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Abstract

In this paper we study the problem of scheduling sensors to estimate the state of a linear dynamical system. The estimator is a
Kalman filter and our objective is to optimize the a posteriori error covariance over an infinite time horizon. We focus on the
case where a fixed number of sensors are selected at each time step, and we characterize the exact conditions for the existence
of a schedule with uniformly bounded estimation error covariance. Using this result, we construct a scheduling algorithm
that guarantees that the error covariance will be bounded if the existence conditions are satisfied. We call such an algorithm
complete. Finally, we provide simulations to compare the performance of the algorithm against other known techniques.

1 Introduction

One technique for monitoring an environmental pro-
cess is to deploy a sensor network. Each sensor can be
equipped with the ability to make a range of measure-
ments. Sensor networks have been used in various appli-
cations including determining a robot’s state [5], track-
ing the position of a target [7], selecting the frequency in
radar and sonar applications, or monitoring tasks such
as chemical processes [11], seismic activity or toxin lev-
els at a factory. Sensor scheduling techniques can also be
applied to problems such as adaptive compressed sens-
ing [12].

The collection of data can be done by operating every
sensor continuously; however, the network may be re-
quired to have a long life span and so this strategy may
not be viable due to energy and communication con-
straints. To overcome these restrictions, sensors can al-
ternate between awake and asleep modes. Unless the net-
work provides enough redundancy, this method could
result in an incomplete picture of the phenomenon of
interest. Therefore, a sensing schedule has to be con-
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structed in an intelligent way in order to obtain as much
information as possible. This is, in essence, the sensor
scheduling problem.

The sensor scheduling problem has received considerable
attention in recent years. In the context of linear Gaus-
sian systems, a Kalman filter is the optimal estimator in
that it produces an estimate with the least mean square
error. Thus, the Kalman filter is commonly used as the
basis for the sensor scheduling problem. An exception
is [6], where the condition number of the sequence ob-
servability matrix is used as a metric to find a sensor
schedule. In this paper we will use a metric on the error
covariance of the Kalman filter as our objective function.
With this setting, the infinite horizon sensor scheduling
problem is studied in [23]. Under some mild conditions,
it is shown that the optimal infinite horizon schedule is
independent of the initial covariance. Also, it is shown
that given an optimal schedule, its cost can be estimated
arbitrarily closely by a periodic schedule, with a finite
period. However, if the optimal schedule is not known,
the analysis does not provide a constructive method for
efficiently computing an approximate period schedule.

Numerous approaches have been proposed to tackle the
sensor scheduling problem. The results in [23] serve as
a reason to find optimal periodic schedules for infinite
horizon scheduling problem. The authors in [19] find a
periodic schedule using a branch-and-bound approach.
In [18] the authors find an optimal periodic schedule
by approximating the objective function of the sensor
scheduling problem. A locally optimal solution to peri-
odic scheduling was proposed in [13] with constraints on
the number of times each sensor can be used in a period.
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Their objective function incorporates both the estima-
tion error and the number of sensors used per time step.
A drawback to these approaches is that the optimal pe-
riod is unknown, and thus the desired period must be
given as an input.

Optimal and semi-optimal algorithms for the finite hori-
zon problem that use tree pruning techniques are pro-
vided in [20]. In [3], three different approaches (slid-
ing window, greedy thresholding and random selection)
are empirically compared. The authors further develop
the random selection method in [4], where a strategy
for stochastically selecting measurements based on an
intelligently constructed probability distribution is de-
scribed and bounded. In [14], a few different approaches
are studied, including a best step look ahead algorithm,
an approach based on the Viterbi algorithm and another
by casting the problem as a duality problem. The algo-
rithms are described and empirically compared in terms
of performance and computation time.

A convex relaxation based approach is discussed in [21]
and applied to the monitoring of CO2 using a wire-
less sensor network. Another convex relaxation approach
is given in [10] along with solution dependent bounds.
In [17], this approach is, however, empirically shown to
be worse than a greedy algorithm. In [9], authors studied
some properties of greedy sensor scheduling algorithms
and their relation to submodular set functions.

A general framework for the sensor scheduling problem
is presented in [16]. A number of problems can be ad-
dressed in this framework such as minimizing the final
covariance over a time horizon, the average covariance,
the variance of a single state, or even the cost of a fi-
nite horizon LQG regulator. A number of network con-
straints can also be included. The problem is framed as
a relaxed quadratic program, and a greedy approach is
described although the error bound is not necessarily
uniformly bounded for unstable systems. In [15], a con-
tinuous time sensor scheduling problem is considered for
an objective capturing both estimation error and sensor
switching costs.

In this paper we consider infinite-horizon sensor schedul-
ing. Based on the discussion above, existing approaches
for this problem are 1) to fix a period and compute a pe-
riodic schedule; 2) to repeatedly apply a finite-horizon
algorithm; or 3) to greedily select sensors at each time
step. For each of these methods, there are no guaran-
tees that the resulting schedule will produce a uniformly
bounded sequence of covariance matrices. In fact, we do
not know of any results that characterize the exact con-
ditions under which an infinite horizon sensor schedule
exists that results in a uniformly bounded sequence of
covariance matrices.

Contributions: We give necessary and sufficient condi-
tions for the existence of an infinite horizon sensor sched-

ule with a bounded error covariance (Section 4). We
then provide a complete algorithm for sensor scheduling
(Section 5): That is, our algorithm outputs a uniformly
bounded sensor schedule if one exists. The algorithm
has the same runtime as the simple greedy algorithm
and we show in simulations (Section 6) that our pro-
posed algorithm outperforms the greedy algorithm, and
can be used to efficiently compute schedules for high-
dimensional linear systems with a large number of sen-
sors .

A preliminary version of this paper was presented in [8].
Relative to this early version, we now provide a more effi-
cient algorithm along with detail on its implementation.
We also extend both the algorithm and analysis to the
general problem of k sensors per time step, and provide
complete proofs of the correctness of the proposed greedy
algorithm. Finally, we present more extensive simulation
results on high-dimensional linear systems, including a
system obtained by discretizing the heat equation.

2 Preliminaries

Consider the discrete-time linear stochastic system

xt+1 = Axt + wt, xt ∈ Rn,
yt = Ctxt + vt, yt ∈ Rk

(1)

where A ∈ Rn×n and C ∈ Rm×n. The matrix Ct is a
subset of k rows of C. This is the standard sensor se-
lection model, as in [20,16]. The process noise wt mea-
surement noise vt are zero mean Gaussian noise vectors
with covariance matrices W,V ∈ Rn×n, respectively,
with W � 0 and V � 0. We assume that the noises are
independent over time.

For the case Ct = C (LTI system), the system is said
to be observable if its observability matrix Θ =
col(C,CA, . . . , CAn−1) has rank n.

If the observability matrix is not full rank then a sim-
ilarity transform T can be used to convert the system
into standard form for unobservable systems.

Ā = T−1AT =

[
Aō A12

0 Ao

]
, C̄ = CT =

[
0 Co

]
. (2)

Here (Ao, C
o) is observable. If Aō is stable, the sys-

tem is said to be detectable.

Consider a sequence of measurements σ = (σ0, σ1, . . .),
and the corresponding sequence of matrices (C0, C1, . . .).
For a given time t and time window k, the sequence ob-
servability matrix for the given system can be written
as

Bσ(t, t+ k) = col(Ct, Ct+1A, . . . Ct+kA
k).
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The following definition follows from the definition of
Uniform Detectibility in [1].

Definition 1 (Uniform Detectability) For the sys-
tem in (1), the sequence of measurements σ is uniformly
detectable if there exists non-negative integers s, r and
constants α ∈ [0, 1) and β > 0, such that for all {x ∈
Rn| ‖x‖ = 1} and all times t,

‖Arx‖ ≥ α =⇒ ‖B(t, t+ s)x‖ ≥ β > 0. (3)

Additionally, for the given system, the sequence is uni-
formly observable if there exists integer s and positive
constants β1, β2 such that

0 < β1 ≤ ‖B(t, t+ s)x‖ ≤ β2

⇐⇒ rank(B(t, t+ s)) = n.
(4)

Note that for a general time varying system, the equiv-
alence in (4) holds only in the forward direction. For
example, the reverse direction does not necessarily hold
when Ct or At can take on infinitely many values. This,
however, is not the case for the system in (1), where A
is fixed and Ct is a subset of rows of a time invariant C.

Finally, we will use the following result for some of our
proofs.

Lemma 2 Suppose (A,C) is observable and A is full
rank. Then, letting ci be the ith row of C,

B , col(c1, c1A . . . , c1A
n−1, c2A

n, . . . , cmA
mn−1) (5)

is full rank.

PROOF. Since rank(Θ) = n, it suffices to show that
each of the rows of Θ can be written as a linear combi-
nation of the rows in B. Let Xi = {ci, ciA, . . . , ciAn−1}
for i = 1, . . . ,m. Note that the rows of Θ comprise of
the vectors in the multiset

⋃m
i=1Xi. Also, note that x ∈

Xi =⇒ xA(i−1)n is a row of B. Let Xb
i = XiA

(i−1)n =
{ciA(i−1)n, ciA

(i−1)n+1, . . . , ciA
in−1}. So the rows of B

comprise of elements of the multiset
⋃m
i=1X

b
i .

For any particular 1 ≤ i ≤ m, there are ki ≤ n linearly
independent (LI) vectors in Xi. Since A is full rank, the
set Xb

i contains ki LI vectors as well. 3 Also, due to the
Cayley-Hamilton theorem, x ∈ Xb

i =⇒ x ∈ span(Xi).
Any k LI vectors in the span of Xi will themselves span
the space. As a result, every vector in Xi is in span(Xb

i ).

Therefore, if A is full rank, then every row of Θ is in
the span of the rows of B, which means that rank(B) ≥

3 Given a full column rank matrix A ∈ Rm×n and k ≤ n LI
vectors {xi}ki=1, the set of vectors {Axi}ki=1 is also LI.

rank(Θ) = n. SinceB is anmn×nmatrix, rank(B) ≤ n.
So rank(B) = n. 2

3 Problem Statement

Consider the dynamical system (1). Each row of C cor-
responds to a single sensor in the sensor network. For
the sensor scheduling problem, we pick a set of k sensors
at every time step to make a measurement (i.e., k rows
of C). A Kalman filter uses noisy measurements to es-
timate the state of the system. The a posteriori and a
priori covariances using the Kalman filter are given by

Σt|t = Σt|t−1 − Σt|t−1C
>
t

(
CtΣt|t−1C

>
t + Vt

)−1
CtΣt|t−1

Σt+1|t = AΣt|tA
> +W.

(6)

where Vt comprises of the k rows and columns of V cor-
responding to the selected sensors. It is known that the
Kalman filter gives the best mean squared error of the
state estimate among all linear estimators. An interest-
ing question is under what conditions is the filter is sta-
ble? This is answered in the following lemma 4 derived
from the results in [1].

Lemma 3 Assume that the system (A,W
1
2 ) is uni-

formly stabilizable. Then the Kalman filter error covari-
ance, Σt|t, and predictor covariance, Σt+1|t, are bounded
if and only if (A,Ct) is uniformly detectable. Further-
more, the Kalman filter is exponentially stable only if
(A,Ct) is uniformly detectable.

We can represent a sensor schedule as σ = (σ0, σ1, . . .),
where σt ⊆ {1, . . . ,m} gives the indices of the k sen-
sors chosen at time step t. There are no constraints on
the number times each sensor can be chosen. The prob-
lem that we consider is the following: under what con-
ditions on A and C does there exist a sensor sched-
ule σ = (σ0, σ1, . . .) that results in the error covariance
being bounded? Moreover, how do we construct such
a schedule? The existing scheduling algorithms do not
guarantee the boundedness of the resulting error covari-
ance. We define a schedule that results in a bounded er-
ror covariance as a bounded sensor schedule. Formally,
we seek to keep F (σ) bounded, for some metric F such
as trace(Σt|t) or − log det(Σ−1

t|t ) where Σt|t is function

of the schedule σ. These covariance metrics are summa-
rized in [9], along with their interpretations. In this pa-
per the function F (σ) can refer to any of the metrics
unless specified otherwise.

4 The results here are specific to systems in the form of (1).
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4 Existence of a Bounded Sensor Schedule

The question we now ask is, given an LTI system, does
there exist a sequence of measurements that results in
uniformly bounded error covariance? Using Lemma 3,
it is equivalent to asking if there exists a uniformly de-
tectable sequence of measurements. In this section we
address this question.

Proposition 4 There exists a sequence of measure-
ments resulting in bounded Kalman filter error covari-
ance if and only if (A,C) is detectable.

PROOF. Sufficient Condition: To prove this result,
we first constructively show in the following lemma that
for one sensor per time step (k = 1), the periodic se-
quence that repeats each measurement n times, i.e. each
period is σC = (1, . . . , 1, 2, . . . , 2, . . . ,m, . . . ,m), will be
uniformly detectable.

Lemma 5 If (A,C) is detectable, then the periodic se-
quence of measurements σC is uniformly detectable.

PROOF. Let T be defined as in (2). Let z and l be
the number of zero and stable eigenvalues respectively
of the observable component Ao, which is a d×d matrix.
Consider the transform

Q := T

[
I 0

0 Vd×d

]
n×n

Ã = Q−1AQ =


Aō A12V

0


Aon 0 0

0 Aos 0

0 0 Aou




C̃ = CQ =

[
0 C1 C2 C3

]
(7)

where the columns of V are eigenvectors corresponding
to stable and unstable eigenvalues of Ao. Here, Aos and
Aou have stable and unstable eigenvalues respectively,
are both full rank and are composed of Jordan blocks.
Aon is also composed of Jordan blocks and has all zero
eigenvalues. Therefore, it is nilpotent andAzon = 0. Also,
by definition of detectability, Aō is stable. For this sys-

tem, we can define Θ̃ =
[
0 Θ1 Θ2 Θ3

]
and B̃(t, t+s) =[

0 B1 B2 B3

]
. Note that

[
Θ1 Θ2 Θ3

]
is full rank since

this part corresponds to the observable subsystem. For
detectability of the sequence to hold, there should exist
(s, r, α, β) such that (3) is satisfied. Following from (3),
we consider only initial states of unit norm (‖u‖ = 1).

Case 1: u3 = 0 or Aou does not exist (i.e., A is stable):
In this case, only the stable modes are active and so the
state approaches 0 exponentially. As a result, for any

α ∈ (0, 1), there exists r > 0 such that
∥∥∥Ãru∥∥∥ < α for

all u.

Case 2: ‖u3‖ > 0: In this case, (s, β) can be chosen so

that
∥∥∥B̃(t, t+ s)u

∥∥∥ ≥ β irrespective of the values of

(r, α).

Take s = 2mn so that B̃(t, t + s) always contains the
full sequence σC . As a result, the sequence observability
matrix for s time steps, B̃(t, t + s), will always contain

the rows of B̃σÃ
p for some p > 0, where B̃σ is defined as

B̃σ = col(c̃1, . . . , c̃1Ãn−1, . . . , c̃mÃmn−1)

=:
[
0 B1 B2 B3

]
,

where

B1 = col(c11, . . . , c
1
1A

z−1
on , 0, . . . , 0)

B2 = col(c12, . . . , c
1
2A

n−1
os , . . . , cm2 A

mn−1
os )

B3 = col(c13, . . . , c
1
3A

n−1
ou , . . . , cm3 A

mn−1
ou )

and c̃i is the ith row of C̃. Note that

B̃σÃ
p =

[
0 B1A

p
on B2A

p
os B3A

p
ou

]
.

Also,
[
Θ2 Θ3

]
is full rank and, since both Aos and Aou

are full rank,
[
B2 B3

]
is also full rank (by Lemma 2) and

so is
[
B2A

p
os B3A

p
ou

]
. Note that B1A

p
on = 0 for p ≥ z.

Now, without loss of generality, assume that the se-
quence σC starts at time t. So, since p = mn ≥ z,

B̃(t, t+ s)u =

[
B̃σ

B̃σÃ
mn

]
u

=

[
B1u1 +B2u2 +B3u3

B2A
mn
os u2 +B3A

mn
ou u3

]
=:

[
d1

d2

]
.

Now, d2 = 0 if and only if

[
u2

u3

]
= 0. Given that u3 6= 0,

it follows that
∥∥∥B̃(t, t+ s)u

∥∥∥ ≥ ‖d2‖ > 0. Therefore,

β ≤ min
{u|u1=0,‖u‖=1}

‖B2A
mn
os u2 +B3A

mn
ou u3‖ ,
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is an appropriate choice to obtain detectability. 2

For k sensors per time step, consider the periodic sched-
ule σC in which the first k sensors are selected for the
first n time steps, the next k for the next n time steps,
and so on. For example, if m = 5 and k = n = 2, then
σC = ({1, 2}, {1, 2}, {3, 4}, {3, 4}, {5, 1}, {5, 1}). This
sequence has a size of

⌈
m
k

⌉
n ≤ mn. This sequence is

uniformly detectable by a similar argument as used in
Lemma 5. The only difference from the proof of Lemma 5

is the formulation of B̃σ. The matrix
[
B2A

p
os B3A

p
ou

]
will remain full rank and the rest of proof will follow.

Necessary Condition: If (A,C) is not detectable, then
there exists an eigenvalue-eigenvector pair, (λ, v), of A
such that |λ| ≥ 1 and Cv = 0. For any pair (α, r),
assuming ‖v‖ = 1, we must have ‖Arv‖ = |λ|r ≥ 1 > α.
So, there has to exist (s, β) such that ‖B(t, t+ s)v‖ ≥ β
for uniform detectability. However, the rows ofB(t, t+s)
consist of vectors of the form ciA

k, for some k, where ci is
a row of C. Now ciA

kv = λkciv = 0 and soB(t, t+s)v =
0 no matter what the actual schedule is. Therefore, no
sensor schedule can be uniformly detectable.

We have shown that (A,C) is detectable if and only if
there exists a sequence of uniformly detectable sequence
of measurements. Using Lemma 3 with this result com-
pletes the proof. 2

It is reasonable to expect that if (A,C) is observable,
then a sequence of measurements exists such that the
system is uniformly observable through that sequence.
This, however, is not the case. Consider the trivial ex-
ample where A = 0 and k = 1. Here, it is obvious that
rank(B(t, t+ s)) = 1 since the second row onwards of B
will be 0. As another example, consider A = 13×3 and
C as a 3× 3 lower triangular matrix where all non-zero
entries are 1. It is easy to show that rank(B(t, t + s))
will be either 1 or 2 for every schedule. The following re-
sult gives the conditions for the system to be uniformly
observable.

Proposition 6 If (A,C) is observable andA is full rank,
then the system is uniformly observable through the pe-
riodic sequence σC .

PROOF. In order for the sequence to be observable,
we require the existence of (s, β) such that rank(B(t, t+
s)) = n for all t. Let B be defined as in equation (5)
and take s = 2mn so that B(t, t+ s) will always contain
the rows of BAp for some p. Since A is full rank, and
B is full rank by Lemma 2, BAp is full rank and hence
rank(B(t, t+ s)) = n. 2

In the following section we present an algorithm that
produces a uniformly detectable schedule.

5 A Complete Sensor Selection Algorithm

We define a complete scheduling algorithm as follows.

Definition 7 (Complete Scheduling Algorithm)
A sensor scheduling algorithm is complete if for every
detectable LTI system (A,C), the resulting sequence of
error covariance matrices are uniformly bounded for all
time.

A complete sensing schedule can be naively constructed
using the periodic sequence σC . it will in general result
in very large values of the covariance metric F (σC). The
greedy schedule presented in [17] chooses the sensors at
each step that minimize the covariance over a single time
step. However, establishing the boundedness of greedy
algorithm has proved difficult. We present a modified
greedy algorithm in this section such that it is complete,
and empirically it obtains better performance than the
greedy algorithm.

The following example shows that even if the greedy
algorithm produces a bounded sensor schedule, it may
perform quite poorly.

Example 8 Consider the pathological system

A = Σ0 = I3×3, C =


1 0 0

0 0.1 0

0 0 0.01

 =:


c1

c2

c3

 ,

W =


0.1 0.13 0.13

0.13 0.41 0.36

0.13 0.36 0.33

 , V = I3×3.

Running the greedy algorithm for one sensor per time
step, the resulting value of the objective function is plot-
ted in Figure 1. The first time measurement 3 is selected
in the greedy schedule is at t = 8576 and is then repeated
approximately every 73 time steps. Eventually every mea-
surement is made and so the schedule is uniformly de-
tectable though the time window needed is over 8000 time
steps.

We now present a modified greedy algorithm that en-
sures that the output sequence is uniformly detectable.

The detectableGreedy algorithm is given in Algo-
rithm 1. The idea is to make a greedy choice at each
iteration such that the measurement increases the rank
of the matrix M . This is done in lines 8 to 14 where we
mark the row rAssu corresponding to sensor r as valid if

5
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Fig. 1. The value of the greedy sequence compared with the
detectableGreedy schedule and “full” schedule. The full
schedule means that every measurement is made at all times.

it increases the rank ofM and then greedily pick the best
valid row in line 13. Matrix M emulates the sequence
observability matrix B(t, t + s). Once M becomes full
rank, it is reset in line 19. As a result, M acts as a sliding
window and the algorithm attempts to keep this win-
dow fully observable. We now show that the algorithm
does, in fact, result in a uniformly detectable schedule.
We will reuse notation from the proof of Theorem 5:

Asu :=

[
Aos 0

0 Aou

]
, Csu :=

[
C2 C3

]
,

Θsu :=
[
Θ2 Θ3

]
, Bsu :=

[
B2 B3

]
and p = rank(Asu).

Lemma 9 The rank of the matrixM will increase within
p steps. In other words, consider the matrix at any time
such that rank(M(t, t+ q)) < p, then rank(M(t, t+ q +
p)) ≥ rank(M(t, t+ q)) + 1.

PROOF. Given the matrix M(t, t + q) with rank less
than p, the next p measurements will be chosen se-
quentially from the sequence of matrices {CsuAq+isu }

p
i=1.

Stacking these on top of each other we get ΘsuA
q+1
su .

Since both Θsu and Asu are full rank, rank(ΘsuA
q+1
su ) =

p. Therefore, at least one of the rows in ΘsuA
q+1
su will

be LI from the rows of M(t, t+ q) and can be added to
the sequence. So the rank of M will increase by at least
1 after p more time steps. 2

Theorem 10 Algorithm 1 is complete and thus it pro-
duces a bounded sensor schedule.

PROOF. By Lemma 9, a rank increasing row will be
selected within p time steps and so the maximum size of
the M matrix is p2 − p+ 1.

We need to show that the sequence is uniformly de-
tectable for the sensor schedule to be bounded. To show
the sequence is uniformly detectable, we can follow the

Algorithm 1 detectableGreedy

Input: Value function F , system parameters
(A,C,W, V ), sensors per time step k

Output: Sensor schedule with k sensors per time step

1: Asu :=

[
Aos 0

0 Aou

]
and Csu :=

[
C2 C3

]
(cf. (7)).

2: M ← empty matrix
3: σ ← empty schedule
4: s← 0
5: for each t :
6: σt ← ∅
7: while |σt| < k :

// Use (Asu, Csu) to construct M
8: for each row (sensor) r of Csu :
9: if rAssu increases rank(M) :

10: Mark r as valid.
// Use (A,C) for selection

11: if No rows are valid :
12: Mark all rows valid.
13: Greedily select the valid row r of C that mini-

mizes F
(
(σ, σt ∪ {r})

)
14: Update M with new measurement
15: σt ← σt ∪ {r}
16: Add σt to end of σ
17: s← s+ 1
18: if rank(M) = rank(Asu) :
19: M ← empty matrix
20: s← 0

same argument as in the proof of Theorem 5, i.e., we

need to show that
∥∥∥B̃(t, t+ s)u

∥∥∥ > 0 for some s and for

any vector that has u3 6= 0. Note that the matrix M in
the algorithm corresponds to sections of Bsu(t, t+ s).

One difference with the proof of Theorem 5 is that here
we have a sequence of full rank matrices instead of just
one being repeated. Assume, without loss of generality,
that line 19 is executed at time t − 1. So after k1 ≥ z
time steps, the matrix M1 will be constructed.

Take s = z + 2p2. Looking at B̃(t, t+ s), the rows z + 1
through to z+2p2 will have to contain M1A

k1
su. Expand-

ing B̃(t, t+ s)u,

[
B̃(t, t+ k1 − 1)

B̃(t+ k1, t+ s)Ãk1

]
u =


0 B1 X

0 0 M1A
k1
su

0 0 Y



u0

u1

u23



=


B1u1 +Xu23

M1A
k1
suu23

Y u23

 =:


d1

d2

d3

 .
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Again, d2 6= 0 since u23 > 0 (as we are considering only
states with unstable modes). Therefore,

β ≤ min
{u|u1=0,‖u‖=1}

j=1,...,s
M

∥∥MAjsuu23

∥∥ ,
where the minimum is taken over all possible full rank
M . The minimum exists sinceM has only a finite number
of choices as the number of possible measurements is
finite. 2

Implementation Details:

• The matrix M is useful to prove the completeness of
the algorithm, but in implementation, the QR factor-
ization of M can be used instead of M .
• Matrix Q gives the null space basis of M . Given a row
v, if the projection of v on the null space of M is non
zero, then it will increase the rank of M . This can be
used to check for valid rows in line 9.
• We can update the QR factorization after appending

a row in M in line 14 by using Givens rotations [2]
instead of factorizing M at each step.

With these implementation details, we can character-
ize the runtime of the DetectableGreedy algorithm.
We make the assumption that n ≤ Tk, which is justi-
fied since we are interested in infinite, or very large time
horizons T . Recall that the simple greedy algorithm,
chooses the row r of C at each iteration that minimizes
F
(
(σ, σt ∪{r})

)
. That is, all rows are valid, and no rank

calculations are required.

Proposition 11 (Complexity of algorithm) If n ≤
Tk, then the (asymptotic) runtime of the detectable-
Greedy algorithm is equal to that of the simple greedy
algorithm.

In the following, we denote the runtime for computing
the multiplication of two n×nmatrices as µ. In the naive
implementation of matrix multiplication, µ = O(n3).
State-of-the-art algorithms have a complexity of µ =
O(n2.3728639) [22].

PROOF. The detectableGreedy algorithm is
a greedy algorithm with two extra steps: Calculate
Asu, Csu, and check which of the measurements increase
rank of M .

Given a time horizon T , there will be mT iterations. For
each of the T time steps, k measurements need to be
selected from a set of m. For any of the metrics F (σ),
the runtime to greedily pick the k best measurements is
O(µmk), since we must perform mk measurement up-
dates (6), each of which requires µ time. For the met-
ric F (σ) = − log det(Σ−1

t|t ), the greedy selection can be

Table 1
Algorithm performance (ratio relative to sliding window)
and runtime for different problem sizes.

n G DG SW

F (σ) Time F (σ) Time Time Win.

4 1.29 <1 1.16 <1 136 7
16 1.51 2 1.37 2 990 4
36 1.68 5 1.58 5 1785 3
64 1.53 16 1.46 17 571 2

100 1.55 48 1.49 49 3328 2

cleverly implemented in a runtime of O(n2mk) per time
step [17]. In addition to this, a time update (6) requires
two matrix multiplications, which require µ time. There-
fore, the greedy part has a runtime of O(Tmn2k+Tkµ)
for the log det metric and O(Tmkµ) otherwise.

To calculateAsu andCsu, the observability matrix of the
system has to be evaluated at the start of the algorithm.
It requires Ax to be calculated for x = {1, . . . , n − 1}.
So calculation of Asu requires O(nµ) time.

For determining valid rows to choose, a matrix multipli-
cation has to be performed for each row of C (O(mn2)).
Finding the projection of a row on the null space of M
requires O(n2) time and updating the QR factorization
of M also requires O(n2) time [2]. That is because in the
implementation, M will only have rank increasing rows
and hence its maximum size is n× n. The power of Asu
needs to be calculated once per time step and hence re-
quires O(Tµ) time.

Therefore, the total complexity becomes O(Tk(mn2 +
µ) + nµ) for the log det metric and O(Tmkµ + nµ) for
other metrics. If n ≤ Tk, our modification in the greedy
algorithm does not increase the complexity of the algo-
rithm. 2

In the following section we compare the performance of
Algorithm 1 with some other known scheduling algo-
rithms.

6 Simulations

We perform several simulation experiments to investi-
gate the performance of Algorithm 1. In these simula-
tions, we run the algorithms for T time steps. We let the
covariance metric F be the average trace of the a poste-
riori error covariance, so at each time step t,

F (σ) =
1

t

t∑
i=1

trace(Σi|i).

For this section, we refer to the greedy algorithm as
G and the detectableGreedy algorithm as DG. We
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use a sliding window approximation for comparison with
these algorithms. The slidingWindow (SW) algorithm
is essentially an extended greedy algorithm such that
the optimal is calculated over a certain time window
by considering every possible sequence. The final error
covariance of a window serves as the initial covariance
for the next window. Two drawbacks of the sliding win-
dow approach are that although the optimal is achieved
over the window, the algorithm’s runtime grows expo-
nentially with window size, and there is no guarantee on
performance over the entire time horizon.

Linear system generation: We performed a dis-
cretization of the heat equation in 2D to form the sys-
tem matrix A for our simulations. A similar formulation
of the discrete time system is used for the scheduling
algorithm proposed in [13]. The matrix C was taken
to be identity to realize sensors that measure temper-
atures on the 2D surface in the form of a grid. The W
matrix was set to a random positive definite matrix in
which each entry is uniformly distributed in [0, 5]. The
matrix V was set to a diagonal matrix with each entry
uniformly randomly distributed in [0.5, 2].

One sensor per time step: In our first experiment, we
compare three algorithms: G, DG and SW. The perfor-
mance of the three algorithms for the case of one sensor
per time step is summarized in Table 1. In the first col-
umn, n records the number of states in the system. For
each system, each algorithm was run 10 times for dif-
ferent W and V , and the average run time and average
covariance metric value at the end of time horizon T was
recorded. In the table, the times are rounded off to the
nearest second and the function values are normalized
with respect to the values for SW algorithm. The time
horizon was taken to be T = 500 for these experiments.
For the SW algorithm, the window size is stated under
the “Win.” column, and is decreased for larger systems
in order to maintain tractable runtimes.

In Table 1 we see that the SW algorithm outperforms
the Greedy algorithm by between 30% and 60%, and the
detectableGreedy by between 15% and 50%. The
runtimes, on the other hand, are approximately 70 to
100 times faster for the greedy algorithms than for slid-
ingWindow. The run times of DG and G algorithms
are essentially equal, agreeing with Proposition 11. How-
ever, the detectableGreedy algorithm gives consis-
tently lower values of F (σ) than the greedy algorithm.
Also note that the detectableGreedy algorithm is
scalable to large systems — the last row of Table 1 rep-
resents a system with 100 states and 100 sensors, and
the computation time is still less than 0.1 seconds per
time step.

An important feature of the detectableGreedy al-
gorithm is that it guarantees uniformly bounded error
covariance. However, it is not guaranteed that the DG
algorithm will always outperform the greedy algorithm.

Table 2
Performance (number of wins) of Greedy versus DG algo-
rithm for 500 randomly generated W and V .

n = m DG G decrease in average F (σ)

2 388 75 10 %

5 484 16 20 %

10 500 0 27 %
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Fig. 2. Plot of log determinant metric versus k. The value of
objective function is averaged over 5 runs of the algorithms.

For example, if A = C = I for a 2 state system and the
state with more system noise is being measured by the
noisy sensor, then the greedy algorithm performs better.
But for all the other combinations of system and sensor
noise covariances, either DG outperforms greedy or they
give the same result. For 500 randomly generatedW and
V , the number of times one of the algorithms performed
better than the other is given in Table 2 for different sys-
tem dimensions. The last column shows the decrease in
the average value of objective function for DG as com-
pared to greedy algorithm. For randomly generated C,
a similar trend is observed. In the case of randomly gen-
erated A, each row of Csu serves as a rank increasing
row and hence the two algorithms give the same perfor-
mance.

Multiple sensors per time step: In [10] the metric
− log det(Σ−1

t|t ) is optimized over a single time step us-

ing a convex relaxation to choose the best k sensors for
one time step. The process is repeated at each time step
to get a sensor schedule. We will refer to this algorithm
as CVX. For multiple sensors per time step, we compare
our algorithm to CVX and G. The system used was the
discretization of heat equation for n = m = 16 with ran-
domly chosen W and V and the algorithms were run for
T = 50 time steps. Figure 2 shows a plot of the objec-

tive function −1
T

∑T
i=1 log det(Σ−1

i|i ) for each algorithm

plotted against number of sensors chosen per time step.
In this case, the greedy and detectableGreedy al-
gorithms achieve similar performance, and both outper-
form the CVX algorithm. These results agree with [17]
where the greedy algorithm is shown to be empirically
better than the CVX.

8



7 Conclusions and Future Directions

We gave conditions for the existence of a bounded sensor
schedule and then presented an algorithm that outputs
a bounded sensor schedule if one exists. The algorithm
attains the same asymptotic runtime as the greedy al-
gorithm, but we show empirically that it obtains better
performance.

We are interested in quantifying the quality of the sched-
ule given by the algorithm relative to the optimal. An-
other problem to consider is determining the minimum
number of sensors required per time step that achieve
the same bound as selecting all m sensors.

References

[1] BDO Anderson and John B Moore. Detectability and
stabilizability of time-varying discrete-time linear systems.
SIAM Journal on Control and Optimization, 19(1):20–32,
1981.

[2] Gene H. Golub and Charles F. Van Loan. Matrix
Computations. Johns Hopkins Studies in the Mathematical
Sciences. Johns Hopkins University Press, 1996.

[3] Vijay Gupta, Timothy Chung, Babak Hassibi, and Richard M
Murray. Sensor scheduling algorithms requiring limited
computation [vehicle sonar range-finder example]. In IEEE
Int. Conf. on Acoustics, Speech, and Signal Processing,
volume 3, pages 825–828, 2004.

[4] Vijay Gupta, Timothy H. Chung, Babak Hassibi, and
Richard M. Murray. On a stochastic sensor selection
algorithm with applications in sensor scheduling and sensor
coverage. Automatica, 42(2):251–260, 2006.

[5] G.E. Hovland and B.J. McCarragher. Dynamic sensor
selection for robotic systems. In IEEE Int. Conf. Robotics
and Automation, pages 272–277, 1997.

[6] Utku Ilkturk. Observability Methods in Sensor Scheduling.
PhD thesis, ARIZONA STATE UNIVERSITY, 2015.

[7] Volkan Isler and Ruzena Bajcsy. The sensor selection problem
for bounded uncertainty sensing models. In International
Symposium on Information Processing in Sensor Networks,
page 20, 2005.

[8] Syed Talha Jawaid and Stephen L Smith. A complete
algorithm for the infinite horizon sensor scheduling problem.
In American Control Conference, pages 437–442. IEEE, 2014.

[9] Syed Talha Jawaid and Stephen L. Smith. Submodularity and
greedy algorithms in sensor scheduling for linear dynamical
systems. Automatica, 61:282 – 288, 2015.

[10] Siddharth Joshi and Stephen Boyd. Sensor selection
via convex optimization. IEEE Transactions on Signal
Processing, 57(2):451–462, 2009.

[11] Ioannis K Kookos and John D Perkins. A systematic method
for optimum sensor selection in inferential control systems.
Industrial & engineering chemistry research, 38(11):4299–
4308, 1999.

[12] Entao Liu, Edwin K. P. Chong, and Louis L. Scharf. Greedy
Adaptive Compression in Signal-Plus-Noise Models. CoRR,
abs/1202.3913v5, 2012.

[13] Sijia Liu, Makan Fardad, Pramod K. Varshney, and Engin
Masazade. Optimal periodic sensor scheduling in networks of
dynamical systems. IEEE Transactions on Signal Processing,
62(12):3055–3068, 2014.

[14] Suhinthan Maheswararajah, Saman K Halgamuge, and
Malin Premaratne. Sensor scheduling for target tracking
by suboptimal algorithms. IEEE Trans. on Vehicular
Technology, 58(3):1467–1479, 2009.

[15] Dipankar Maity and John S Baras. Dynamic, optimal
sensor scheduling and value of information. In International
Conference on Information Fusion, pages 239–244, 2015.

[16] Yilin Mo, Roberto Ambrosino, and Bruno Sinopoli. Sensor
selection strategies for state estimation in energy constrained
wireless sensor networks. Automatica, 47(7):1330–1338, 2011.

[17] Manohar Shamaiah, Siddhartha Banerjee, and Haris Vikalo.
Greedy sensor selection: Leveraging submodularity. In IEEE
Conf. on Decision and Control, pages 2572 –2577, 2010.

[18] Dawei Shi and Tongwen Chen. Approximate optimal periodic
scheduling of multiple sensors with constraints. Automatica,
49:993 – 1000, 2013.

[19] Dawei Shi and Tongwen Chen. Optimal periodic scheduling
of sensor networks: A branch and bound approach. Systems
& Control Letters, 62:732 – 738, 2013.

[20] Michael P. Vitus, Wei Zhang, Alessandro Abate, Jianghai Hu,
and Claire J. Tomlin. On efficient sensor scheduling for linear
dynamical systems. Automatica, 48(10):2482–2493, 2012.

[21] James E. Weimer, Bruno Sinopoli, and Bruce H. Krogh. A
relaxation approach to dynamic sensor selection in large-
scale wireless networks. In International Conf. on Distributed
Computing Systems, pages 501–506, 2008.

[22] Virginia Vassilevska Williams. Multiplying matrices faster
than coppersmith-winograd. In Proceedings of the Forty-
fourth Annual ACM Symposium on Theory of Computing,
pages 887–898. ACM, 2012.

[23] Wei Zhang, Michael P. Vitus, Jianghai Hu, A. Abate, and
C.J. Tomlin. On the optimal solutions of the infinite-horizon
linear sensor scheduling problem. In IEEE Conf. on Decision
and Control, pages 396–401, 2010.

9


