
On Minimizing Turns in Robot Coverage Path Planning

Stanislav Bochkarev Stephen L. Smith

Abstract— In this paper we study sweep coverage path
planning, in which a robot must cover all points in a workspace
with its footprint. In many coverage applications, including
cleaning and monitoring, it is beneficial to use coverage paths
with minimal robot turns. To address this, we provide an
efficient method to compute the minimum altitude of a non-
convex polygonal region, which captures the number of parallel
line segments, and thus turns, needed to cover the region.
Then, given a non-convex polygon, we provide a method to
cut the polygon into two pieces that minimizes the sum of their
altitudes. Given an initial convex decomposition of a workspace,
we apply this method to iteratively re-optimize and delete cuts
of the decomposition. Finally, we compute a coverage path of
the workspace by placing parallel line segments in each region,
and then computing a tour of the segments of minimum cost. We
present simulation results on several workspaces with obstacles,
which demonstrate improvements in both the number of turns
in the final coverage path and runtime.

I. INTRODUCTION

Given a robot with a footprint χ and a workspace P ,
possibly with holes, the sweep coverage problem is that of
computing a path contained in P such that traversal of χ
along the path results in each point in P being covered by
χ. Coverage path planning sees applications in demining [1],
surveillance [2], search and rescue [3], target localization [4],
floor sweeping [5], [6], agriculture [7], painting [8], pol-
ishing [9] and others. The evaluation of the coverage path
differs between these applications. For example, energy
efficiency is important for floor sweeping robots operating
on constrained energy budget, whereas uniformity of the
coverage is important for painting applications.

Despite differences in evaluation, for many robot types,
turns have undesirable effects on the path quality [10],
[11]. For example, turns for aerial vehicles with vision
based acquisition systems complicate the scene acquisition
process [12]. For painting applications, turns over the paint
surface introduce travel length differences for parts of the
nozzle, which disturbs the uniformity of the paint.

The optimal coverage path generation for convex work
spaces is tractable and can be solved efficiently using
sweeping [13] or spiralling motions. For general workspaces,
the coverage problem is NP-hard [14]. However, there are
many approximate approaches to coverage. One class of ap-
proaches is an exact convex decomposition on the workspace,
in which the workspace is partitioned into convex regions.
A coverage path consists of a tour of each region, with

The authors are with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo ON, N2L 3G1 Canada
(sbochkar@uwaterloo.ca; stephen.smith@uwaterloo.ca).
This research is partially supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC)

local coverage of a convex region performed with either
sweeping or spiralling motion. Commonly-used methods for
decomposition include Boustrophedon [15] and trapezoidal
decomposition [16]. Huang [10] proposed a dynamic pro-
gramming approach for the decomposition that minimizes
the number of turns in the overall coverage path. However,
the runtime is exponential, and the cost associated with
transitions between these regions is assumed to be negligible.
Exact convex decomposition for polygons with holes is NP-
hard [17], which leads to a drawback. The decomposition of
complex workspaces may contain many regions, resulting in
large total transition costs between regions.

Another class of approaches is an approximate convex
decomposition [18], in which convex regions may overlap,
and the union of regions approximates the workspace. It’s
common to represent each of the overlapping regions as
a coverage footprint (Figure 1(a)). Local coverage of each
region is ensured by visiting the region’s center. Complete
coverage becomes the problem of planning a tour that visits
each center with minimum cost [14]. A drawback of this
method is that the overlap between regions reduces the
efficiency of the overall coverage path. Also, the number
of regions grows with the area of the workspace, making
the problem of computing tours of the centers intractable for
large spaces.

In this work we seek to compute coverage paths with min-
imum turns. Our key idea is to perform a line decomposition:
an approximate decomposition of the workspace into regions
that represent the area swept by the footprint traversing a
straight line (Figure 1(b)). The process starts with any convex
decomposition. We propose a method of re-evaluating cuts
in this convex decomposition with the objective of lowering
the number of turns in the path. For each polygon in the final
decomposition, a minimal line decomposition is performed.
The complete coverage path is then generated by computing
a tour of lines with minimal cost. Unlike existing approaches,
the tour is not forced to complete local coverage of each
polygon before proceeding to the next.

Contributions: Our key contributions are threefold. First,
we provide a method for computing the minimum altitude of
a non-convex polygon, which captures the number of parallel
line segments, and thus turns, needed for coverage. Second,
given an initial convex decomposition of a workspace, we
propose a method to iteratively re-optimize and delete cuts
of the decomposition in order to optimize the altitude of
the polygon on each side of the cut. Third, we compute
a coverage path of the workspace by placing parallel line
segments in each region, and then computing a minimum-
length tour of the corresponding approximate convex decom-

(a) (b)

Fig. 1: (a) Coverage footprint at a point. (b) Coverage
footprint over a line.

position. The tour is computed by generating and solving a
Generalized Traveling Salesman Problem (GTSP) instance
using existing solvers. Proofs are abbreviated to sketches due
to space constraints and will appear elsewhere in full.

II. PRELIMINARIES

A. Geometric Preliminaries

A simple polygon is a non-intersecting chain of straight
line segments forming a closed loop and specified as a set
of points, i.e., Z = {vi ∈ R2|i = 1, . . . , n}. Note that since
the chain is a circuit, any vi ∈ Z has two adjacent line
segments. A boundary of a simple polygon is a set of points,
∂Z, along a line connecting any two adjacent vertices of a
chain. A clockwise simple polygon is a simple polygon where
vertices are specified in a clockwise order. We associate these
types of simple polygons with holes in the workspace. A
counter-clockwise simple polygon is a simple polygon where
vertices are specified in a counter-clockwise order. This type
of simple polygons are associated with the external boundary
of the workspace. Finally, a polygon is a set of clockwise and
counter-clockwise simple polygons. For clarity, we will refer
to simple polygons as chains and reserve the term polygon
for a set of chains, i.e., P = {Z0, . . . , Zm}. Z0 is a counter-
clockwise chain (i.e., the boundary) and all subsequent Zi
are clockwise chains (i.e., holes). A boundary of a polygon is
the set of points defined as ∂P =

⋃M
i=1 ∂Zi where Zi ∈ P .

A reflex vertex is a vertex in one of the chains of P that
has an internal angle of more than π. As such, a polygon is
convex if and only if there are no reflex vertices. Conversely,
a polygon is non-convex if and only if it contains at least one
reflex vertex. Note that the presence of a hole guarantees at
least one reflex vertex.

B. Generalized Traveling Salesman Problem Preliminaries

Suppose a complete graph G = (V,E,w) is given where
V is a set of vertices, E is a set of edges, and w is a set of
edge weights. Suppose V is partitioned into pairwise disjoint
sets {V1, . . . , Vp} where Vi ⊂ V . The Generalized Traveling
Salesman Problem (GTSP) is the problem of computing a
tour that visits exactly one vertex from each Vi such that the
length of the tour is minimized. The TSP is a special case
of the GTSP where |Vi| = 1 for each i and is NP-hard.

Fig. 2: Polygon regions where lines can be reoriented.

III. PROBLEM DEFINITION AND APPROACH

Given a polygon P possibly with holes, our goal in this
paper is to compute a coverage path with the additional
objective of minimizing the number of turns. We assume
that the map of the workspace is polygonal and noise free,
and the localization problem is solved. We deal with kine-
matic robot models with vmax as the maximum velocity. In
Section VI, we utilize Dubins’ car model for our simulations.
We assume robot’s coverage footprint is a circle of radius r.
Our approach to the coverage problem consists of two main
subproblems, described in the following two subsections.

A. Minimum Turn Decomposition

We focus on the specific type of paths called polygonal
sweeping paths, which can be segmented into two types
of segments: straight and transition segments. For a given
polygonal path, define a set of straight segments in the path
as R and set of transition segments as T . Transition segments
are associated with turns as they represent a path from
one straight segment to another. Observe that minimizing
|R| leads to minimizing |T |. Note that the traversal of the
coverage footprint along a straight segment Ri ∈ R generates
a straight segment footprint γi. See Figure 1(b). Note that
the union of all γi is approximately equal to the original
polygon with areas near the boundaries missing. With these
observations, our first problem can be formulated as follows:

Problem III.1 (Min Line Set Decomposition). Given a
polygon P , compute a set Γ = {γi|i = 1, . . . , f} such that
f is minimized and

⋃f
i=1 γi approximately decomposes P .

The solution to this problem is not trivial. One possible
solution is to arrange all γi ∈ Γ to be parallel to each
other throughout the entire polygon. This solution is not
necessarily optimal but can act as a starting point in an
optimization. A more sophisticated approach is to decompose
P into polygons P0, P1, . . . , Pk, where for each Pi, the
associated Γi consists of parallel segments. The segments in
each Γi should be oriented to minimize |Γi|. For example,
the polygon in Figure 2 is decomposed into four regions.
Lines in the two regions on the sides of the polygon are
reoriented to reduce the number of lines in those regions.
For the optimal orientation, we define the θ altitude of a
polygon.

Minimum Altitude: For convex polygons, the altitude in
direction θ is defined as the minimum distance between two
parallel lines angled at θ + π

2 with respect to the x-axis

x1 x2 x3 x4 x5

Open Split Open Merge Merge Close

Fig. 3: Process of measuring altitude with θ equal to 0.

such that all vertices of the convex polygon are contained
between these two lines [10]. This notion can be extended
to general polygons. The method of obtaining θ altitude for a
general polygon is shown in Algorithm 1. Figure 3 provides
an example of this procedure. In the example, the altitude is
x1 +2x2 +3x3 +2x4 +x5. Note that if r is the radius of the
footprint of the robot and α is the altitude of a polygon along
θ then total number of lines required for complete coverage
in direction θ is

n =
⌊ α

2r

⌋
. (1)

Thus, the altitude provides the cardinality of set Γi when all
γj ∈ Γi are oriented at θ + π

2 with respect to x-axis.

Algorithm 1 get general altitude(P, θ)

Input: Polygon P = {Z0, Z1, . . .}, direction θ.
1: counter← 0, α← 0
2: Rotate P by −θ to align direction with x-axis.
3: Sort all vertices in P by their x-coordinates
4: for each vi in the sorted list :
5: α← α+ counter×(xvi − xvi−1)
6: if both vertices adjacent to vi are on the right :
7: Increment counter by 1
8: else if both vertices adjacent to vi are on the left :
9: Decrement counter by 1

10: return α

Given a polygon P , we are interested in finding the
minimum altitude α∗(P). Note, however, that the altitude can
be measured with respect to an infinite number of directions
θ. The following result addresses this issue.

Proposition III.1 (Minimum Altitude Directions, [10]).
Given a polygon P , the direction of minimum altitude is
orthogonal to one of the edges of the polygon.

By Proposition III.1, minimum altitude can be computed
by performing Algorithm 1 on each direction associated with
the edge of the polygon. The runtime of this approach is
O(n2 log n) in number of vertices of a polygon.

With the notion of altitude for general polygons, the
Problem III.1 can be restated as follows.

Problem III.2 (Min Altitude Decomposition). Given a poly-
gon P , find k and P1, P2, . . . , Pk such that

∑k
i=1 α

∗(Pi) is
minimized where

⋃k
i=1 Pi = P .

v

w` wr

P` Pr

S

e` erc

d` dr

Fig. 4: Decomposing cut originating at a reflex vertex.

B. Minimum Cost Tour

Once a set Γ is generated, the problem becomes that of
choosing an order and direction to cover each γi ∈ Γ, i.e.,
a tour of Γ. Observe that each γi can be traversed with two
directions. Hence, the second subproblem can be defined as
follows:

Problem III.3 (Minimum Cost Tour). Given a polygon P
and a set of lines Γ, generate a matrix M of transition costs
between any pair of elements of Γ. Find a tour of Γ such
that cost of the tour is minimized.

IV. MIN ALTITUDE POLYGON DECOMPOSITION FOR
COVERAGE PLANNING

This section covers our solution to Problem III.2. Sec-
tion IV-A introduces decomposition related terminology that
is needed to present our decomposition method.

A. Decomposition Related Preliminaries

Definition IV.1 (Cone of bisection). Suppose a non-convex
polygon P containing a reflex vertex v is given. Let d` =
{vk, v} and dr = {v, vl} be the two adjacent edges of v.
The cone of bisection at v is defined by two line segments,
e` = {v, w`} and er = {v, wr} that are parallel to dr and
d` respectively with w`, wr ∈ ∂P \ {v}. See Figure 4.

Definition IV.2 (Cut space). Consider a non-convex polygon
P with reflex vertex v, along with the cone of bisection. The
cut space is a set S ⊂ ∂P of all points on ∂P between w`
and wr visible from v.

The cut space S can be represented by its straight line
segments S1, . . . , SL where

⋃L
i=1 Si ⊆ S.

Definition IV.3 (Decomposing Cut). Given a non-convex
polygon P with a reflex vertex v, a decomposing cut is a
straight line segment e = {v, w} within the cone of bisection
of v where v, w belong to the same chain. See Figure 4.

B. Min Altitude Decomposition

This section outlines the approach to Problem III.2. The
overall steps of the process are described in Algorithm 2.

Algorithm 2 accepts a polygon as the input. On Line 1,
an initial decomposition is generated using any convex
decomposition technique. The rest of the algorithm attempts
to re-optimize this decomposition in order to decrease the

Algorithm 2 min alt decomposition(P)

Input: Polygon P = {Z0, Z1, . . .}
1: D ← any convex decomposition of P
2: repeat
3: Re-optimize a cut from D
4: Update cost of the decomposition
5: until stopping criteria is met

overall altitude. Re-optimization steps on Lines 3 and 4 are
performed until the cost of the decomposition no longer
decreases. Part of the re-optimization step is the removal
of existing cuts. This is achieved by maintaining a list of
reflex vertices from the original polygon. For each vertex
in this list, the algorithm looks for incident edges that
were not present in the original polygon. These edges are
removed, forming a combined polygon in the process. An
optimal decomposing cut from this reflex vertex is attempted.
The procedure for making optimal decomposing cuts is
introduced in Section IV-C.

C. Optimal Decomposing Cut

The re-optimization step operates on a polygon with a
reflex vertex. This polygon is formed by removing previous
cuts that were made by a convex decomposition. Our algo-
rithm will either generate a new cut or no cut depending on
what is optimal with respect to the altitude of the polygon.
We do this by searching for optimal decomposing cuts.
The algorithm for doing that is shown in Algorithm 3. The
procedure operates on a single chain and a specified reflex
vertex in that chain. On Line 2, a cut space is generated for
the reflex vertex, which provides a set of potential cuts. Two
polygons, P` and Pr, are formed by initializing the cut at the
first point of the cut space on Line 3. Two sets of altitude
directions are generated on Lines 4-5 based on the two
polygons. The main loop on Lines 6-15 locates candidates
for a cut for each combination of directions and each straight
segment of the cut space. Lines 9-10 locate special points on
Si called transition points for each altitude direction. These
points are points on Si that yield cuts minimizing the sum
of altitudes. Transition points are found by locating a point
of intersection of Si and a line hi parallel to the edge ei
passing through v (left of Figure 5). Before moving on to
the next straight segment of the cut space, Pl is modified
to include Si in its boundary. Pr is modified to exclude Si
from its boundary. The straight segment Si may also add a
new altitude direction θ, which has to be accounted for in
Θ` and Θr. These operations are carried out on Lines 13-15.
The algorithm returns the cut that has the lowest cost.

D. Proof of Correctness

This section establishes the correctness of Algorithm 3.

Claim IV.1. Given a polygon P and a reflex vertex v,
Algorithm 3 returns a decomposing cut forming two new
polygons P` and Pr that minimize α∗(P`) + α∗(Pr).

Due to space constraints, we provide only a sketch of
the proof, which will appear in full elsewhere. The proof

Algorithm 3 find optimal cut(P, v)

Input: Polygon P = {Z0}, reflex vertex v
1: A` ← ∅, Ar ← ∅, U ← ∅
2: Find cut space S for v
3: P`, Pr ← polygons after the cut at first endpoint of S
4: Θ` ←set of directions θ orthogonal to edges of P`

5: Θr ←set of directions θ orthogonal to edges of Pr

6: for each Si ∈ S :
7: for each dir` ∈ Θ` :
8: for each dirr ∈ Θr :
9: d` ← transition point on Si w.r.t dir`

10: dr ← transition point on Si w.r.t dirr
11: Add tuple (d`, dir`, dirr) to U
12: Add tuple (dr, dir`,dirr) to U
13: Modify P` by adding Si to its boundary
14: Modify Pr by removing Si from its boundary
15: Modify Θ`,Θr if new θ was introduced by Si

16: Compute costs for all tuples (u, dir`, dirr) ∈ U
17: return Lowest cost element from U

consists of several steps. First, the existence of a minimum is
shown. Next, transition points are introduced, which contain
a minimum. Finally, the minimum is found by evaluating all
transition points.

We are interested in studying how a choice of a cut affects
the altitudes of P` and Pr. Let us parameterize the orientation
of a cut with respect to d, where d is the normalized distance
along the cut space from w`. Let w` be a point on the
cut space when d = 0 corresponding to the cut on edge
e` (Figure 4). Define α`,i(d) and αr,i(d) as functions that
measure the altitude orthogonal to edge ei in P` and Pr
respectively.

Note, all α`,i(d) and αr,i(d) are semi-continuous functions
of d, with discontinuities occurring only when the cut sweeps
past a pinch vertex in the cut space as shown on the right
of Figure 5. Utilizing the extension of the extreme value
theorem, Lemma IV.1 is established.

Lemma IV.1. There exists a d ∈ [0, 1] that minimizes
α`,i(d) + αr,j(d).

The next part of the proof shows that transition points
are actually points that minimize the altitude functions. The
following Lemma formalizes this. Let dtrans` and dtransr refer
to transition points for P` and Pr respectively.

Lemma IV.2. For a given Si, altitudes α`,i(d) and αr,j(d),
a minimizer of α`,i(d) + αr,j(d) is d ∈ {dtrans` , dtransr }.

The proof of this lemma follows from the linearity of
altitude functions. With our parameterization, altitude func-
tions are shown to be piece-wise linear functions of d. The
minima of the sum of such functions can be shown to occur
at transition points. With Proposition III.1 and Lemma IV.2,
we find the optimal cut by computing the sum for each
Si ∈ S and all combinations of altitude directions and pick
the transition point with the minimum. Algorithm 3 performs
this exact procedure.

hi
f

(b
)

f
(a

)
v

f
(d

tr
a
n
s

`
)

ei
P`

Pr

v

w` wr

vp

Fig. 5: Left: Transition point. Right: Pinch vertex at vp.

V. GTSP TOUR GENERATION

Given a polygon P , Algorithm 2 is called on P , resulting
in a set D of polygons. For each Pi ∈ D, we generate the
minimum set Γi of straight segment footprints. Note, each
γj ∈ Γi has two possible traversal directions. We refer to
the choice of this direction as γ1j or γ2j . Define cost(γmi , γ

l
j)

as the robot transition cost from region γi in m direction
to region γj in l direction where m, l ∈ {1, 2} and i, j ∈
{1, . . . , k}, i 6= j. This transition cost takes the dynamics of
the robot into account. Computing this cost for each pair
γmi , γ

l
j , a complete graph G = (V,E,w) is constructed

where each vertex v ∈ V represents γmi for some m ∈ {1, 2}
and i = {1, . . . , k}, each edge e = {v, z} in E represents
transition between vertices v and z, and weights represent
robot transition costs between vertices. Furthermore, V is
partitioned into sets {γ1i , γ2i } for i = {1, . . . , k}. The graph
G and the partition define the GTSP instance, and a GTSP
tour on this graph gives a coverage path for the robot.

VI. SIMULATIONS

Our algorithm was implemented in Python. We utilized
several computational geometry libraries including Shapely
1 and Visilibity [19]. The heuristic solver GLKH [20] was
used as a GTSP solver. Transition costs between segments
were computed assuming a Dubins’ vehicle model.

Our method was compared to two other approaches. The
first method relies on an approximate point decomposition
of the workspace from [14]. Each point is assigned eight
headings. These headings represent possible traversal direc-
tions for that point. Finally, the GTSP tour of minimum
cost is computed as in [21]. In the second method, the
coverage path is computed but the re-optimization proce-
dure is not performed on the initial decomposition. The
initial decomposition is generated with a Python library for
greedy convex decomposition, based on [22]. We tested all
approaches on four different workspaces of similar size but
various complexity.

Performance figures of all three methods are shown in
Table I. We compare four aspects of the three approaches: the
size of the GTSP instance, the execution time from start to
finish, the total length of the tour, and the area covered by the
coverage path as percentage of the total area of the polygon.
In all cases, our method reduced the number of turns in
the final coverage path. This is shown in the reduction in

1The Shapely library is available at https://github.com/
Toblerity/Shapely

GTSP size, which is equivalent to the reduction in number
of straight line segments. Naturally, since our method uses
greedy decomposition as a starting point, it runs more slowly
then the pure greedy approach. On average, our method is
about three times slower than the greedy approach. However,
it is faster then the point decomposition by a factor of 100.

Notably, the overall path lengths are shorter with the
greedy decomposition compared to our method. However,
this is attributed to the greedy decomposition producing
many regions whose area is small relative to the size of the
footprint. These regions are typically narrow, which makes
it difficult to place lines for complete area coverage. De-
compositions that produce excessive number of such regions
result in a significant portion of the total area uncovered.
Our method produces fewer regions and leaves less area
uncovered. From Table I, our method leaves on average half
of the uncovered area left by the greedy approach. Note that
the point decomposition in some cases covers less area than
the competing algorithms. However, this occurrence is due
to the limitation of our implementation of the approximate
decomposition, which does not place any points at a distance
of less than r from the boundary, leading to uncovered areas
near polygon boundaries. This has the effect of reducing the
covered area and the path length as well.

Figure 6 shows the resultant paths for three different ap-
proaches. The line segments are orange and Dubins transition
costs are green. Note that green segments do not necessarily
indicate the path of the robot but rather show the cost
associated with the transition. The red lines highlight shared
edges of adjacent polygons in the decomposition. The first
row of figures show the point decomposition. The second row
of figures show the greedy decomposition technique. And
the last row shows our re-optimization technique. Figure 6
demonstrates a reduction in the number of polygons with our
method compared to the greedy decomposition. Inefficiencies
in the GTSP tour occur due to the very large size of the
GTSP instance, which poses a challenge for the heuristic
GLKH solver.

VII. CONCLUSION

In this paper we proposed a new approach for robot cover-
age that utilizes an approximate convex decomposition of the
environment into straight line segments. Our key contribution
is an algorithm that seeks to minimize the number of lines
by repeatedly performing optimal decomposing cuts in the
environment. For future work, we are interested in extending
this approach to workload partitioning for multiple robot
coverage.

REFERENCES

[1] E. U. Acar, H. Choset, Y. Zhang, and M. Schervish, “Path planning
for robotic demining: Robust sensor-based coverage of unstructured
environments and probabilistic methods,” The International journal of
robotics research, vol. 22, no. 7-8, pp. 441–466, 2003.

[2] A. Ahmadzadeh, J. Keller, G. Pappas, A. Jadbabaie, and V. Kumar, “An
optimization-based approach to time-critical cooperative surveillance
and coverage with UAVs,” in Experimental Robotics. Springer, 2008,
pp. 491–500.

Point Decomposition Greedy Decomposition Min Alt Decomposition

Size Time Length Area Size Time Length Area Size Time Length Area

Shape 1 7144 2h 312.6 87.8% 96 2s 231.0 91.6% 78 2s 242.3 95.1%
Shape 2 7288 2h 306.3 86.9% 86 2s 216.8 84.6% 80 7s 228.9 91.7%
Shape 3 7464 2h 349.3 88.3% 136 6s 226.9 79.8% 92 15s 228.1 89.1%
Shape 4 6736 2h 312.2 85.1% 116 3s 226.5 88.1% 88 13s 234.4 93.5%

TABLE I: Decomposition methods comparison for multiple test shapes.

Fig. 6: First row: point decomposition. Second row: greedy optimization. Third row: min altitude decomposition.

[3] L. Lin and M. Goodrich, “UAV intelligent path planning for wilder-
ness search and rescue,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2009, pp. 709–714.

[4] L. M. Miller and T. D. Murphey, “Optimal planning for target local-
ization and coverage using range sensing,” in Int Conf on Automation
Science and Eng, 2015, pp. 501–508.

[5] J. Hess, M. Beinhofer, and W. Burgard, “A probabilistic approach to
high-confidence cleaning guarantees for low-cost cleaning robots,” in
IEEE Int Conf on Robotics and Automation, 2014, pp. 5600–5605.

[6] H. H. Viet, V.-H. Dang, M. N. U. Laskar, and T. Chung, “BA*:
an online complete coverage algorithm for cleaning robots,” Applied
Intelligence, vol. 39, no. 2, pp. 217–235, 2013.

[7] I. Hameed, D. Bochtis, and C. A. G. Sørensen, “An optimized field
coverage planning approach for navigation of agricultural robots in
fields involving obstacle areas,” International Journal of Advanced
Robotic Systems, vol. 10, no. 231, pp. 1–9, 2013.

[8] P. N. Atkar, A. Greenfield, D. C. Conner, H. Choset, and A. A. Rizzi,
“Uniform coverage of automotive surface patches,” The International
Journal of Robotics Research, vol. 24, no. 11, pp. 883–898, 2005.

[9] M. Rososhansky, F. J. Xi, and Y. Li, “Coverage based tool path
planning for automated polishing using contact stress theory,” in Int
Conf on Automation Science and Eng, 2010, pp. 592–597.

[10] W. H. Huang, “Optimal line-sweep-based decompositions for cover-
age algorithms,” in IEEE International Conference on Robotics and
Automation, vol. 1, 2001, pp. 27–32.

[11] A. Xu, C. Viriyasuthee, and I. Rekleitis, “Efficient complete coverage
of a known arbitrary environment with applications to aerial opera-
tions,” Autonomous Robots, vol. 36, no. 4, pp. 365–381, 2014.

[12] E. Frew, T. McGee, Z. Kim, X. Xiao, S. Jackson, M. Morimoto,
S. Rathinam, J. Padial, and R. Sengupta, “Vision-based road-following

using a small autonomous aircraft,” in IEEE Aerospace Conference,
vol. 5, 2004, pp. 3006–3015.

[13] I. Maza and A. Ollero, “Multiple UAV cooperative searching operation
using polygon area decomposition and efficient coverage algorithms,”
in Distributed Autonomous Robotic Systems, 2007, pp. 221–230.

[14] E. M. Arkin, S. P. Fekete, and J. S. Mitchell, “Approximation al-
gorithms for lawn mowing and milling,” Computational Geometry,
vol. 17, no. 1, pp. 25–50, 2000.

[15] H. Choset and P. Pignon, “Coverage path planning: The boustrophedon
cellular decomposition,” in Field and Service Robotics. Springer,
1998, pp. 203–209.

[16] T. Oksanen and A. Visala, “Coverage path planning algorithms for
agricultural field machines,” Journal of Field Robotics, vol. 26, no. 8,
pp. 651–668, 2009.

[17] A. Lingas, “The power of non-rectilinear holes,” in Automata, Lan-
guages and Programming. Springer, 1982, pp. 369–383.

[18] E. Galceran and M. Carreras, “A survey on coverage path planning
for robotics,” Robotics and Autonomous Systems, vol. 61, no. 12, pp.
1258 – 1276, 2013.

[19] K. J. Obermeyer and Contributors, “The VisiLibity library,”
http://www.VisiLibity.org, 2008, r-1.

[20] K. Helsgaun, “An effective implementation of the Lin–Kernighan trav-
eling salesman heuristic,” European Journal of Operational Research,
vol. 126, no. 1, pp. 106–130, 2000.

[21] J. Le Ny, E. Feron, and E. Frazzoli, “On the Dubins traveling salesman
problem,” IEEE Trans Automatic Ctrl, vol. 57, no. 1, pp. 265–270,
2012.

[22] J. Fernández, B. Tóth, L. Cánovas, and B. Pelegrı́n, “A practical
algorithm for decomposing polygonal domains into convex polygons
by diagonals,” Top, vol. 16, no. 2, pp. 367–387, 2008.

