
Noname manuscript No.
(will be inserted by the editor)

Active Sensing for Motion Planning in Uncertain Environments via Mutual
Information Policies

Ryan A. MacDonald · Stephen L. Smith

the date of receipt and acceptance should be inserted later

Abstract This paper addresses path planning with real-time reaction to environmental uncertainty. The
environment is represented as a robotic roadmap, or graph, and is uncertain in that the edges of the
graph are unknown to the robot a priori. Instead, the robots prior information consists of a distribution
over candidate edge sets, modelling the likelihood of certain obstacles in the environment. The robot can
locally sense the environment, and at a vertex, can determine the presence or absence of some subset of
edges. Within this model, the Reactive Planning Problem provides the robot with a start location and a
goal location and asks it to compute a policy that minimizes the expected travel and observation cost.
In contrast to computing paths that maximize the probability of success, we focus on complete policies
(i.e., policies that are guaranteed to navigate the robot to the goal, or determine no such path exists). We
prove that the problem is NP-Hard and provide a suboptimal, but computationally efficient solution. This
solution, based on mutual information, returns a complete policy and a bound on the gap between the
policy’s expected cost and the optimal. We test the performance of the policy and the lower bound against
that of the optimal policy and explore the effects of errors in the robot’s prior information on performance.
Simulations are run on a flexible factory scenario to demonstrate the scalability of the proposed approach.
Finally, we present a method to extend this solution to robots with faulty sensors.

Keywords Motion and Path Planning, Planning under Uncertainty, Mutual Information

1 Introduction

Robot motion planning under uncertainty is typically concerned with uncertainty in the robot’s state
within an environment and/or uncertainty in the outcome of a selected action on the robot’s state (Binney
& Sukhatme 2012, Dames et al. 2012, Hollinger et al. 2012, Javdani et al. 2014, Kaelbling & Lozano-Pérez
2013, Yu et al. 2014). In this work, we consider motion planning with uncertainty in the set of motion
actions that a robot has access to at a given state. This problem arises in scenarios where the robot is
given a set of possible locations for obstacles in an environment. The obstacles restrict the set of motions
available to the robot at each point in the environment. By taking sensor measurements, the robot can
narrow down the set of feasible obstacle locations and thus the motion actions it has available. Our goal
is to compute motion and sensing policies prior to robot deployment that enable the robot to efficiently
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navigate in such environments. In this paper, we focus on the task of moving from a start location to a
goal location while minimizing the expected action cost. The challenge in this problem is that future costs
(for obtaining information and moving between locations) are dependent on the information the robot has
obtained thus far. We present conditions where exploration is no longer helpful. When these conditions are
met, the robot should exploit the known motion action set to reach the goal. We also develop a policy that
provides constant time lookup for the next action given the outcomes of prior observations. This allows for
implementation on robots where on-board computational resources are limited at deployment, or in which
high-speed motion is required.

1.1 Related Work

In robotics, there are several effective methods for dealing with uncertainty. Point-to-point motion is ad-
dressed by Bhattacharya et al. (2015) using persistent paths, which maximize the probability of success.
However, if the computed path is obstructed, the robot ends without finishing the task (i.e., failure). To
avoid failure, Partially Observable Markov Decision Processes (POMDPs) can be used to compute reactive
motion policies (Bai et al. 2014, Chen et al. 2016, Kaelbling & Lozano-Pérez 2013, Van Den Berg et al.
2012). A POMDP selects actions based on partially observed states, but the computation of policies is in
general a PSPACE-Complete problem (Papadimitriou & Tsitsiklis 1987). In our work, we are interested
in cases where the environment has a very large state space; for these cases, the POMDP’s scalability
becomes a barrier to use (LaValle 2006). To avoid the computational complexity, algorithms like lifelong
planning A* and D* lite allow the robot to replan during execution (Koenig & Likhachev 2005, Koenig
et al. 2004) for the case when the robot’s location is fully observable. Replanning is also used by Kaelbling
& Lozano-Pérez (2013) in their more general problem to form a compact policy, which is followed until
the robot transitions to a state outside of the policy and triggers a replan. These replanning phases often
provide much needed space complexity savings. In contrast, this work targets complete policies in which
all reachable robot states are contained in a compact policy, and thus, the robot does not need to replan
during execution.

The Informative Path Planning (IPP) problem is studied in several works (Javdani et al. 2014, Lim
et al. 2015, Yu et al. 2014), all of which provide methods for real-time reaction to information within the
environment. Research in this area focuses on tasks ranging from underwater inspection (Hollinger et al.
2012) to maximizing information from start to goal (Binney & Sukhatme 2012). Similarly, active sensing
(Wang et al. 2016) and active perception (Best et al. 2016) allow autonomous robot(s) to intelligently
collect data based on prior observations. These works plan policies or paths prior to deployment of the
robot and react to new information collected by the robot, where the robot’s possible actions are known
prior. In contrast, we consider cases where information may not be attainable until the robot has explored
parts of the environment, which is not captured in this prior work.

In operations research, a closely related problem is planning with recourse and the Canadian Travelers
Problem (CTP). Planning with recourse by Andreatta & Romeo (1988) provides possible obstacle locations,
but assumes obstacles locations are such that there always exists a path to goal. The CTP, in which no
prior information on obstacles is given, is a PSPACE-Complete problem (Papadimitriou & Yannakakis
1991). Remote sensing is added to the CTP by Bnaya et al. (2009) where the agent pays a sensing cost
dependent on its location to determine the absence/presence of a particular obstacle. The authors look to
minimize the sum of sensing and traversal costs and present a value of information model to decide when to
use remote sensing. This decision is made for single obstacles where as in our work, the prior information
available to the robot allows decisions with correlation between obstacles. To make the CTP more tractable,
Polychronopoulos & Tsitsiklis (1996) introduce the problem R-SSPPR, in which the robot is operating in
one of a finite number of different graphs (realizations), each defined over the same set of vertices and
edges, but with different edge costs. The robot observes outgoing edge costs at each vertex and the goal
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is to minimize the expected cost from start and goal. They present an optimal dynamic program as well
as a feedback heuristic. In contrast, our work considers different graph topologies for each realization, and
a generalized sensing model along with sensing costs. In transportation research, Issac & Campbell (2015)
presents an integer linear program to solve a blocked route problem, in which they select a primary path
and then switch to a secondary path when the primary fails. In contrast, we compute policies that minimize
the expected cost for a robot to reach the goal or realize the goal is unreachable.

Our work leverages the concept of mutual information within discrete environments. Mutual Information
is widely used to develop efficient sub-optimal solutions for gaining information in planning (Charrow et al.
2014, Dames et al. 2016, 2012, Lim et al. 2015). Julian et al. (2014) shows that by maximizing mutual
information within a mapping task, the robot is eventually attracted to unexplored regions. Hollinger &
Sukhatme (2014) uses mutual information to generate a cost constrained path for an information collection
task. Dames et al. (2012) presents a mutual information gradient controller, where multiple robots search
for targets and avoid hazards. We use mutual information to quantify the robot’s value of a sensing action
and combine it with the cost of attaining this information in order to select the next action.

1.2 Contributions

The contributions of this paper are fourfold. First, we introduce the Reactive Planning Problem (RPP) and
prove it is NP-Hard. Second, we provide properties that allow for a compact representation of a RPP policy.
Third, we present an efficient algorithm for a sub-optimal policy for RPP that utilizes mutual information
to guide exploration and uses an estimation of the cost-to-go for exploitation. Fourth, we provide a method
to bound the gap between the expected cost of our policy and that of the optimal.

A preliminary version of this work appeared in WAFR 2016 (MacDonald & Smith 2016). Some key
contributions in comparison to this initial work are that we now provide a general sensor model, we present
a method to compute the optimal policy, and we provide an extension to a class of faulty robot sensors. We
also compare our policy to the optimal in simulation, and we explore the effects of inaccurate prior data
on performance.

1.3 Organization

The organization of this paper is as follows. Section 2 introduces background terminology from graph
theory and the Informative Path Planning problem. The Reactive Planning Problem is defined in Section 3
along with the environmental and robotic models. Section 4 provides problem properties as well as proof
of computational complexity. Several properties from Section 4 are then expanded as a base for scalable
policy generation in Section 5. An extension to robots with faulty sensor models is presented in Section 6.
Finally, simulation results are provided in Section 7.

2 Background

In this section we briefly review graph terminology and the informative path planning problem by Lim
et al. (2015).

2.1 Graph Terminology

A directed graph G is defined by the pair G = (V, E) and a cost function c : E → R. The set V is the set
of vertices that are connected by the set of edges E ⊆ V × V, and c(e) gives the cost of traversing an edge
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e ∈ E. A path P in a graph is defined by a sequence of vertices v1, . . . , vk that satisfies (vi, vi+1) ∈ E for all

i ∈ {1, . . . , k−1} with cost of traversal defined by c(P ) =
∑k−1
i=1 c(vi, vi+1). With some abuse of notation for

v, w ∈ V, c(v, w) refers to the minimum cost of a path from v to w. Given a graph G = (V, E), the subgraph
GE = (V,E) is induced by E ⊆ E with V ⊆ V given by the endpoints of E.

An edge e = (v, u) ∈ E is said to be incident with vertices v and u. As the graph is directed, e is
outgoing at v and incoming at u. Therefore, e is incident-in to u and is incident-out to v with the set of
edges incident-out to v, Iv ⊆ E.

2.2 Informative Path Planning Review

Lim et al. (2015) defines the Informative Path Planning (IPP) problem under noiseless observation as a
tuple (X, d,H, ρ,O, Z, r). A robot starts at r and can visit the set of sensing locations X. The cost of travel
between these locations is d(x, y) for x, y ∈ X. There is a finite set of hypotheses H, which has a probability
mass function ρ, and a set of observations O, which are sensed with Z(x, h, o) for x ∈ X, h ∈ H and o ∈ O.
The function Z returns 1 when o agrees with h and 0 otherwise. The problem then asks to minimize the
expected cost of identifying the correct hypothesis. An optimal policy can be encoded as a binary tree where
nodes contain sensing information and the outgoing edges are selected via the sensing outcome. From Lim
et al. (2015), IPP is NP-hard as it contains the optimal decision tree problem (Chakaravarthy et al. 2007)
as a special case. We will use IPP to prove our problem is NP-Hard (decision form NP-Complete).

3 Problem Definition

We consider a single robot in a discrete environment (i.e., a robotic roadmap). The robot and environment
models are defined using a weighted directed graph G = (V, E , c) where V is a set of locations in the robot
configuration space and E is the set of paths between configurations. The function c captures the costs of
motion, and for each e ∈ E the value c(e) ∈ R≥0 defines the robot’s cost for traversing the corresponding
path. The robot knows the vertex it occupies, but does not know which edges leaving that vertex are free to
traverse (that is, which edges are obstructed by obstacles). If the robot is unsure an edge is free to traverse,
it senses the edge, incurs a sensing cost and traverses it only if the outcome is unblocked. This is formalized
in Section 3.2.

3.1 Environmental Model

The unknown environment is one of m subgraphs of G, denoted G1, . . . , Gm, and we refer to the indices
of these subgraphs as environmental states with environmental state space Nm = {1, . . . ,m}. Each subgraph,
Gi, is induced by a subset of edges Ei ⊆ E for i ∈ Nm. The edge subset Ei captures the obstacle-free
robot transitions in environment i. The robot is given the set of possible edge subsets S = {E1, . . . , Em}
along with a probability mass function (pmf) capturing the likelihood of each subgraph. We encode the
probability as a random variable X that takes values from Nm. Given a random draw x from X, the edge
subset Ex induces the realization Gx = (Vx, Ex, cx) where cx(e) = c(e) for all e ∈ Ex; the robot must operate
in Gx without knowing x.

Note that if every edge subset is possible, m = 2|E|, then the absence or presence of an edge does not
imply the absence or presence of any other edges. In this paper, we focus on cases where m � 2|E|, and
thus observing one edge allows the robot to infer the state of other edges. This is motivated in Section 4.2
by the space complexity required for a control policy.
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Fig. 1 Simple example environment where diagonal cells are not connected. Bars between cells represent an obstacle which
implies the robot cannot traverse between these cells directly. Cells A and B are labelled for future examples.

Example 1 To illustrate the problem, consider Fig. 1 as a simplified model of a small room. A robot is
tasked with delivering a package to cell G, and it starts in cell S. There is a large desk blocking 3 edges in
both environment 1 and 2 but in environment 3 the desk now blocks off cell G. Environment 1 and 3 also
has a small box next to the desk further obstructing traversal.

3.2 Robot Model

When the robot is located at vertex v, it has a finite set of observations Θv = {O1, O2, . . .} where each
O ∈ Θv is a subset of E (i.e., O ⊆ E). Given an observation O ∈ Θv, the function µ, with value µ(O) ∈ R≥0,
captures the cost of sensing which edges (i.e., paths between configurations) of O are free to traverse. Both
Θv, for all v ∈ V , and µ are provided a priori, and we restrict Θv to satisfy Iv ⊆ ∪O∈ΘvO. This ensures
the robot may check if an outgoing edge from v is traversable. Some example observation models include
limiting each observation to one edge (i.e., Θv = Iv for all v ∈ V) or creating an omnidirectional sensor with
one edge range (i.e., Θv = {Iv} for all v ∈ V), which we call the single hop or all neighbors model. Fig. 2
shows three possible sensor models within Environment 1 from Example 1.

If the robot wishes to make an observation O ∈ Θv, it pays µ(O), and it is returned an outcome as the
subset of edges in O that are free to traverse in Ex for environment realization Gx.

Definition 1 (Observation-Outcome) Given a graph (V, E), a vertex v ∈ V and observation O ∈ Θv with
O ⊆ E, an observation is mapped to an outcome by O 7→ O∩Ex. The robot must occupy v to attain O∩Ex.

Observations with respective outcomes allow the robot to rule out environmental states. If an observation

contains edge e but its outcome does not, the robot knows all edge subsets containing e cannot be correct.
Similarly, if the outcome contains e, all edge subsets missing e cannot be correct.

Definition 2 (Consistent) Given a set of observation-outcome pairs O, an edge subset E is consistent
with O if and only if O ∩ E = O ∩ Ex for each (O,O ∩ Ex) ∈ O.

We define Y ⊆ Nm to be the set of environmental states consistent with observation-outcome pairs O
collected by the robot. To avoid collisions with an obstacle in the environment, we impose the restriction
that an edge e can be traversed only when the probability it is unblocked equals one, namely

P(e|Y ) =

∑
i∈Y P(X = i ∩ e ∈ Ei)∑

j∈Y P(X = j)
= 1 . (1)
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Fig. 2 Example observation models: single outgoing edges (left), all neighbors/single hop (middle) or line of sight (right).
Edges between shaded cells are sensed.

If e ∈ E may be blocked (i.e., P(e|Y ) ∈ (0, 1)), the robot can take an observation O with e ∈ O, incur
observation cost µ(O) and proceed across the edge when e is in the outcome. Given a belief Y and observation

O, the set of all possible outcomes is defined by Γ(Y,O) ≡ {E ⊆ E|E = O ∩ Ei for i ∈ Y }.

3.3 Policy Space

The robot state is characterized by the set of environmental states Y ⊆ Nm that are consistent with its
observation-outcome pairs and the vertex v it occupies. Thus, the robot state space is (2Nm ,V). At each
state (Y, v), the robot selects an action from (2E , {observe, move, terminate}). The observations available
to the robot are (O, observe) for each O ∈ Θv. The move actions available to the robot are (e,move)
where e ∈ Iv and e is obstacle-free (i.e., P(e|Y ) = 1). Finally, the robot can terminate using the ac-
tion (∅, terminate). Thus, a policy π maps the robot state space to the set of actions, π : (2Nm ,V) →
(2E , {observe, move, terminate}).

Given a start and goal s, g ∈ V, the environmental state space Nm is partitioned into Ygoal = {i ∈
Nm | c(s, g) calculated on Gi is finite} and Yno goal otherwise. We restrict policies to satisfy the following
definition:

Definition 3 (Complete Policy) A policy π is complete if for any realization it produces a finite sequence
of actions that reach the goal (i.e., a state (Y, g) with Y ⊆ Ygoal) or that determine no path exists (i.e., a
state (Y, v) with Y ⊆ Yno goal).

Note: There are environments for which no complete policy exists. Consider Fig. 3 with a single edge
observation model, Θv = Iv. The robot must move to A or B in order to identify the realization in which
it resides. If the robot arrives at A and the edge to g is obstructed, then it must terminate, yet there still
exists a path to goal (namely s to B to g). The same issue occurs if the robot instead initially travels to B.
The following is a sufficient condition for a complete policy to exist. Given Gi for any i ∈ Nm, the connected
component containing the start must be strongly connected. In other words, the robot can always opt to
retreat to the start.

A policy π defines a state transition function f : (2Nm ,V)× (2E , {observe, move, terminate})→ (2Nm ,V)
where f updates Y after the observe command and updates v after the move command. Given a realization

X = x where x is drawn from Nm according to the pmf, a policy π emits a sequence of states and actions

(Nm, s), a1, (Y2, v2), a2, . . . , (YT , vT ), (∅, terminate)
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Fig. 3 Subgraph G1 left with P(X = 1) = 0.5 and subgraph G2 right with P(X = 2) = 0.5.

for some finite number T . The cost of an action a is

cost(a) =


c(e) if a = (e,move)

µ(O) if a = (O, sense)

0 otherwise

.

Given random draw x, the total cost incurred using π is given by,

cost(π|X = x) =
T∑
i=1

cost(ai) . (2)

Remark 1 (Policy Domain) Note that the domain of the policy has n2m states. In Section 4 we derive
properties that enable a more compact representation.

3.4 The Reactive Planning Problem

The expected cost of a complete policy π is found by taking the expectation over the environmental states,

EX(π) =
∑
x∈Nm

cost(π|X = x)P(X = x) . (3)

Problem 1 (Reactive Planning Problem, RPP) Given a graph G, start and goal vertices s, g ∈ V, a set
of edge subsets S with corresponding random variable X that has a known probability mass function and
observations Θv for all v ∈ V, find a complete policy π that minimizes EX(π) over induced subgraph Gx for
random draw x from X.

4 Properties and Complexity of Reactive Planning

In this section, we establish several properties of robot actions that enable us to efficiently represent complete

policies along with the complexity of the Reactive Planning Problem.

4.1 Action Properties

As the robot moves along a path P in Gx, it takes a set of observations Ov ⊆ Θv ∪ ∅ at each vertex
v ∈ P , where ∅ is used to denote that no observation is taken at v. We define this sequence of these sets of
observations to be an observed path.

Definition 4 (Observed Path) Given a path P = v1, . . . , vk with observations Ov for all v ∈ P , the
observed path is the sequence OP = Ov1 , . . . ,Ovk .
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The cost of an observed path can be found as the sum of travel costs and observation costs along the path:

cost(OP ) = c(P ) +
k∑
i=1

∑
O∈Ovi

µ(O).

The robot’s understanding of Gx, namely Y , is based on the observed path beginning at a starting vertex s.
Two important subgraphs can be formed within this understanding.

Definition 5 (Known Subgraph) Given a set of environmental states Y , the graph G = (V ,E, c) induced
by E = {e | P(e|Y ) = 1} is the known subgraph.

Definition 6 (Consistent Subgraph) Given a set of environmental states Y , the graph G = (V ,E, c)
induced by E = {e | P(e|Y ) > 0} is the consistent subgraph.

The known subgraph includes only edges that are sure to exist, while the consistent subgraph includes all
edges that may still exist. These graphs are updated as the robot collects constructive observation-outcome

pairs of the environment. We say an observation is constructive if there are at least two different, possible
outcomes.

Definition 7 (Constructive Observation) Given environmental states Y , an observation O is constructive
if there exists i, j ∈ Y such that O ∩ Ei 6= O ∩ Ej .

An observed path can be broken into smaller sections called legs that start at one constructive observation

and end at the next constructive observation.

Definition 8 (Leg) Given an observed path OP , a leg is a subpath of P , namely vi, vi+1, . . . , vj where Ovi
and Ovj are constructive observations, and each Ovi+1 , . . . ,Ovj−1 is an empty set.

A leg can be thought of as a meta-edge between constructive observations. Since the robot can move only on
edges that contain no obstacles, a leg is composed only of edges which are understood to be unobstructed
after the leg’s first observation set Ovi . Therefore, a leg is a sequence of move actions that join constructive

observation actions.

The order in which observations can be visited depends on observation-outcome pairs to date. The
following definition provides a property of an optimal complete policy that can react to the environment
without re-computation of that policy.

Definition 9 (Reachable) Given a known subgraph G and a vertex v, an observation O ∈ Θu is reachable
from v if there exists a path from v to u in G.

The following result ties the notion of reachability to that of legs between constructive observations.

Lemma 1 Consider two consecutive constructive observations O1 and O2 on a path P . Let (Y, v) be the robot

state after action (O1, observe) collects outcome O1∩Ex. Then, in the known subgraph G defined by Y , observation

O2 is reachable from v.

Proof After O1 ∩ Ex the understanding of the environment, namely Y , is fixed until the robot gains new
information at O2. With no loss of generality, let O2 ∈ Θu for observation location u ∈ V. The robot can
only select move actions for edges that cannot be blocked given Y . G, defined by Y , contains only edges
that do not need to be observed before traversal; therefore, the robot can only reach O2 if there exists a
path from v to u in G. ut
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4.2 Control Policy Properties

We now show how a complete policy can be efficiently represented by a tree. The nodes of the tree are
tuples (Y,O) where Y corresponds to the consistent environmental states prior to constructive observation O.
The edges of the tree are defined by legs between constructive observations. Every non-leaf node (Y,O) must
have one leg incident-in and |Γ(Y,O)| legs incident-out. The incident-out legs connect (Y,O) to (YE , O

′) for
E ∈ Γ(Y,O) where YE = {i ∈ Y |E = O ∩ Ei}. The robot knows which leg to traverse given outcome O ∩ Ex
matches E ∈ Γ(Y,O). Informally, the tree stitches together the observed paths, starting from vertex s, for
each i ∈ Nm until observation-outcome pairs disagree at which point the tree branches. This allows real-time
reaction in every possible environmental state by Lemma 1. We now discuss the space complexity of this
encoding.

Lemma 2 Any two nodes n1 6= n2 where n1 is not an ancestor or descendent of n2 satisfy Y1 ∩ Y2 = ∅ (i.e.,

the realization at n1 and at n2 must be different).

Proof Let (Y,O) be the youngest ancestor of both node n1 and node n2. Formally, Y1 ∪ Y2 ⊆ Y s.t. Y ⊂ Y ′
for all other ancestors (Y ′, O′). Consider two outcomes E1, E2 ∈ Γ(Y,O) such that Ei ∩O = E1 for all i ∈ Y1
and Ej ∩O = E2 for all j ∈ Y2. If E1 = E2, there exists a node (Y ′, O′) such that Y ′ ⊂ Y and Y1 ∪ Y2 ⊆ Y ′,
but this contradicts the definition of (Y,O). Therefore, E1 6= E2 implies i 6= j for any i ∈ Y1 and any j ∈ Y2
(i.e., Y1 ∩ Y2 = ∅). ut

Lemma 3 A complete policy can be represented as a tree with m− 1 nodes using O(nm+m2) space where n is

the number of vertices in G and m is the number of edge subsets.

Proof The worst case encoding requires the robot to always learn random draw x before terminating. Given
Lemma 2, we can bound the number of constructive observations the robot makes by m−1. Each observation

is a node requiring O(m) space to encode Y and O. We know the lowest cost leg connecting these observations

will visit at most n vertices because non-negative traversal cost allows a path without cycles to always be
minimum cost. Therefore, the policy can be stored as a lookup table of size O(nm+m2). ut

Remark 2 (Policy Encodings) The policy size scales with m which motivates m� 2|E|. A POMDP with nm

states and a MDP with n2m states can be encoded for the RPP, but for our cases this is still very large.

Continuing Example 1, suppose the robot’s observations are Θv = {Iv} for all v ∈ V with zero cost. Let
moving between cells cost 1. Consider the two polices presented in Fig. 4. The robot moves to A or B and
collects IA or IB respectively. Using Eq. 3, the left and right policies in Fig. 4 render expected costs of 6.7
and 7.3 respectively. These policies satisfies both the reachability condition in Lemma 1 and the constructive

observation property, and note the left policy allows the robot to reach G without fully knowing x.

S {1, 2, 3}

IB {1, 2, 3}

G {1, 2} T {3}

S {1, 2, 3}

IA {1, 2, 3}

G {1} T {3}G {2}

4

3 0

2

7 05

Fig. 4 Edge labels are the leg costs and node labels encode Y . T indicates no goal terminal state.
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4.3 Computational Complexity

To establish the complexity of the reactive planning problem, we begin by considering the following variant.

Problem 2 (Probable World Problem, PWP) Given a graph G, a start vertex s ∈ V and a set of
edge subsets S with corresponding random variable X that has a known probability mass function and
observations Θv for all v ∈ V, find a policy π that identifies the induced subgraph Gx for a random draw x

from X and minimizes EX(π).

The objective in Probable World Problem is for the robot to map enough of the environment to determine
which of the m environments it is operating in. On the other hand, the objective of the Reactive Planning
Problem is to reach the goal vertex or determine that the goal cannot be reached.

Proposition 1 The Probable World Problem is NP-Hard, even when all observations have zero cost.

Proof Consider the tuple (X, d,H, ρ,O, Z, r) that defines an instance of IPP from Section 2.2. We will reduce
IPP to PWP. Create a graph of vertices V = A∪B where A mirrors X and B mirrors O. Let r = s. Create
an edge subset Eh for every h ∈ H. In every Eh, connect A with edges of cost defined by d. For each
a ∈ A and b ∈ B, add an edge from a to b ∈ B for subset Eh only if Z(a, h, b) = 1. Set observation model
Θv = {e ∈ E|e ∈ Iv}. Let random variable X’s pmf be in line with ρ. Set µ((a, b)) = 0 for all observations.
Consider a solution S for PWP. Change each visited vertex of A to X and each constructive observation

to respective elements of O for a solution S′. The legs of S contain no verticies of B as B has no path
to constructive observations. Given S identifies random draw x, S′ identifies true hypothesis h. Given IPP
(perfect sensing) is NP-Hard (Lim et al. 2015), PWP must be NP-Hard. ut

Theorem 1 The Reactive Planning Problem is NP-Hard, even when all observations have zero cost.

Proof We will prove this result by reducing PWP to RPP. Consider an instance of PWP. Given the graph
for PWP, add a set of vertices Q with |Q| = m, an intermediary vertex h and a goal vertex g. Connect
every v ∈ V to h with 0 cost for all E ∈ S. Let α be the maximum of all traversal and observation costs.
We can upper bound the expected cost of any optimal policy with α(mn + m2) by Lemma 3. Connect h
bidirectionally with each q ∈ Q with traversal cost of U for all E ∈ S such that (1−P(X = y))U � α(mn+m2)
where Ey ∈ S is the most probable edge subset. Add an edge to Ei ∈ S from qi ∈ Q to g with cost of 0. In
other words, there will only ever be one edge from Q to g, and it is always different for each subset. This
new problem is in the form of RPP.

Suppose, by way of contradiction, there existed a solution to this RPP without solving the original
PWP. This would imply there were at least two environmental states Y consistent with the observations of
an observed path (starting at s) of the policy before attempting to reach g. This policy would move the
robot to qi ∈ Q and observe the edge from qi to g for i ∈ Y (only exists in Ei). The policy must react to
(qi, g) ∩ Ex = ∅. The resulting expected cost is at least piU + (1 − pi)2U . Given (1 − pi)U � α(mn + m2),
there exists a policy that can do better as α(mn+m2) is an upper bound on an optimal policy which is a
contradiction. This shows RPP solves PWP. Given Proposition 1, RPP is NP-Hard. ut

Remark 3 (NP-Complete) In the decision version of RPP we are given a budget and asked to find a complete

policy with expected cost less than or equal the budget. From Lemma 3, it is straightforward to see that
the decision version is in NP, and thus is NP-Complete. Polychronopoulos & Tsitsiklis (1996) provides a
similar result for R-SSPPR.

5 Policy Generation

The Reactive Planning Problem seeks information to reach the goal. In this section we begin by proposing
an efficient heuristic for generating a complete policy. We then show how this heuristic provides a lower
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bound on the cost of the optimal policy. Finally, we provide a exponential-time dynamic program for
computing the optimal policy.

5.1 Mutual Information Policies

In this section we propose an efficient algorithm for computing a complete, but suboptimal policy. The idea
behind the algorithm is to incrementally construct the policy tree. Each node of the tree corresponds to a
robot state (Y, v). We then evaluate the set of constructive observations that are reachable from that state
with respect to two metrics:

1. mutual information, which quantifies the reduction in uncertainty that the observation has on the robot’s
belief Y , and

2. cost-to-go, which quantifies the expected cost for the robot to travel to that observation and then to
the goal.

The first metric is used to encourage exploration to gain more information, while the second encourages
exploitation of existing information. This is then coupled with a pruning condition that quantifies when a
constructive observation is no longer cost effective, independent of how much the uncertainty is reduced.

Given a state (Y, v) we begin by defining the set of all reachable constructive observations. We denote this
set as Rv, which contains observation-vertex pairs (O, u), and is defined as

Rv = {(O, u) | O ∈ Θu is constructive and is reachable from v}.

Recall the definitions of constructive and reachable observations are given in Definitions 7 and 9, respectively.

Exploration: Consider the RPP. By Lemma 1, information can only be collected at the set of reachable

observations. To select which constructive observation is beneficial, we maximize mutual information extended
from (Charrow et al. 2014, Dames et al. 2016, Lim et al. 2015).

Let XY encode the probability distribution over environments given a set of consistent environmental

states Y . Its probability mass function is given by

P(XY = i) =

{ P(X=i)∑
j∈Y P(X=j) for i ∈ Y

0 otherwise
. (4)

Mutual information is the difference between entropy ofXY and conditional entropy ofXY , given a reachable
constructive observation (O, u) ∈ Rv. Formally,

MI(XY , (O,EO)) = H(XY )−H(XY |(O,EO)) . (5)

The entropy of XY , H(XY ), does not depend on the observation outcome pair (O,EO); therefore, this
problem can be reduced to minimization of conditional entropy,

H(XY |(O,EO)) = −
∑

E∈Γ(Y,O)

P(EO = E)
∑
i∈Y

P(XY = i|EO = E) log(P(XY = i|EO = E)) . (6)
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Exploitation: The robot must be able to decide when it has collected enough information. We begin with
the following inequality from the principle of optimality,

cG(v, g) ≤ cG(v, u) + µ(O) + cG(u, g) for each (O, u) ∈ Rv, (7)

where the subscript on the cost function c indicates the realization of the environment in which the cost is
calculated.

Intuitively, making a measurement and going to the goal is at least as expensive as going straight to
the goal in G. The cost calculated in G often performs poorly as an under-estimator for Gx. To address
this, a new cost-to-go function is calculated as an expectation over the possible environmental states Y . The
expected cost-to-go,

CY (u, g) =
∑
i∈Y

cGi(u, g)P(XY = i) , (8)

is found for every vertex u ∈ V. To calculate cGi(u, g), the edges are flipped in each Gi and a shortest path
algorithm is run from g to all other u ∈ Vi. If ci(u, g) is infinite, we set such costs to zero as the robot will
not travel any further (i.e., no goal terminal state).

Eq. 7 is augmented to include the robot’s current environmental understanding and the expected cost-
to-go. Given a (O, u) ∈ Rv, the pruning inequality can be written as

cG(v, g) ≤ cG(v, u) + µ(O) + CY (u, g). (9)

If this inequality is satisfied, then it is less expensive for the robot to traverse straight to the goal than for
it to make observation O at vertex u, and thus this information should not be collected.

Lemma 4 Given a robot state r with constructive observations Rv, if all (O, u) ∈ Rv satisfy Eq. 9, then the

robot should move to the goal.

Proof Consider cG(v, g) =∞. This implies there is no known path to goal. No observation satisfies Eq. 9, so
this trivially holds. Now, consider the case where enough information has been gathered to r = (Y, v) for
cG(v, g) < ∞. If all (O, u) ∈ Rv satisfy Eq. 9, the known cost of making any observation and the expected
cost-to-go is more than the known cost to complete the task. Thus, the robot should move to the goal. ut

Lemma 5 The expected cost-to-go from the start, CNm(s, g), forms a lower bound on the expected cost of any

policy π.

Proof Consider any two environmental states i, j ∈ Nm. If Gi and/or Gj do not have paths to the goal, the
robot must identify the environmental state and return no goal terminal state. To do this, the robot uses
an observed path to gain the information. The cost of such a path is at least 0. The expected cost-to-go for
these cases is always 0. Suppose Gi and Gj can both reach the goal. There is at least one leg the robot must
travel for both Gi and Gj . The expected cost-to-go selects the optimal paths independently. Therefore, the
expected cost of the observed paths from π for i and for j can never be less than the expected cost-to-go,
even if the robot acts optimally otherwise. ut
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Combining Exploration and Exploitation: To combine information gain and motion to goal, we can use any
function of the exploration metric H(XY |(O,EO)) and the exploitation metric cG(v, u) + µ(O) + CY (u, g).

Weighted conditional entropy (Suhov et al. 2015) is a well-studied method for combining entropy with
a second metric, and within this method, when at state (Y, v), we select observations satisfying

Omin = argmin
(O,u)∈Rv

(cG(v, u) + µ(O) + CY (u, g))H (XY |(O,EO)) . (10)

We also test a weighted sum of the terms in order to select observations,

Omin = argmin
(O,u)∈Rv

(cG(v, u) + µ(O) + CY (u, g)) + ρH (XY |(O,EO)) , (11)

where ρ is tuned based on the importance of information. In Section 7, we show the strength of each case.

Detailed Algorithm: Algorithm 1 selects observations that satisfy either Eq. 10 or Eq. 11. It requires the
function Reachable(G,S, (Y, v)) which computes the minimum path lengths d[u] from v to all other vertices
u in the known subgraph G. The set Rv is formed from constructive observations which render finite path cost
from v, where Dv is an array recording the distance d[u] to each vertex u.

Algorithm 1: RPP Minimization of Conditional Entropy Policy

Data: Graph G, edge subsets S, vertices s & g, states Nm, probabilities p
Result: Policy π for RPP and expected cost lower bound lmove

1 Compute cGi(v, g) for all v ∈ V and i ∈ Nm;
2 Let Q contain only (Nm, s);
3 while Q not empty do

4 Remove (Y, v) from Q;
5 if cGi(v, g) =∞ for all i ∈ Y then

6 Mark π, at v for Y , no goal terminal state;

7 else

8 Compute (Rv, Dv) = Reachable(G,S, (Y, v));
9 Remove elements of Rv that satisfy Eq. 9;

10 if |Rv| = 0 then

11 Add leg from v to g, marked goal terminal state, to π;
12 else

13 Let (O, u) ∈ Rv be the minimum of Eq. 10 (or Eq. 11);
14 Add leg from v to u and node (Y,O) to π;
15 Add (YE , u) to Q for each E ∈ Γ(Y,O);

16 Let lmove = CNm(s, g);
17 Return π and lmove;

Remark 4 (Runtime) The runtime is dominated by the m calls to Dijkstra’s Algorithm, which gives com-
plexity O(m(|V|+ |E|) log |V|) (priority queue implemented as a binary heap).

The biased cost when selecting an observation in Line 13 and the pruning condition in Line 9 complement
each other to provide incentive toward the goal. The biased cost encourages observation selection closer to the
goal. Once enough information is gained, the pruning condition removes information that is not important
for the task. When the pruning condition removes all observations from Rv, the robot moves to the goal.
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Remark 5 (Parallel Computation) Given Lemma 2, the policy π, returned by Algorithm 1, is independent of
the order in which states are removed from Q in Line 4 (potential for parallel computation).

Theorem 2 Algorithm 1 returns a complete policy.

Proof Suppose by contradiction, Algorithm 1 did not return a complete policy. This would imply either it
terminates at (Y, g) for Y ⊆ Yno goal (false positive) or it terminates a (Y, v) for v 6= g and there exists y ∈ Y
such that y ∈ Ygoal (false negative).

False positive: Algorithm 1 must have directed the robot to travel over an obstructed edge because
Y ⊆ Yno goal. Since each realization Gi for i ∈ Y does not have a path to goal, the cost cGi(v, g) will be
infinite for all i ∈ Y . Line 5 is satisfied and Line 6 sets this state to terminal no goal.

False negative: Algorithm 1 would not be able to find a path in each realization Gi for i ∈ Y , but since
the environmental state y is still possible, cGy (v, g) will have finite cost. This will not satisfy Line 5, and
thus, this state cannot be marked no goal terminal state by Line 6. ut

Remark 6 (Online Policy Generation) Algorithm 1 can be used in an online manner as follows. For a state
(Y, v), find the reachable observations and select the minimizer of Eq. 10 or Eq. 11, namely (O, u) ∈ Rv with
O ∈ Θu. Execute shortest path in G from v to u and take O. Update (Y, v) given (O,O ∩ Ex) and repeat.

5.2 Lower Bound on Observation Costs

The lower bound lmove does not account for any observation costs. We formulate a lower bound on the
expected observation cost such that its sum with lmove remains a lower bound on an optimal policy. To
accomplish this, a new observation is created for a state (Y, v) from the union of all constructive observations

in the reachable set Rv, namely θ = ∪(O,u)∈RvO. This observation is available at v for the cost µ(θ) =
min(O,u)∈Rv µ(O). We make this new observation if

cG|Y (v, g) ≥
∑

E∈Γ(Y,θ)

P(XY ∈ YE)cG|YE (v, g) + µ(θ) , (12)

where subscript G|Y indicates costs are found for G defined by Y .

Algorithm 2: RPP Observation Lower Bound

Data: Graph G, edge subsets S, vertices s & g, states Nm, probabilities p
Result: Lower bound on expected observation cost lobs

1 Compute cGi(v, g) for all v ∈ V and i ∈ Nm;
2 Add Nm to Q and set lobs = 0;
3 while Q not empty do

4 Remove Y from Q;
5 if cGi(s, g) 6=∞ for any i ∈ Y then

6 Compute Rs = Reachable(G,S, (Y, s));
7 if Eq. 12 then

8 lobs = lobs + P(X ∈ Y )µ(θ);
9 Add YE to Q for each E ∈ Γ(Y,θ);

10 Return lobs;
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Lemma 6 Algorithm 2 finds a lower bound on the expected observation cost.

Proof First, we must show Algorithm 2 will not make more than the minimum number of observations

required. If Line 5 is not met then all i ∈ Y have no path to goal; thus, the robot may terminate because
Y ⊆ Yno goal. Consider Eq. 12. The left-hand-side is the lowest cost path from s to g without any more
observations. The right-hand-side is the expected cost from s to g, given θ’s outcome, for the cost µ(θ). When
this inequality holds, the added freedom to select a path with the outcome’s information saves more than
it costs to make the observation. Otherwise, the observation may not improve the known path for future
states; thus, the robot will not take the observation.

If an observation is required, the optimal observation is in Rv by Lemma 1. This information is collected
for the minimum cost of any observation in Rv in Line 8. This lower bounds the expected cost of the optimal
observation. Therefore, no more than the minimum number of observations are made, each with minimum
cost, showing that lobs lower bounds the expected observation cost. ut

5.3 A Dynamic Program for the Optimal Policy

The research by Polychronopoulos & Tsitsiklis (1996) presents an exponential-time dynamic program to
solve the R-SSPPR problem. Their dynamic program runs in O(2m(m|V|+ |V|2)), which from a practical
standpoint, makes problems with a large number of possible realizations m intractable. Building on their
formulation, we can create a dynamic programming solution with the same runtime to the Reactive Planning
Problem as follows. We define the subproblem V (Y, v) to be the optimal expected cost to go from v in belief
Y to the goal g. Any belief Y such that Y ⊆ Yno goal, has an optimal cost to go of V (Y, v) = 0 for all v ∈ V.
Following Polychronopoulos & Tsitsiklis (1996), the dynamic programming recursion is

V (Y, v) = min
(O,u)∈Rv

[
cG(v, u) + µ(O) + EXYE [V (YE , u)]

]
, (13)

where YE is the consistent environmental state after observation O gives the outcome E ∈ Γ(Y,O). The recursion
looks over all reachable constructive observations and determines the cost to obtain that observation, followed
by the optimal expected cost-to-go to the goal, versus the cost to go directly to the goal from the current
state (Y, v). Note that in the worst case, to solve the subproblem V (Y, v) we may require the solution to
the subproblems V (YE , u) for all YE ⊂ Y and u ∈ V , which grows exponentially with m.

To implement this, we use memoization and propagate the solution forward from initial state (Nm, s).
This complements the fact that the next observation must be in the reachable set and often limits the number
of states examined. However, note that the number of subproblems V (Y, v) can in general be exponential
in the number of realizations m, since Y ⊆ Nm. Our solution uses recursion on each reachable observation to
identify the best observation to make, and we compare this to Algorithm 1’s simplified selection method in
the simulations.

6 Extension to Faulty Sensors

In some applications, the robot sensor may erroneously miss obstacles (false negatives) or detect obstacles
that are not actually present (false positives). The reactive planning problem can be extended to certain
faulty sensor models. We begin by discussing the difficulties of a general faulty sensor model, and then
discuss a special case that can be handled directly.

In a general model, we have a probability pO ∈ [0, 1] for each observation O ∈ ∪v∈VΘv, where the robot
receives the correct outcome O ∩ Ex with probability pO and an incorrect subset of O with probability
(1− pO), which can consist of both false negatives and false positives. In this case, an observation-outcome
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pair (O,E) cannot eliminate any environmental state unless it makes an observation O for which pO = 1.
Instead of updating Y , observation-outcome pairs update the distribution of XY . A natural way to address
this is to allow the robot selection of action (e,move) at v even when P(e|Y ) < 1. The robot then either
successfully traverses the edge, or detects an obstruction using a proximity sensor, or by physical contact,
returning to v and incurring cost c(e). This model now bears close resemblance to the form of POMDP
presented by Papadimitriou & Tsitsiklis (1987), and we conjecture that as with POMDPs, this general
extension is PSPACE-hard. This however, would imply that the optimal policy structure no longer takes
the compact form discussed in Lemma 3. Thus, we limit our attention to the following class of faulty sensors
for which our policy structure still applies.

Structured Sensor Failures: To motivate the idea of structured failures, consider deploying a robot in a
building that may contain obstacles with reflective surfaces. Certain sensors have difficulty detecting these
surfaces and thus may return incorrect outcomes. We term this as a failure type and quantify it with a
faulty edge subset E ∈ F where F = {Em+1, Em+2, . . . , Em+f} is the set of f ∈ Z+ possible failure types.
The failure experienced by the robot is encoded as a random variable W taking values in {0, 1, . . . , f}. The
outcome W = 0 corresponds to no sensor failure (i.e., each outcome is O ∩Ex), and occurs with probability
pnf ∈ [0, 1]. The failure type w ∈ Nf , corresponding to edge subset Em+w occurs with probability P(W = w),

where
∑f
w=1 P(W = w) = 1−pnf. The robot knows the pmf of W , but not its random draw w. If the sensor

experiences failure type w ∈ Nf , then the outcome of each observation O will be O ∩Em+w, which may not
agree with O ∩Ex. Thus, this model captures correlated failures: if failure type w occurs when the robot is
operating in realization x, then all edges in Em+w \Ex will give false negative, and all edges in Ex \Em+w

will give false positives.

The robot state is expanded to capture both the possible realizations of Gx, namely Y ⊆ Nm, and the
indices of edge subsets consistent with the observation-outcome pairs, namely Z ⊆ Nm+f . Formally, the robot

state is (2Nm , 2Nm+f ,V). The set Y records all environmental realizations that could be consistent with the
observations (given that they may be faulty). The set Z records the possible edge subsets in (E1, . . . , Em+f )
that are consistent with the measurements. Under this new sensor model, we provide the actions that update
the robot’s environmental information.

Definition 10 (Constructive Observation) Given state (Y,Z, v) with O ∈ Θv, (O, observe) is constructive
if there exist i, j ∈ Z such that O ∩ Ei 6= O ∩ Ej .

Definition 11 (Reactive Move) Given state (Y,Z, v) with e ∈ Iv, (e,move) is reactive if there exist i, j ∈ Y
such that e ∈ Ei and e 6∈ Ej . The robot remains at v if e 6∈ Ex and incurs c(e).

Given Z, a constructive observation O has a set, Γ(Z,O) ≡ {E ⊆ E|E = O∩Ei, i ∈ Z}, of possible outcomes

where outcome E ∈ Γ(Z,O) updates Z to ZE = {i ∈ Z|E = O ∩ Ei}. A reactive move, (e,move), partitions Y
and Z into edge subsets that contain e and those that do not. If the robot state (Y,Z, v) satisfies Z ⊆ Nm
(i.e., the robot knows no fault types have been encountered), the problem returns to the RPP under perfect
sensing with start state (Z, v). Note the robot may reach a terminal state without satisfying this special
case.

The tree policy can be extended by changing the nodes to (Y,Z, a) where action a is a constructive

observation or reactive move. To calculate its expected cost, we extract each root to leaf observed path. Given
realization x ∈ Nm, there are f +1 observed paths corresponding to sensing x ∈ Nm (observed paths Ax|x) and
sensing w ∈ Nf (observed paths Am+w|x). The expected cost of policy π is,

E(π) =
∑
x∈Nm

(
pnfP(X = x)cost(Ax|x) +

∑
w∈Nf

P(W = w)cost(Am+w|x)

)
.
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Lemma 7 A complete policy tree has at most 2m+ f − 2 nodes where m is the number of realizations and f is

the number of faulty edge subsets.

Proof The largest policy tree requires the robot to learn if it is getting incorrect outcomes and then find
the true realization x via reactive moves. Every constructive observation partitions Z and it requires at most
m+ f − 1 constructive observations to identify z or x. If it identifies z, only reactive moves can partition Y

and it takes m− 1 reactive moves to learn every possible x. This can be encoded into 2m+ f − 2 nodes. ut

Algorithm 1 can be altered to handle this faulty sensor model as follows. The queue now holds the
new state, and Y is still used to calculate G. The function Reachable(G,S ∪ F , (Y,Z, v)) must also find the
reactive moves that can be reached with finite cost. Finally, Eq. 6 must be altered to capture the conditional
entropy of the new state given a reactive move or a constructive observation.

7 Simulation Results

In this section we provide simulation results on a large scale practical example and on randomly generated
environments. We compare against online algorithms and the optimal solution presented in Section 5.3.
Tests were run on a single Intel Core i7-6700 at 3.4GHz.

7.1 Flexible Factory

Flexible factories often spend considerable downtime between contracts due to changes in infrastructure and
machinery. Consider Fig. 5 as a simple flexible factory that produces D items per hour. We are interested in
knowing if the robot can move this volume. The dashed vertices indicate areas that require heavy use. For
clarity, in Table 1 the column labelled “Vertex Obstructions” indicates the properties of the environment
obstruction. For instance, in region 0 (vertices labelled 0) up to two vertices may be missing from the
graph. Regions 1 and 2 each contain one forklift obstruction (which corresponds to removing the two
adjacent vertices it occupies). When regions 5 and 6 are obstructed, all other vertices exist.

We cast this as a Reactive Planning Problem by enumerating all combinations of the obstructed vertices
and removing their incident edges. This generates 34561 edge subsets each with a corresponding probability
and 48 vertices. We compute policies from S to A, from S to B, from A to S, and from B to S. The robot
is faster when not loaded, so the movement costs of A to S and B to S are decreased by a factor of 2.

Table 1 Flexible Factory model parameters used in simulations.

Regions Vertex Obstructions Obstruction Probability Observation Cost

0 ≤ 2 independent uniform over combinations 0.5
1,2 2 adjacent vertices uniform over combinations 0.25
3,4 1 0.3 0.25
5,6 both or none 0.02 0.5
7,9 ≤ 1 independent 0.1 0.5
8 1 0.4 0.5

Due to the size of the environment, we will allow replanning during the online phase for comparison pur-
poses (note these results do not have constant action lookup time). We compare against A* and maximum
probability of success (Ps). Both approaches generate a path, which we follow until it is obstructed. Then
we take the edges of the path as observations and use this new information to replan. This is completed
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Fig. 5 Flexible Factory model: Dashed vertices may be obstructed. Edges with cost of 2 or 3 are not labelled for simplicity.
The curved edges cost 2 more for waiting.

for every realization x ∈ Nm. The cost of the corrected paths from s to a terminal state and X’s pmf are
used to calculate the expected cost found in Table 2. We also compare against the feedback heuristic from
Polychronopoulos & Tsitsiklis (1996). In contrast to the two prior algorithms, if any new information is
collected the robot replans with this new information. Given the difference between the R-SSPPR and the
RPP, the optimal expected cost path to goal may not be well-defined. To remedy this, we let the robot
find the shortest path in G and make the lowest cost constructive observations required to use this path. If
an observation is made, the robot replans with the acquired information applied to G.

Table 2 Flexible Factory simulation results. The column obs. gives the number of observations in the policy. The Eq. 11
column shows expected cost for optimized ρ.

Algorithm 1: Eq. 10 Eq. 11 A* Max Ps Feedback

Task obs. lmove + lobs EX(π) EX(π) EX EX EX

S→A 114 40.0 42.5 42.6 47.7 85.3 47.3
S→B 6869 42.3 50.0 50.0 50.1 61.7 53.7
A→S 84 20.6 23.3 23.3 30.2 43.6 29.9
B→S 175 22.0 25.7 25.4 28.3 33.9 27.6
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The proposed algorithm provides lower expected cost than the three online solutions. In addition, for
each task the expected cost of Algorithm 1 is within 20% of the lower bound (lmove + lobs) on the optimal
expected cost. In general the feedback heuristic should always perform at least as well as A*. Notice this
is not the case for task S→B, but this occurs due to the different tie-breaking methods for shortest path
in each solution. When comparing Eq. 10 and Eq. 11, the solution for weighted conditional entropy closely
compares to the additive method for optimized ρ and is computed only once verses multiple runs for different
values of ρ. We contribute this to the correlated environment structure, and in the next section we show,
when the environments are randomized, this is not always the case.

7.2 Performance versus Optimal

In order to test the performance of the lower bound as well as the proposed algorithm, we compare against
the optimal solver discussed in Section 5.3 as well as the feedback heuristic discussed in Section 7.1. The test
environments are cell worlds where edges connect left, right, up and down cells. Traversal and observation

costs are set uniformly at random between [5, 6] and [1, 2] respectively. The edge subsets are generated by
adding obstacles randomly. To do this, we incrementally relax the addition of obstacles into a realization

until a path to goal exists and vice versa for no path to goal. Finally, X’s pmf is formed iteratively by
selecting a realization uniformly at random from the remaining unselected realizations and assigning it one
fourth the remaining probability (the final realization takes the mass left). Due to the exponential runtime
of the optimal solver, we test on grids of fewer than 40 vertices and up to 100 possible realizations. To
demonstrate the time scaling, we used our optimal solver for three 6x6 grids of 50, 65 and 75 realizations

each with a single edge observation model. The computation time for 50 and 65 realizations were 48 and 54
seconds respectively, but the solver could not find a policy within 20 minutes for the 75 realizations.

The results in Fig. 6 highlight a shortcoming in the lower bound, lmove + lobs. The lower bound does not
perform well when the number of realizations that do not have a path to goal is large relative to the total
number of realizations. This is expected because the lower bound lmove assumes the robot does not move
when a realization does not contain a path to the goal. In practice, the robot must traverse and observe to
identify if it can make its way to the goal.
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Fig. 6 Left: G is a 5x5 grid with single edge observations and 40 realizations. Right: G is a 6x6 grid with single hop
observations and 100 realizations.
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Fig. 6 also displays a strength in Eq. 11 over Eq. 10 and the feedback heuristic. First, Eq. 11 with an
optimized ρ is always within 10% of the optimal while both Eq. 10 and the feedback heuristic are within
63% of the optimal. These environments are randomly generated and thus its structure does not foster a
strong relationship between obstacles. When this is the case, the weighted additive method of Eq. 11 allows
the robot to put less importance on information gathering, H(XY , (O,EO)), and more importance on the
cost of traversal, (cG(v, u) + µ(O) + CY (u, g)).

We also test the runtime of Algorithm 1 by fixing the number of vertices in the grid while varying
the number of realizations and fixing the number of realizations while varying the number of vertices. Ten
percent of the realizations have no path to goal. The timing results in Fig. 7 are generated based on a C-
programming implementation. For low number of realizations, a single observation greatly impacts where the
robot can traverse; in contrast, as more realizations are introduced, the robot requires more observations to
traverse similar area (more while loop iterations) as seen in the left plot. The right plot shows computation
time dominated by Dijkstra’s algorithm as expected given the number of vertices are growing while the
number of realizations remain the same.
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Fig. 7 Left: G has 625 vertices and 2600 edges. Right: G’s vertices and edges are varied with 3000 realizations.

7.3 Performance with Inaccurate Prior Data

Often prior data fails in that it may not accurately represent the physical environment the robot functions
in (i.e., the realized edge subset is not an element of S). We test Algorithm 1’s policy by randomly selecting
k edges of the realized environment and complementing their obstruction (i.e., adding an obstacle if one
does not exist and vice versa). The robot follows the policy until it reaches a terminal state or finds an
inconsistency, namely state (∅, v). If Y = ∅, the robot switches to the A* algorithm presented in Section 7.1
where all uncertain edges are assumed to exist but still must be sensed. The A* algorithm always uses a
single hop (i.e., all neighbors) observation model.

The environment is a 12x12 grid with 400 realizations where 10% have no path to goal. For a fixed
percentage of inaccurate edges, we perform 20 independent tests using both single edge and single hop
observation models. Prior tests show Eq. 10 strongly values information; thus, we test Algorithm 1, using
Eq. 10, to show how corrupted information can adversely affect the expected cost.
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Fig. 8 Single edge observation model (left) and single hop observation model (right). Each realization has 20 independent
error tests. We normalize the expected cost by Algorithm 1’s policy found assuming no errors.

The results in Fig. 8 show the single hop observation model has higher expected cost than the single
edge observation model. This occurs because the single hop model is more likely to identify errors in the
environment given it often collects more information; thus as error grows, this model abandons its prior
knowledge sooner causing a tendency to increase the expected cost (seen in the right plot). Also, the single
edge observation model only senses edges that may be blocked so an error will only be encountered on a leg.
The robot belief may not satisfy x ∈ Y , yet it often continues travelling toward the goal before abandoning
the prior knowledge.

Notice values less than one in Fig. 8 correspond to particular errors in the environment. Edges may
become unblocked causing a lower cost to goal. The robot may become stuck before reaching a terminal
state as the strongly connect component containing s may be broken (see Fig. 3 for an example). Also, a
terminal no goal state may be reached when originally there was a path to goal due to added obstructions.

8 Conclusion

A reactionary complete policy based on environmental observations was presented that directs a robot to
complete a task or to identify it is impossible complete. A lower bound on the expected cost of the optimal
policy was provided and experimentally shown to perform well when the number of realizations with no
path to goal is small relative to the total number realizations. Multiple observation models were presented
as well as an extension to robots with faulty sensors.

For future work, we wish to remove the requirement of prior environmental knowledge so the robot
may learn environmental trends during repetitive tasks. We are also interested in allowing multiple termi-
nation conditions including multiple goal locations. Given Lemma 2, we look to formulate an extension of
Algorithm 1 to parallel computation in order to provide increased runtime savings.
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