A Complete Greedy Algorithm
for Infinite-Horizon Sensor Scheduling

Ahmad Bilal Asghar, Syed Talha Jawaid, Stephen L. Smith

Department of Electrical and Computer Engineering, University of Waterloo, Waterloo ON, N2L 3G1 Canada

Abstract
In this paper we study the problem of scheduling sensors to estimate the state of a linear dynamical system. The estimator is a Kalman filter and our objective is to optimize the \textit{a posteriori} error covariance over an infinite time horizon. We focus on the case where a fixed number of sensors are selected at each time step, and we characterize the exact conditions for the existence of a schedule with uniformly bounded estimation error covariance. Using this result, we construct a scheduling algorithm that guarantees that the error covariance will be bounded if the existence conditions are satisfied. We call such an algorithm complete. Finally, we provide simulations to compare the performance of the algorithm against other known techniques.

1 Introduction
One technique for monitoring an environmental process is to deploy a sensor network. Each sensor can be equipped with the ability to make a range of measurements. Sensor networks have been used in various applications including determining a robot’s state [5], tracking the position of a target [7], selecting the frequency in radar and sonar applications, or monitoring tasks such as chemical processes [11], seismic activity or toxin levels at a factory. Sensor scheduling techniques can also be applied to problems such as adaptive compressed sensing [12].

The collection of data can be done by operating every sensor continuously; however, the network may be required to have a long life span and so this strategy may not be viable due to energy and communication constraints. To overcome these restrictions, sensors can alternate between awake and asleep modes. Unless the network provides enough redundancy, this method could result in an incomplete picture of the phenomenon of interest. Therefore, a sensing schedule has to be constructed in an intelligent way in order to obtain as much information as possible. This is, in essence, the sensor scheduling problem.

The sensor scheduling problem has received considerable attention in recent years. In the context of linear Gaussian systems, a Kalman filter is the optimal estimator in that it produces an estimate with the least mean square error. Thus, the Kalman filter is commonly used as the basis for the sensor scheduling problem. An exception is [6], where the condition number of the sequence observability matrix is used as a metric to find a sensor schedule. In this paper we will use a metric on the error covariance of the Kalman filter as our objective function. With this setting, the infinite horizon sensor scheduling problem is studied in [23]. Under some mild conditions, it is shown that the optimal infinite horizon schedule is independent of the initial covariance. Also, it is shown that given an optimal schedule, its cost can be estimated arbitrarily closely by a periodic schedule, with a finite period. However, if the optimal schedule is not known, the analysis does not provide a constructive method for efficiently computing an approximate period schedule.

Numerous approaches have been proposed to tackle the sensor scheduling problem. The results in [23] serve as a reason to find optimal periodic schedules for infinite horizon scheduling problem. The authors in [19] find a periodic schedule using a branch-and-bound approach. In [18] the authors find an optimal periodic schedule by approximating the objective function of the sensor scheduling problem. A locally optimal solution to periodic scheduling was proposed in [13] with constraints on the number of times each sensor can be used in a period.
Their objective function incorporates both the estimation error and the number of sensors used per time step. A drawback to these approaches is that the optimal period is unknown, and thus the desired period must be given as an input.

Optimal and semi-optimal algorithms for the finite horizon problem that use tree pruning techniques are provided in [20]. In [3], three different approaches (sliding window, greedy thresholding and random selection) are empirically compared. The authors further develop the random selection method in [4], where a strategy for stochastically selecting measurements based on an intelligently constructed probability distribution is described and bounded. In [14], a few different approaches are studied, including a best step look ahead algorithm, an approach based on the Viterbi algorithm and another by casting the problem as a duality problem. The algorithms are described and empirically compared in terms of performance and computation time.

A convex relaxation based approach is discussed in [21] and applied to the monitoring of CO₂ using a wireless sensor network. Another convex relaxation approach is given in [10] along with solution dependent bounds. In [17], this approach is, however, empirically shown to be worse than a greedy algorithm. In [9], authors studied some properties of greedy sensor scheduling algorithms and their relation to submodular set functions.

A general framework for the sensor scheduling problem is presented in [16]. A number of problems can be addressed in this framework such as minimizing the final covariance over a time horizon, the average covariance, the variance of a single state, or even the cost of a finite horizon LQG regulator. A number of network constraints can also be included. The problem is framed as a relaxed quadratic program, and a greedy approach is described although the error bound is not necessarily uniformly bounded for unstable systems. In [15], a continuous time sensor scheduling problem is considered for an objective capturing both estimation error and sensor switching costs.

In this paper we consider infinite-horizon sensor scheduling. Based on the discussion above, existing approaches for this problem are 1) to fix a period and compute a periodic schedule; 2) to repeatedly apply a finite-horizon algorithm; or 3) to greedily select sensors at each time step. For each of these methods, there are no guarantees that the resulting schedule will produce a uniformly bounded sequence of covariance matrices. In fact, we do not know of any results that characterize the exact conditions under which an infinite horizon sensor schedule exists that results in a uniformly bounded sequence of covariance matrices.

Contributions: We give necessary and sufficient conditions for the existence of an infinite horizon sensor schedule with a bounded error covariance (Section 4). We then provide a complete algorithm for sensor scheduling (Section 5): That is, our algorithm outputs a uniformly bounded sensor schedule if one exists. The algorithm has the same runtime as the simple greedy algorithm and we show in simulations (Section 6) that our proposed algorithm outperforms the greedy algorithm, and can be used to efficiently compute schedules for high-dimensional linear systems with a large number of sensors.

A preliminary version of this paper was presented in [8]. Relative to this early version, we now provide a more efficient algorithm along with detail on its implementation. We also extend both the algorithm and analysis to the general problem of k sensors per time step, and provide complete proofs of the correctness of the proposed greedy algorithm. Finally, we present more extensive simulation results on high-dimensional linear systems, including a system obtained by discretizing the heat equation.

2 Preliminaries

Consider the discrete-time linear stochastic system

\[x_{t+1} = Ax_t + w_t, \quad x_t \in \mathbb{R}^n, \]
\[y_t = Cx_t + v_t, \quad y_t \in \mathbb{R}^k, \]

(1)

where \(A \in \mathbb{R}^{n \times n} \) and \(C \in \mathbb{R}^{m \times n} \). The matrix \(C_t \) is a subset of \(k \) rows of \(C \). This is the standard sensor selection model, as in [20,16]. The process noise \(w_t \) measurement noise \(v_t \) are zero mean Gaussian noise vectors with covariance matrices \(W, V \in \mathbb{R}^{n \times n} \), respectively, with \(W \succeq 0 \) and \(V \succ 0 \). We assume that the noises are independent over time.

For the case \(C_t = C \) (LTI system), the system is said to be observable if its observability matrix \(\Theta = \text{col}(C, CA, \ldots, CA^{n-1}) \) has rank \(n \).

If the observability matrix is not full rank then a similarity transform \(T \) can be used to convert the system into standard form for unobservable systems.

\[\bar{A} = T^{-1}AT = \begin{bmatrix} A_o & A_{12} \\ 0 & A_o \end{bmatrix}, \quad \bar{C} = CT = \begin{bmatrix} 0 & C_o \end{bmatrix}. \]

(2)

Here \((A_o, C_o) \) is observable. If \(A_o \) is stable, the system is said to be detectable.

Consider a sequence of measurements \(\sigma = (\sigma_0, \sigma_1, \ldots) \), and the corresponding sequence of matrices \((C_0, C_1, \ldots) \). For a given time \(t \) and time window \(k \), the sequence observability matrix for the given system can be written as

\[B_\sigma(t, t+k) = \text{col}(C_t, C_{t+1}A, \ldots, C_{t+k}A^k). \]
Lemma 2 Suppose \((A,C)\) is observable and \(A\) is full rank. Then, letting \(c_i\) be the \(i\)th row of \(C\),

\[
B \triangleq \text{col}(c_1, c_1 A, \ldots, c_1 A^{n-1}, c_2 A^n, \ldots, c_m A^{mn-1})
\]

is full rank.

Proof. Since \(\text{rank}(\Theta) = n\), it suffices to show that each of the rows of \(\Theta\) can be written as a linear combination of the rows in \(B\). Let \(X_i = \{c_i, c_i A, \ldots, c_i A^{n-1}\}\) for \(i = 1, \ldots, m\). Note that the rows of \(\Theta\) comprise of the vectors in the multiset \(\bigcup_{i=1}^{m} X_i\). Also, note that \(x \in X_i \implies xA^{(i-1)n}\) is a row of \(B\). Let \(X_i^b = X_i A^{(i-1)n} = \{c_i A^{(i-1)n}, c_i A^{(i-1)n+1}, \ldots, c_i A^{mn-1}\}\). So the rows of \(B\) comprise of elements of the multiset \(\bigcup_{i=1}^{m} X_i^b\).

For any particular \(1 \leq i \leq m\), there are \(k_i \leq n\) linearly independent (LI) vectors in \(X_i\). Since \(A\) is full rank, the set \(X_i^b\) contains \(k_i\) LI vectors as well.\(^3\) Also, due to the Cayley-Hamilton theorem, \(x \in X_i^b \implies x \in \text{span}(X_i)\). Any \(k\) LI vectors in the span of \(X_i\) will themselves span the space. As a result, every vector in \(X_i\) is in \(\text{span}(X_i^b)\).

Therefore, if \(A\) is full rank, then every row of \(\Theta\) is in the span of the rows of \(B\), which means that \(\text{rank}(B) \geq \text{rank}(\Theta) = n\). Since \(B\) is an \(mn \times n\) matrix, \(\text{rank}(B) \leq n\). So \(\text{rank}(B) = n\). \(\square\)

3 Problem Statement

Consider the dynamical system (1). Each row of \(C\) corresponds to a single sensor in the sensor network. For the sensor scheduling problem, we pick a set of \(k\) sensors at every time step to make a measurement (i.e., \(k\) rows of \(C\)). A Kalman filter uses noisy measurements to estimate the state of the system. The a posteriori and a priori covariances using the Kalman filter are given by

\[
\Sigma_t\Sigma_{t+1|t} - \Sigma_{t|t-1} (C_t \Sigma_{t|t-1} C_t^\top + V_t)^{-1} C_t \Sigma_{t|t-1} + W.
\]

where \(V_t\) comprises of the \(k\) rows and columns of \(V\) corresponding to the selected sensors. It is known that the Kalman filter gives the best mean squared error of the state estimate among all linear estimators. An interesting question is under what conditions is the filter is stable? This is answered in the following lemma\(^4\) derived from the results in [1].

Lemma 3 Assume that the system \((A, W^2)\) is uniformly stabilizable. Then the Kalman filter error covariances, \(\Sigma_{t|t}\), and predictor covariance, \(\Sigma_{t+1|t}\), are bounded if and only if \((A, C_t)\) is uniformly detectable. Furthermore, the Kalman filter is exponentially stable only if \((A, C_t)\) is uniformly detectable.

We can represent a sensor schedule as \(\sigma = (\sigma_0, \sigma_1, \ldots)\), where \(\sigma_i \subseteq \{1, \ldots, m\}\) gives the indices of the \(k\) sensors chosen at time step \(t\). There are no constraints on the number times each sensor can be chosen. The problem that we consider is the following: under what conditions on \(A\) and \(C\) does there exist a sensor schedule \(\sigma = (\sigma_0, \sigma_1, \ldots)\) that results in the error covariance being bounded? Moreover, how do we construct such a schedule? The existing scheduling algorithms do not guarantee the boundedness of the resulting error covariance. We define a schedule that results in a bounded error covariance as a bounded sensor schedule. Formally, we seek to keep \(F(\sigma)\) bounded, for some metric \(F\) such as \(\text{trace}(\Sigma_{t|t})\) or \(-\log \det(\Sigma_{t|t}^{-1})\) where \(\Sigma_{t|t}\) is function of the schedule \(\sigma\). These covariance metrics are summarized in [9], along with their interpretations. In this paper the function \(F(\sigma)\) can refer to any of the metrics unless specified otherwise.

\(^4\) The results here are specific to systems in the form of (1).
4 Existence of a Bounded Sensor Schedule

The question we now ask is, given an LTI system, does there exist a sequence of measurements that results in uniformly bounded error covariance? Using Lemma 3, it is equivalent to asking if there exists a uniformly detectable sequence of measurements. In this section we address this question.

Proposition 4 There exists a sequence of measurements resulting in bounded Kalman filter error covariance if and only if \((A,C)\) is detectable.

PROOF. Sufficient Condition: To prove this result, we first constructively show in the following lemma that for one sensor per time step \((k = 1)\), the periodic sequence that repeats each measurement \(n\) times, i.e. each period is \(\sigma_C = (1,1,2,2,2,2,3,3,3...\) will be uniformly detectable.

Lemma 5 If \((A,C)\) is detectable, then the periodic sequence of measurements \(\sigma_C\) is uniformly detectable.

PROOF. Let \(T\) be defined as in (2). Let \(z\) and \(l\) be the number of zero and stable eigenvalues respectively of the observable component \(A_o\), which is a \(d \times d\) matrix. Consider the transform

\[
\begin{align*}
Q := T \begin{bmatrix} I & 0 \\ 0 & V_{d \times d} \end{bmatrix} \\
\tilde{A} = Q^{-1}AQ = \begin{bmatrix} A_5 & A_{12}V \\ A_{on} & 0 \\ 0 & A_{os} \\ 0 & 0 & A_{ou} \end{bmatrix} \\
\tilde{C} = CQ = \begin{bmatrix} 0 & C_1 & C_2 & C_3 \end{bmatrix}
\end{align*}
\]

where the columns of \(V\) are eigenvectors corresponding to stable and unstable eigenvalues of \(A_o\). Here, \(A_{os}\) and \(A_{ou}\) have stable and unstable eigenvalues respectively, are both full rank and are composed of Jordan blocks. \(A_{on}\) is also composed of Jordan blocks and has all zero eigenvalues. Therefore, it is nilpotent and \(A_{on}^z = 0\). Also, by definition of detectability, \(A_5\) is stable. For this system, we can define \(\tilde{\Theta} = \begin{bmatrix} \Theta_1 & \Theta_2 & \Theta_3 \end{bmatrix}\) and \(\tilde{B}(t,t+s) = \begin{bmatrix} B_1 & B_2 & B_3 \end{bmatrix}\). Note that \(\begin{bmatrix} \Theta_1 & \Theta_2 & \Theta_3 \end{bmatrix}\) is full rank since this part corresponds to the observable subsystem. For detectability of the sequence to hold, there should exist \((s,r,\alpha,\beta)\) such that (3) is satisfied. Following from (3), we consider only initial states of unit norm \((\|u\| = 1)\).

Case 1: \(u_3 = 0\) or \(A_{ou}\) does not exist (i.e., \(A\) is stable): In this case, only the stable modes are active and so the state approaches 0 exponentially. As a result, for any \(\alpha \in (0,1)\), there exists \(r > 0\) such that \(\|A^r u\| < \alpha\) for all \(u\).

Case 2: \(\|u_3\| > 0\): In this case, \((s,\beta)\) can be chosen so that \(\|B(t,t+s)u\| \geq \beta\) irrespective of the values of \((r,\alpha)\).

Take \(s = 2mn\) so that \(\tilde{B}(t,t+s)\) always contains the full sequence \(\sigma_C\). As a result, the sequence observability matrix for \(s\) time steps, \(\tilde{B}(t,t+s)\), will always contain the rows of \(\tilde{B}_s\) for some \(p > 0\), where \(\tilde{B}_s\) is defined as

\[
\tilde{B}_s = \text{col}(\tilde{c}_1, \ldots, \tilde{c}_1 A_{on}^{n-1}, \ldots, \tilde{c}_m A_{on}^{mn-1})
\]

\[
=: \begin{bmatrix} 0 & B_1 & B_2 & B_3 \end{bmatrix}
\]

where

\[
\begin{align*}
B_1 &= \text{col}(\tilde{c}_1, \ldots, \tilde{c}_1 A_{on}^{n-1}, 0, \ldots, 0) \\
B_2 &= \text{col}(\tilde{c}_2, \ldots, \tilde{c}_2 A_{os}^{n-1}, \ldots, \tilde{c}_m A_{os}^{mn-1}) \\
B_3 &= \text{col}(\tilde{c}_3, \ldots, \tilde{c}_3 A_{os}^{n-1}, \ldots, \tilde{c}_m A_{os}^{mn-1})
\end{align*}
\]

and \(\tilde{c}_i\) is the \(i^{th}\) row of \(\tilde{C}\). Note that

\[
\tilde{B}(t,t+s) = \begin{bmatrix} B_1 A_{on}^p & B_2 A_{os}^p & B_3 A_{ou}^p \end{bmatrix}.
\]

Also, \(\begin{bmatrix} \Theta_2 & \Theta_3 \end{bmatrix}\) is full rank and, since both \(A_{os}\) and \(A_{ou}\) are full rank, \(\begin{bmatrix} B_2 & B_3 \end{bmatrix}\) is also full rank (by Lemma 2) and so is \(\begin{bmatrix} B_2 A_{os}^p & B_3 A_{ou}^p \end{bmatrix}\). Note that \(B_1 A_{on}^p = 0\) for \(p \geq z\).

Now, without loss of generality, assume that the sequence \(\sigma_C\) starts at time \(t\). So, since \(p = mn \geq z\),

\[
\tilde{B}(t,t+s) = \begin{bmatrix} \tilde{B}_s \\ \tilde{B}_s A_{on}^n \end{bmatrix} u
\]

\[
= \begin{bmatrix} B_1 u_1 + B_2 u_2 + B_3 u_3 \\ B_2 A_{os}^n u_2 + B_3 A_{ou}^n u_3 \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}.
\]

Now, \(d_2 = 0\) if and only if \(u_2 = 0\). Given that \(u_3 \neq 0\), it follows that \(\|\tilde{B}(t,t+s)u\| \geq \|d_2\| > 0\). Therefore,

\[
\beta \leq \min_{\{u|u_1=0,|u_2|=1\}} \|B_2 A_{os}^n u_2 + B_3 A_{ou}^n u_3\|,
\]
is an appropriate choice to obtain detectability.

For k sensors per time step, consider the periodic schedule σ_C in which the first k sensors are selected for the first n time steps, the next k for the next n time steps, and so on. For example, if $m = 5$ and $k = n = 2$, then $\sigma_C = \{(1, 2), (1, 2), (3, 4), (3, 4), (5, 1), (5, 1)\}$. This sequence has a size of $\left\lceil \frac{mn}{2} \right\rceil n \leq mn$. This sequence is uniformly detectable by a similar argument as used in Lemma 5. The only difference from the proof of Lemma 5 is the formulation of B_σ. The matrix $[B_2A_s^c, B_3A_s^c]$ will remain full rank and the rest of proof will follow.

Necessary Condition: If (A, C) is not detectable, then there exists an eigenvalue-eigenvector pair, (λ, v), of A such that $|\lambda| \geq 1$ and $Cv = 0$. For any pair (α, r), assuming $\|v\| = 1$, we must have $\|A^rv\| = |\lambda|^r \geq 1 > \alpha$. So, there has to exist (s, β) such that $\|B(t, t+s)v\| \geq \beta$ for uniform detectability. However, the rows of $B(t, t+s)$ consist of vectors of the form c_iA^k, for some k, where c_i is a row of C. Now $c_iA^k v = \lambda^k c_i v = 0$ and so $B(t, t+s)v = 0$ no matter what the actual schedule is. Therefore, no sensor schedule can be uniformly detectable.

We have shown that (A, C) is detectable if and only if there exists a sequence of uniformly detectable sequence of measurements. Using Lemma 3 with this result completes the proof.

It is reasonable to expect that if (A, C) is observable, then a sequence of measurements exists such that the system is uniformly observable through that sequence. This, however, is not the case. Consider the trivial example where $A = 0$ and $k = 1$. Here, it is obvious that rank$(B(t, t+s)) = 1$ since the second row onwards of B will be 0. As another example, consider $A = 1_{3 \times 3}$ and C as a 3×3 lower triangular matrix where all non-zero entries are 1. It is easy to show that rank$(B(t, t+s))$ will be either 1 or 2 for every schedule. The following result gives the conditions for the system to be uniformly observable.

Proposition 6 If (A, C) is observable and A is full rank, then the system is uniformly observable through the periodic sequence σ_C.

Proof. In order for the sequence to be observable, we require the existence of (s, β) such that rank$(B(t, t+s)) = n$ for all t. Let B be defined as in equation (5) and take $s = 2mn$ so that $B(t, t+s)$ will always contain the rows of BA^p for some p. Since A is full rank, and B is full rank by Lemma 2, BA^p is full rank and hence rank$(B(t, t+s)) = n$.

In the following section we present an algorithm that produces a uniformly detectable schedule.

5 A Complete Sensor Selection Algorithm

We define a complete scheduling algorithm as follows.

Definition 7 (Complete Scheduling Algorithm)

A sensor scheduling algorithm is complete if for every detectable LTI system (A, C), the resulting sequence of error covariance matrices are uniformly bounded for all time.

A complete sensing schedule can be naively constructed using the periodic sequence σ_C. It will in general result in very large values of the covariance metric $F(\sigma_C)$. The greedy schedule presented in [17] chooses the sensors at each step that minimize the covariance over a single time step. However, establishing the boundedness of greedy algorithm has proved difficult. We present a modified greedy algorithm in this section such that it is complete, and empirically it obtains better performance than the greedy algorithm.

The following example shows that even if the greedy algorithm produces a bounded sensor schedule, it may perform quite poorly.

Example 8 Consider the pathological system

$$A = \Sigma_0 = I_{3 \times 3}, \quad C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0.1 & 0 \\ 0 & 0 & 0.01 \end{bmatrix} =: \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix},$$

$$W = \begin{bmatrix} 0.1 & 0.13 & 0.13 \\ 0.13 & 0.41 & 0.36 \\ 0.13 & 0.36 & 0.33 \end{bmatrix}, \quad V = I_{3 \times 3}.$$

Running the greedy algorithm for one sensor per time step, the resulting value of the objective function is plotted in Figure 1. The first time measurement 3 is selected in the greedy schedule is at $t = 8576$ and is then repeated approximately every 73 time steps. Eventually every measurement is made and so the schedule is uniformly detectable though the time window needed is over 8000 time steps.

We now present a modified greedy algorithm that ensures that the output sequence is uniformly detectable.

The **detectableGreedy** algorithm is given in Algorithm 1. The idea is to make a greedy choice at each iteration such that the measurement increases the rank of the matrix M. This is done in lines 8 to 14 where we mark the row $A_s^c r$ corresponding to sensor r as valid if
it increases the rank of M and then greedily pick the best valid row in line 13. Matrix M emulates the sequence observability matrix $B(t, t + s)$. Once M becomes full rank, it is reset in line 19. As a result, M acts as a sliding window and the algorithm attempts to keep this window fully observable. We now show that the algorithm does, in fact, result in a uniformly detectable schedule. We will reuse notation from the proof of Theorem 5:

$$A_{su} := \begin{bmatrix} A_{os} & 0 \\ 0 & A_{ou} \end{bmatrix}, \quad C_{su} := \begin{bmatrix} C_2 & C_3 \end{bmatrix},$$

$$\Theta_{su} := \Theta_2, \quad B_{su} := \begin{bmatrix} B_2 & B_3 \end{bmatrix} \quad \text{and} \quad p = \text{rank}(A_{su}).$$

Lemma 9 The rank of the matrix M will increase within p steps. In other words, consider the matrix at any time such that $\text{rank}(M(t, t + q)) < p$, then $\text{rank}(M(t, t + q + p)) \geq \text{rank}(M(t, t + q)) + 1$.

PROOF. Given the matrix $M(t, t + q)$ with rank less than p, the next p measurements will be chosen sequentially from the sequence of matrices $\{C_{su}A_{su}^{-1}\}_{i=1}^p$. Stacking these on top of each other we get $\Theta_{su}A_{su}^{-1}$. Since both Θ_{su} and A_{su} are full rank, $\text{rank}(\Theta_{su}A_{su}^{-1}) = p$. Therefore, at least one of the rows in $\Theta_{su}A_{su}^{-1}$ will be full from the rows of $M(t, t + q)$ and can be added to the sequence. So the rank of M will increase by at least 1 after p more time steps. \qed

Theorem 10 Algorithm 1 is complete and thus it produces a bounded sensor schedule.

PROOF. By Lemma 9, a rank increasing row will be selected within p time steps and so the maximum size of the M matrix is $p^2 - p + 1$.

We need to show that the sequence is uniformly detectable for the sensor schedule to be bounded. To show the sequence is uniformly detectable, we can follow the same argument as in the proof of Theorem 5, i.e., we need to show that $\left\| \hat{B}(t, t + s)u \right\| > 0$ for some s and for any vector that has $u_3 \neq 0$. Note that the matrix M in the algorithm corresponds to sections of $B_{su}(t, t + s)$.

One difference with the proof of Theorem 5 is that here we have a sequence of full rank matrices instead of just one being repeated. Assume, without loss of generality, that line 19 is executed at time $t - 1$. So after $k_1 \geq z$ time steps, the matrix M_1 will be constructed.

Take $s = z + 2p^2$. Taking at $\hat{B}(t, t + s)$, the rows $z + 1$ through to $z + 2p^2$ will have to contain $M_1A_{su}^{k_1}$. Expanding $\hat{B}(t, t + s)u$,

$$\begin{bmatrix} \hat{B}(t, t + k_1 - 1) \\ B(t + k_1, t + s)A_{su}^{k_1} \end{bmatrix}u = \begin{bmatrix} 0 & B_1 & X \\ 0 & 0 & M_1A_{su}^{k_1} \\ 0 & 0 & Y \end{bmatrix} \begin{bmatrix} u_0 \\ u_1 \\ u_{23} \end{bmatrix} = \begin{bmatrix} B_1u_1 + Xu_{23} \\ M_1A_{su}^{k_1}u_{23} \\ Y_{u_{23}} \end{bmatrix} =: \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}.$$
Again, $d_2 \neq 0$ since $u_{23} > 0$ (as we are considering only states with unstable modes). Therefore,
\[
\beta \leq \min_{\{u_{ij} = 0, ||u|| = 1\}} ||MA_{su}^j w_{23}||,
\]
where the minimum is taken over all possible full rank M. The minimum exists since M has only a finite number of choices as the number of possible measurements is finite. \[\square\]

Implementation Details:

- The matrix M is useful to prove the completeness of the algorithm, but in implementation, the QR factorization of M can be used instead of M.
- Matrix Q gives the null space basis of M. Given a row v, if the projection of v on the null space of M is non zero, then it will increase the rank of M. This can be used to check for valid rows in line 9.
- We can update the QR factorization after appending a row in M in line 14 by using Givens rotations \[2\] instead of factorizing M at each step.

With these implementation details, we can characterize the runtime of the \textsc{DetectableGreedy} algorithm. We make the assumption that $n \leq Tk$, which is justified since we are interested in infinite, or very large time horizons T. Recall that the simple greedy algorithm, chooses the row r of C at each iteration that minimizes $F((\sigma, \sigma_i \cup \{r\}))$. That is, all rows are valid, and no rank calculations are required.

Proposition 11 (Complexity of algorithm)

If $n \leq Tk$, then the (asymptotic) runtime of the \textsc{DetectableGreedy} algorithm is equal to that of the simple greedy algorithm.

In the following, we denote the runtime for computing the multiplication of two $n \times n$ matrices as μ. In the naive implementation of matrix multiplication, $\mu = O(n^3)$. State-of-the-art algorithms have a complexity of $\mu = O(n^{2.3728639})$ \[22\].

Proof. The \textsc{DetectableGreedy} algorithm is a greedy algorithm with two extra steps: Calculate A_{su}, C_{su}, and check which of the measurements increase rank of M.

Given a time horizon T, there will be mT iterations. For each of the T time steps, k measurements need to be selected from a set of m. For any of the metrics $F(\sigma)$, the runtime to greedily pick the k best measurements is $O(\mu nk)$, since we must perform mk measurement updates \[6\], each of which requires μ time. For the metric $F(\sigma) = -\log \det(\Sigma_i^{1/2})$, the greedy selection can be cleverly implemented in a runtime of $O(n^2 mk)$ per time step \[17\]. In addition to this, a time update \[6\] requires two matrix multiplications, which require μ time. Therefore, the greedy part has a runtime of $O(Tmn^2 k + Tk\mu)$ for the log det metric and $O(Tmk\mu)$ otherwise.

To calculate A_{su} and C_{su}, the observability matrix of the system has to be evaluated at the start of the algorithm. It requires A^x to be calculated for $x = \{1, \ldots, n - 1\}$. So calculation of A_{su} requires $O(n\mu)$ time.

For determining valid rows to choose, a matrix multiplication has to be performed for each row of C ($O(mn^2)$). Finding the projection of a row on the null space of M requires $O(n^2)$ time and updating the QR factorization of M also requires $O(n^2)$ time \[2\]. That is because in the implementation, M will only have rank increasing rows and hence its maximum size is $n \times n$. The power of A_{su} needs to be calculated once per time step and hence requires $O(T\mu)$ time.

Therefore, the total complexity becomes $O(Tk(mn^2 + \mu) + n\mu)$ for the log det metric and $O(Tmk\mu + n\mu)$ for other metrics. If $n \leq Tk$, our modification in the greedy algorithm does not increase the complexity of the algorithm. \[\square\]

In the following section we compare the performance of Algorithm 1 with some other known scheduling algorithms.

6 Simulations

We perform several simulation experiments to investigate the performance of Algorithm 1. In these simulations, we run the algorithms for T time steps. We let the covariance metric F be the average trace of the \textit{a posteriori} error covariance, so at each time step t,

\[
F(\sigma) = \frac{1}{t} \sum_{i=1}^{t} \text{trace}(\Sigma_i^{t/2}).
\]

For this section, we refer to the \textsc{Greedy} algorithm as G and the \textsc{DetectableGreedy} algorithm as DG. We
use a sliding window approximation for comparison with these algorithms. The SLIDINGWINDOW (SW) algorithm
is essentially an extended greedy algorithm such that
the optimal is calculated over a certain time window
by considering every possible sequence. The final error
covariance of a window serves as the initial covariance
for the next window. Two drawbacks of the sliding win-
dow approach are that although the optimal is achieved
over the window, the algorithm’s runtime grows exponen-
tially with window size, and there is no guarantee on
performance over the entire time horizon.

Linear system generation: We performed a dis-
cretization of the heat equation in 2D to form the sys-
tem matrix A for our simulations. A similar formulation
of the discrete time system is used for the scheduling
algorithm proposed in [13]. The matrix C was taken
to be identity to realize sensors that measure tempera-
tures on the 2D surface in the form of a grid. The W
matrix was set to a random positive definite matrix in
which each entry is uniformly distributed in $[0,5]$. The
matrix V was set to a diagonal matrix with each entry
uniformly randomly distributed in $[0.5,2]$.

One sensor per time step: In our first experiment, we
compare three algorithms: G, DG and SW. The perfor-
ance of the three algorithms for the case of one sensor
per time step is summarized in Table 1. In the first col-
umn, n records the number of states in the system. For
each system, each algorithm was run 10 times for dif-
f erent W and V, and the average run time and average
covariance metric value at the end of time horizon T was
recorded. In the table, the times are rounded off to the
nearest second and the function values are normalized
with respect to the values for SW algorithm. The time
horizon was taken to be $T = 500$ for these experiments.
For the SW algorithm, the window size is stated under the “Win.” column, and is decreased for larger systems
in order to maintain tractable runtimes.

In Table 1 we see that the SW algorithm outperforms
the Greedy algorithm by between 30% and 60%, and the
detectableGreedy by between 15% and 50%. The run-
times, on the other hand, are approximately 70 to
100 times faster for the greedy algorithms than for SLIDINGWINDOW. The run times of DG and G algorithms
are essentially equal, agreeing with Proposition 11. How-
ever, the detectableGreedy algorithm gives consist-
tently lower values of $F(\sigma)$ than the greedy algorithm.
Also note that the detectableGreedy algorithm is
scalable to large systems — the last row of Table 1 repre-
sents a system with 100 states and 100 sensors, and
the computation time is still less than 0.1 seconds per
time step.

An important feature of the detectableGreedy al-
gorithm is that it guarantees uniformly bounded error
covariance. However, it is not guaranteed that the DG
algorithm will always outperform the greedy algorithm.

<table>
<thead>
<tr>
<th>Sensors per time step (k)</th>
<th>Objective Function Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-10</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>12</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 2
Performance (number of wins) of Greedy versus DG algo-
rithm for 500 randomly generated W and V.

<table>
<thead>
<tr>
<th>$n = m$</th>
<th>DG</th>
<th>G</th>
<th>decrease in average $F(\sigma)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>388</td>
<td>75</td>
<td>10%</td>
</tr>
<tr>
<td>5</td>
<td>484</td>
<td>16</td>
<td>20%</td>
</tr>
<tr>
<td>10</td>
<td>500</td>
<td>0</td>
<td>27%</td>
</tr>
</tbody>
</table>

Fig. 2. Plot of log determinant metric versus k. The value of
objective function is averaged over 5 runs of the algorithms.

For example, if $A = C = I$ for a 2 state system and the
state with more system noise is being measured by the
noisy sensor, then the greedy algorithm performs better.
But for all the other combinations of system and sensor
noise covariances, either DG outperforms greedy or they
give the same result. For 500 randomly generated W
and V, the number of times one of the algorithms performed
better than the other is given in Table 2 for different sys-
tem dimensions. The last column shows the decrease in
the average value of objective function for DG as com-
pared to greedy algorithm. For randomly generated C,
a similar trend is observed. In the case of randomly gen-
 erated A, each row of C_{su} serves as a rank increas-
ing row and hence the two algorithms give the same per-
formance.

Multiple sensors per time step: In [10] the metric
$-\log \det(\Sigma^{-1})$ is optimized over a single time step using
a convex relaxation to choose the best k sensors for
one time step. The process is repeated at each time step
to get a sensor schedule. We will refer to this algorithm
as CVX. For multiple sensors per time step, we compare
our algorithm to CVX and G. The system used was the
discretization of heat equation for $n = m = 16$ with ran-
domly chosen W and V and the algorithms were run for
$T = 50$ time steps. Figure 2 shows a plot of the objective
function $\frac{1}{T} \sum_{t=1}^{T} \log \det(\Sigma^{-1})$ for each algorithm
plotted against number of sensors chosen per time step.
In this case, the greedy and detectableGreedy al-
gorithms achieve similar performance, and both outper-
form the CVX algorithm. These results agree with [17]
where the greedy algorithm is shown to be empirically
better than the CVX.
7 Conclusions and Future Directions

We gave conditions for the existence of a bounded sensor schedule and then presented an algorithm that outputs a bounded sensor schedule if one exists. The algorithm attains the same asymptotic runtime as the greedy algorithm, but we show empirically that it obtains better performance.

We are interested in quantifying the quality of the schedule given by the algorithm relative to the optimal. Another problem to consider is determining the minimum number of sensors required per time step that achieve the same bound as selecting all m sensors.

References

