
Reactive Motion Planning in Uncertain
Environments via Mutual Information Policies

Ryan A. MacDonald and Stephen L. Smith

Department of Electrical and Computer Engineering
University of Waterloo, Waterloo ON, Canada
{ryan.macdonald,stephen.smith}@uwaterloo.ca

Abstract. This paper addresses path planning with real-time reaction
to environmental uncertainty. The environment is represented as a graph
and is uncertain in that the edges of the graph are unknown to the robot
a priori. Instead, the robots prior information consists of a distribution
over candidate edge sets. At each vertex, the robot can take a measure-
ment to determine the presence or absence of an edge. Within this model,
the Reactive Planning Problem (RPP) provides the robot with a start lo-
cation and a goal location and asks it to compute a policy that minimizes
the expected travel and observation cost. In contrast to computing paths
that maximize the probability of success, we focus on complete policies
(i.e., policies that produce a path, or determine no such path exists). We
prove that the RPP is NP-Hard and provide a suboptimal, but compu-
tationally efficient, solution. This solution, based on mutual information,
returns a complete policy and a bound on the gap between the policy’s
expected cost and the optimal. Finally, simulations are run on a flexible
factory scenario to demonstrate the scalability of the proposed approach.

Keywords: Motion and Path Planning, Planning under Uncertainty,
Mutual Information

1 Introduction

Robot motion planning under uncertainty is typically concerned with uncertainty
in the robot’s state within an environment and/or uncertainty in the outcome
of a selected action on the robot’s state [1–5]. In this work, we consider motion
planning with uncertainty in the set of motion actions that a robot has access to
at a given state. This problem arises in scenarios where the robot is given a set
of possible locations for obstacles in an environment. The obstacles restrict the
set of motions available to the robot at each point in the environment. By tak-
ing sensor measurements, the robot can narrow down the set of feasible obstacle
locations and thus the motion actions it has available. Our goal is to compute
motion and sensing policies prior to robot deployment that enable the robot to
efficiently navigate in such environments. In this paper, we focus on the task of
moving from a start location to a goal location while minimizing the expected
action cost. The challenge in this problem is that future costs (for obtaining in-
formation and moving between locations) are dependent on the information the

robot has obtained thus far. We present conditions where exploration is no longer
helpful. When these conditions are met, the robot should exploit the known mo-
tion action set to reach the goal. We also develop a policy that provides constant
time lookup for the next action given the outcomes of prior observations. This
allows for implementation on robots where on-board computational resources
are limited at deployment, or in which high-speed motion is required.

Related Work: In robotics, there are several effective methods for dealing
with uncertainty. Point-to-point motion is addressed in [6] using persistent paths,
which maximize the probability of success. However, if the computed path is ob-
structed, the robot ends in failure. To avoid failure, Partially Observable Markov
Decision Processes (POMDPs) can be used to compute reactive motion policies.
A POMDP selects actions based on partially observed states, but the computa-
tion of policies is in general a PSPACE-Complete problem [7]. In our work, we are
interested in cases where the environment has a very large state space; for these
cases, the POMDP’s scalability becomes a barrier to use [8]. To avoid the com-
putational complexity, algorithms like A* and D* lite allow for replanning during
execution [9, 10]. These re-computations may present a bottleneck in real-time
performance. Informative path planning is studied in several works [1–4, 11],
all of which provide methods for real-time reaction to information within the
environment. Research in this area focuses on tasks ranging from underwater in-
spection [3] to maximizing information from start to goal [1]. These works plan
prior to deployment of the robot and react to new information collected by the
robot, but their possible actions are known prior. In contrast, we consider cases
where information may not be attainable until the robot has explored parts of
the environment, which is not captured in this prior work.

In operations research, a closely related problem is planning with recourse
and the Canadian Travelers Problem (CTP). Planning with recourse in [12] pro-
vides possible obstacle locations, but assumes obstacles will never make move-
ment from the start to goal impossible. The CTP is PSPACE-Complete [13]
and does not include prior information on obstacles. To make the problem more
tractable, [14] provides possible obstacle locations in their problem R-SSPPR
and seeks to minimize the expected cost between start and goal. In contrast to
this work, R-SSPPR uses move actions, which can always be taken (i.e., a path
to goal always exists), that have costs sensed for no cost. In transportation re-
search, [15] presents an integer linear program to solve a route blocked problem,
but they select a primary path and only switch to a secondary path when the
primary fails. Our work wishes to minimize the expected cost to get to the goal
or realize the goal is unreachable.

Our work leverages the concept of mutual information within discrete en-
vironments. Mutual Information is widely used to develop efficient sub-optimal
solutions for gaining information in planning [5,11,16,17]. In particular, a mutual
information gradient controller is presented in [5], where multiple robots search
for targets and avoid hazards. The authors present a discretized probabilistic
model where targets and hazards may exist and focus on positions of failure. In

contrast, our work considers unknown environments where locations may not be
reachable until the robot acquires a certain level of environmental awareness.

Contributions: The contributions of this paper are fourfold. First, we intro-
duce the Reactive Planning Problem (RPP) and prove it is NP-Hard. Second,
we provide properties that allow for a compact representation of a RPP pol-
icy. Third, we present an efficient algorithm for a sub-optimal solution to RPP
that utilizes mutual information to guide exploration and uses an estimation of
the cost-to-go for exploitation. Fourth, we provide a method to bound the gap
between the expected cost of our policy and that of the optimal.

Organization: Section 2 introduces background terminology from graph the-
ory and the Informative Path Planning problem. The Reactive Planning Problem
is defined in Section 3 along with the environmental and robotic models. Sec-
tion 4 provides problem properties as well as proof of computational complexity.
Several properties from Section 4 are then expanded as a base for scalable policy
generation in Section 5. Section 6 provides simulation results.

2 Background

2.1 Graph Terminology

A directed graph G is defined by the pair G = (V, E) and a cost function c : E →
IR. The set V with n = |V| is the set of vertices that are connected by the set of
edges E , and c(e) gives the cost of traversing an edge e ∈ E . A path P in a graph
is defined by a sequence of vertices v1, . . . , vk that satisfies (vi, vi+1) ∈ E for

all i ∈ {1, . . . , k − 1} with cost of traversal defined by c(P) =
∑k−1

i=1 c(vi, vi+1).
With some abuse of notation for v, w ∈ V, c(v, w) refers to the minimum cost
of a path from v to w. Given a graph G = (V, E), the subgraph GE = (V,E) is
induced by E ⊆ E with V ⊆ V given by the endpoints of E.

An edge e = (v, u) ∈ E is said to be incident with vertices v and u. As the
graph is directed, e is outgoing at v and incoming at u. Therefore, e is incident-in
to u and is incident-out to v with the set of edges incident-out to v, Iv ⊆ E .

2.2 Informative Path Planning Review

In [11], the Informative Path Planning (IPP) problem under noiseless observation
is defined as a tuple (X, d,H, ρ,O,Z, r). A robot starts at r and can visit the
set of sensing locations X. The cost of travel between these locations is d(x, y)
for x, y ∈ X. There is a finite set of hypotheses H, which has a probability mass
function ρ, and a set of observations O, which are sensed with Z(x, h, o) for
x ∈ X, h ∈ H and o ∈ O. The function Z returns 1 when o agrees with h and 0
otherwise. The problem then asks to minimize the expected cost of identifying
the correct hypothesis. An optimal policy can be encoded as a binary tree where
nodes contain sensing information and the outgoing edges are selected via the
sensing outcome. From [11], IPP is NP-hard as it contains the optimal decision
tree problem [18] as a special case. We will use IPP to prove our problem is
NP-Hard (decision form NP-Complete).

3 Problem Definition

We consider a single robot in a discrete environment. The robot and environment
models are defined using a directed and doubly weighted graph G = (V, E , c, µ)
where c(e) ∈ IR≥0 defines the robot’s cost for traversing e ∈ E and µ(e) ∈ IR≥0
defines robot’s cost for sensing if edge e is obstructed. The robot knows the
vertex it occupies, but does not know which edges leaving that vertex are free to
traverse (that is, which edges are obstructed by obstacles). If the robot is unsure
of an edge’s state, it must first inspect the edge and incur the sensing cost.

3.1 Environmental Model

The unknown environment is one of m subgraphs of G, denoted G1, . . . , Gm,
and we refer to the indices of these subgraphs as environmental states with
environmental state space Nm = {1, . . . ,m}. Each subgraph Gi is induced by a
subset Ei ⊆ E for i ∈ Nm. The robot is given the set of possible edge subsets S =
{E1, . . . , Em} along with a probability mass function capturing the likelihood of
each subgraph. We encode the probability as a random variable X that takes
values from Nm. Given a random draw x from X, the edge subset Ex induces the
realization Gx = (Vx, Ex, c, µ); the robot must operate in Gx without knowing x.

Note that if every edge subset is possible, m = 2|E|, then the absence or
presence of an edge cannot imply the absence or presence of other edges. In this
paper, we focus on cases where m � 2|E|, and thus observing one edge allows
the robot to infer the state of other edges. This is motivated in Section 4.2 by
the space complexity required for a control policy.

Example 1. To illustrate the problem, consider Fig. 1 as a simplified model of
a building. A robot is tasked with delivering a package to room Q. The robot
starts outside the building at S, which has two main entrances A and B. Both A
and B will be locked in an emergency. From entrance A, there are two paths to
Q. However, at times, one of these paths is obstructed. From entrance B, there
is a single path. For this problem, we use m = 3 environmental states since they
directly affect the completion of the robot’s task. In state 1, no dashed edges
exist; in state 2, all edges except (A, Q) exist; and in state 3, all edges exist.

A

B

S

C Q

10

5
5

5

3

5

Fig. 1. Building model. Travel costs are shown on edges. Dashed edges are uncertain.

Remark 1. Given Gi for any i ∈ Nm, the connected component containing the
start must be strongly connected.

3.2 Robot Model

When the robot is located at vertex v, it can gather information on the envi-
ronment by inspecting incident-out edges at v. This process is defined by the
following model.

Definition 1 (Robot Observations). Given a graph G and a vertex v ∈ V
with e ∈ Iv, a robot observation is a mapping γ : E → {0, 1} where γ(e) = 1 if
e ∈ Ex and γ(e) = 0 otherwise. The robot must occupy v to attain γ(e).

When we say the robot travels to an observation e, we mean it travels to v such
that (v, u) = e ∈ E . Given the robot is at v, the set Iv represents all possible
observations.

Observations allow the robot to rule out environmental states. If an obser-
vation indicates an edge e does not exist in Gx, the robot knows that all edge
subsets that contain e cannot be correct.

Definition 2 (Consistent). Given a set of observed edges O, an edge subset
E is consistent with O if and only if for every e ∈ O, γ(e) = 1 for e ∈ E and
γ(e) = 0 for e 6∈ E.

Given a set of observed edges O, we define Y ⊆ Nm to be the set of envi-
ronmental states consistent with O. To avoid collisions with an obstacle in the
environment, we impose the restriction that an edge e can be traversed only if
P(e|Y) = (

∑
j∈Y P(X = j))−1

∑
i∈Y | e∈Ei

P(X = i) = 1. If an edge’s existence is
uncertain then the robot must first observe the edge and incur the corresponding
observation cost, before proceeding across the edge.

3.3 Policy Space

The robot state is characterized by the set of environmental states Y that are
consistent with its observations and the vertex v it occupies. Thus, the robot
state space is (2Nm ,V). At each state (Y, v), the robot selects an action a = (e, d)
from Av = Iv×{0, 1} to observe an edge (d = 0) or to move over an edge (d = 1)
unless it terminates denoted by ∅. A policy maps the robot state space to the
set of actions, π : (2Nm ,V) → (∪v∈VAv) ∪ ∅. Our safety constraint allows d = 1
for e ∈ Iv only if P(e|Y) = 1.

Given a start and goal s, g ∈ V, the environmental state space Nm is parti-
tioned into Ygoal = {i ∈ Nm|c(s, g) calculated on Gi is finite} and Yno goal other-
wise. We restrict policies to satisfy the following definition:

Definition 3 (Complete Policy). A policy π is complete if for any realization
it produces a sequence of actions that reach the goal (i.e., a state (Y, g) with Y ⊆
Ygoal) or that determine no path exists (i.e., a state (Z, v) with Z ⊆ Yno goal).

Consider the function f : ((2Nm ,V), (∪v∈VAv) ∪ ∅) → (2Nm ,V) where f up-
dates Y after d = 0 and updates v after d = 1. Given i ∈ Nm, a complete policy
emits a sequence of states and actions r1, a1, r2, a2, . . . , aT where aT = ∅. The
cost of this sequence is the sum of movement costs (d = 1) and observation costs

(d = 0) defined by cost(π|X = i) =
∑T−1

j=1 µ(ej)(1− dj) + c(ej)dj .

Remark 2. Note that the domain of the policy has O(n2m) states. In the follow-
ing section we will derive properties that enable a more compact representation.

3.4 The Reactive Planning Problem

The expected cost of a complete policy π is found by taking the expectation over
the environmental states,

EX(π) =
∑
i∈Nm

cost(π|X = i)P(X = i) . (1)

Problem 1 (Reactive Planning Problem, RPP). Given a graph G, start and goal
vertices s, g ∈ V and a set of edge subsets S with corresponding random variable
X that has a known probability mass function, find a complete policy π that
minimizes EX(π) over induced subgraph Gx for random draw x from X.

4 Properties and Complexity of Reactive Planning

In this section, we establish several properties of robot actions that enable us to
efficiently represent complete policies along with the complexity of the RPP.

4.1 Action Properties

As the robot moves along a path P in Gx, it gathers observations Ov ⊆ Iv ∪ ∅
for all v ∈ P , where ∅ is used to denote that no observation is taken at v. We
define this sequence of actions to be an observed path.

Definition 4 (Observed Path). Given a path P = v1, . . . , vk with observa-
tions Ov for all v ∈ P , the observed path is the sequence OP = Ov1 , . . . , Ovk .

The cost of an observed path can be found as the sum of travel costs and observa-
tion costs along the path: cost(OP) = c(P) +µ(OP). The robot’s understanding
of Gx, namely Y , is based on the observed path beginning at a starting vertex s.
Two important subgraphs can be formed within this understanding.

Definition 5 (Known Subgraph). Given a set of environmental states Y , the
graph G = (V ,E, c, µ) induced by E = {e|P(e|Y) = 1} is the known subgraph.

Definition 6 (Consistent Subgraph). Given a set of environmental states
Y , the graph G = (V ,E, c, µ) induced by E = {e|P(e|Y) > 0} is the consistent
subgraph.

The known subgraph includes only edges that are sure to exist, while the consis-
tent subgraph includes all edges that may still exist. If an observation provides
new information, then it partitions Y as follows.

Definition 7 (Constructive Observation). Given environmental states Y ,
a constructive observation o updates Y to Y1 = {i ∈ Y | o ∈ Ei for γ(o) = 1},
and Y0 = Y \ Y1 such that Y0, Y1 6= ∅.

An observed path can be broken into smaller sections called legs that start
at one constructive observation and end at the next constructive observation.

Definition 8 (Leg). Given an observed path OP , a leg is a subpath of P , namely
v′1, v

′
2, . . . , v

′
y such that vi+j = v′j for 1 ≤ j ≤ y and 0 ≤ i ≤ k − y, where the

only non-empty observations are Ov′
1

and Ov′
y
.

A leg can be thought of as a meta-edge between constructive observations. Since
the robot can move only on edges which are known to exist, a leg is composed
only of edges which are understood to exist after the leg’s first observation
set Ov′

1
. Therefore, a leg is a sequence of move actions that join construction

observation actions.
The order in which observations can be visited depends on observations to

date. The following definition provides a property of an optimal complete policy
that can react to the environment without re-computation of that policy.

Definition 9 (Reachable). Given a known subgraph G and a vertex v, an
observation o is reachable from v if there exists a path from v to o in G.

The following result ties the notion of reachability to that of legs between
constructive observation.

Lemma 1. Consider two consecutive constructive observations o1 and o2 on a
path P . Let Y be the environmental state after o1. Then, in the known subgraph
G defined by Y , observation o2 is reachable from o1.

Proof. After o1 = (v1, u1) the understanding of the environment Y is fixed until
it gains new information at o2 = (v2, u2). The robot can only select move actions
for edges that are known to exist. G, defined by Y , contains only edges that do
not need to be observed before traversal; therefore, the robot can only reach o2
if there exists a path from v1 to v2 in G. ut

4.2 Control Policy Properties

We now show how a complete policy can be efficiently represented by a binary
tree π = (N,L). The nodes N are tuples (Y, o) where Y corresponds to the
possible environmental states prior to constructive observation o. The edges
are defined by legs L between constructive observations. Every non-leaf node
(Y, o) ∈ N must have one leg incident-in and two legs incident-out. The two legs
incident-out to (Y, o) are incident-in to (Y0, o0), (Y1, o1) ∈ N corresponding to
γ(o) = 0 and γ(o) = 1 respectively where Y = Y0 t Y1 and Y0, Y1 6= ∅. This
allows real-time reaction in every possible environmental state by Lemma 1.

Lemma 2. A complete policy can be encoded as a binary tree using O(nm+m2)
space with n the number of G’s vertices and m the number of edge subsets.

Proof. A constructive observation has a worst-case partition of Y0 and Y1 where
one environmental state is ruled out (i.e., |Y0| or |Y1| is 1). In this case, the robot
will need to make m− 1 constructive observations nodes of size O(m). We know
each leg connecting these observations will visit at most n vertices. Therefore,
the policy can be stored as a lookup table of size O(nm+m2). ut

Remark 3. Note that the policy size scales linearly with m which motivates
m � 2|E|. A POMDP with nm states and a MDP with n2m states can be
encoded for the RPP, but for our cases this is still very large.

Continuing Example 1, suppose the robot travels to B and observes the edge
from B to C (o1) to find γ(o1) = 0. The robot knows the environment state is 1,
and thus it has reached the no goal terminal state. Alternatively, if γ(o1) = 1,
the robot then travels from B to C to Q and delivers the package. Fig. 2 displays
this policy. Let observation costs be 0. We can specialize Eq. 1 for observed paths
labelled OP |X=i for each i ∈ Nm. The expected cost of a policy π is

EX(π) =
∑
i∈Nm

P(X = i)cost(OP |X=i) . (2)

If the PMF of X is {0.05, 0.5, 0.45}, then the policy in Fig. 2 using Eq. 2 renders
expected cost of 14.5. Note: Q is reached without fully knowing x.

S Y = {1, 2, 3}

o1 Y = {1, 2, 3}

Q Y = {2, 3}TY = {1}

5

100

Fig. 2. Weights are the costs of L. T indicates no goal terminal state.

Remark 4. The policy in Fig. 2 satisfies both the reachability condition in Lemma 1
and the constructive observation property.

4.3 Computational Complexity

Consider this slight variation to the Reactive Planning Problem:

Problem 2 (Probable World Problem, PWP). Given a graph G, a start vertex
s ∈ V and a set of edge subsets S with corresponding random variable X that
has a known probability mass function, find a policy π that minimizes EX(π)
and identifies induced subgraph Gx for a random draw x from X.

Proposition 1. The Probable World Problem is NP-Hard.

Proof. Consider the tuple (X, d,H, ρ,O, Z, r) that defines an instance of IPP
from Section 2.2. We will reduce IPP to PWP. Create a graph of vertices V =
A∪B where A mirrors X and B mirrors O. Let r = s. Create an edge subset Eh

for every h ∈ H. In every Eh, connect A with edges of cost defined by d. For each
a ∈ A and b ∈ B, add an edge from a to b for subset Eh only if Z(a, h, b) = 1. Let
random variable X’s PMF be in line with ρ. Set µ((a, b)) = 0 for all observations.
Consider a solution S for PWP. Change each visited vertex of A to X and each
constructive observation to respective elements of O for a solution S′. The legs of
S contain no verticies of B as B has no path to constructive observations. Given
S identifies random draw x, S′ identifies true h. Given IPP (perfect sensing) is
NP-Hard [11], PWP must be NP-Hard. ut

Theorem 1. The Reactive Planning Problem is NP-Hard.

Proof. We will prove this result by reducing PWP to RPP. Consider an instance
of PWP. Given the graph for PWP, add a set of vertices Q with |Q| = m, an
intermediary vertex h and a goal vertex g. Connect every v ∈ V to h with 0 cost
for all E ∈ S. Let α be the maximum of all traversal and observation costs. We
can upper bound the expected cost of any optimal policy with α(mn + m2) by
Lemma 2. Connect h bidirectionally with each q ∈ Q with traversal cost of U
for all E ∈ S such that (1 − P(X = y))U � α(mn + m2) where Ey ∈ S is the
most probable edge subset. Add an edge to Ei ∈ S from qi ∈ Q to g with cost of
0. In other words, there will only ever be one edge from Q to g, and it is always
different for each subset. This new problem is in the form of RPP.

Suppose, by way of contradiction, there existed a solution to this RPP with-
out solving the original PWP. This would imply there were at least two environ-
mental states Y consistent with the observations of an observed path (starting
at s) of the policy before attempting to reach g. This policy would move the
robot to qi ∈ Q and observe the edge from qi to g for i ∈ Y (only exists in Ei).
The policy must react to γ((qi, g)) = 0. The resulting expected cost is at least
piU + (1 − pi)2U . Given (1 − pi)U � α(mn + m2), there exists a policy that
can do better as α(mn + m2) upper bounds the expected cost of an optimal
policy providing a contradiction. This shows RPP solves PWP. Given PWP is
NP-Hard by Proposition 1, RPP is NP-Hard. ut

Remark 5. In the decision version of RPP we are given a budget B and asked
to find a complete policy with expected cost less than or equal to B. From
Lemma 2, it is straightforward to see that the decision version is in NP, and
thus is NP-Complete. [14] provides a similar result for R-PPSSR.

5 Scalable Policy Generation

The Reactive Planning Problem seeks information to reach the goal. The robot
explores until it is beneficial to exploit the observed information and move to
the goal. To address this, we maximize weighted mutual information (explore)
and establish a condition to prune observations (exploit).

5.1 Exploration

Consider RPP. By Lemma 1, information can only be collected at the set of
reachable observations. To select which constructive observation is benificial, we
maximize mutual information extended from [11,16,17].

Let XY encode the probability distribution over environments given a set of

consistent environmental states Y : The pmf of XY is P(XY = i) = P(X=i)∑
j∈Y P(X=j)

for each i ∈ Y . Mutual information is the difference between entropy of XY

and conditional entropy of XY given observation o ∈ Rv where Rv is the set of
reachable constructive observations from (Y, v). Formally,

MI(XY , o) = H(XY)−H(XY |o) . (3)

The entropyH(XY) does not depend on o; therefore, this problem can be reduced
to minimization of conditional entropy,

H(XY |o) = −
1∑

j=0

P(γ(o) = j)
∑
i∈Y

P(XY = i|γ(o) = j) log
(
P(XY = i|γ(o) = j)

)
.

5.2 Exploitation

The robot must be able to decide when it has collected enough information. We
begin with the following inequality from the principle of optimality,

cG(v, g) ≤ cG(v, u) + µ(o) + cG(u, g) (u,w) = o ∈ Rv , (4)

where the subscript on the cost function c indicates the realization of the envi-
ronment in which the cost is calculated.

Intuitively, making a measurement and going to the goal is at least as expen-
sive as going straight to the goal in G. The cost calculated in G often performs
poorly as an under-estimator for Gx. To address this, a new cost-to-go function
is calculated as an expectation over the possible environmental states Y . The
expected cost-to-go,

CY (u, g) =
∑
i∈Y

cGi
(u, g)P(XY = i) , (5)

is found for every vertex u ∈ V. To calculate cGi
(u, g), the edges are flipped in

each Gi and a shortest path algorithm is run from g to all other u ∈ Vi. If ci(u, g)
is infinite, we set such costs to zero as the robot will not travel any further (i.e.,
no goal terminal state).

Eq. 4 is augmented to include the current environmental understanding and
the expected cost-to-go. The pruning condition can be written as

cG(v, g) ≤ cG(v, u) + µ(o) + CY (u, g) (u,w) = o ∈ Rv . (6)

If going straight to the goal is less expensive than gaining information and going
to the goal, the information should not be collected.

Lemma 3. Given a robot state r with constructive observations Rv, if all o ∈ Rv

satisfy Eq. 6, the robot should move to the goal.

Proof. Consider cG(v, g) = ∞. This implies there is no known path to goal.
No observation satisfies Eq. 6, so this trivially holds. Now, consider the case
where enough information has been gathered to r = (Y, v) for cG(v, g) < ∞.
If all o ∈ Rv satisfy Eq. 6, the known cost of making any observation and the
expected cost-to-go is more than the known cost to complete the task. Thus, the
robot should move to the goal. ut

Lemma 4. The expected cost-to-go from the start, CNm(s, g), forms a lower
bound on the expected cost of any policy π.

Proof. Consider any two environmental states i, j ∈ Nm. If Gi and/or Gj do
not have paths to the goal, the robot must identify the environmental state and
return no goal terminal state. To do this, the robot uses an observed path to gain
the information. The cost of such a path is at least 0. The expected cost-to-go
for these cases is always 0. Suppose Gi and Gj can both reach the goal. There
is at least one leg the robot must travel for both Gi and Gj . The expected cost-
to-go selects the optimal paths independently. Therefore, the expected cost of
the observed paths from π for i and for j can never be less than the expected
cost-to-go, even if the robot acts optimally otherwise. ut
Remark 6. We find this bound performs well in practice (See Section 6). Al-
though, the bound performs poorly when P(X ∈ Yno goal) and observation costs
are large relative to P(X ∈ Ygoal) and travel costs respectively since they are
unaccounted for in CNm(s, g).

5.3 Combining Exploration and Exploitation

Information gain and motion to goal can be combined as a function of the explo-
ration metric H(XY |o) and the exploitation metric cG(v, u) + µ(o) + CY (u, g).

Weighted conditional entropy [19] is a well-studied method for combining
entropy with a second metric, and thus in the following presentation and simu-
lations we take the product of the two metrics and select observations satisfying

omin = argmin
(u,w)=o∈Rv

(cG(v, u) + µ(o) + CY (u, g))H (XY |o) . (7)

The product of the exploitation and exploration terms is non-negative. A value
of 0 is achieved when o fully determines Y , or when traversal, observation, and
the expected cost-to-go all have 0 cost.

5.4 Algorithm

Algorithm 1 minimizes every leg based on Eq. 7. It calls Reachable(G,S, (Y, v))
which computes the minimum path lengths d[u] from v to all other vertices u in
the known subgraph G. The set Rv is formed from edges that may or may not
exist which render finite path cost from v, i.e. Rv = {(u,w) = e|∃i, j ∈ Y s.t. e ∈
Ei, e 6∈ Ej , d[u] 6=∞} with their corresponding distances Dv.

Algorithm 1: RPP Minimization of Conditional Entropy Policy

Data: Graph G, edge subsets S, vertices s & g, states Nm, probabilities p
Result: policy π for RPP and expected cost lower bound L

1 Compute cGi(g, v) for all v ∈ V and i ∈ Nm;
2 Let Q contain only (Nm, s);
3 while Q not empty do
4 Remove (Y, v) from Q;
5 d = dijkstra(G, v);
6 if d[g] =∞ then
7 Mark π, at v for Y , no goal terminal state;

8 else
9 Compute (Rv, Dv) = Reachable(G,S, (Y, v));

10 Remove elements of Rv that satisfy Eq. 6;
11 if |Rv| = 0 then
12 Add leg from v to g, marked goal terminal state, to π;
13 else
14 Let o = (u′, w′) be the minimum of Eq. 7;
15 Add leg from v to u′ and node (Y, o) to π;
16 Add (Yγ(o)=0, u

′) and (Yγ(o)=1, u
′) to Q;

17 Let L = CNm(s, g);
18 Return π and L;

Remark 7. The runtime is dominated by the m calls to Dijkstra’s Algorithm,
which givesO(m(|V|+|E|) log |V|) (priority queue implemented as a binary heap).

The biased cost from Eq. 7 and the pruning condition from Eq. 6 complement
each other to provide incentive toward the goal. The biased cost encourages
observation selection closer to the goal. Once enough information is gained, the
pruning condition removes information that is not important for the task. When
the pruning condition removes all observations from Rv, the robot makes its way
to the goal.

Remark 8. The policy π, returned by Algorithm 1, is independent of the order
states are removed from Q in line 4 (potential for parallel computation).

To avoid learning the environmental state when it is impossible to reach the
goal, the consistent subgraph G is checked for a path to goal. If the distance from
the current location to g is infinite, there is no point continuing.

Theorem 2. Algorithm 1 returns a complete policy.

Proof. Suppose by contradiction, Algorithm 1 did not return a complete policy.
This would imply either it terminates at (Y, g) for Y ⊆ Yno goal (false positive)
or it terminates a (Z, v) for v 6= g and ∃z ∈ Z s.t. z ∈ Ygoal (false negative).

False positive: Algorithm 1 must have directed the robot to travel on an edge
that does not exist because Y ⊆ Yno goal. Since the environment does not have

a path to goal, G for Y ⊆ Yno goal will not have a path to goal. Line 6 directly
catches this case.

False negative: Algorithm 1 would not be able to find a path in G, but since
the environmental state z is still possible, G for Z will have a path to goal. This
contradicts the fact that π is marked no goal terminal state in Line 7. ut

6 Simulation Results

In this section we provide simulation results on a large scale practical example
and on randomly generated environments. Tests where run on a single Intel Core
i7-6700 at 3.4GHz.

6.1 Flexible Factory

Flexible factories often spend considerable downtime between contracts due to
changes in infrastructure and machinery. Consider Fig. 3 as a simple flexible
factory that produces D items per hour. We are interested in knowing if the
robot can move this volume. The dashed vertices indicate areas that require
heavy use. For clarity, in Table 1 the column labelled “Vertex Obstructions”
indicates the properties of the environment obstruction. For instance, in region
0 (vertices labelled 0) up to two vertices may be missing from the graph. Regions
1 and 2 each contain one forklift obstruction (which corresponds to removing the
two adjacent vertices it occupies). When regions 5 and 6 are obstructed, all other
vertices exist.

We cast this as a Reactive Planning Problem by enumerating all combinations
of the obstructed vertices and removing their incident edges. This generates
m = 34561 edge subsets each with a corresponding probability. We compute
policies from S to A, from S to B, from A to S, and from B to S. The robot can
move faster when not loaded, so the movement costs of A to S and B to S are
decreased by a factor of 2.

We implemented a mixed integer linear program for RPP, but thus far have
not been able to scale to problems of this size (in our formulation, the number
of variables scales with m3). Instead, we will allow re-planning during the online
phase for comparison purposes (note these results do not have constant action
lookup time). We compare against A* and maximum probability of success (Ps).
Both approaches generate a path, which we follow until it is obstructed. Then
we take the edges of the path as observations and use this new information to
re-plan. This is completed for every realization x ∈ X. The cost of the corrected
paths from s to a terminal state and X’s PMF are used to calculate the expected
cost found in Table 2. Note that the proposed algorithm provides significantly
lower expected cost than the two comparison policies, and in three of the four
cases, it also provides a lower variance. In addition, for each task the expected
cost of Algorithm 1 is within 30% of the lower bound (L) on the optimal cost.

Fig. 3. Flexible Factory model: Dashed vertices may be obstructed. Edges with cost
of 2 or 3 are not labelled for simplicity. The curved edges cost 2 more for waiting.

Table 1. Flexible Factory model parameters used in simulations.

Regions Vertex Obstructions Obstruction Probability Observation Cost

0 ≤ 2 independent uniform over combinations 0.5
1,2 2 adjacent vertices uniform over combinations 0.25
3,4 1 0.3 0.25
5,6 both or none 0.02 0.5
7,9 ≤ 1 independent 0.1 0.5
8 1 0.4 0.5

Table 2. Flexible Factory simulation results. |N | gives the number of nodes in the
binary tree policy, VX denotes the variance, Time indicates duration to compute the
policy, and L denotes the lower bound.

Algorithm 1 A* Max Ps
Task |N | L EX(π) VX(π) Time (s) EX VX EX VX
S→A 114 39.0 42.5 12.6 461 47.7 74.5 85.3 659
S→B 6869 41.4 50.0 164.2 739 50.1 282.0 61.7 206
A→S 84 19.5 23.8 6.6 510 30.2 81.9 43.6 135
B→S 175 20.7 26.1 51.3 497 28.3 30.3 33.9 135

6.2 Testing via Random Environment Generation

Since A* significantly outperformed the policy that maximizes the probability of
success, we test Algorithm 1 against A* for a sequence of random problems. For
simplicity the test graph is a grid where vertices have edges to move left, right,
up and down (unless on the boundary). Travel costs are 1 and observation costs
are drawn from the uniform random variable W on [0, 1]. Then edge subsets are
generated by removing edges randomly. To do this, we incrementally relax the
removal of edges on an edge subset until a path to goal exists for 950 cases and
vice versa for no path to goal for another 50 cases (m = 1000). The robot starts
at cell (2, 2) with the goal located in cell (width − 2,depth − 1). Finally, X’s
PMF is formed by normalizing m random draws of W .

25 30 35 40

25

30

35

40

Algorithm 1 EX(π)

A
*

E
x
p

ec
te

d
C

o
st

grid 8x14

grid 14x14

grid 20x12

8x14 14x14 20x12
0

1

2

3

4

5

Grid Size

A
v
er

a
g
e

#
o
f

A
*

ca
ll
s

p
er

ru
n

0

50

100

150

82.3

121

144

A
*

m
a
x

re-p
la

n
tim

e
(m

s)

Fig. 4. Results of random environment generation.

The results in Fig. 4 show Algorithm 1 consistently outperforms A*. We
also show the number of times A* re-plans and the maximum amount of time
spent in a re-plan. The average runtimes, in seconds, of Algorithm 1 were 161,
302 and 569 for 8x14, 14x14 and 20x12 respectively. The average gaps between
Algorithm 1’s expected cost and L were 6.3, 5.9 and 6.0, meaning Algorithm 1
typically provides solutions within 25% of the optimal. We ran one 40x40 grid
to test timing in a larger environment. The max re-plan time for A* was over
1(s) which is not viable for many real-time applications (Algorithm 1: 3349(s)).

7 Conclusion

A reactionary complete policy based on environmental observations was pre-
sented that finishes a task or identifies it is impossible to finish. For future work,
we wish to remove the requirement of prior environmental knowledge so the
robot may learn environmental trends during repetitive tasks. We are also in-
terested in allowing multiple termination conditions (including multiple goals),
faulty sensor models and extending Algorithm 1 to parallel computation.

References

1. Binney, J., Sukhatme, G.S.: Branch and bound for informative path planning. In:
ICRA, Citeseer (2012) 2147–2154

2. Yu, J., Schwager, M., Rus, D.: Correlated orienteering problem and its application
to informative path planning for persistent monitoring tasks. In: International
Conference on Intelligent Robots and Systems, IEEE (2014) 342–349

3. Hollinger, G.A., Englot, B., Hover, F.S., Mitra, U., Sukhatme, G.S.: Active plan-
ning for underwater inspection and the benefit of adaptivity. The International
Journal of Robotics Research (2012) 3–18

4. Javdani, S., Chen, Y., Karbasi, A., Krause, A., Bagnell, D., Srinivasa, S.S.: Near
optimal bayesian active learning for decision making. In: AISTATS. (2014) 430–438

5. Dames, P., Schwager, M., Kumar, V., Rus, D.: A decentralized control policy
for adaptive information gathering in hazardous environments. In: 51st IEEE
Conference on Decision and Control (CDC), IEEE (2012) 2807–2813

6. Bhattacharya, S., Ghrist, R., Kumar, V.: Persistent homology for path planning
in uncertain environments. IEEE Transactions on Robotics 31(3) (2015) 578–590

7. Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of markov decision processes.
Mathematics of operations research 12(3) (1987) 441–450

8. LaValle, S.M.: Planning algorithms. Cambridge university press (2006)
9. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic deter-

mination of minimum cost paths. IEEE transactions on Systems Science and
Cybernetics 4(2) (1968) 100–107

10. Koenig, S., Likhachev, M.: Fast replanning for navigation in unknown terrain.
IEEE Transactions on Robotics 21(3) (2005) 354–363

11. Lim, Z.W., Hsu, D., Lee, W.S.: Adaptive informative path planning in metric
spaces. The International Journal of Robotics Research 35(5) (2015) 585–598

12. Andreatta, G., Romeo, L.: Stochastic shortest paths with recourse. Networks 18(3)
(1988) 193–204

13. Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. Theoretical
Computer Science 84(1) (1991) 127–150

14. Polychronopoulos, G.H., Tsitsiklis, J.N.: Stochastic shortest path problems with
recourse. Networks 27(2) (1996) 133–143

15. Issac, P., Campbell, A.M.: Shortest path problem with arc failure scenarios. EURO
Journal on Transportation and Logistics (2015) 1–25

16. Dames, P.M., Schwager, M., Rus, D., Kumar, V.: Active magnetic anomaly detec-
tion using multiple micro aerial vehicles. IEEE Robotics and Automation Letters
1(1) (2016) 153–160

17. Charrow, B., Kumar, V., Michael, N.: Approximate representations for multi-
robot control policies that maximize mutual information. Autonomous Robots
37(4) (2014) 383–400

18. Chakaravarthy, V.T., Pandit, V., Roy, S., Awasthi, P., Mohania, M.: Decision
trees for entity identification: approximation algorithms and hardness results. In:
Proceedings ACM Symp. on Principles of Database Systems, ACM (2007) 53–62

19. Suhov, Y., Stuhl, I., Sekeh, S.Y., Kelbert, M.: Basic inequalities for weighted
entropies. Aequationes mathematicae (2015) 1–32

