their importance. In [9] the authors consider stochastic
surveillance paths so that the intruders cannot easily exploit
the predictability of a deterministic path. We extend this
notion and look at ways in which an intelligent intruder
can learn a randomized path, and utilize this information to
launch attacks. In [1] the authors look at intelligent intruders
in a perimeter patrolling problem. Our problem is different
in the sense that we deal with environments represented as
graphs, for which border patrol is a special case.

Markov chains are often used to model random paths
on a graph [8], [9], [10]. For example, in [10] the authors
use semidefinite programming to minimize the mean first
passage time from one state of the Markov chain to any
other state, called Kemeny constant [11]. They also use the
Markov chains on weighted graphs, where the probability of
traversing an edge is independent of the weight of that edge.
This formulation is more useful in the case of surveillance
since the environment is usually represented as a weighted
graph and the Markov chain is then defined on that graph.
This doubly weighted graph formulation is not studied much
in the literature to the best of our knowledge. We study the
problem for both weighted and unweighted graphs.

Boyd et al. [12] design a Markov chain with fastest
mixing time, which approaches the steady state distribution
as quickly as possible. In [13] the authors use a finite set
of Markov chains to formulate the problem as a Bayesian
Stackelberg Game.

In [14] the authors empirically show that randomized
paths can decrease the probability of successful intrusions.
Instead of using Markov chains, the propose methods for
randomization such as randomly interchanging the order of
vertices in each cycle of a TSP tour. They consider three
different types of intruders based on the attacking strategy.
We also present different attack models for the intruders
and analyze their performance. The approach of presenting
intruder models for attacks on the environment is similar
to that used in computer security (for example, [15] on
encryption or [16] on wireless sensor networks).

Contributions: We formally define four intruder mod-
els. Each intruder model requires different capabilities and
knowledge from the intruder. The expected reward for each
of these intruders is derived that serves as the objective
function to find a patrolling policy. The expected reward
of the intruder is a non-convex and non-smooth function of
the patrolling policy, and we propose a pattern search based
algorithm to find the local minimum of the expected reward
and present experimental results. We also show that for a
certain intelligent intruder, a deterministic patrolling policy
is optimal. Proofs are omitted due to space limitations and
will appear in full elsewhere.



A. Background

We use homogeneous Markov chains to model random
paths on graphs. The transition matrix P of a Markov
chain gives the transition probabilities between states of
the Markov chain. We say that state i communicates with
state j, if p(m)

ij > 0 for some m > 0. The states i and j
intercommunicate with each other if i communicates with
j and j communicates with i. A set of states C is called a
communicating class if states i and j intercommunicate with
each other for i, j ∈ C and no state in C communicates with
any state not in C. We will only be considering the Markov
chains with a single communicating class in this paper.

The ORIENTEERING PROBLEM [17] is a variant of the
TRAVELING SALESMAN PROBLEM. The input to the problem
is a weighted graph G = (V,E,W ) and a time limit Tmax.
Each vertex i ∈ V has an associated score ψi. The problem
is to find a closed walk of length not exceeding Tmax which
maximizes the total score obtained by visiting the vertices.

II. PROBLEM STATEMENT

Consider a surveillance agent monitoring an environment
to detect possible attacks on the areas of the environment.
We represent the environment by an undirected weighted
graph G = (V,E,W ) where the set of vertices V =
{1, 2, . . . , n} represents the areas to be monitored and the
edges represent the routes along which the agent can travel.
The weight on the edge {i, j} is given by wij . Each vertex i
has an importance φi representing the intruder’s reward for
launching a successful attack on i. The length of attack is
l > 0, and an attack is successful if the surveillance agent
does not visit the attacked vertex for the duration of the
attack. We use first order Markov chains to define random
patrolling paths on the graphs. The transition matrix of the
Markov chain P = [pij ] governs the random path of the
agent. The probability pij of going from vertex i to vertex
j is independent of the history of the path. We call the
transition matrix P the patrolling policy since it completely
characterizes the agent’s patrolling path.

The probability of successful attack depends on the
method of attack used by the intruder. The intruder model
defines the procedure by which the intruder decides the
time and vertex of attack. The model may or may not
use information the intruder has gathered about the agent’s
patrolling path. Given an intruder model, our goal is to find a
patrolling policy to minimize the intruder’s expected reward.

Problem Statement: Given a graph G =
(V,E,W ) and the intruder model, determine a
patrolling policy P that minimizes the expected
reward of the intruder.

In the following section we define four intruder models
and we derive expressions for the probability of successful
attacks on the vertices of the graph.

III. INTRUDER MODELS

This section discusses some of the intuitive policies that an
intruder can follow to launch attacks on the environment. We

assume that there is only one attack on the environment at a
time. Moreover, the intruder does not travel on the graph and
appears only at the location of the attack for the duration of
the attack. An intruder model will define the following two
parameters:
• Vertex of attack: The intruder chooses the vertex of

attack according to some probability distribution de-
fined in the model. The probability of launching an
attack on vertex i denoted as P [attack = i], where∑

i∈V P [attack = i] = 1
• Time of attack: This defines the vertex occupied by

the patrolling agent when the attack is launched. The
intruder may wait until the agent reaches a certain vertex
before launching an attack. In general, this will be a
function of the vertex of attack.

To find the probability of an attack being successful, we
need to define the notions of first visit time and the success
matrix, which are defined in the following sections.

A. Intruder Model Preliminaries: First Visit Time

The Markov chain transition matrix P can be used to
determine the probability of launching a successful attack
on vertex j when the patrolling agent is at vertex i. For
a given Markov chain, we can calculate the probability of
going from state i to state j in exactly k steps. In [18]
the probability of first visit to state j ∈ V from starting
state i ∈ V in k transitions is given for the Markov chains
where each transition takes same amount of time. Hence, that
result is valid for Markov chains on unweighted graphs. We
extend these results for graphs with edge weights where each
transition can take a different amount of time. Unweighted
graphs can model the environments in the form of grid
graphs, whereas weighted graphs capture the more general
problem since the travel times between different nodes of the
environment can be different.

We assume that the weights on the edges of the graphs
are positive integers. Given a graph G = (V,E,W ) and the
transition matrix P , the probability mass function of the time
taken for the first visit from state i to state j is given by

Fk(i, j) ={
pij(wij = 1), k = 1∑

h6=j PihFk−wih
(h, j) + pij(wij = k), k ≥ 2

(1)

where (wij = 1) is a truth statement which evaluates to 1
or 0, and Fk(i, j) = 0 for non positive values of k.

Given i and j, Fk(i, j) gives a probability mass func-
tion over the random variable K which is the amount of
time/steps taken in hitting the state j for the first time starting
from i. In the subsequent sections, we will refer to the three
dimensional matrix F as the first visit matrix.

B. Intruder Model Preliminaries: Success Matrix

We will now use matrix F to calculate the probability of
successful attacks by the intruder. An attack on a particular
location is successful if the patrolling agent does not visit
that location for the entire duration of the attack. So, for a



specified length of attack l, the probability of attack being
successful on j given the patrolling agent’s position is i at
the time of launching the attack can be simply calculated as

P [success at j|i] = 1−
l∑

k=1

Fk(i, j)

which is the probability of not visiting the state j in l con-
secutive steps from the state i. For notational convenience,
we define the success matrix S, whose element sij gives the
probability of a successful attack at vertex j of the graph if
the agent is at vertex i at the time the attack is launched. We
can write S as

S = J −
l∑

k=1

Fk (2)

where J is a matrix of all ones. The matrix S may or may
not be used by the intruders to decide on the location and
the time of the attack. The following sections present some
intruder models.

C. Intruder Model 1: Naı̈ve Attacks

The naı̈ve intruder model represents an intruder that does
not learn or use any information about the patrolling path of
the agent. The time and vertex of attack for this model are
decided as follows.

Vertex of attack: Whenever an attack is to be launched,
the vertex of attack is chosen depending on the importance
of that vertex. So, the probability of attacking vertex j is

P [attack = j] =
φj∑
i φi

Time of attack: In this model, the intruder launches the
attack randomly and independent of the agent’s location.
The location of the agent at the time of attack is a random
variable, and the probability that the agent is at location i
when the attack arrives is given by the frequency with which
agent visits location i, which is πi where π is the stationary
distribution of the Markov chain being followed by the agent.
Using the expression P [agent at i] for the probability of
the agent being at i when the attack is launched, we can write

P [agent at i] = πi.

Objective function: Using the time and vertex of attack,
the reward function for this intruder model can be written as

f(P ) =

n∑
j=1

φjP [success at j]P [attack = j]

=

n∑
j=1

φjP [success at j]φj

assuming φ is normalized. Then using Bayes theorem,

f(P ) =

n∑
j=1

φ2j

n∑
i=1

P [success at j|i]P [agent at i]

=

n∑
j=1

φ2j

n∑
i=1

sijπi = π>Sφ2

where π and φ are vectors. The reward function is a function
of the transition matrix P , since the matrix S and the vector
π are functions of P .

D. Intruder Model 2: Deterministic Intruder
The deterministic intruder model is motivated by the

intruder that attacks a vertex immediately after the patrolling
agent departs that vertex. This is an effective strategy if the
patrolling agent is following a cyclic tour of the graph.

Vertex of attack: The vertex of attack is chosen just like
the naı̈ve policy, so

P [attack = j] =
φj∑
i φi

.

Time of attack: The intruder waits and launches the attack
on vertex i as soon as the patrolling agent leaves vertex i on
its path. Hence,

P [agent at i] =

{
1 attack is on vertex i
0 otherwise

Objective function: The reward function for such an
intruder will be

f(P ) =

n∑
i=1

φ2i sii.

If the patrolling path of the agent is a TSP tour and the
length of the tour is greater than the length of attack, then
this attack policy is optimal in terms of choosing the time
of attack.

E. Intruder Model 3: Intelligent Intruder with Assigned
Locations

Let us consider an intruder that has observed the patrolling
path of the agent and wants to use the learned information to
increase the chances of a successful attack. The models pre-
sented in this and the next section address such intruders. We
will assume that the intruder has observed the surveillance
path long enough to have modeled the transition matrix P
of the patrolling Markov chain.

Vertex of attack: According to this model, the vertex to
attack is selected based on its importance like the previous
two models. So, the intruder does not use the patrolling path
information to choose the vertex of attack. Hence,

P [attack = j] =
φj∑
i φi

.

This can be realized in a scenario where the intruder has
been pre-assigned the locations that it has to attack, and the
intruder then uses the information about the patrolling path
to choose the time of attack for those locations.

Time of attack: Since the intruder has access to the
transition matrix P , it can calculate the success matrix S (2)
and use it to figure out the best possible time to attack.
The intruder maximizes its chances of a successful attack
at vertex j, so the location of the agent at the time of attack
is given by

P [agent at i] =

{
1, i = argmaxx sxj .

0, otherwise



Hence, the intruder looks at the column of S corresponding
to the vertex it has to attack and the index of the maximum
element in that column gives the vertex at which the agent
should be when that attack is launched. The intruder waits
until the agent reaches vertex i to launch the attack at j.

Objective function: The expected reward for the intruder
following this model will be

f(P ) =

n∑
j=1

φ2j max
i
{sij} = max(S)φ2

where max(S) is a row vector with jth element being the
maximum entry in the jth column of matrix S.

F. Intruder Model 4: Intelligent Intruder

Unlike the previous model, the intruder has not been
assigned the locations to attack, hence this model uses P
to choose the vertex of attack as well.

Vertex of attack: The maximum expected reward the
intruder can obtain is by attacking the best possible vertex
at the best possible time. The vertex with the maximum
expected reward is given by

j = argmax
y

{
φy max

i
{siy}

}
.

Here maxi{siy} gives the highest probability of attack on
vertex y. So, φy maxi{siy} gives the expected reward for
attacking the vertex y and the vertex to attack j is chosen
as the vertex that gives the most expected reward.

Time of attack: The best time to attack vertex j is given
by the index of the maximum entry in the jth column of S.
The position of agent at the time of attack is then given by

i = argmax
x

sxj .

Objective function: So, the maximum expected reward
for the intruder is

f(P ) =max
j

{
φj max

i
{sij}

}
= max

i,j
{φjsij}

Among the intruder models that decide the time and vertex
of attack based on the patrolling policy P only, this model is
optimal in the sense that it maximizes the intruder’s reward.
We now look at computing transition matrices that minimize
the intruder’s expected reward.

IV. PATROLLING POLICY

Given one of the intruder models, our task is to find the
patrolling policy P that minimizes the expected reward f(P )
for that intruder. In this section, f(P ) will generally refer to
the reward function independent of the intruder model unless
a model is specified.

A. Non-Convexity of the Problem

The reward function f(P ) for all of the intruders is not
a convex function in general. The Hessian of sij is not
necessarily positive semi definite and hence sij is not a
convex function of P making f(P ) non convex. This can
be observed by considering the Hessian of s11 for length of
attack l = 2 as an example.

Hence we cannot use convex programming to find the
global optimal patrolling policy P . The following result
shows that the optimal patrolling policy for the intruder
model 3 is the solution to the orienteering tour problem of
the graph.

B. Deterministic Patrolling Policy for Intelligent Intruder
with Assigned Locations

The motivation behind randomizing the patrolling path
is that a deterministic could be exploited by the intruder.
However, if the intruder is following intruder model 3, a de-
terministic path minimizes the expected reward. Informally,
that is because the intruder has to attack all the vertices
according to their importance, and if the patrolling agent just
visits the ‘most important’ vertices within time l, the intruder
can never successfully attack those vertices. The following
proposition formally presents the result.

Proposition IV.1 (Deterministic Patrolling Policy for In-
truder Model 3). The solution to the ORIENTEERING PROB-
LEM for the graph G = (V,E,W ) with score on vertex i ∈
V given by ψi = φ2i , and the time limit Tmax = l minimizes
the expected reward for the intruder following intruder model
3 (intelligent intruder with assigned locations).

The proof of the proposition is omitted due to space
constraints, but the idea behind the proof is to consider a
vertex r outside the orienteering tour and show that any
patrolling policy that visits r cannot decrease the reward
function.

Proposition IV.1 shows that a deterministic strategy min-
imizes the expected reward of intruder model 3. In general,
finding the optimal policy P for patrolling given an intruder
model is a non convex optimization problem. Gradient de-
scent methods can be used to find a locally optimal patrolling
policy but the runtime of calculating the gradient of the
objective function is O(n5l) where n is the number of
vertices in the graph and l is length of attack. In the following
section we propose a gradient-free method based on pattern
search for computing locally optimal patrolling policies.

C. Locally Optimal Markov Chains

Consider the space of stochastic matrices P ∈ Rn×n with
pij ≥ 0 for all i, j ∈ {1, . . . , n} and

∑n
i=1 pij = 1 for all

j ∈ {1, . . . , n}. Given an objective f(P ), and an initial point
P , or goal is to move in a descent direction from P . To do
this, we propose Algorithm 1, which iteratively searches a
set of candidate descent directions using pattern search [19].
At each iteration of the method, a set of search directions are
chosen and the function is evaluated at a given step length
along these direction. As soon as a better point is found, it is



chosen as the current point and the method proceeds to the
next iteration. Let Dk denote the set of possible directions
to chose from at the kth iteration and let the step length at
iteration k is given by γk.

Algorithm 1: LOACALLYOPTIMALCHAIN

Input: Graph G = (V,E,W ); intruder’s reward
function f(P ); algorithm parameters γT , δ and θ

Output: A locally optimal transition matrix
1 Pick a transition matrix P for the graph G and initial

step length γo
2 for k = 0, 1, 2, . . . do
3 if γk < γT then Stop
4 if f(Pk + γkdk) < f(Pk)− ρ(γk) for some

dk ∈ Dk then
5 Pk+1 ← Pk + γkdk
6 γk+1 ← δγk

7 else
8 Pk+1 ← Pk

9 γk+1 ← θγk

In the algorithm, δ > 1 is used to increase step length for
the next iteration if a decrease direction is found. The param-
eter θ < 1 decreases the step length if no decrease direction
is found in the said iteration. If the step length becomes less
than a set value γT , the algorithm terminates. The sufficient
decrease function ρ(γk) is chosen as Mγ

3/2
k where M is a

constant, which, from [19], guarantees convergence.
Search Directions for Transition Matrices: We require

a set of directions that has the property that if the gradient
of the function is not zero, then at least one of the directions
is a direction of descent. So, a proposed set is the set of all
unit directions. In our case, the optimization is constrained
to the set of stochastic matrices, and thus some of the unit
directions may not be valid. To address this, we define
the set Dk as follows. For each row i of the transition
matrix, we have a simplex in Rqi dimensions where qi
is the number of neighbors of vertex i. We can define
qi − 1 mutually perpendicular directions on the simplex for
each i and use these as the possible directions. They are
guaranteed to include a descent direction if one exists. In our
implementation, we also include some random directions in
Dk to speed the descent process.

Properties of Algorithm 1: With the choice of search
directions given above, Algorithm 1 can be applied to locally
optimize a Markov Chain for each of the four intruder
models. The algorithm has the following properties:

(i) The cost f(P ) monotonically decreases at each itera-
tion,

(ii) The algorithm terminates in finite time, and
(iii) The worst case run-time per iteration is O(n5l) since

there are O(n2) search directions and the runtime for
calculating the function is O(n3l) for a general graph.

The algorithm moves to the next iteration as soon as a bet-
ter point is found and hence each iteration is less expensive

than that of gradient descent. On the other hand, while more
computationally expensive per iteration, the gradient descent
method may require fewer iterations to converge. We used
both the gradient descent and pattern search based method to
compute patrolling policies on a variety of graphs and found
the later to be much faster in practice.

V. SIMULATION RESULTS

We performed the optimization of the expected reward for
a given intruder using Algorithm 1 on some instances of the
problem. This section presents and examines the results of
those experiments.

A. Comparison with other policies

In our first experiment, we ran Algorithm 1 on small
instances of the graph for different starting points and
compared the results with some other patrolling policies. The
intruder model chosen was the ‘intelligent intruder’ given in
Section III-F. The sample instances of the graph were created
randomly following a procedure similar to [14]. The graph
was constructed using n = 10 Euclidean points in a plane of
size MAX = 10. Each point was at least MIN = 3 units of
distance apart from the others. Each vertex was connected
to k of its nearest points where k was chosen randomly
between NBRmin = 3 and NBRmax = 5. By a probability
of Pconn = 0.1 each point was connected to some other
random point as well. The Euclidean distance between the
connected points was calculated and then rounded off to give
integer weights on the edges. The wights on the vertices of
the graph were randomly picked to be between 1 and 3.
The length of the attack was taken to be the length of the
minimum spanning tree of the graph.

The experiment was performed for 40 different graphs, and
for each of the graph instance, we compared the performance
of the policy (transition matrix) found by the Algorithm 1 to
the following two policies.

(i) Minimum Kemeny Constant Policy: The policy given
in [10] of finding the transition matrix with minimum
Kemeny constant.

(ii) Uniform Policy: The transition matrix P is chosen such
that the entry pij in each row i of P is 1/qi where qi
is the number of neighbors of ith vertex.

Algorithm 1 found a better policy for all of the 40 in-
stances since it particularly minimizes the objective function.
The comparison for 5 of those instances is given in Table V-
A. The expected reward is normalized such that it is 1 for
the locally optimal policy.

B. Patrolling an indoor environment using unweighted graph

For the next experiment we consider the intruder model
presented in Section III-E. Here the intruder cannot choose
the vertex to attack but can choose the time to launch the
attack. We consider an unweighted grid graph which can be
used for patrolling in indoor environments. The graph has
n = 52 vertices and is shown in Figure 1. The weights on
the vertices of the graph are 1 for all the vertices.



Kemeny Constant Uniform Algorithm 1

1.42 1.56 1
1.21 1.43 1
1.36 1.41 1
1.32 1.34 1
1.56 1.86 1

TABLE I
THE EXPECTED REWARD OF THE INTRUDER FOR DIFFERENT POLICIES.

Fig. 1. The grid graph representing an indoor environment. The green
vertices represent the orienteering tour of length 44.

In the Figure 2, we have plotted the performance of pattern
search on the grid graph for length of attack l = 44. The
starting point for the Algorithm 1 was a random Markov
chain, and it can be observed that the expected reward for
the intruder was almost 1 for that chain. It means that the
intruder was always able to find a suitable time to attack for
any of the vertices of the graph. Algorithm 1 decreased the
expected reward of the intruder to 0.278. Notice that since
we are considering the intruder model 3, the orienteering
tour of the graph with time limit 44 is the optimal solution.
The green vertices of the graph in Figure 1 represent the
vertices in the orienteering tour. If the agent follows that
deterministic path, the intruder can attack the blue vertices
with 100% success rate and it can never successfully attack
the green vertices. So the expected reward for the intruder
will be 11/52 = 0.2115.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we discussed the patrolling problem in
adversarial environments and proposed patrolling policies
for different intruder models. We showed that for a certain
type of intruder, the orienteering tour of the graph is the

0 50 100 150 200 250 300 350 400
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration no.

ex
pe

ct
ed

 r
ew

ar
d

Fig. 2. The performance of Algorithm 1 on grid graph with l = 44.

optimal patrolling policy. We proposed a pattern search based
algorithm to find the locally optimal policies and presented
the experimental results.

We assumed that the intruder has perfectly modeled the
Markov chain being followed by the agent. The learning of
Markov chain can be incorporated in the models to make
them more realistic. Moreover, designing patrolling paths for
multiple patrolling agents is also an interesting problem for
future work.

REFERENCES

[1] N. Agmon, S. Kraus, and G. Kaminka, “Multi-robot perimeter patrol
in adversarial settings,” in IEEE International Conference on Robotics
and Automation, May 2008, pp. 2339–2345.

[2] J. J. Acevedo, B. C. Arrue, I. Maza, and A. Ollero, “Cooperative
perimeter surveillance with a team of mobile robots under communica-
tion constraints,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2013, pp. 5067–5072.

[3] S. L. Smith, M. Schwager, and D. Rus, “Persistent robotic tasks: Mon-
itoring and sweeping in changing environments,” IEEE Transactions
on Robotics, vol. 28, no. 2, pp. 410–426, 2012.

[4] D. Portugal and R. P. Rocha, “Multi-robot patrolling algorithms:
examining performance and scalability,” Advanced Robotics, vol. 27,
no. 5, pp. 325–336, 2013.

[5] J. Yu, S. Karaman, and D. Rus, “Persistent monitoring of events
with stochastic arrivals at multiple stations,” in IEEE International
Conference on Robotics and Automation, Hong Kong, May 2014, pp.
5758–5765.

[6] Y. Chevaleyre, “Theoretical analysis of the multi-agent patrolling
problem,” in IEEE/WIC/ACM International Conference on Intelligent
Agent Technology, Beijing, China, Sep. 2004, pp. 302–308.

[7] S. Alamdari, E. Fata, and S. L. Smith, “Persistent monitoring in
discrete environments: Minimizing the maximum weighted latency
between observations,” International Journal of Robotics Research,
vol. 33, no. 1, pp. 138–154, 2014.

[8] K. Srivastava, D. Stipanovic, and M. Spong, “On a stochastic robotic
surveillance problem,” in IEEE Conference on Decision and Control
and Chinese Control Conference, Dec 2009, pp. 8567–8574.

[9] J. Grace and J. Baillieul, “Stochastic strategies for autonomous robotic
surveillance,” in IEEE Conference on Decision and Control and
European Control Conference, Dec 2005, pp. 2200–2205.

[10] R. Patel, P. Agharkar, and F. Bullo, “Robotic surveillance and markov
chains with minimal weighted kemeny constant,” IEEE Transactions
on Automatic Control, vol. 60, no. 12, pp. 3156–3167, Dec 2015.

[11] J. G. Kemeny and J. L. Snell, Finite Markov Chains. Springer, 1976.
[12] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing Markov chain on

a graph,” SIAM Review, vol. 46, no. 4, pp. 667–689, 2004.
[13] T. Alam, M. Edwards, L. Bobadilla, and D. Shell, “Distributed multi-

robot area patrolling in adversarial environments,” in International
Workshop on Robotic Sensor Networks, Seattle, WA, USA, Apr. 2015.

[14] T. Sak, J. Wainer, and S. K. Goldenstein, “Probabilistic multiagent
patrolling,” in 19th Brazilian Symposium on Artificial Intelligence:
Advances in Artificial Intelligence, ser. SBIA ’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 124–133.

[15] D. Dolev and A. C. Yao, “On the security of public key protocols,”
IEEE Transactions on Information Theory, vol. 29, no. 2, pp. 198–208,
1983.

[16] Z. Benenson, E. Blaß, and F. C. Freiling, “Attacker models for wireless
sensor networks (angreifermodelle für drahtlose sensornetze),” it -
Information Technology, vol. 52, no. 6, pp. 320–324, 2010.

[17] B. L. Golden, L. Levy, and R. Vohra, “The orienteering problem,”
Naval Research Logistics, vol. 34, no. 3, pp. 307–318, 1987.

[18] E. Cinlar, Introduction to Stochastic Processes, ser. Dover Books on
Mathematics Series. Dover Publications, Incorporated, 2013.

[19] J. Nocedal and S. Wright, Numerical Optimization. Springer Science
& Business Media, 2006.


