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Abstract

This paper presents a new solver for the exactly one-in-a-set Generalized Traveling Salesman Problem
(GTSP). In the GTSP, we are given as input a complete directed graph with edge weights, along with
a partition of the vertices into disjoint sets. The objective is to find a cycle (or tour) in the graph that
visits each set exactly once and has minimum length. In this paper we present an effective algorithm for the
GTSP based on adaptive large neighborhood search. The algorithm operates by repeatedly removing from,
and inserting vertices in, the tour. We propose a general insertion mechanism that contains as special cases
the well-known nearest, farthest and random insertion mechanisms. We provide extensive benchmarking
results for our solver in comparison to the state-of-the-art on a wide range of existing and new problem li-
braries. We show that on the GTSPLIB library, the proposed algorithm is competitive with the best known
algorithms. On several other libraries, we show that given the same amount of time, the proposed solver
finds higher quality solutions than existing approaches, particularly on harder instances that are non-metric
and/or whose sets are not clustered.

1. Introduction

This paper presents a new solver called GLNS for the exactly-one-in-a-set Generalized Traveling Salesman
Problem (GTSP). In the GTSP, we are given as input a complete directed graph with edge weights (that
is, the edges weights may be asymmetric), along with a partition of the vertices into disjoint sets. The goal
is to compute a minimum length cycle in the graph that contains exactly one vertex from each set in the
partition. A common variant of this problem is to find the minimum cycle that visits each set at least once.
These two problems are equivalent if the edge weights are metric. A further generalization of the GTSP
allows the vertex sets to be non-disjoint (i.e., overlapping). In this paper we do not directly address either of
these variants. However, the authors of [1] provide reductions from each variant to the exactly-one-in-a-set
GTSP, and thus the results in this paper can also be applied to these variants.

The GTSP has a variety of applications in operations research [2], including material flow design, vehicle
routing, and post-box collection. In robotics, a common problem is to plan tours through a set of points
in a robot’s workspace [3]. However, due to the number of degrees of freedom of the robot, there may be
several robot configurations that reach a desired workspace position. A common solution technique is to
convert the problem into a GTSP, in which each set contains a sample of different robot configurations for
the given location [3, 4, 5]. The GTSP also arises in complex motion planning problems in which the goal is
to compute a tour over a set of locations, but with additional constraints on which combinations of locations
are or are not allowed in the tour [6, 7, 8]. In such problems the GTSP instances are typically not metric or
symmetric, and thus pose significant challenges for generating high-quality solutions.

Related Work: Many approaches have been proposed for solving the GTSP. The GTSP is a direct
generalization of the TSP, and thus no approximation algorithm exists for the general problem. If the
edge weights are metric, then the best known approximation algorithm yields an approximation factor of
O(log2 n log log n logm) [9], where n is the number of vertices and m is the number of sets.
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A commonly used solution approach is to reduce the GTSP to an asymmetric TSP instance using the
Noon-Bean reduction [1, 10] and then solve the TSP instance with a standard TSP solver [11, 12]. Other
approaches include Lagrangian relaxations [13] and branch-and-bound techniques [14] based on properties
of the integer linear program representation [15]. In [14], the authors also developed a library of GTSP
instances, called GTSP-Lib, by taking TSP-Lib instances and performing clustering on the vertices. This
library was subsequently extended to add larger problem instances in [16].

Several genetic and memetic algorithms have also been proposed for the GTSP. Early algorithms in-
cluded [17] and [16]. In benchmarks on the GTSP-Lib, performance was subsequently improved in [18] and
then in [19]. The memetic algorithm in [19], called GK, yields impressive performance on GTSP-Lib, with
runtimes under 60 seconds and tours consistently within 0.1% of the best known. However, it was shown
in [20] that the memetic algorithm [19] solver’s performance degraded significantly with problem size on
rural postman problems, in particular for problems consisting of more than 200 sets.

In [21], a generalization of the successful Lin-Kernighan TSP heuristic [11] was proposed for the GTSP,
and while runtimes were impressive, the heuristic did not provide better performance than the memetic
algorithm in [19]. A particle swarm based approach was also proposed in [22].

Most recently, Helsgaun [23] combined the Noon-Bean reduction and the powerful TSP solver LKH [12]
to produce the GLKH solver. This solver improved solution quality on GTSP-Lib instances over the GK
solver in [19]. The improved quality does however, come at the expense of runtime, with some instances
requiring more than 50 times the computation time. GLKH is also tested on several other problem libraries,
including Large-Lib (proposed in [23]), MOM-Lib [24], BAF-Lib [25], and ARC-Lib1, which include
directed rural postman problems, with GLKH showing a very strong performance on these libraries.

Adaptive Large Neighborhood Search: The GLNS solver proposed in this paper operates under the general
framework of adaptive large neighborhood search (ALNS). Work in [26] and [27] initially proposed the idea
of ALNS for pickup and delivery problems. At a high level, the idea is simple. One begins with an initial
solution, and then iteratively destroys and repairs the solution. If a better solution is found, then the
solution is accepted and the destroy/repair procedure is repeated until a termination condition is met. The
ALNS framework has since been successfully applied to several different problems, including in two-echelon
vehicle routing [28], in capacitated vehicle routing [29] and recently in continuous berth allocation [30]. The
two key operations in an ALNS approach to the GTSP are removing vertices from a tour and inserting
new vertices back into the tour such that each set is visited. For insertions we build upon the classic TSP
insertion heuristics [31] and their extensions to the GTSP proposed initially in [14]. Our approach is related
to the early work in [32], which proposes a GTSP solver that constructs an initial tour, followed by cheapest
insertion of the remaining sets and a local optimization. We build on this idea by generalizing the insertion
mechanisms to increase randomization, and operate within an ALNS framework that repeatedly re-optimizes
the tour.

In the adaptive large neighborhood search framework, there are two sets (or banks) of heuristics: one for
insertions and one for removals. Weights are associated with each insertion and removal heuristic, and the
heuristics are selected at each destroy-repair iteration according to their weights. Weights are then updated
online, such that more successful heuristics will be selected more frequently in the future. Thus, the word
adaptive is used to refer to the mechanism of altering the heuristic weights. Adaptive large neighborhood
search, and the GLNS solver, fall into a class of algorithms called hyper-heuristics [33], as they use online
learning for heuristic selection [34].

Contributions: The main contribution of this paper is to present an effective algorithm for the GTSP
called GLNS. We propose a novel insertion mechanism that contains as special cases nearest, farthest and
random insertions from [14]. The mechanism allows for greater randomization when exploring neighbors of
a given GTSP tour. Based on our benchmarking, this appears to result in a more effective search of the
solution space. Similarly, we propose several new removal methods for the GTSP that generalize the idea of
Shaw removal [35] and worst removal [26].

We present extensive benchmarking results, comparing the solution quality obtained by GLNS against
both GLKH and GK when all solvers are given the same amount of computation time. On the classic
GTSP-Lib library, where vertex sets are clustered, the GLNS shows very similar performance to that of

1ARC-Lib instances come from http://www.uv.es/corberan/instancias.htm
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GLKH and GK. On the existing MOM-Lib and BAF-Lib libraries, GLNS shows significant performance
improvements over both solvers, improving several of the best known solutions found by GLKH. We provide
two new challenging problem libraries motivated by our work in robot motion planning, called SAT-Lib and
GTSP+-Lib, for which the performance of GLNS is considerably better than both GK and GLKH, at
times finding solutions that have an order of magnitude lower cost than the other two solvers. One of the
key strengths of the GLNS solver is that it performs consistently well across the different problem libraries,
and excels relative to other approaches on harder instances that are neither symmetric nor metric and do
not contain clustered vertex sets. The code for the GLNS solver and the new problem libraries are available
at https://ece.uwaterloo.ca/~sl2smith/GLNS.

Organization of Paper: The remainder of the paper is organized as follows. In Section 2 we formally
define the GTSP and the framework for the GLNS solver. In Section 3 we present the insertion heuristics
used in GLNS and show how they are captured as a single unified insertion heuristic. In Section 4 we present
three main removal heuristics: worst removal, distance removal, and segment removal. In Section 5 we give
details on how the insertion and removal heuristic methods are chosen throughout the algorithm’s execution,
along with the local tour optimization methods implemented. In Section 6 we present independent tests of
the different components in the GLNS solver on a small tuning library to show the effectiveness of each
component and to justify the default GLNS settings. We provide benchmarking results using the default
GLNS settings on six problem libraries: four existing libraries from the literature and two new libraries
that stem from our recent work on robot motion planning languages [8]. We compare the performance of
GLNS to the state-of-the-art solvers GLKH [23] and GK [19]. Finally, in Section 7 we provide conclusions
and avenues for future research.

2. Problem Statement and Solver Approach

In this section we formally define the Generalized Traveling Salesman Problem considered in this paper
and provide an overview of the GLNS solver.

2.1. The Generalized Traveling Salesman Problem

The exactly-one-in-a-set generalized traveling salesman problem, which we refer to simply as GTSP, can
be stated as follows.

Problem 2.1 (The Generalized Traveling Salesman Problem). Given a complete weighted graph G =
(V,E,w) on n vertices and a partition of V into m sets PV = {V1, . . . , Vm}, where Vi ∩ Vj = ∅ for all i 6= j
and ∪mi=1Vi = V , find a cycle in G that contains exactly one vertex from each set Vi, i ∈ {1, . . . ,m} and has
minimum length.

The GTSP is NP-hard [1] and contains the TSP as a special case (i.e., where |Vi| = 1 for each set
i ∈ {1, . . . ,m}). There are several variations to the GTSP, including the case where the cycle must contain
at least one vertex in each set and the case in which the sets Vi are not disjoint [1]. There are well known
reductions from both of these problems to the GTSP as stated above [1].

2.2. GLNS Solver Framework

The GLNS algorithm for the GTSP, shown in Algorithm 1, is based on the adaptive large neighborhood
search framework (line comments in the algorithm indicate the section of the paper where details can be
found).

As in adaptive large neighborhood search, we start with an initial random tour (described in Section 5.1).
We repeatedly perform removals (described in Section 4) and insertions (described in Section 3), updating
the scores of each removal and insertion heuristic based on their success. At each iteration we uniformly
randomly select an integer number of removals Nr between 1 and Nmax, where Nmax is a parameter of the
algorithm. We keep track of the best known solution at each iteration. In line 13 of Algorithm 1 we accept
or decline the modified tour Tnew based on a standard simulated annealing criterion, as in [26] (details are
in Section 5.3). The stopping criteria in line 16 operates in two phases (detailed in Section 5.3). The first
phase is an initial descent, which stops after a fixed number of non-improving iterations. The second phase
consists of several warm restarts, each beginning with the best solution found, but with a lower simulated
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Algorithm 1: GLNS(G,PV )

Input: A GTSP instance (G,PV ).
Output: A GTSP tour on G.

1 for i = 1 to num trials do
2 T ← initial tour(G,PV ) // Sec. 5.1

3 Tbest,i ← T
4 repeat
5 Select a removal heuristic R and insertion heuristic I using the selection weights // Sec. 5.2

6 Select the number of vertices to remove, Nr, uniformly randomly from {1, . . . , Nmax}
7 Create a copy of T called Tnew

8 Remove Nr vertices from Tnew using R // Sec. 4

9 For each of the Nr sets not visited by Tnew, insert a vertex into Tnew using I // Sec. 3

10 Locally re-optimize Tnew // Sec. 5.5

11 if w(Tnew) < w(Tbest,i) then
12 Tbest,i ← Tnew

13 if accept(Tnew, T ) then // Sec. 5.3

14 T ← Tnew

15 Record improvement made by R and I

16 until stop criterion is met // Sec. 5.3

17 Update selection weights based on improvements of each heuristic over trial // Sec. 5.4

18 return tour Tbest,i that attains mini w(Tbest,i)

annealing temperature. Each warm restart again ends after a fixed number of non-improving iterations. The
warm restarts serve to refine the tour found after the initial descent.

Two key components of GLNS are the bank of methods used for insertions and deletions of vertices in
the tour. Other unique aspects are the presence of multiple trials, which are used to adapt the weights, and
the use of local optimization on each tour Tnew at line 10 prior to comparing the tour length to the best
tour of the iteration Tbest,i and the previous tour T . The mechanism for adapting weights is described in
Section 5.4 and the local optimizations are detailed in Section 5.5. At the completion of the algorithm, the
best tour found is returned.

We provide three default settings of our solver. Under each setting, O(n2) computation time is required to
parse the input instance. Given the parsed instance, the three settings have runtimes scaling approximately as
O(nm) for the fastest setting and O(max{mn2,m3n logm}) for the slowest (see Section 6.3 for more details).
The parameter values for the three settings are detailed in Section 6.2. Since the removal methods are based
on the same general concepts as the insertion methods, we begin by presenting insertions (Section 3), followed
by removals (Section 4).

3. GTSP Insertion heuristics

In this section we begin by summarizing four insertion heuristics that are proposed in [14] as extensions
of the well-known TSP insertions [31]. We then provide a unified insertion mechanism that contains three of
the four insertions as special cases, and give an analysis of the space and time complexity of these insertion
heuristics. The unified insertion allows for a large bank of insertion heuristics that can be used in line 9 of
Algorithm 1.

3.1. Nearest, Farthest, Random, and Cheapest Insertion

Given a graph G = (V,E,w) along with the partition PV := {V1, . . . , Vm} of V , we define a partial GTSP
tour to be a cycle in G such that each set in the partition PV is visited at most once (in a complete tour,
each set is visited exactly once). Given a partial tour T = (VT , ET ), the sets of the partition that are visited
by T are denoted PT ⊆ PV . The framework of an insertion heuristic is given in Algorithm 2.
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Algorithm 2: Framework of insertion heuristics

Input: A GTSP instance (G,PV ) and a partial tour T = (VT , ET ) of G
Output: An updated partial tour T that visits one additional set.

1 Pick a set Vi in PV \ PT .
2 Find an edge (x, y) ∈ ET and vertex v ∈ Vi that minimizes w(x, v) + w(v, y)− w(x, y).
3 Delete the edge (x, y) from ET , add the edges (x, v) and (v, y) to ET , and add v to VT .
4 return T

What remains is to specify the mechanism for choosing the set to insert (Vi in PV \ PT ). For every set
Vi, for i ∈ {1, . . . ,m} and each vertex u ∈ V \ Vi we compute the distance

dist(Vi, u) = min
v∈Vi

{
min

{
w(v, u), w(u, v)

}}
. (1)

In [31], four insertion heuristics were proposed for iteratively constructing a TSP tour: nearest, far-
thest, random, and cheapest insertion. In [14, Section 4], they proposed extensions of the TSP insertion
heuristics [31] to the GTSP as follows:

(i) Nearest insertion picks the set Vi that contains a vertex v at minimum distance to a vertex on the
partial tour T . That is, we choose the set Vi

argmin
Vi∈PV \PT

min
u∈VT

dist(Vi, u).

(ii) Farthest insertion picks the set Vi whose closest vertex to a vertex on the partial tour T is maximum.
That is, we choose the set Vi

argmax
Vi∈PV \PT

min
u∈VT

dist(Vi, u).

(iii) Random insertion picks a set Vi uniformly randomly from PV \ PT .

(iv) Cheapest insertion picks the set Vi that contains the vertex v that minimizes the insertion cost.
That is, we choose the set

argmin
Vi∈PV \PT

min
v∈Vi, (x,y)∈ET

{
w(x, v) + w(v, y)− w(x, y)

}
.

Remark 3.1 (Distance from Set to Tour). In [14], the distance was proposed as dist(Vi, u) = minv∈Vi
w(v, u)

rather than the form in (1). For symmetric instances, the distance in (1) is equivalent. For asymmetric
instances, by minimizing min{w(v, u), w(u, v)}, we find the set containing the vertex at minimum distance
either “to” or “from” the tour. In our benchmarks of asymmetric instances, we have observed better
performance using the distance in (1). •
Remark 3.2 (Relation to TSP insertions). For TSP instances, each Vi contains exactly one vertex, and the
four insertion heuristics are exactly those proposed in [31]. Starting with an initial vertex, each heuristic can
be used to create a complete tour by performing n − 1 insertions. For metric instances, it is shown in [31]
that nearest and cheapest insertions provide 2-factor approximations to the optimal tour, while farthest
and random insertions provide dlog2 |V |e + 1-factor approximations. The authors also note that farthest
insertion often outperforms cheapest and nearest insertion. In addition, random insertion runs more quickly
in practice than farthest or nearest insertion (by a constant factor) since no computation is needed to select
the next vertex to insert. •

3.2. Unified Insertion heuristic

The nearest, farthest, and random GTSP insertion heuristics can be unified into a single insertion heuristic
as follows. Given a partial tour T , there are ` = |PV \ PT | sets that can be inserted next. From line 9 of
Algorithm 1 we have that ` ∈ {1, . . . , Nr}. For each set Vi ∈ PV \ PT we define the minimum distance
between Vi and T as

di = dist(Vi, T ) = min
u∈VT

dist(Vi, u), (2)
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where dist(Vi, u) is defined in (1). Given a parameter λ ∈ [0,∞) and a partial tour, we select a new set
(Line 1 of Algorithm 2) according to the procedure in Algorithm 3. Note that in line 1 of Algorithm 3, we
use the common convention that 00 = 1. Once a set is selected, the unified insertion heuristic proceeds as

Algorithm 3: Set selection for the unified insertion heuristic

Input: A GTSP instance (G,PV ), a partial tour T = (VT , ET ) of G, and λ ∈ [0,∞)
Output: A set Vi ∈ PV \ PT .

1 Randomly select k ∈ {1, . . . , `} according to the unnormalized probability mass function

[λ0, λ1, . . . , λ`−1].
2 Pick the set Vi ∈ PV \ PT with the kth smallest distance di to the tour (where di is computed in (2)).
3 return Vi

in Algorithm 2. Notice that,

(i) random insertion is obtained by setting λ = 1
(ii) nearest insertion is obtained setting λ = 0;

(iii) farthest insertion is obtained setting λ = +∞ (or sufficiently large).

Moreover, by selecting intermediate values for λ, we can obtain randomized versions of nearest, farthest,
and random insertion, allowing for greater exploration of solutions during large neighborhood search. In
Section 6.2 we show the performance improvements that result from using the unified insertion mechanism
with several different λ values over that of using just nearest, farthest, and random insertion.

Remark 3.3 (Similarities/differences with softmax). The mechanism for choosing a set is similar to soft-
max [36], in which λ is fixed, and the set Vi is chosen with probability proportional to exp(λdi). The main
issue with softmax is that the resulting probability mass function over sets is dependent on both the absolute
and relative magnitudes of each di. This means that the value of λ should be scaled for each GTSP problem
instance, based on some criterion of the distribution and values of edge lengths in the graphs. The proposed
heuristic avoids this issue by making the selection purely on the ordering of the distances (i.e., choosing the
kth smallest), rather than their specific values. •

3.3. Implementation Details, Runtime, and Space Complexity of Insertions

The following list provides details of how the unified insertion heuristic is implemented in GLNS, and
allows us to characterize the complexity of the approach.

(i) The normalizing constant for the distribution in line 1 of Algorithm 3 has a closed form expression of

(1 − λ`)/(1 − λ), since
∑`−1

k=0 λ
k is a geometric series. As such, k can be drawn from the distribution

in O(`) time.
(ii) Given an unsorted array of ` numbers, selection of the kth smallest value can be performed in expected

time of O(`) using a simple randomized algorithm [37, Chapter 9].
(iii) At the beginning of an execution of the GLNS solver, we precompute the distances in (1) between each

set-vertex pair. This computation requires O(n2) time and O(nm) space, where n is the number of
vertices and m is the number of sets. This computation is performed while parsing the input instance,
which does not alter the O(n2) parsing runtime.

(iv) When performing multiple insertions, we can efficiently update the values di in (2) after each insertion.
If we have the distance di for vertex set Vi ∈ PV \PT to a partial tour T and a vertex v ∈ Vj is inserted
into T , then di can be updated as

di ← min{di,dist(Vi, v)}.

Thus, the initial computation of d1, . . . , d` requires O(`(m− `)) time, and after subsequent insertions,
each distance can be updated in constant time, giving O(`) time to update all distances.

Given a parsed GTSP instance, the following proposition characterizes the runtime of the unified insertion
heuristic for any λ ∈ [0,∞). In this proposition we consider both general GTSP instances, and instances in
which each set contains O(n/m) vertices. The latter instances capture the case where vertices are distributed
“approximately evenly” among the sets (i.e., their sizes are equal up to a constant factor).
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Insertion Heuristic General GTSP Input Each |Vi| ∈ O(n/m)

Runtime Space Runtime Space

Unified∗ O(nm) O(Nr) O(nNr) O(Nr)

Nearest O(nm) O(Nr) O(nNr) O(Nr)

Farthest O(nm) O(Nr) O(nNr) O(Nr)

Random O(nm) O(1) O(nNr) O(1)

Cheapest O(max{nm,nNr logm}) O(nm) O
(

max{nNr,
N2

rn

m
logm}

)
O(nNr)

Table 1: The runtime of each GTSP insertion heuristic for inserting Nr sets into a partial tour T for a GTSP instance with n
vertices and m sets. The second set of columns is for the case that each set |Vi| ∈ O(n/m). ∗ is expected runtime.

Proposition 3.4 (Runtime of insertion mechanisms). Given a GTSP instance (G,PV ) and a partial tour T ,
the insertion of the Nr = |PV \PT | sets into T has an expected runtime of O(mn) using the unified insertion
mechanism. Moreover, if |Vi| ∈ O(n/m) for each set Vi ∈ PV , then the expected runtime is O(Nrn). The
space complexity of the insertion heuristic is O(Nr).

Proof. Given Nr sets to insert, the initial computation of the distances di in (2) requires O(Nr(m−Nr)) =
O(Nrm) computation time (this is performed only for the first insertion). Given these distances, Algorithm 3
runs in expected time of O(Nr) using the randomized selection in [37, Chapter 9], and the distances di can
be updated in O(Nr) time after each subsequent insertion (by the implementation details above). Thus, the
total expected runtime for Nr set selections is O(Nrm).

Once the first set Vi is selected, Line 2 of Algorithm 2 requires O(|Vi|(m−Nr)) ∈ O(|Vi|m) computation
time to evaluate the insertion of each vertex in Vi in each of the m−Nr positions on T . For ease of notation,
we renumber the sets in PV \ PT such that they are inserted in the order V1, . . . , VNr . Then, the total
computation time in Line 2 over the Nr insertions is

Nr∑
k=1

O
(
|Vk|m

)
= O

(
m

Nr∑
k=1

|Vk|
)
. (3)

What remains is to bound the quantity
∑Nr

k=1 |Vk|. In the worst-case we have
∑Nr

k=1 |Vk| = O(n) and the

total runtime is O(nm). If each set in Vi ∈ PV \ PT has size in O(n/m), then
∑Nr

k=1 |Vk| = O(nNr/m), and
the total runtime from (3) is O(Nrn).

Table 1 summarizes the runtime for the unified insertion, as well as the runtime for each of the four
insertion mechanisms in Section 3.1. The runtimes for nearest, farthest, and random insertion follow from
the analysis in the proof of Proposition 3.4, and are simple extensions of the runtimes in [31]. The key point
of this table is that the unified insertion maintains the same (expected) runtime as nearest, farthest, and
random insertion, with only moderate space requirements.

Remark 3.5 (TSP insertion runtimes [31]). For a TSP instance |V | = n = m. A complete tour can be
computed in O(n2) using nearest, farthest, or random insertion, and O(n2 log n) using cheapest insertion. •

The implementation details of cheapest insertion are outlined in the following remark.

Remark 3.6 (Implementing Cheapest Insertion). Given Nr sets to insert, cheapest insertion can be näıvely
implemented to run in O(nmNr) time, with O(1) space. A more efficient implementation of cheapest
insertion requires significantly more space [31]. Given a partial tour T , for each vertex v in a set in PV \ PT

we maintain a min-priority queue (implemented as a min binary heap), giving the insertion cost for each
edge e ∈ ET . The runtime needed to construct these queues, and the space complexity, is O(nm). When a
new vertex is added to the tour T , we add two new edges and remove one edge, along with their insertion
costs, from each queue. Each insertion/removal can be performed in O(logm) time for each priority queue,
since each queue contains O(m) edges. There are O(n) vertices contained in the sets in PV \ PT , and the
total time to update all priority queues is O

(
n logm

)
.

The vertex to insert is found in O(n) taking the minimum of the min elements in each priority queue.
The time to insert the next vertex into T is O(n logm), and the overall complexity to create the priority
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queues and insert Nr sets is O(max{nm, nNr logm}). The space complexity is dominated by the space to
store the priority queues, which is O(nm). Finally, the results for |Vi| ∈ O(n/m) follow by noting that there
are O(Nrn/m) vertices contained in the sets in PV \ PT instead of O(n). •

3.4. Bounding Insertions Before Evaluation

A simple and effective mechanism we have found for speeding up insertions is to use the precomputed
distances dist(Vi, u) between each Vi ∈ PV \ PT and each vertex u ∈ VT to lower bound insertion costs. In
particular, in Line 2 of Algorithm 2, prior to checking the insertion cost for each vertex v ∈ Vi in each edge
(x, y) ∈ ET , we compute

lb = dist(Vi, x) + dist(Vi, y)− w(x, y).

If lb is at least as large the minimum insertion cost found for a vertex v ∈ Vi so far, then the insertion
costs for the edge (x, y) do not need to be computed, since they cannot be smaller than lb. Experimental
results in Section 6.2 show that this simple lower-bounding technique reduces the runtime of GLNS by 25%
on average.

3.5. Randomizing Insertions Through Noise and Subsetting

The performance of large neighborhood search algorithms are improved by increasing randomness during
removals and insertions (see for example [26] or [27]), which helps in exploring a larger portion of the
solution space and in avoiding repetition of locally optimal choices. The λ parameter in the unified insertion
mechanism allows us to introduce randomness into the set selection. To add randomness to the choice of
vertex from the selected set in Line 2 of Algorithm 2, we use the following two mechanisms.

Additive Noise. Motivated by [26], given a maximum noise level η ≥ 0, we perform the following: For each
vertex v ∈ Vi and edge (x, y) ∈ ET , we generate a uniform random number rand ∈ [0, η] and compute the
insertion cost as

(1 + rand)
(
w(x, v) + w(v, y)− w(x, y)

)
.

We then perform the insertion with minimum “noisy” cost. Note, in [26], the magnitude of the additive
term was based on the maximum edge cost in the problem instance. We have modified this notion by scaling
each additive noise term by the corresponding insertion cost, rather than the maximum edge. The reason for
this is that many of our GTSP instances contain both “infinite” (i.e., large cost) and low-cost edges. These
large variations make it difficult to use a single scaling constant for the noise, and we have found that the
proposed scaling is more robust to these large variations in edge costs.

Insertion Subsetting. A second method for adding randomness is to consider only a random subset of the
possible insertion combinations. Given a parameter f ∈ (0, 1), we uniformly randomly select a subset
ET ⊂ ET of edges of cardinality df |ET |e and evaluate the insertion cost w(x, v) + w(v, y) − w(x, y) for all
v ∈ Vi and all (x, y) ∈ ET . This allows for a vertex to be inserted in a position that is not locally optimal,
widening the search.

Our experimental results in Section 6.2 show that while the additive noise improves performance, the
insertion subsetting does not on average improve solution quality of the GLNS solver (it does however,
moderately improve the runtime). Thus, the default GLNS settings include only additive noise.

4. Removal heuristics

In each iteration of GLNS, we use a removal heuristic to remove Nr vertices from a tour T = (VT , ET )
(Line 8 of Algorithm 1). Two of the three removal methods operate in a similar manner to the unified
insertion, incrementally removing the Nr sets. Consider a partial tour T containing ` ∈ {m−Nr + 1, . . . ,m}
vertices, where for simplicity of notation the vertices are numbered such that VT = {v1, . . . , v`} and ET =
{(v1, v2), (v2, v3), . . . , (v`, v1)}. Then, for a fixed parameter λ and a set of distances rj for each vj ∈ VT (the
computation of these distances is specified for each removal heuristic in the following two subsections), the
general framework is specified in Algorithm 4.

In line 4, the indices j+ 1 and j−1 are evaluated with the understanding that `+ 1 ≡ 1 and 0 ≡ `. That
is, for j = 1, we have (vj−1, vj) = (v`, v1), and with j = `, we have (vj , vj+1) = (v`, v1).
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Algorithm 4: Removal heuristic framework for a given λ and distance metric rj .

Input: A partial tour T = (VT , ET ), λ ∈ [0,∞), and values rj for each vj ∈ VT
Output: A new tour with one vertex removed from VT .

1 Randomly select k ∈ {1, . . . , `} according to the unnormalized probability mass function

[λ0, λ1, . . . , λ`−1], where ` = |VT |.
2 Pick the vertex vj ∈ VT with the kth smallest value rj .
3 Remove vj from VT
4 Remove (vj−1, vj) and (vj , vj+1) from ET and add (vj−1, vj+1) to ET .
5 return T

4.1. Unified Worst Removal

In worst removal (see [26] for an example), given a partial tour T with VT = {v1, . . . , v`} we remove the
vertex vj that maximizes the removal cost

rj = w(vj−1, vj) + w(vj , vj+1)− w(vj−1, vj+1),

where the indices j+ 1 and j−1 are evaluated using `+ 1 ≡ 1 and 0 ≡ `. That is, we remove the vertex that
results in the greatest reduction in tour length, since it is likely to be misplaced in the tour. In the unified
worst removal heuristic, we extend this idea by using the removal costs rj in the framework of Algorithm 4.
This creates a suite of removal heuristics, parametrized by λ. In particular,

(i) λ = 1 corresponds to random removal, where Nr vertices are uniformly randomly chosen from VT for
removal; and

(ii) λ =∞ corresponds to worst removal.

For values of λ ∈ (1,∞) we obtain randomized versions of worst removal with varying degrees of randomiza-
tion, similar to the randomization method proposed in [26]. Each removal can be performed in O(m) time,
and thus Nr removals require O(Nrm) time.

4.2. Distance Removal

The idea behind distance removal is to remove vertices from the tour that are “close” to one another.
This is similar to Shaw removal for the pickup and delivery problem [35]. Starting with a complete tour
T = (VT , ET ), we begin by randomly removing a vertex from T and adding it to a set Vremoved. Then, at
each iteration of the removal, the distances rj are computed as follows:

(i) uniformly randomly select a seed vertex vseed from Vremoved, and

(ii) for each vj ∈ VT , compute rj as

rj = min{w(vseed, vj), w(vj , vseed)}.

We then perform the removal as in Algorithm 4 with the distances r1, r2, . . . , r`, where ` = |VT |. This process
is repeated until the desired number Nr of vertices have been removed from T . With λ = 0 we always pick
the closest vertex vj to the random seed. With λ = 1, the algorithm becomes a simple random removal. As
with the unified worst removal, the runtime to perform Nr removals is O(Nrm).

4.3. Segment Removal

In segment removal, we simply remove a continuous segment of the tour of length Nr. Given a complete
tour T with vertices VT = {v1, . . . , vm}, we uniformly randomly select a vertex vj and then remove the
vertices vj , vj+1, . . . , vj+Nr−1 from the tour (where the indices wrap around, or more formally, each index is
replaced with the unique value in {1, . . . ,m} that is congruent modulo m). The motivation for this removal
is to try to escape deep local minima by completely destroying large segments of the tour.
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5. Adaptive Weights, Local Optimization, and Acceptance Criteria

In this section we provide details on the remaining aspects of GLNS (Algorithm 1). In particular, we
describe the initial tour construction (Line 2), the mechanism for selecting removal and insertion heuristics
(Line 5), the method for adapting weights (Line 17), the acceptance and stopping criteria (Lines 13 and 16)
and the local tour optimizations (Line 10).

5.1. Initial Tour Construction

We use the following two methods for initial tour construction.

Random Insertion Tour. In random insertion we start by choosing a random vertex v ∈ V , and add it to
an empty tour T . We then insert the remaining m− 1 vertex sets using the unified insertion heuristic with
λ = 1 (i.e., where each set is chosen at random, followed by insertion as in Algorithm 2), and with additive
noise using the largest additive noise level η from Table 2. This construction takes O(nm) time.

Random Tour. In the random tour construction we create an initial tour completely randomly. We shuffle
the m vertex sets and then uniformly randomly select one vertex from each set in the shuffled order to create
a tour. This construction requires O(m) time.

When a sufficient number of GLNS iterations are used, we have found little difference in performance
between these two initial tour construction methods (see Section 6.2 for more details). However, when time
(and thus the number of iterations) are constrained, it can be helpful to start at the higher quality initial
tour created through the random insertion heuristic.

5.2. Choosing Removal and Insertion Heuristics

We maintain a bank of insertion and removal heuristics. For the insertion bank, we use the unified
insertion with several different configurations of λ and η (λ is the set selection parameter and η is the
additive noise parameter). Each configuration pair of (λi, ηi) is considered as a separate insertion mechanism
in the bank of insertion heuristics. We also use cheapest insertion in the insertion the bank (there are no
configuration parameters for this method, so it appears only once in the bank).

Removals are handled in a similar manner. We use several configurations (λ) for both unified worst re-
moval and distance removal. Segment removal is also used in the bank (there are no configuration parameters
for this method, so it appears only once in the bank).

For selection purposes, we maintain a weight for each insertion and removal heuristic, with all weights
initialized to 1. At each iteration, we use a standard roulette wheel selection mechanism [26] to select a
removal and an insertion heuristic from the corresponding banks according to their weights. The adaptive
mechanism for updating weights is described in Section 5.4.

5.3. Acceptance and Stopping Criteria

The acceptance criteria and the stopping criteria used in GLNS in Algorithm 1 are as follows.

Acceptance Criteria. We use a standard simulated annealing acceptance criterion, where given a temperature

T , the new tour Tnew is accepted with probability min
{

exp
(w(T )−w(Tnew)

T
)
, 1
}

. Note, if w(Tnew) ≤ w(T ) then
the tour Tnew is accepted with probability one (thus, improving tours are always accepted). The temperature
T is initialized to some value Tinit and is decreased at every iteration as T ← cT for some cooling rate c < 1.
The implementation of our simulated annealing procedure along with the stopping criteria for each trial
includes several parameters, described as follows (their values are described in Section 6.2):

(i) Following the strategy in [26], we initialize the temperature such that in the first trial, a tour with p1%
higher cost than the initial tour (p1 is an solver parameter) is accepted with a probability of 1/2.

(ii) For subsequent trials, the initial temperature is set in the same way, using the best tour cost from
the previous trial. Since in the first trial the initial tour is constructed as in Section 5.1, the initial
temperature in the first trial is typically much larger than in subsequent trials.

(iii) The cooling rate is chosen such that after num iterations iterations, a tour with p2% higher cost is
accepted with a probability of 1/2.

10



Stopping Criteria. Each of the num trials trials has two phases: an initial descent followed by several warm
restarts. The stopping criteria for these phases are as follows:

(i) The initial descent ends when the best tour has not improved for last improve (an input parameter)
consecutive iterations.

(ii) Each warm restart begins with the best tour found during the trial, but the temperature is raised to
allow for a tour with p3% (a solver parameter) higher cost to be accepted with a probability of 1/2.
The warm restart ends if no improvement is made to the best solution after the first first improve

iterations.

(iii) If there is an initial improvement in a warm restart, then as with the initial descent, the warm restart
terminates when no further improvement is made for last improve consecutive iterations.

(iv) In each trial, warm restarts continue until no improvement has been made to the best tour in num warm

consecutive warm restarts.

Alternate Stopping Criteria. In the GLNS solver we provide two alternate stopping criteria: 1) the solver
can terminate if a maximum time is reached, or 2) the solver can terminate if a tour less than a given bound
is found.

5.4. Adaptive Weights

The weight of each insertion and removal heuristic is adapted at the end of each trial based on its score
for the trial. When recording the performance of each heuristic (used to calculate the scores), we split a trial
into three phases:

(i) early, consisting of the first num iterations/2 iterations;

(ii) mid, consisting of the remaining iterations of the initial descent, and

(iii) late, consisting of the warm restarts.

In each iteration, a removal and insertion heuristic is used to destroy and create the tour Tnew from the
tour T . As in [26], we record the same score for the insertion and the removal, calculating the score for the
iteration as

score = max

{
w(T )− w(Tnew)

w(T )
, 0

}
.

This score gives the fractional improvement in tour cost, where the max ensures that we do not penalize a
heuristic when it increases the tour cost. At the end of a trial, the overall score for a heuristic is given by
the sum of its scores, divided by the number of times it was used (i.e., the average score). We then update
the weight of each heuristic as ε times the previous weight plus 1− ε times the average score on the trial.

Remark 5.1 (Comparison with Adaptive Weights in [26]). For the GLNS solver, the advantage to this
method over the adaptation proposed in [26] is two-fold. First, in [26] the weights are updated every 100
iterations, where 100 is referred to as the segment length. This works well when there are a small number
of insertion and deletion heuristics, but in our case the unified insertion and removal mechanisms allow us
to create a large bank of insertion and removal heuristics. Thus, to gather a statistically significant score
for each insertion and removal, we require a sufficiently large segment length. Moreover, as the weights
of some heuristics are reduced, their sample size over a segment is also decreased, increasing the variance
of subsequent scores. To avoid these issues we simplify the procedure to update after a complete trial is
performed instead of after each segment. Second, our implementation depends on just one parameter ε and
the definitions of early, mid, and late, rather than the five parameters (σ1, σ2, σ3, r, segment length) in [26].•

5.5. Local Tour Optimizations

After each iteration of GLNS we locally optimize the new tour prior to evaluating the acceptance con-
dition. We use two standard local optimization techniques.
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Re-Optimize Vertex in Each Set (Re-Opt). This method re-optimizes the vertex in each set, keeping the
ordering of the sets fixed. It has been proposed in [14, Section 4] and [32] and is used as a subroutine in
several GTSP solvers [19, 23]. Given an ordering of the vertex sets, a directed acyclic graph (DAG) is created
containing all vertices in the GTSP graph, plus a copy of each vertex in the first set of the ordering. Each
vertex in a set is connected to all vertices in the next set of the ordering. Vertices in the last set in the
ordering are connected to those in the copy of the first set. A tour satisfying the ordering is then a path
in the DAG from a vertex in the first set to its copy. The graph contains O(n) vertices and O(n2) edges.
Given a start and end vertex, a shortest path in a DAG can be computed in O(n + n2) = O(n2) time [37].
For our DAG, we must calculate a shortest path for each vertex in the first set of the ordering to its copy.
The tour can be rotated such that the first set contains at most n/m vertices, and thus the total runtime is
O(n3/m). If there is a vertex set with O(1) vertices, then the total runtime is O(n2), and if in addition each
vertex set contains O(n/m) vertices, then the runtime is O(n2/m).

Move-Opt. This method attempts to optimize the ordering of the sets. Given a complete tour T = (VT , ET ),
the second local optimization technique randomly selects a vertex v in the tour T , removes it, and then
reinserts a vertex from the same set Vi with minimum insertion cost. That is, it performs the insertion that
minimizes w(x, u) + w(u, y) − w(x, y) for all u ∈ Vi, and all (x, y) ∈ ET . The procedure is repeated Nmove

times. Since the expected number of vertices in a randomly chosen vertex set is n/m, the expected runtime
of this method is O(Nmoven).

Move-opt can be thought of as a special case of GLNS in which only one set is removed from the tour.
This method is called “Inserts” in [19] and the “Move” operator in [18]. For this method, we implement the
lower bounding technique in Section 3.4, which substantially improves the runtime.

6. Experimental Results

The GLNS solver has been implemented in the language Julia2 and is freely available at https://ece.
uwaterloo.ca/~sl2smith/GLNS. The core solver is implemented in approximately 1, 000 lines of code, which
is less than 1/4 of the code in the GK solver and less than 1/15 of the code in the GLKH solver. We also
provide a parser that handles instances in the GTSP-Lib format [14]. The solver runs on a single core and
does not use any parallelization. The solver can be run both through the Julia REPL or via the command
line. Several flags are available to set the key parameters shown in Table 2 and to provide a solver timeout
or a desired tour cost at which the solver should terminate.

In this section we summarize the tuning procedure for GLNS and our extensive benchmarking results.
The tuning results also demonstrate the performance improvements obtained by several of the novel com-
ponents of the GLNS solver. We use our benchmarking results to compare performance with the GLKH
solver from [23] and the GK solver from [19] on six problem libraries as described in the following section.

6.1. Problem Libraries

We benchmark the performance of the GLNS solver on six GTSP problem libraries: four existing GTSP
libraries (GTSP-Lib, MOM-Lib, BAF-Lib and Large-Lib) and two new GTSP libraries (GTSP+-Lib
and SAT-Lib) that provide instances on which solvers show larger performance gaps relative to the best
known solutions. The instances in SAT-Lib and GTSP+-Lib are subsets of the instances proposed in [8]
for the SAT-TSP planning language.

GTSP-Lib [14, 16] consists of instances created from TSP-Lib, where vertex sets are created using a clus-
tering procedure from [14]. Instances contain up to 1,000 vertices.

MOM-Lib [24] consists of clustered Euclidean traveling salesman problem instances with up to 2,000 ver-
tices.

BAF-Lib [25] consists of the same underlying instances as GTSP-Lib, but where the vertex sets are created
psuedorandomly.

2Julia is a high-level, high-performance programming language available at http://julialang.org/
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Large-Lib [23] consists of very large GTSP instances created primarily from TSP-Lib. Sets are created
using the clustering procedure from [14].

GTSP+-Lib consists of instances created as follows. A Euclidean instance from GTSP-Lib is chosen.
Then, additional constraints are placed between randomly chosen pairs of vertices in separate sets: each
constraint takes either the form v1 ⇒ v2 or “not both v1 and v2.” Thus, if v1 is visited in the tour, then
the two constraints express that either v2 must be in the tour, or v2 cannot be in the tour. The constrained
GTSP instance is then reduced to a standard GTSP instance using the reduction in [8]. This reduction uses
infinite cost edges (set to a cost of 999,999) to encode the extra constraints between pairs of vertices. These
instances are motivated by path planning problems [8], where a robot (vehicle) must visit a set of locations,
with additional constraints on the compatibility between locations. For this library, we also score the solvers
on percentage of time that a feasible solution is found (i.e., a solution with no infinite cost edges). Instance
names in this library indicate the original GTSP-Lib instance and the number of additional constraints x
expressed as a percentage of the number of vertices in the instance. For example, the instance 53gil262 x35
contains 0.35× 262 = 92 additional constraints. Moreover, the constraints are added incrementally, so that
53gil262 x30 contains a subset of the constraints in 53gil262 x35, and so on.

SAT-Lib consists of instances produced from SAT-Lib [38] by performing a reduction from SAT to GTSP
(only satisfiable SAT instances are used). For each instance in this library, the graph contains only two types
of edges – zero cost and infinite cost (set to a cost of 999,999). Each solution has an optimal tour with cost
of zero. If the solver does not find an optimal solution, then it is using at least one infinite cost edge. In
this case the percent error will be infinite. Instead, our metrics for performance are the number of times an
optimal solution is found (out of the ten 10 runs), and, when optimal is not found, the number of infinite
cost edges in the solution. Instance names in this library indicate the SAT instance, the number of sets, and
the number of vertices. Note, the reduction from SAT to GTSP allows us to generate a set of challenging
GTSP instances for which optimal solution costs are known. We are not proposing this as an effective means
for solving SAT instances.

6.2. Tuning Instances and Results

We performed several experiments to determine the effectiveness of the components of the GLNS al-
gorithm and to tune the default parameters for GLNS. To do this, we used a similar method to that
used in prior ALNS solvers [26, 30]. We created a small tuning library consisting of 15 problem instances
randomly sampled from the libraries GTSP-Lib, GTSP+-Lib, BAF-Lib, and SAT-Lib. We then created
several different solver configurations, each turning on or off some components of the GLNS solver. For
each configuration we solved each problem in the tuning library 50 times. We recorded the number of times
the best known solution was found for each problem and the average gap to best known ∆ (for a given run,
the percentage gap is calculated as ∆ = 100× (Run Cost− Best Known)/Best Known). We then selected the
best performing configuration, created several variations of this configuration, and repeated the experiments.
Table 2 summarizes the final settings chosen for the GLNS solver. We created three different built-in solver
settings – slow, medium, and fast. The value of each parameter is shown for each of the three solver settings.

Table 3 summarizes the final round of tuning experiments for the medium solver setting. Details of
each solver setting are given in Table B.13 of Appendix B. The table ranks the performance of each solver
configuration from 1 to 13 (there are 13 configurations, and ties are allowed) on each library in both average
percent gap to best known (∆) and number of best known solutions (# B). For SAT-Lib, where ∆ is
not defined, the configurations are ranked using the average number of infinite cost edges (Avg.) for each
instance. The table highlights the benefits of the different components of the GLNS solver. For example,
local optimizations, additive noise, adaptive weights, multiple trials, and restarts all provide significant
performance improvements. The worst performing configuration, ranked 13th, is a configuration in which
the insertions are limited to nearest, farthest, and random insertion, while the removals are limited to just
worst and random removal. For this configuration, the number of best known solutions was approximately
20% of that found using the final GLNS configurations. This highlights the benefits of the unified insertion
and removal methods and the λ-selection mechanism in Algorithm 3. The top two configurations in Table 3
differ only in the initial tour construction. In the default configurations, the tour is constructed using a
completely random tour, while in the 2nd ranked configuration, the tour is constructed using the random
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Parameter Symbol Solver Setting

Fast Medium Slow

Stopping Criteria

Number of trials num trials 3 5 10
Number of warm restarts num warm 2 3 5
Number of iterations num iterations 60m 60m 150m
Warm iterations: first improvement first improve 10m 15m 25m
Warm iterations: last improvement last improve 15m 30m 50m

Acceptance Criteria

Initial acceptance (%) p1 5.00 5.00 5.00
Warm restart acceptance (%) p3 0.50 0.50 0.50
Final acceptance (%) p2 0.05 0.05 0.05
Reaction factor ε 0.5 0.5 0.5

Tour Optimizations

Initial tour construction Tinit rand insert random random
Maximum removals Nmax min{20, 0.1m} min{100, 0.3m} 0.4m
Re-Opt - no yes yes
Iterations of move-opt Nmove Nmax Nmax Nmax

Insertion/Deletion

Cheapest insertion - no yes yes

Insertion λ values - (0, 1/2, 1/
√

2, 1,
√

2, 2, ∞)

Distance removal λ values - (1/
√

2, 1,
√

2, 2, ∞)

Worst removal λ values - (1/
√

2, 1,
√

2, 2, ∞)
Additive noise levels η (0, 0.25, 0.75)

Table 2: GLNS parameter values for the three solver settings: fast, medium, and slow.

Rank Description GTSP-Lib BAF-Lib GTSP+-Lib SAT-Lib Overall

∆ # B ∆ # B ∆ # B Avg. # B ∆ (Avg.) # B

1 Default GLNS Configuration 4 2 2 2 4 3 1 2 1 2

1 Random insertion Tinit 1 1 1 1 10 5 2 1 2 1

3 Nearest, farthest, random 2 7 4 5 7 7 4 3 3 5

4 No adaptive weights 7 3 3 6 2 2 12 8 6 3

4 No cheapest insertion 5 4 5 8 3 1 8 7 5 4

6 No noise 3 6 13 10 1 9 3 3 4 8

7 No local optimizations 8 8 6 6 5 7 5 6 6 7

8 Subset and additive noise 9 5 9 9 11 6 7 5 9 6

9 Only subset noise 6 9 8 4 6 10 11 8 8 9

10 No restarts 10 10 7 3 9 11 10 10 9 10

11 Worst and random removal 12 11 11 12 12 4 6 10 11 11

12 One trial 13 13 10 11 8 13 13 10 12 13

12 Settings 3 and 11 11 12 12 13 13 11 9 10 13 12

Table 3: Tuning results. Performance of GLNS solver under 13 different configurations, each including/excluding components
of solver. Performance is given by the number of best known solutions (# B) and the average gap to best known (∆), or for
SAT-Lib, the number of best known solutions (# B) and the average number of infinite cost edges (Avg.). Entries show the
rank of the configuration on the corresponding library, from 1 (best) to 13 (worst), including ties.
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Figure 1: A boxplot of the ratio of total number of iterations performed by GLNS and the approximate value given in the
expression (4) on all instances of GTSP-Lib with 50 or more sets and on the instances of Large-Lib with 200 to 400 sets. The
horizontal axis groups instances by the number of sets, and the vertical axis plots the ratio of actual to predicted iterations.
The total number of iterations ranges from 6,000 for the smallest instance on the fast setting to over 1.2 million for the largest
instance on the slow setting.

insertion method. The performance of these two configurations is very similar, and either can be chosen
when running the solver. The default configurations was chosen for its higher consistency.

We also ran the tuning library 50 times both with and without the lower-bounding technique described
in Section 3.4. By applying the lower-bounding mechanism, the average runtime was reduced by 25% and
as expected, this mechanism has no impact on solution quality, since it prunes only unnecessary insertion
calculations.

6.3. Runtimes of GLNS Solver Settings

In this section we discuss the runtime of GLNS for its three settings (slow, medium, and fast). First, for
any solver setting, O(n2) computation time is needed to parse the input, since a complete n × n distance
matrix is formed and the distances in (1) are computed. After parsing, the solver runtime depends on
the number of iterations and the computation time per iteration. The exact number of iterations is not
deterministic due to the simulated annealing procedure, which is described in Section 5.3. However, for each
setting, the same values for p1, p2, and p3 (acceptance parameters defined in Table 2) are used, and thus we
have found empirically that the total number of iterations is approximately proportional to

num trials× num warm× num iterations. (4)

Figure 1 compares the total number of iterations to the expression in (4) for all GTSP-Lib instances with
at least 50 sets and for Large-Lib instances with between 200 and 400 sets. Each instance was solved five
times for each GLNS setting (slow, medium, and fast). Notice that for each setting, the ratio flattens out
as the instances get larger, and the two quantities (predicted and actual) scale proportionately.

In an iteration, Nr ≤ Nmax vertices are removed and inserted, and another Nmax removals and insertions
are performed during move-opt. Thus, the number of insertions per iteration is at most 2Nmax. In the
medium and fast settings, the maximum number of removals Nmax per iteration is a constant: at most 20
for fast and at most 100 for medium. This saturation is similar to that proposed in [26]. Using (4) and the
number of insertions per iteration, estimates for the total number of insertions performed in GLNS under
each setting are shown in Table 4. The table is broken into three categories since Nmax saturates at m = 200
for fast and at m = 333 for medium.

Finally, for the runtime of each setting, recall that each removal algorithm runs in O(Nrm) time, which
is negligible compared to the runtime of insertions and tour optimizations. Using Table 1, Unified insertion
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GLNS Setting Approx # of Insertions Runtime After Parsing

m ≤ 200 200 < m ≤ 333 m > 333

Slow 6 000m2 6 000m2 6 000m2 O(max{mn2,m3n logm})
Medium 540m2 540m2 180 000m O(n2)
Fast 72m2 14 400m 14 400m O(nm)

Table 4: Runtime and approximate number of iterations for the three GLNS settings for a GTSP instance with n vertices and
m sets under the assumption that |Vi| ∈ O(n/m) for each set Vi and there exists a set with O(1) vertices.

and Move-Opt run in O(Nmaxn) under the assumption that all sets contain O(n/m) vertices. When Nmax is
constant, the runtime of cheapest insertion is also O(Nmaxn). However, for the slow setting, the maximum
number of removals per iteration Nmax is 0.4m, and the runtime of cheapest insertion becomes O(mn logm).
Assuming that there is a set with O(1) vertices, then the tour optimization Re-Opt runs in O(n2/m) per
iteration — Re-Opt is not used in the fast setting. Putting these results together we obtain the results in
the rightmost column of Table 4.

A key observation is that for m ≤ 200, fast performs approximately 10 times fewer insertions than
medium, which performs approximately 10 times fewer insertions than slow. The runtime of GLNS follows
the same general trend, as summarized Table 5. This table summarizes the results of the GLNS solver on the
six problem libraries. Each instance was solved 10 times on each of the three solver settings: slow, medium
and fast. The solver was given a timeout of 1,200 seconds and if the timeout was reached on an instance,
then the best solution found is reported. The top table in Table 5 shows the average solution quality and
runtime for the three different settings of GLNS; fast, medium, and slow. A more detailed comparison is
shown in the bottom table of Table 5, where eight sample instances are shown from four different libraries.
We see that when all runtimes are below the 1,200 second timeout, fast is approximately 10 to 20 times
faster than medium, which is approximately 10 times faster than slow. Moreover, we have found in our
experiments that the runtime of GLNS is quite stable across multiple runs on a given instance. For the
default GLNS settings, on the 750 runs summarized in the first row of Table 3, the maximum percentage
difference in runtimes on an instance was 55.4% (calculated as (max−min)/mean over the 50 trials for each
instance). It is also worth noting that as the solver begins to time out on the slower setting(s), then the
faster setting(s) start to perform better in solution quality (percent gap from best) (as in Large-Lib of
Table 5), which gives some insight into the benefits of each of the three default settings.

6.4. Library Results and Discussion

To compare solvers, we performed 300 second and 1,200 second persistent tests with the three solvers,
GLKH, GK, and GLNS on the six libraries described in Section 6.1. For the persistent tests, each solver is
given a 300 or 1,200 second timeout, and the settings of the solvers are altered such that they will always use
the full amount of time. For GLKH this was done by setting the MAX TRIALS parameter to a sufficiently large
number. Note that at the end of each run GLKH performs a post-optimization procedure on the GTSP
tour, which also has a MAX TRIALS parameter. This parameter was kept at its default setting (as were all
other parameters in the post-optimization). For GK we set the number of generations to a large value,
and for GLNS we used the medium setting, but with num trials set to a large number. These tests allow
for a fair comparison of the performance of each solver over a fixed amount of time. These experiments were
performed for all three solvers (GLNS, GLKH, and GK) on an Intel Core i7-6700, 3.40GHz with 16GB of
RAM. Each instance was run on a single core.

In each experiment we solved each instance 10 times. When the timeout is reached, the best solution
found during that time is reported. We do not stop when the optimum is reached as we are interested in
applications in which the optimal cost is not known prior to solving. On each instance we report the number
of times the best known solution is found and the average percentage gap from the best known solution.

Remark 6.1 (GLKH and GK Solver Settings). In [23], three different sets of parameter values are provided:
one for GTSP-Lib, one for Large-Lib, and one for the arc routing instances. In our benchmarking we ran
each library for each of these three settings and took the best performance among them. On GTSP-Lib, the
GTSP-Lib settings performed best. On all other libraries, the Large-Lib settings performed best in both
the 300 and 1,200 second persistent tests. It is also worth noting that on the largest instances, the GLKH
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Slow Medium Fast

Library ∆(%) Time (s) ∆(%) Time (s) ∆(%) Time (s)

GTSP-Lib 0.01 169 0.04 18 0.99 1
MOM-Lib 0.01 485 0.03 159 0.49 12
BAF-Lib 0.08 114 0.27 13 2.58 1
Large-Lib 2.66 1140 1.88 745 3.43 202
GTSP+-Lib 3.33 893 1.16 393 13.53 10

Avg. Time (s) Avg. Time (s) Avg. Time (s)

SAT-Lib 8.29 1127 2.81 969 8.67 92

Slow Medium Fast

Library ∆(%) Time (s) ∆(%) Time (s) ∆(%) Time (s)

GTSP-Lib

134gr666 0.09 182 0.38 22 1.17 1
145u724 0.02 321 0.06 34 0.96 1
157rat783 0.08 471 0.17 43 1.60 2
200dsj1000 0.01 1091 0.10 102 2.20 5
201pr1002 0.00 846 0.04 78 1.73 5
207si1032 0.06 963 0.11 98 0.94 5
212u1060 0.07 1048 0.19 120 2.24 5
217vm1084 0.04 1167 0.09 126 1.72 5

GTSP+-Lib

64lin318 x15 2.19 671 2.43 71 5.61 3
64lin318 x20 1.20 1157 1.74 120 7.09 5
64lin318 x25 1.36 1200 1.58 224 11.05 10
64lin318 x30 1.22 1200 1.63 353 16.41 10
64lin318 x35 1.05 1200 1.12 601 19.31 14
64lin318 x40 0.97 1200 0.80 649 28.85 15
64lin318 x45 4.51 1200 1.02 656 23.60 20
64lin318 x50 6.85 1200 0.68 1051 33.79 26

BAF-Lib

baf131p654 0.04 203 0.06 21 0.17 1
baf132d657 0.00 152 0.05 20 1.98 2
baf145u724 0.06 218 0.35 25 5.18 2
baf157rat783 0.00 380 0.79 39 2.82 2
baf201pr1002 1.99 741 2.31 80 3.88 5
baf207si1032 0.00 877 0.03 91 1.36 5
baf212u1060 0.10 811 0.39 101 7.98 7
baf217vm1084 0.00 784 0.19 87 0.12 7

Large-Lib

10C1k 0.00 1074 0.00 134 0.00 5
200C1k 0.00 814 0.00 87 1.03 5
261rl1304 0.19 1200 0.26 279 2.60 10
287u1432 0.52 1200 0.82 281 3.61 12
364u1817 0.71 1200 0.63 640 3.49 17
464u2319 4.46 1200 1.11 1072 5.18 31
633E3k 5.42 1200 1.70 1200 5.28 93
1187rl5934 6.77 1200 6.97 1200 5.63 322

Table 5: Summary of GLNS performance for its three settings, slow, medium, and fast. Top table shows the average results
for each library. The bottom table shows eight sample instances in four of the libraries. The column ∆(%) reports the average
percentage gap from best known, the column Time(s) records the average solver time, and the column Avg. records the average
number of infinite edges. In the bottom table averages are taken over the ten runs of each instance and in the top table they
are taken over the entire library.
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Figure 2: Performance comparison between solvers for each library. Left: Percent of instances in each library where a solver
performed strictly better than two, one or no other solvers. Right: Percent of instances in each library where a solver performed
strictly worse that two, one or no other solvers. For all libraries except SAT-Lib, solver performance is measured by the average
error gap ∆(%). For SAT-Lib, performance is measured by the average number of infinite edges (Avg.).

solver exceeded its configured timeout of 1,200 seconds (for example, in Table A.9). In these instances we
let the solver complete, and simply report 1,200 seconds.

For GK, the solver settings are hard-coded into the program, and these settings were not modified, other
than increasing generations to achieve persistent behavior. •

Detailed Tables of Results. Detailed tables for each of the six libraries are given in Appendix A. In these
tables, only the largest 45 instances are shown for each library in order to limit the size of the tables. For
each instance, the best entry (i.e., percent gap from best known, or number of best known solutions) is shown
in bold. For each library, we display results for the GLNS medium setting. The GLKH and GK settings
are chosen as described in Remark 6.1.

For the libraries GTSP-Lib, MOM-Lib, BAF-Lib, and GTSP+-Lib, which contain problems with
fewer than 1,500 vertices, we display results for the 300 second persistent tests. For Large-Lib and SAT-
Lib, where most instances are significantly larger (some exceeding 10,000 vertices), we display results from
the 1,200 second persistent tests. The persistent results are helpful in removing the substantial differences
in runtimes for each solver. In particular, GK in its default setting typically terminates very quickly on
instances with fewer than 1,000 vertices [19, Table 3], even when results are still suboptimal. This results in
low runtimes but larger error gap from the best known. On the converse, GLKH often continues running far
beyond the time at which the best known solution is found, resulting in high runtimes but low error gap [12].

Summary of Results. The results for each of the six tables are summarized in the two bar charts in Figure 2.
These bar charts compare the three solvers on their average percent gap ∆(%) for each instance in each
library. For SAT-Lib, where ∆ is not defined, the charts compare each solver on the average number of
infinite cost edges (Avg.) for each instance. The left chart shows the percentage of instances in each library
where a given solver outperformed one or both of the other solvers (thus, the black bars show how often
one solver dominates the other two). The right chart is complementary, showing the percentage of instances
in each library where a given solver was outperformed by either one or both of the other solvers (thus, the
white bars show how often a solver was dominated by the other two solvers). In each chart, the libraries
are arranged so that as we move from left to right, the instances go from primarily Euclidean instances
with clustered vertex sets to non-metric and highly constrained instances. These constrained non-metric
problems typically arise when a related combinatorial problem is reduced to GTSP, and thus are relevant to
researchers looking to leverage a GTSP solver for related combinatorial problems.

The figures show that GLNS is competitive with the state-of-the-art solvers on all of the libraries. In
the libraries MOM-Lib, BAF-Lib, GTSP+-Lib, and SAT-Lib the GLNS solver has the best performance,
both in terms of having the largest number of instances where it outperforms both other solvers and having
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Figure 3: Performance of GLNS relative to the best result obtained from GLKH and GK with respect to the number of
constraints added to the original instance as a percentage of |V | (as indicated by the postfix x## in the instance name(s)), for
the series of 53gil262 GTSP+-Lib instances.

the fewest instances where it is outperformed by the other two solvers. Moreover, as the problems become
non-metric and more highly constrained, the performance differences between GLNS and the next best solver
widen. For the SAT-Lib library, in which each solver shows the poorest performance relative to optimal,
the GLNS solver produces higher quality solutions on every instance, and its solution quality is often an
order of magnitude better than GLKH and GK.

The GTSP+-Lib library was designed specifically to explore the degradation of solution quality of each
solver as the GTSP instance becomes more constrained. In this library, the value of x captures the number
of additional pairwise constraints added between vertices. From Table A.11, we can see that for a given
GTSP-Lib instance, as we increase x, the performance of GLKH and GK degrades substantially relative to
GLNS. For low values of x, where the problem still has much of the structure of the underlying Euclidean
instance, the GK solver often outperforms GLNS. However, when x becomes sufficiently large, neither
GLKH nor GK are able to find a single feasible solution across the 10 runs (for example 53gil262 x65 and
53gil262 x70), while GLNS finds a feasible solution in all ten runs. This trend is illustrated in Figure 3 for
the series of instances produced from the GTSP-Lib instance 53gil262.

Strengths and Weaknesses of Each Solver. For the six libraries tested, the GLKH solver’s biggest strength is
on the clustered Euclidean instances in GTSP-Lib and Large-Lib. On the largest instances within Large-
Lib (Table A.9), its average solution error is several percent better than that of GLNS or GK. The solver
struggles when vertex sets are not the result of the clustering procedure from [15], such as MOM-Lib in
Table A.8 and BAF-Lib in Table A.10. In BAF-Lib there are over 10 instances where the GLKH gap from
the best known solution exceeds 5% and five where the gap exceeds 20%. The sets in BAF-Lib are created
using pseudorandom clustering, and the GLKH solver struggles with such instances when compared with
instances containing closely grouped vertices in each set. For the more constrained problems in GTSP+-Lib
(Table A.11) and SAT-Lib in Table A.12, its performance is not competitive with GLNS.

The GK solver has strong performance on metric instances, independent of the mechanism in which
the sets were constructed. Its gap from best known does not exceed 4% on any instance in GTSP-Lib,
MOM-Lib, and BAF-Lib, and for the vast majority of instances, its gap is under 0.2%. The solver also
found several new best solutions on existing libraries, including one that was not found by GLNS, as shown
in Table 6. The solver, however, does not perform well on the highly constrained instances in GTSP+-Lib
and SAT-Lib, with the solver at times producing solutions with over 50 times more infinite cost edges than
the GLNS solver (for example, the instance jnh7 s953 v4363).

The GLNS solver performs consistently well across all libraries. From Figure 2, we see that GLNS is
competitive with the state-of-the-art solvers on GTSP-Lib instances and on the smaller instances of Large-
Lib. It outperforms existing solvers on MOM-Lib and BAF-Lib, finding several new best solutions as shown
in Table 6. Its average gap from the best known on these libraries is less than 0.1%, with the gap exceeding
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Problem Instance Previous Best New Best % Change Solver(s)

BAF-Lib

baf113pa561 442 431 −2.49 GK
baf115rat575 1,346 1,330 −1.19 GLNS
baf145u724 7,934 7,354 −7.32 GLNS
baf201pr1002 48,807 48,400 −0.83 GLNS
baf107att532 3,891 3,880 −0.28 GLNS, GK
baf131p654 5,827 5,824 −0.05 GLNS, GK
baf132d657 8,160 8,132 −0.34 GLNS, GK
baf157rat783 1,841 1,700 −7.66 GLNS, GK
baf207si1032 18,936 18,836 −0.53 GLNS, GK
baf212u1060 44,488 38,639 −13.15 GLNS, GK

MOM-Lib

144pcb1173-12x12 16,418 16,412 −0.04 GLNS
150i2000-605 5,942 5,940 −0.03 GLNS, GK
200i3000-805 6,913 6,902 −0.16 GLNS, GK

Table 6: New best solutions found by GLNS and GK. Previous best solutions obtained by GLKH and are available at http:

//www.akira.ruc.dk/~keld/research/GLKH/.

0.5% on only two instances. Moreover, it finds the best known solution more frequently than GK or GLKH.
Its main advantage over existing solvers becomes more apparent on highly constrained non-metric problems
in GTSP+-Lib and SAT-Lib, where it is able to find feasible solutions when the other solvers are not. On
SAT-Lib, the solution quality for GLNS is consistently an order of magnitude better than GK or GLKH.
This makes the GLNS solver a particularly good choice for solving GTSP problems that have non-native
GTSP constraints encoded into the problem instance.

A weakness of the GLNS solver is its performance on some instances with Euclidean structure. In
particular, GLKH shows better performance than GLNS on the largest instances in Large-Lib, and GK
shows better performance on the low-x instances in GTSP+-Lib that still maintain much of the structure of
the underlying Euclidean instance. An explanation for this is that GLNS lacks any optimization routines that
exploit the structure of Euclidean (or metric or symmetric) instances. A key component of the GLKH solver
is its ability to identify candidate edges (via α-nearness [12]) that are likely to be in optimal tours, and this
appears to be very effective on Euclidean instances. The GK solver utilizes a wide array of local improvement
methods, including 2-opt local search, which are effective for Euclidean and symmetric instances.

7. Conclusions and Future Work

In this paper we presented GLNS, a new solver for the GTSP based on adaptive large neighborhood
search. At the core of the solver is a unified insertion mechanism that contains as special cases the well-
known nearest, farthest, and random insertions. This mechanism is also used to provide a unified removal
method. In our extensive benchmarking, we have found that the GLNS solver outperforms the state-of-
the-art GLKH and GK solvers on several problem libraries. In particular, we found that when compared
to existing approaches, the GLNS solver performs particularly well on libraries that are non-metric and/or
contain non-clustered vertex sets. These types of problems frequently arise when reducing a related vehicle
routing problem to a GTSP instance.

The GLNS solver was designed with the goal of achieving good performance on a diverse set of prob-
lem types, and as such it does not have any special optimization mechanisms for Euclidean instances. In
particular, even if the input is given as a list of vertex coordinates, it is converted to a complete distance
matrix prior to solving. For problems consisting of more than 10,000 vertices, the size of this distance matrix
becomes very large, which is why we do not test on instances significantly larger than this size. This is an
area of future improvement. In addition, the SAT-Lib and GTSP+-Lib libraries provide two sets of moder-
ately sized problems (compared to those in Large-Lib) that are challenging for current GTSP solvers, and
for which significant future performance improvements are possible. Another important avenue for future
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work is to extend GLNS to handle overlapping sets and the “at least one in a set” GTSP variant. Many
problems, including the pairwise constraints in GTSP+-Lib, have a more succinct reduction to the GTSP
with overlapping sets, and thus this could provide a promising method to handle these challenging types of
constraints.
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[26] S. Ropke, D. Pisinger, An adaptive large neighborhood search heuristic for the pickup and delivery
problem with time windows, Transportation science 40 (4) (2006) 455–472.

[27] D. Pisinger, S. Ropke, A general heuristic for vehicle routing problems, Computers & Operations Re-
search 34 (8) (2007) 2403–2435.

[28] V. C. Hemmelmayr, J.-F. Cordeau, T. G. Crainic, An adaptive large neighborhood search heuristic for
two-echelon vehicle routing problems arising in city logistics, Computers & Operations Research 39 (12)
(2012) 3215–3228.

[29] G. M. Ribeiro, G. Laporte, An adaptive large neighborhood search heuristic for the cumulative capaci-
tated vehicle routing problem, Computers & Operations Research 39 (3) (2012) 728–735.

[30] G. R. Mauri, G. M. Ribeiro, L. A. N. Lorena, G. Laporte, An adaptive large neighborhood search for
the discrete and continuous berth allocation problem, Computers & Operations Research 70 (2016)
140–154.

[31] D. J. Rosenkrantz, R. E. Stearns, P. M. Lewis, II, An analysis of several heuristics for the traveling
salesman problem, SIAM Journal on Computing 6 (3) (1977) 563–581.

[32] J. Renaud, F. F. Boctor, An efficient composite heuristic for the symmetric generalized traveling sales-
man problem, European Journal of Operational Research 108 (3) (1998) 571–584.

[33] E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, S. Schulenburg, Hyper-heuristics: An emerging
direction in modern search technology, in: Handbook of metaheuristics, Springer, 2003, pp. 457–474.

[34] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, J. R. Woodward, A classification of hyper-
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Appendix A. Detailed Library Results

In each table, each instance was run ten times. The column Best Val. records the cost of the best known so-
lution. For each run we calculate the gap from the best known as 100×(Run Cost−Best Known)/Best Known,
and ∆(%) is the average percentage gap over the 10 runs. The column # B gives the number of times the
best known solution was found in the ten runs. Instances were run as either 300 second or 1,200 seconds
persistent tests, as described in Section 6.4. The settings are detailed in each table caption.

Name Best Val. GLNS GLKH GK

# B ∆(%) # B ∆(%) # B ∆(%)

31pr152 51,576 10 0.00 10 0.00 10 0.00
32u159 22,664 10 0.00 10 0.00 10 0.00
35ftv170 1,205 10 0.00 10 0.00 10 0.00
35si175 5,564 10 0.00 10 0.00 10 0.00
36brg180 4,420 10 0.00 10 0.00 10 0.00
39rat195 854 10 0.00 10 0.00 10 0.00
40d198 10,557 10 0.00 10 0.00 10 0.00
40kroa200 13,406 10 0.00 10 0.00 10 0.00
40krob200 13,111 10 0.00 10 0.00 10 0.00
41gr202 23,301 10 0.00 10 0.00 10 0.00
45ts225 68,340 10 0.00 10 0.00 10 0.00
45tsp225 1,612 10 0.00 10 0.00 10 0.00
46gr229 71,972 10 0.00 10 0.00 10 0.00
46pr226 64,007 10 0.00 10 0.00 10 0.00
53gil262 1,013 10 0.00 10 0.00 10 0.00
53pr264 29,549 10 0.00 10 0.00 10 0.00
56a280 1,079 10 0.00 10 0.00 10 0.00
60pr299 22,615 10 0.00 10 0.00 10 0.00
64lin318 20,765 10 0.00 10 0.00 10 0.00
65rbg323 471 10 0.00 10 0.00 10 0.00
72rbg358 693 10 0.00 10 0.00 10 0.00
80rd400 6,361 10 0.00 10 0.00 10 0.00
81rbg403 1,170 10 0.00 10 0.00 10 0.00
84fl417 9,651 10 0.00 10 0.00 10 0.00
87gr431 101,946 10 0.00 10 0.00 10 0.00
88pr439 60,099 10 0.00 10 0.00 10 0.00
89pcb442 21,657 10 0.00 10 0.00 10 0.00
89rbg443 632 10 0.00 10 0.00 8 0.05
99d493 20,023 10 0.00 10 0.00 10 0.00
107ali535 128,639 10 0.00 10 0.00 10 0.00
107att532 13,464 10 0.00 10 0.00 10 0.00
107si535 13,502 10 0.00 10 0.00 10 0.00
113pa561 1,038 10 0.00 10 0.00 10 0.00
115rat575 2,388 10 0.00 10 0.00 10 0.00
115u574 16,689 10 0.00 10 0.00 10 0.00
131p654 27,428 10 0.00 10 0.00 10 0.00
132d657 22,498 10 0.00 7 0.02 7 0.00
134gr666 163,028 10 0.00 9 0.00 7 0.14
145u724 17,272 5 0.02 9 0.02 10 0.00
157rat783 3,262 2 0.07 5 0.04 2 0.09
200dsj1000 9,187,884 1 0.06 7 0.02 7 0.05
201pr1002 114,311 6 0.02 10 0.00 6 0.02
207si1032 22,306 0 0.07 2 0.07 2 0.01
212u1060 106,007 1 0.07 0 0.07 3 0.12
217vm1084 130,704 4 0.11 9 0.02 10 0.00

Average 8.87 0.01 9.29 0.01 9.16 0.01

Table A.7: GTSP-Lib, GLNS (mode=medium) vs GLKH (parameters set using GTSP-Lib mode from [23]) and GK. All
experiments were run for 300 seconds.
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Name Best Val. GLNS GLKH GK

# B ∆(%) # B ∆(%) # B ∆(%)

50i2000-603 4,325 10 0.00 8 0.10 10 0.00
50i2500-707 3,961 4 0.05 4 0.65 10 0.00
50i3000-802 4,070 10 0.00 4 1.38 10 0.00
50kroA100 15,944 10 0.00 10 0.00 10 0.00
50kroB100 15,842 10 0.00 10 0.00 10 0.00
50lin105 11,294 10 0.00 10 0.00 10 0.00
50lin318 18,163 10 0.00 10 0.00 10 0.00
50nrw1379 7,449 10 0.00 9 0.09 10 0.00
50pcb1173 9,385 10 0.00 10 0.00 10 0.00
50pcb442 14,430 10 0.00 10 0.00 10 0.00
50pr1002 54,583 10 0.00 9 0.02 10 0.00
50pr439 45,253 10 0.00 10 0.00 10 0.00
50rat783 1,626 10 0.00 10 0.00 10 0.00
50rat99 814 10 0.00 10 0.00 10 0.00
50vm1084 54,156 10 0.00 10 0.00 10 0.00
72vm1084-8x9 64,647 10 0.00 7 0.12 10 0.00
75lin105 13,134 10 0.00 10 0.00 10 0.00
81vm1084-9x9 69,659 10 0.00 10 0.00 10 0.00
100i1000-410 5,481 10 0.00 3 0.26 9 0.07
100i1500-506 5,088 10 0.00 1 0.40 9 0.03
100i2000-604 5,316 10 0.00 0 2.83 9 0.05
100i2500-708 5,297 9 0.00 0 3.27 10 0.00
100i3000-803 5,458 8 0.01 0 3.54 8 0.01
100nrw1379 10,566 10 0.00 2 0.62 10 0.00
100pcb1173 13,901 10 0.00 2 0.52 3 0.19
100pr1002 74,269 10 0.00 4 0.05 7 0.00
100prb1173-10x10 12,644 10 0.00 5 0.19 10 0.00
100rat783 2,496 10 0.00 10 0.00 10 0.00
100rat783-10x10 2,216 10 0.00 10 0.00 10 0.00
100vm1084 78,440 10 0.00 6 0.08 10 0.00
144pcb1173-12x12 16,412 10 0.00 1 0.22 0 0.18
144rat783-12x12 2,813 10 0.00 5 0.21 10 0.00
150i1000-411 6,296 10 0.00 8 0.11 10 0.00
150i1500-507 6,085 10 0.00 6 0.41 10 0.00
150i2000-605 5,940 9 0.00 1 1.09 10 0.00
150i2500-709 6,158 10 0.00 0 3.77 6 0.08
150i3000-804 6,551 0 0.36 0 5.92 6 0.09
150nrw1379 13,370 10 0.00 2 0.52 2 0.14
150pcb1173 17,082 10 0.00 2 0.49 4 0.16
150pr1002 92,969 10 0.00 7 0.05 10 0.00
150rat783 3,131 9 0.01 3 0.26 6 0.14
150vm1084 95,922 9 0.00 4 0.15 10 0.00
200i2000-606 7,272 7 0.03 0 1.29 1 0.15
200i2500-710 7,191 4 0.07 0 3.36 1 0.14
200i3000-805 6,902 4 0.26 0 4.93 9 0.00

Average 9.18 0.02 5.40 0.82 8.44 0.03

Table A.8: MOM-Lib, GLNS (mode=medium) vs GLKH (parameters set using Large-Lib mode from [23]) and GK. All
experiments were run for 300 seconds.
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In this table, an E is used to mark instances in which the GK solver faulted (i.e., it ran out of memory).

Name Best Val. GLNS GLKH GK

# B ∆(%) # B ∆(%) # B ∆(%)

10C1k 2,522,585 10 0.00 10 0.00 10 0.00
31C3k 3,553,142 10 0.00 10 0.00 10 0.00
49usa1097 10,337 10 0.00 10 0.00 10 0.00
200C1k 6,375,154 10 0.00 10 0.00 10 0.00
200E1k 9,662,857 4 0.05 2 0.21 4 0.10
235pcb1173 23,399 7 0.02 2 0.42 4 0.30
259d1291 28,400 2 0.26 3 0.23 4 0.11
261rl1304 150,468 8 0.04 3 0.22 1 0.22
265rl1323 154,023 1 0.05 1 0.12 0 0.08
276nrw1379 20,050 0 0.38 4 0.28 2 0.23
280fl1400 15,316 10 0.00 10 0.00 10 0.00
287u1432 54,469 0 0.39 0 0.45 1 0.13
316fl1577 14,182 10 0.00 6 0.00 5 0.00
331d1655 29,443 4 0.07 3 0.23 0 0.31
350vm1748 185,459 0 0.41 0 0.18 0 0.19
364u1817 25,530 0 0.40 1 0.22 1 0.26
378rl1889 184,034 0 0.60 1 0.26 0 0.24
421d2103 40,049 0 0.63 0 0.62 0 0.64
431u2152 27,614 0 0.75 0 0.80 0 0.56
464u2319 65,758 0 1.05 0 1.70 0 0.71
479pr2392 169,874 0 0.91 0 1.24 0 0.74
608pcb3038 52,416 0 1.51 0 1.67 0 2.69
633C3k 10,255,031 0 0.26 3 0.13 0 1.24
633E3k 16,197,552 0 1.91 0 1.63 0 3.62
759fl3795 18,662 0 0.29 0 0.13 0 0.87
893fnl4461 63,163 0 2.93 0 2.85 0 6.45
1183rl5915 309,243 0 7.36 0 2.67 0 E
1187rl5934 295,767 0 6.96 0 2.33 0 E
1480pla7397 12,732,870 0 7.14 0 1.02 0 E
100C10k 6,158,999 0 0.27 0 3.31 0 E
2000C10k 18,044,846 0 5.58 0 1.17 0 E
2000E10k 28,769,011 0 8.46 0 3.77 0 E
2370rl11849 427,996 0 9.47 0 3.68 0 E

Average* 3.31 0.50 3.04 0.52 2.77 0.76

Table A.9: Large-Lib, GLNS (mode=medium) vs GLKH (parameters set using Large-Lib mode from [23]) and GK. All
experiments were run for 1,200 seconds. An E is used to mark instances in which the GK solver faulted. *Averages only reflect
instances where all three solvers were able to find solutions.
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Name Best Val. GLNS GLKH GK

# B ∆(%) # B ∆(%) # B ∆(%)

baf20kroD100 5,266 10 0.00 10 0.00 10 0.00
baf20kroE100 5,449 10 0.00 10 0.00 10 0.00
baf20rat99 230 10 0.00 10 0.00 10 0.00
baf20rd100 1,747 10 0.00 10 0.00 10 0.00
baf21eil101 105 10 0.00 10 0.00 10 0.00
baf21lin105 2,758 10 0.00 10 0.00 10 0.00
baf22pr107 6,849 10 0.00 10 0.00 10 0.00
baf24gr120 1,377 10 0.00 10 0.00 10 0.00
baf25pr124 10,745 10 0.00 10 0.00 10 0.00
baf26bier127 11,740 10 0.00 10 0.00 10 0.00
baf28pr136 17,824 10 0.00 10 0.00 10 0.00
baf29pr144 14,070 10 0.00 10 0.00 10 0.00
baf30kroA150 7,005 10 0.00 10 0.00 10 0.00
baf30kroB150 5,855 10 0.00 10 0.00 10 0.00
baf31pr152 13,002 10 0.00 10 0.00 10 0.00
baf32u159 7,301 10 0.00 5 2.50 10 0.00
baf39rat195 477 10 0.00 3 0.75 9 0.04
baf40d198 1,466 10 0.00 10 0.00 8 0.12
baf40kroA200 7,113 10 0.00 10 0.00 10 0.00
baf40kroB200 7,126 10 0.00 2 2.57 10 0.00
baf41gr202 3,531 10 0.00 10 0.00 10 0.00
baf45ts225 25,697 10 0.00 10 0.00 10 0.00
baf46pr226 13,555 10 0.00 2 11.17 10 0.00
baf53gil262 571 10 0.00 2 0.86 1 0.47
baf53pr264 7,716 10 0.00 4 1.90 9 0.02
baf60pr299 10,047 10 0.00 0 6.91 10 0.00
baf64lin318 7,489 10 0.00 4 5.79 9 0.07
baf80rd400 3,254 10 0.00 2 2.97 9 0.04
baf84fl417 2,226 10 0.00 0 8.76 10 0.00
baf87gr431 10,569 10 0.00 1 2.40 10 0.00
baf88pr439 13,882 1 0.03 0 4.37 9 0.23
baf89pcb442 8,749 10 0.00 0 22.11 10 0.00
baf99d493 3,081 10 0.00 3 0.88 10 0.00
baf107att532 3,880 10 0.00 0 15.96 1 0.55
baf107si535 8,912 10 0.00 9 0.00 10 0.00
baf113pa561 431 0 1.07 0 9.51 1 0.97
baf115rat575 1,330 10 0.00 0 8.36 0 1.59
baf131p654 5,824 4 0.03 0 52.17 4 0.03
baf132d657 8,132 10 0.00 0 18.27 8 0.09
baf145u724 7,354 10 0.00 0 14.09 0 3.64
baf157rat783 1,700 8 0.06 0 28.26 1 3.62
baf201pr1002 48,400 0 1.78 0 22.38 0 1.33
baf207si1032 18,836 7 0.01 0 3.33 8 0.01
baf212u1060 38,639 1 0.12 0 43.26 8 0.09
baf217vm1084 44,681 10 0.00 0 3.55 10 0.00

Average 8.91 0.07 5.04 6.51 8.11 0.29

Table A.10: BAF-Lib, GLNS (mode=medium) vs GLKH (parameters set using Large-Lib mode from [23]) and GK. All
experiments were run for 300 seconds.
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In Table A.11, for the column B/F, the first number gives the number of runs (out of 10) in which the
solver found the best known solution. The second number gives the number of times a feasible solution was
found, where feasible is defined as a tour with no infinite edges. For example, an entry 5/6 would indicate
that the solver found a feasible solution (one without infinite cost edges) in 6 of the 10 trials, and 5 of those 6
feasible solutions were the best known. The average percentage gap from the best known ∆(%) is calculated
on the subset of runs that found feasible solutions. When no feasible solution is found in all 10 runs, a dash
“-” is used to populate the corresponding entries.

Name Best Val. GLNS GLKH GK

Best B/F ∆(%) Best B/F ∆(%) Best B/F ∆(%)

35si175 x05 5,574 5,574 7/10 0.04 5,574 10/10 0.00 5,574 10/10 0.00
35si175 x10 5,574 5,588 0/10 0.39 5,578 0/10 0.47 5,574 8/10 0.24
35si175 x15 5,574 5,595 0/10 0.46 5,627 0/10 1.49 5,574 10/10 0.00
35si175 x20 5,574 5,600 0/10 0.47 5,640 0/10 2.32 5,574 7/10 0.28
35si175 x25 5,574 5,608 0/10 0.61 5,755 0/10 4.08 5,574 3/10 0.62
35si175 x30 5,586 5,624 0/10 0.71 5,703 0/9 4.01 5,586 1/10 1.28
35si175 x35 5,633 5,658 0/10 0.64 5,783 0/4 3.98 5,633 1/10 1.08
35si175 x40 5,635 5,730 0/10 1.69 - 0/0 - 5,635 1/10 1.05
35si175 x45 5,710 5,736 0/10 0.49 - 0/0 - 5,710 1/10 1.52
35si175 x50 5,626 5,736 0/10 2.02 - 0/0 - 5,626 1/10 2.52
35si175 x55 5,764 5,764 4/10 0.07 - 0/0 - 5,768 0/10 0.88
35si175 x60 5,781 5,785 0/10 0.18 - 0/0 - 5,781 1/5 3.17
35si175 x65 5,712 5,739 0/10 0.78 - 0/0 - 5,712 1/2 1.98
35si175 x70 5,787 5,801 0/10 0.52 - 0/0 - - 0/0 -
35si175 x75 5,784 5,805 0/10 1.05 - 0/0 - 5,972 0/2 4.49
53gil262 x05 1,013 1,015 0/10 0.20 1,014 0/10 0.21 1,013 8/10 0.17
53gil262 x10 1,013 1,015 0/10 0.21 1,031 0/10 3.30 1,013 6/10 0.19
53gil262 x15 1,015 1,026 0/10 1.52 1,028 0/10 3.40 1,015 1/10 0.99
53gil262 x20 1,017 1,019 0/10 0.40 1,064 0/9 6.60 1,018 0/10 4.07
53gil262 x25 1,018 1,021 0/10 1.01 1,119 0/8 11.95 1,024 0/10 3.43
53gil262 x30 1,022 1,023 0/10 0.38 1,092 0/4 9.34 1,024 0/10 5.23
53gil262 x35 1,027 1,029 0/10 0.62 1,138 0/9 14.65 1,058 0/10 9.28
53gil262 x40 1,021 1,021 1/10 0.23 - 0/0 - 1,084 0/10 11.16
53gil262 x45 1,026 1,026 2/10 0.63 1,306 0/3 30.47 1,105 0/8 15.22
53gil262 x50 1,028 1,028 1/10 3.63 - 0/0 - 1,170 0/9 21.26
53gil262 x55 1,026 1,048 0/10 6.76 - 0/0 - 1,220 0/4 36.70
53gil262 x60 1,027 1,066 0/10 8.78 - 0/0 - - 0/0 -
53gil262 x65 1,032 1,043 0/10 7.43 - 0/0 - - 0/0 -
53gil262 x70 1,041 1,108 0/10 14.67 - 0/0 - - 0/0 -
64lin318 x05 21,061 21,318 0/10 1.66 21,156 0/10 0.98 21,061 8/10 0.44
64lin318 x10 21,228 21,559 0/10 2.30 21,930 0/8 4.99 21,228 1/10 1.96
64lin318 x15 21,447 21,876 0/10 2.25 22,696 0/1 5.82 21,447 1/10 1.52
64lin318 x20 21,826 22,062 0/10 1.37 23,265 0/1 6.59 21,826 1/10 2.83
64lin318 x25 22,284 22,547 0/10 1.43 24,068 0/1 8.01 22,284 1/10 3.68
64lin318 x30 22,423 22,536 0/10 1.42 - 0/0 - 22,769 0/10 3.89
64lin318 x35 22,718 22,779 0/10 1.04 - 0/0 - 23,326 0/10 7.57
64lin318 x40 22,874 22,876 0/10 0.95 - 0/0 - 23,979 0/10 7.67
64lin318 x45 22,954 23,029 0/10 1.66 - 0/0 - 25,137 0/5 17.84
64lin318 x50 23,217 23,240 0/10 1.40 - 0/0 - - 0/0 -
64lin318 x55 23,176 23,204 0/10 3.67 - 0/0 - - 0/0 -
99d493 x05 20,042 20,198 0/10 0.81 20,263 0/10 1.69 20,042 1/10 0.84
99d493 x10 20,318 20,484 0/10 1.08 20,530 0/9 2.74 20,318 1/10 1.78
99d493 x15 20,413 20,483 0/10 0.86 - 0/0 - 20,921 0/8 3.88
99d493 x20 20,677 20,763 0/10 0.77 - 0/0 - 22,638 0/2 11.08
99d493 x25 20,800 20,988 0/10 2.55 - 0/0 - - 0/0 -
99d493 x30 20,873 21,556 0/10 6.03 - 0/0 - - 0/0 -
157rat783 x05 3,297 3,301 0/10 0.63 3,514 0/7 7.75 3,309 0/10 2.42
157rat783 x10 3,357 3,363 0/10 0.80 3,638 0/1 8.37 3,904 0/10 33.39
157rat783 x15 3,413 3,450 0/10 2.52 - 0/0 - - 0/0 -
157rat783 x20 3,482 3,557 0/10 3.76 4,045 0/1 16.17 - 0/0 -

Table A.11: GTSP+-Lib, GLNS (mode=medium) vs GLKH (parameters set using Large-Lib mode from [23]) and GK. All
experiments were run for 300 seconds.
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In Table A.12, column Avg. records the average number of infinite cost edges in the solution. An E is
used to mark instances in which the GK solver faulted (it ran out of memory).

Name Best Val. GLNS GLKH GK

# B Avg. # B Avg. # B Avg.

uf20 s114 v316 0 10 0 0 1 0 1
aim s153 v403 0 8 0 0 2 0 1
aim s263 v682 0 0 1 0 4 0 2
uf50 s271 v757 0 10 0 0 4 0 4
aim s303 v802 0 0 1 0 6 0 4
flat30 s393 v813 0 10 0 0 10 0 6
uf75 s403 v1128 0 10 0 0 11 0 9
aim s523 v1362 0 0 1 0 11 0 9
uf100 s533 v1493 0 1 1 0 15 0 14
aim s603 v1602 0 0 1 0 18 0 19
ais6 s645 v1476 0 2 0 0 8 0 21
uf125 s666 v1867 0 0 1 0 18 0 25
flat50 s698 v1443 0 1 1 0 23 0 25
uf150 s798 v2238 0 2 1 0 22 0 36
jnh204 s903 v4117 0 0 1 0 28 0 99
jnh205 s903 v4114 0 0 1 0 31 0 89
jnh207 s903 v4139 0 0 2 0 29 0 92
jnh209 s903 v4105 0 0 1 0 30 0 98
jnh210 s903 v4118 0 6 0 0 29 0 85
jnh212 s903 v4135 0 0 2 0 30 0 94
jnh213 s903 v4103 0 0 1 0 33 0 90
jnh217 s903 v4142 0 0 1 0 29 0 95
jnh218 s903 v4108 0 1 1 0 28 0 94
jnh220 s903 v4126 0 0 1 0 31 0 92
uf175 s931 v2612 0 0 4 0 28 0 65
jnh1 s953 v4595 0 0 3 0 33 0 120
jnh7 s953 v4363 0 0 2 0 38 0 105
jnh301 s1003 v4857 0 0 3 0 40 0 141
uf200 s1063 v2983 0 0 7 0 35 0 E
flat75 s1068 v2208 0 0 7 0 36 0 E
uf225 s1188 v3333 0 0 16 0 37 0 E

Average* 2.18 1.37 0.00 21.62 0.00 55.29

Table A.12: SAT-Lib, GLNS (mode=medium) vs GLKH (parameters set using Large-Lib mode from [23]) and GK. All
experiments were run for 1,200 seconds. An E is used to mark instances in which the GK solver faulted. *Averages only reflect
instances where all three solvers were able to find solutions.
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Appendix B. Details of Solver Settings for Tuning

In the following we describe each of the settings for the experiment shown in Table 3. Each setting is a
modification of the configuration described in Table 2, and here we detail the modification for each.

Tuning Setting Description

Default GLNS configuration Medium configuration as described in Table 2.

Random insertion Tinit Initial tour is constructed using rand insert instead of random.

Nearest, farthest, random Insertion mechanisms are limited to nearest, farthest, and random insertion.
This is done using insertion values λ of 0, 1, and ∞.

No adaptive weights Adaptive weights are turned off by setting ε = 0.

No cheapest insertion Cheapest insertion is disabled.

No noise Additive noise is disabled in the insertion mechanisms.

No local optimizations Local optimizations (Section 5.5) after each iteration are disabled.

Subset and additive noise In addition to additive noise, subset noise (Section 3.5) is enabled, and is
configured with f values of 0.25 and 0.5.

Only subset noise Subset noise is enabled and Additive noise is disabled. Subset noise used f
values of 0.25 and 0.5.

No restarts Warm restarts are disabled by setting num warm = 0 and num trials is in-
creased to 10, so that the total runtime is approximately equal to that of the
default setting.

Worst and random removal Removal mechanisms are limited to worst and random removal. This is done
using removal values λ of 1 and ∞.

One trial One long trial is used, with no warm restarts. This is done by setting
num trials to 1, num warm to 0, and increasing num iterations to 800m such
that the total runtime is approximately equal to that of the default setting.

Settings 3 and 11 Insertions are limited to nearest, farthest and random (i.e., λ ∈ {0, 1,∞}).
Removals are limited to worst and random (i.e., λ ∈ {1,∞}).

Table B.13: Details of each solver setting used in the tuning results of Table 3.

29


