
March 14, 2017 17:7 task˙allocation

Unmanned Systems, Vol. 0, No. 0 (2016) 1–17
c© World Scientific Publishing Company

Heterogeneous Task Allocation and Sequencing
via Decentralized Large Neighborhood Search

Armin Sadeghia,* , Stephen L. Smitha

aDepartment of Electrical and Computer Engineering, University of Waterloo, Waterloo ON, N2L 3G1 Canada

This paper focuses on decentralized task allocation and sequencing for multiple heterogeneous robots. Each task is defined as visiting
a point in a subset of the robot configuration space – this definition captures a variety of tasks including inspection and servicing. The
robots are heterogeneous in that they may be subject to different differential motion constraints. Our approach is to transform the
problem into a multi-vehicle generalized traveling salesman problem (GTSP). To solve the GTSP, we propose a novel decentralized
implementation of large-neighborhood search (LNS). Our solution approach leverages the GTSP insertion methods proposed in [1]
to repeatedly remove and reinsert tasks from each robot path. Decentralization is achieved using combinatorial-auctions between
the robots on tasks removed from robot’s path. We provide bounds on the length of the dynamically feasible robot paths produced
by the insertion methods. We also show that the number of bids in each combinatorial auction, a crucial factor in the runtime,
scales linearly with the number of tasks. Finally, we present extensive benchmarking results to characterize both solution quality
and runtime, which show improvements over existing decentralized task allocation methods.

Keywords: autonomous robots; non-holonomic robots; decentralized control.

1. Introduction

Task allocation and sequencing is a fundamental compo-
nent of multi-robot operation and has been studied exten-
sively [2,3]. The problem consists of finding an assignment
between tasks and robots along with an ordering of the
tasks assigned to each robot. The objective is typically to
minimize the average time, maximum time, or energy con-
sumption of performing all tasks. A wide variety of task
types and robot models have been considered in the lit-
erature, and are reviewed in [2, 3]. Our focus is on tasks
that require a robot to visit a location in the workspace. In
this area, the literature can be divided based on 1) single
or multiple robot, 2) centralized or decentralized, and 3)
vehicle dynamics or simple motion.

For a single robot the problem is simply one of task
sequencing. If the robot does not have dynamics, then com-
puting an ordering of task locations is a traveling salesman
problem (TSP), for which very successful heuristic and ap-
proximation algorithms exist [4, 5]. A simple class of TSP
algorithms are insertion heuristics [6], which operate by
repeatedly inserting a new vertex into a partial tour. For
metric graphs, two such heuristics, nearest and cheapest
insertion, provide 2-factor approximations to the optimal

tour [6].
For a single robot with dynamics, the Dubins vehicle

model in which vehicle paths have bounded curvature is
commonly studied. Early papers on the Dubins TSP in-
clude [7, 8]. In [9], a method for solving the Dubins TSP
was proposed based on conversion to the generalized travel-
ing salesman problem (GTSP). In the generalized traveling
salesman problem, the cities are partitioned into disjoint
sets, and he goal is to find a tour that visits one city in
each set. The GTSP can be solved via a reduction to the
TSP [10], or directly using GTSP solvers [11–13]. A similar
conversion to the GTSP was proposed for planning tours
for a robotic arm in [14], for a single Dubins TSP with
neighborhoods [15] and for high-level task sequencing prob-
lems [16]. Sequencing problems have also been considered
for differential drive and Reeds-Shepp models [17].

For multiple robots without dynamics, the centralized
problem can be posed as a multi-vehicle TSP. In [18], a
reduction is given from the multi-vehicle TSP to the single
vehicle TSP for the min-sum objective. An approximation
algorithm has also been recently developed for the objec-
tive of minimizing the maximum path length among vehi-
cles [19].

The problem of computing multiple shortest tours

∗Email addresses: a6sadegh@uwaterloo.ca
(Armin Sadeghi), stephen.smith@uwaterloo.ca
(Stephen L. Smith).

1

March 14, 2017 17:7 task˙allocation

2 Armin Sadeghi, Stephen L. Smith

through a set of disk neighborhoods in the plane was stud-
ied in [20]. In [15], the more general problem of computing
multiple shortest tours through arbitrary neighborhoods
and with Dubins’ vehicle dynamics was considered. The
approach proposed for general neighborhoods was to dis-
cretize each neighborhood, and then convert the problem
to an instance of the GTSP. In this paper we utilize a simi-
lar approach to discretizing neighborhoods, but we develop
a decentralized algorithm that utilizes both auctions be-
tween robots, and local optimization of individual robot
routes.

The decentralized problem for multiple robots with-
out dynamics is commonly solved using market-based auc-
tions [21–23]. When there are an equal number of robots
and tasks, the problem is commonly referred to as the as-
signment problem, which can be solved efficiently [24, 25].
When there are more tasks than robots, there are two main
auction-based approaches: 1) allocating a single task per
auction using independent bids on each task [23, 26], or 2)
bidding on subsets of tasks such that all tasks are allocated
in a single auction, known as combinatorial auctions [27,28].
In auction algorithms with bids on individual tasks, a bid
is independent of the other tasks in the auction. There-
fore, the winner determination problem in these auctions
is easy to address. However, typically, the cost for a robot
to complete a task depends on the other tasks in its route.
By placing bids on subsets of tasks, robots can capture the
true cost of a subset of tasks, which may differ from the
sum of bids on the individual tasks [29].

The advantage of bidding on subsets of tasks is that all
tasks are allocated in a single auction, while the main draw-
back is the additional computational complexity [21], since
the number of subsets grows exponentially with the num-
ber of tasks. Moreover, winner determination in the com-
binatorial auction is in general an NP-hard problem [30].
Therefore, there are several techniques to limit the number
of subsets [27] and heuristics to approximate the winner
determination problem [31]. A successful auction-based ap-
proach that bids on subsets for allocation and sequencing is
the consensus-based bundle algorithm (CBBA) [21], which
uses consensus algorithms to spread bids between robots.
Each robot generates a single subset of tasks and bid on
the tasks in the subset.

For several task allocation algorithms [21, 29], there
are constant factor approximation guarantees that provide
bounds on the worst-case performance. However, the per-
formance of these algorithms are typically significantly bet-
ter than their bounds in practice. In fact, a constant factor
approximation can be achieved using very simple auction
algorithms [29]. Therefore, in this paper we not only seek to
develop an auction algorithm that ensures a constant fac-
tor worst-case performance guarantee, but also propose a
powerful local optimization technique that further improve
the quality of each robot tour. Our approach utilizes an
optimization framework called large neighborhood search
(LNS) [32], which has been successfully applied to several
vehicle routing problems [33, 34] and the GTSP [13]. The
high-level idea is to begin with a candidate solution and

then repeatedly perform destroy and repair procedures. If
the cost of the new solution satisfies an acceptance crite-
rion, then it is accepted and the procedure is repeated.

In this paper, we focus on the decentralized task alloca-
tion and sequencing for heterogeneous robots with differen-
tial motion constraints. The CAPT algorithm [35] provides
a solution when the number of tasks equals the number of
robots, and thus sequencing is not required. Existing stud-
ies on the decentralized task allocation for multiple robots
with dynamics constraints propose decoupling the dynamic
constraints from the task allocation problem [36,37]. These
algorithms consist of a task allocation phase in which robot
dynamics are not considered. The allocation phase deter-
mines the tasks allocated to each robot and the sequence of
performing the tasks. Since the resulting sequences may not
be feasible under the dynamic constraints of the robots, the
allocation phase is followed by a trajectory planning phase
which converts the sequences to feasible tours. Although
the decoupling of the task allocation and trajectory plan-
ning reduces the complexity, the resulting paths may suffer
in the quality [38].

A key contribution of our decentralized auction-based
approach is that it performs task allocation and trajec-
tory planning concurrently, rather than decoupling the two
stages. Tasks are defined as subsets of the robot configu-
ration space, and a robot completes a task by visiting any
point in the subset. Building on prior work [9,14], we trans-
form the problem into a multi-vehicle GTSP. We leverage
insertion methods for the GTSP in [1] as a bidding mech-
anism in the auctions. Moreover, we utilize the GTSP in-
sertion methods to generate multiple tours for robots with
dynamics, and we provide bounds on the performance of the
insertion methods. In addition to the performance bound,
the extensive set of experiments on the homogeneous and
heterogeneous system of robots show improvement over the
existing methods with decoupling approaches.

The paper is organized as follows. In Section 2, we
provide background on combinatorial problems and ve-
hicle models. In Section 3, we formulate the multi-robot
task allocation problem and its relation to the GTSP. Sec-
tion 4 presents insertion methods for the GTSP, along with
bounds on their performance. In Section 6, we present an
auction-based task allocation algorithm and in Section 7,
we provide benchmarking results.

2. Preliminaries

In this section we give background on the TSP, GTSP,
GTSP insertion methods and combinatorial auction prob-
lems, as well as standard vehicle models.

2.1. Combinatorial problems

A graph G = (V,E, c) consists of a set of vertices V , a set
of edges E and edge costs c : E → R>0. A path P in G
is a non-repeating sequence of vertices connected by edges.
A cycle or tour T in G is a path in which the first and

March 14, 2017 17:7 task˙allocation

Decentralized Large Neighborhood Search For Task Allocation In Heterogeneous Systems 3

last vertices are equal. We can think of a path or tour as
a connected subgraph of G denoted P = (VP , EP), where
VP ⊆ V and EP ⊆ {(u, v) ∈ E | u, v ∈ VP }.39

The traveling salesman problem (TSP): Given a
complete graph G = (V,E, c), the TSP is the problem of
finding a tour T = (V,ET) that minimizes the sum of the
edge costs on the tour

∑
e∈ET

c(e).
The generalized traveling salesman problem

(GTSP): Given a complete graph G = (V,E, c) along with
a partition of its vertex set into m mutually disjoint subsets
(V1, V2, . . . , Vm), the GTSP is the problem of finding a tour
T = (VT , ET) that includes exactly one vertex from each
subset Vi (i.e., |VT ∩ Vi| = 1 for each i ∈ {1, . . . ,m}) and
minimizes

∑
e∈ET

c(e).

The multi-vehicle GTSP (mGTSP): Given a
complete graph G = (V,E, c) with vertex partition
(V1, V2, . . . , Vm) and a number of vehicles Nv, the mGTSP,
is the problem of finding Nv tours that collectively visit
each vertex set exactly once and with minimum total
length. More precisely, the goal is to find tours T j =
(VT j , ET j), j ∈ {1, . . . , Nv} such that

(1) VT j ∩ VTk = ∅ for each j, k ∈ {1, . . . , Nv};
(2) | ∪Nv

j=1 VT j ∩ Vi| = 1 for each vertex set Vi; and

(3)
∑Nv

j=1

∑
e∈ETj

c(e) is minimized.

The definition of the mGTSP also captures the multi-
traveling salesman problem (mTSP) where each vertex
set Vi consists of a single vertex.

Combinatorial auction problem: Given a set A =
{a1, . . . , am}, a set of subsets {S1, . . . , Sn} where each
Si ⊂ A, and non-negative price pi > 0 for each subset
Si, the combinatorial auction problem is to find a set of
subsets W that forms a partition of A and that maximizes
the total value

∑
i|Si∈W pi.

In the task allocation problem, the elements of A are
the tasks and a subset Si is a subset of tasks. A bid pi on
a subset, offered by a robot, is the reward of accomplishing
the tasks in the subset. The objective is to allocate a sub-
set of tasks to each robot such that the robots collectively
perform all the tasks and the revenue is maximized.

2.2. Insertion Methods

A class of insertion methods for constructing GTSP tours
are presented in [1]. The insertion methods are extensions
of the class of insertion methods defined for constructing
TSP tours in [6]. These extensions are as follows.

Consider a GTSP graph G = (V,E, c), a sub-toura

T = (VT , ET), a vertex set Vi such that Vi ∩ VT = ∅,
and a vertex v ∈ Vi. To insert v into T we find the
edge (u,w) ∈ ET which minimizes the insertion cost, i.e.,
c(u, v) + c(v, w) − c(u,w), and construct a sub-tour, de-

noted by TOUR(T, v), by deleting the edge (u,w) from T
and adding the edges (u, v) and (v, w) to T .

In a GTSP graph with m vertex sets, an insertion
method starts from a sub-tour T1 with one vertex and cre-
ates a sequence of sub-tours T1, . . . , Tm by inserting a ver-
tex v ∈ Vi, where Vi ∩ Ti = ∅ at each step, i.e.,

Ti+1 = TOUR(Ti, v).

The final tour Tm includes a vertex from each vertex set
and the tour is an approximation of the optimal GTSP
tour. For each insertion heuristic, a vertex set is chosen for
insertion, and then the vertex in that vertex set with min-
imum insertion cost is inserted in the tour position that
minimizes the insertion cost. To simplify the language, we
refer to this insertion as “inserting a vertex set.”
Insertion Heuristics: Given a sub-tour T Nearest inser-
tion inserts the vertex set Vj not visited by the subtour con-
taining the vertex with minimum distance from the tour:

arg min
Vj

min
v∈Vj ,u∈VT

{c(u, v)}.

Cheapest insertion inserts the vertex set Vj containing a
vertex with minimum insertion cost:

arg min
Vj

min
v∈Vj ,(u,w)∈ET

{c(u, v) + c(v, w)− c(u,w)}.

Farthest insertion inserts the vertex set Vj whose closest
vertex from the tour has the maximum distance from the
tour:

arg max
Vj

min
v∈Vj ,u∈VT

{c(u, v)}.

In this paper, we use a variation of the nearest inser-
tion method where the method inserts the vertex set Vj
containing the vertex with the minimum distance from or
to the tour, i.e.,

arg min
Vj

min
v∈Vj ,u∈VT

min{c(u, v), c(v, u)},

which is helpful for non-symmetric edge costs [13].
The runtime to compute a GTSP tour with each in-

sertion method is provided in [13], and is a straightforward
extension of the runtime analysis in [6] for the TSP in-
sertion methods. The cheapest insertion method for GTSP
can be implemented to run in O(|V |m logm), while nearest
and farthest insertion have runtimes in O(|V |m).

2.3. Vehicle Dynamics

The following are three commonly-used vehicle models for
which the shortest path between two configurations can be
efficiently computed [40].

The Dubins vehicle model describes a forward mov-
ing vehicle with bounded turning radius. The equations of
motion are

ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω,

aA sub-tour is a cycle that visits only some of the vertex sets.

March 14, 2017 17:7 task˙allocation

4 Armin Sadeghi, Stephen L. Smith

where ω ∈ [−v/Rmin, v/Rmin], (x, y) ∈ R2, Rmin is the min-
imum turning radius of the vehicle, and v is the constant
velocity.

The Reeds-Shepp car extends the Dubins model to
allow the vehicle to travel in reverse, and is a more realistic
model of a four-wheeled vehicle such as an automobile. The
equations of motion are

ẋ = uv cos θ, ẏ = uv sin θ, θ̇ = ω,

where u ∈ {−1, 0, 1} is the control input representing the
forward and reverse gears.

Finally, the differential drive robot (DD) actuates
two wheels independently and is capable of changing its
heading without translation. The equations of motion are

ẋ =
r(vr + vl)

2
cos θ, ẏ =

r(vr + vl)

2
sin θ, θ̇ =

r(vr − vl)
L

,

where vr and vl, respectively, are the angular velocities of
the right and left wheels, L is the distance between the
wheels and r is the radius of the wheels.

In this paper, we use the term TSP with prefix of a ve-
hicle model name (e.g., Dubins TSP) to denote a minimum
length tour for the vehicle on a given set of vertices.

3. Problem Formulation and Approach

In this section, we present the task allocation problem and
give a procedure for converting it into a GTSP instance.

3.1. Task Allocation and Sequencing
Problem

Consider a group of Nr robots with differential constraints
on their motion, located in a planar workspace X ⊆ R2.
The team is given a set of Nt tasks to accomplish with
minimum traveling distance. The location of a robot can
be specified by an (x, y) location in X, and the configu-
ration of the robot is a point in Q = X × Θ, where Θ
describes the remaining states of the robot. For example,
for the three models in Section 2.3, Θ = S1 is the set of
heading angles of the robot. We define a task ti as a sub-
set of Q, consisting of a subset of locations Xi ⊂ X and a
subset of states Θi ⊂ Θ:

ti = {(x, y,θ)|(x, y) ∈ Xi, θ ∈ Θi}.

Several common tasks fit in this definition. For example,
the simple task of visiting a location using any configu-
ration (i.e., any heading) is captured when Xi contains
a single point and Θi = Θ. A constrained version where
Θi ⊂ Θ captures tasks in which only certain configurations
can be used to complete the task. This task type appears
in the inspection missions where a robot observes an event
and the sensor is constrained to be directed in a range of
headings. The more general task type captured by the def-
inition is the task of visiting a neighborhood using any con-
figuration where Xi ⊂ R2 and Θi = Θ. Finally, setting

Xi = {(x0, y0), (x1, y1), . . . , (xk, yk)} captures one-in-a-set
tasks, where a robot can complete a task by visiting just one
of several locations. The one-in-a-set tasks appear in pick-
up missions where an item can be picked up from multiple
warehouses at different locations.

In this paper, we address the following problem: Sup-
pose Nr robots, each starting at a fixed configuration, are
given Nt tasks to perform collectively. The motion of the
robots is governed with the models in Section 2.3. The
robots communicate using a connected but possibly time-
variant communication graph. The robots can swap tasks
in their tours, only if there is an edge between the robots
in the communication graph. The objective is to minimize
the total time to perform all Nt tasks.

In the next section, we cast this problem as a mGTSP
and in Section 6 we introduce our combinatorial auction-
based decentralized method. We detail the construction
of multiple tours by the GTSP insertion methods in Sec-
tion 2.2. Finally, we leverage the GTSP insertion methods
to create a decentralized method to swap tasks between the
tours.

3.2. Conversion to GTSP

Our approach is to construct a GTSP graph that represents
each task along with shortest tours between tasks. To do
this, we discretize the configuration space at each task. The
discretization of Xi×Θi for task i into n points is denoted
by tni . For example, in [9] the Dubins TSP—in which each
for task i Xi = (xi, yi)—is converted to a GTSP by se-
lecting n equally spaced headings θ at the location (xi, yi).
Thus, the discretized task i for this example is defined as

tni =
{

(xi, yi, θj) | θj =
2π

n
j, j ∈ {1, . . . , n}

}
.

Given Nr robots and Nt tasks, we construct a GTSP
instance as follows. We define a complete graph G =
(V,E, c) and a partition of V into m = Nt + Nr mutually
disjoint subsets V1, V2, . . . , VNt

, V 1, . . . , V Nr
, where

(∪Nt
i=1Vi) ∪ (∪Nr

r=1V r) = V.

The set Vi, where i ∈ {1, . . . , Nt}, contains a vertex
v for each discretized configurations of tni . There is a sin-
gle vertex in each vertex set V r, r ∈ {1, . . . , Nr} repre-
senting the initial configuration of each robot, namely de-
pot. Additionally, we let xu denote the location of the dis-
cretized configurations associated with the vertex u in the
working space X. We will refer to xu simply as the lo-
cation of the vertex u. The weight of the edge c(u, v) is
the cost of the time optimal path between (xu, θu) and
(xv, θv). The conversion to the GTSP relies on the efficient
computation of optimal point-to-point paths between con-
figurations, which can be performed for the three vehicle
models in Section 2.3 [40]. In a general workspace with ob-
stacles and other vehicle models, close to optimal paths
are provided by the sampling based point-to-point plan-
ners [41, 42]. The cost function c is symmetric for the DD

March 14, 2017 17:7 task˙allocation

Decentralized Large Neighborhood Search For Task Allocation In Heterogeneous Systems 5

robot and Reed-Shepp’s car and it is asymmetric for the
Dubins vehicle, i.e. c(u, v) 6= c(v, u).

Given the graph G, our objective is to find Nr tours
T i = (VT i , ET i), i ∈ {1, . . . , Nr} such that 1) each tour T i

includes the vertex in V i, 2) the tours collectively visit the
Nt vertex sets exactly once and 3) the sum of the tour cost
is minimized. In the next section we begin by addressing
the centralized problem, and we develop a tour construction
method that provides worst-case performance bounds and
can be leveraged in the decentralized algorithm proposed
in Section 6.

4. Constructing Tours By Insertion Methods

In this section, we analyze the performance of the GTSP
insertion methods in Section 2.2 for construct tours for ve-
hicles with differential motion constraints. We then provide
an analysis of these methods for the mGTSP. Our analy-
sis is an extension of that from [6] for the TSP, where it
was shown that cheapest and nearest insertion provide 2-
approximations to the optimal tour, and farthest insertion
provides a dlnne+ 1 approximation to the optimal.

4.1. Bounds on the GTSP Tour Constructed
By Insertion Methods

In this section, we provide bounds on the cost of tours
constructed by each of the GTSP insertion methods. Since
each method is a generalization of the TSP insertion [6] to
the GTSP, we extend the analysis in [6] to provide bounds.
The results for the TSP insertion method hold only when
the distances between the vertices are symmetric. Also, the
TSP is characterized simply by the ordering of the vertices.
The challenge in extending the TSP results is to bound an
asymmetric GTSP tour cost where the cost depends not
only on the ordering, but also on the vertex selected in
each vertex set. In order to provide approximation factors
for the insertion methods, we require the following assump-
tions on the edge costs.

Assumption 4.1 (Directed triangle inequality). The
edge costs satisfy the directed-triangle inequality

c(u, v) + c(v, w) ≥ c(u,w) for all u, v, w ∈ V.

Assumption 4.2 (Bounded asymmetry in edge costs).
There exists a constant k such that for each pair of vertices
u, v ∈ V , the edge cost from u to v is within a constant of
the edge cost from v to u:

c(u, v)

c(v, u)
≤ k for all u, v ∈ V.

Assumption 4.1 is the directed triangle inequality sat-
isfied by the time optimal paths of the three vehicle models
in Section 2.3. In Section 4.2, we show that Assumption 4.2
also holds for the time optimal paths of the three vehicle
models. Note that k = 1 for symmetric GTSP instances.

Definition 4.3 (Task location density). We define d to
be the maximum distance between the vertices in the same
vertex set and ε to be the minimum Euclidean distance
between vertices in different vertex sets. Then, we define
the parameter ρ = d

ε to capture the density of the task
locations.

In the problem of path planning with motion con-
straints, d is the maximum time to travel between the dis-
cretized configurations at a task location. Therefore, the
density parameter represents the distribution of the tasks
in an environment with respect to the motion constraints
of the robots. Given Assumptions 4.1, 4.2 and the density
parameter, we can establish bounds on a tour constructed
by the GTSP insertion methods.

Proposition 4.4 (Bound on GTSP insertions). Sup-
pose an insertion method, and let INSERT(G) be the cost
of the GTSP tour constructed by an insertion method on
G. Then,

INSERT(G)

GTSP(G)
≤ k(1 + 2ρ)(dlogme+ 1).

Proof. Recall the directed-weighted graph G = (V,E, c)
from Section 2.2, and let S ⊆ V be the set of vertices
selected by an insertion method. Consider another com-
plete symmetric weighted graph G′ = (S,E′, c′) on the
vertex set S. Define the cost of the edge (si, sj) in G′ as
c′(si, sj) = min{c(si, sj), c(sj , si)}.

Let TSP(G′) be the cost of the optimal TSP tour in
G′. Theorem 3 in [6] states that the TSP tour on G′ con-
structed via any insertion method (i.e., using any insertion
ordering, but inserting each vertex into its best edge of the
sub-tour) is not greater than (dlogme + 1)TSP(G′). Note
that by Assumption 4.2 each edge c(u, v) in the constructed
tour is bounded by the kmin{c(u, v), c(v, u)}. Therefore,
the GTSP tour constructed on the graph G with any inser-
tion heuristic is

INSERT(G) ≤ k(dlogme+ 1)TSP(G′). (1)

Let GTSP(G) be the cost of the optimal GTSP tour
in G and GTSP(S) be the cost of the GTSP tour in G ob-
tained by including the vertices in S but using the vertex
set ordering of the optimal GTSP tour. Then we have

TSP(G′) ≤ GTSP(S) ≤ GTSP(G) + 2md. (2)

With the definition of ε, we know that GTSP(G) ≥ mε.
Combining this with inequalities (1) and (2) we have,

INSERT(G)

GTSP(G)
≤ k(1 + 2ρ)(dlogme+ 1).

For nearest and cheapest insertion methods we can im-
prove the bound.

Proposition 4.5. Let INSERT (G) be the cost of the tour
constructed using either nearest or cheapest insertion. Then

INSERT(G)

GTSP(G)
≤ (1 + k)(1 + 2ρ).

March 14, 2017 17:7 task˙allocation

6 Armin Sadeghi, Stephen L. Smith

Prior to the proof of the proposition, we establish a prop-
erty of the nearest and cheapest insertions. Let Ti be the
tour after i insertion steps and si ∈ Vi be the vertex that
the nearest insertion for the GTSP inserts at the step i.
Let vi be the vertex in Vi which has the closest distance
from or to the tour. Without loss of generality assume that
u is the closest vertex in the tour, then the cost of inserting
vi into tour Ti is at most equal to the cost of inserting vi
between u and w, i.e.

cost(Ti, vi) ≤ c(u, vi) + c(vi, w)− c(u,w).

Lemma 4.6 (Bound on insertion cost). Cost of insert-
ing si in the sub-tour Ti is

cost(Ti, si) ≤ (1 + k)c′(p, q) ∀p ∈ VTi , q ∈ S \ VTi .

Proof. Consider the set S and the graph G′. The near-
est and cheapest insertions insert the vertex in Vi with the
minimum insertion cost, then we have,

cost(Ti, si) ≤ cost(Ti, vi).

Then, by Assumptions 4.2 and 4.1 we have,

cost(Ti, si) ≤ cost(Ti, vi) ≤ c(u, vi) + c(vi, u) (3)

≤ (1 + k) min{c(u, vi), c(vi, u)}.

Since, vi is the closest vertex from or to the tour, then
following inequality holds for the each step of insertions,

min{c(u, vi), c(vi, u)} ≤ c′(p, q) ∀p ∈ VTi , q ∈ S \ VTi . (4)

From inequalities (3) and (4), we conclude the lemma.

Recall that the cheapest insertion inserts a vertex to the
sub-tour with the minimum insertion cost. The cost of in-
serting a vertex by the cheapest insertion into the sub-tour
Ti is at most cost(Ti, si), thus the bound on the insertion
cost in Lemma 4.6 holds for the cheapest insertion.

Further, we need a modification of a result in [6] for
GTSP insertions as follows. The proof follows directly from
the proof of Lemma 3 in [6].

Lemma 4.7 (Modified Lemma 3 in [6]). Suppose an
insertion method inserting vertex si in sub-tour Ti such
that satisfies

cost(Ti, si) ≤ (1 + k)c′(p, q) ∀p ∈ VTi
, q ∈ S \ VTi

,

then,

INSERT(G) ≤ (1 + k)MST(G′).

Now we can establish the approximation factors in
Proposition 4.5 for the nearest and cheapest insertions.

Proof. [Proof of Proposition 4.5] By Lemma 4.6, each in-
sertion using the nearest or cheapest insertion methods
satisfy the condition in Lemma 4.7. Therefore, the cost of
the tour constructed by the insertions is not greater than
(1 + k)MST(G′). Then, we have

INSERT(G) ≤ (1 + k)MST(G′) ≤ (1 + k)TSP(G′).

Since, the edge costs for graph G′ satisfies c′(u, v) ≤
c(u, v),∀u, v ∈ S, then, TSP(G′) is a lower bound on the
cost of the tour in G, consisting of the vertices in S and with
the vertex ordering of the optimal GTSP tour. Therefore,
we have,

INSERT(G) ≤ (1 + k)TSP(G′) ≤ (1 + k)GTSP(S)

≤ (1 + k)(1 + 2ρ)GTSP(G).

4.2. Bound on Vehicle Tour Cost

The following result gives an upper-bound on the optimal
path cost between two configurations for each of the three
vehicle models in Section 2. The Dubins’ bound (i) was
conjectured in [8] and established in [43], while the Reeds-
Shepp and DD bounds are, to the best of our knowledge,
new results. The proof of Lemma 4.8 (i) can be found
in [43], while the proof of (ii) and (iii) are given in Ap-
pendix 1. Recall that the Dubins’ and Reeds-Shepp’s cars
are characterized with the minimum turning radius Rmin

and forward velocity v, and the parameters characterizing
motion of DD robot are wheel radius r, distance between
the wheels L and forward velocity.

Lemma 4.8 (Distance of robot configurations).
Consider a robot whose dynamics are governed by one
of the three vehicle models (Dubins, Reeds-Shepp, DD), v
forward velocity and two robot configurations q1 and q2.
Then, the travel time from q1 to q2, denoted dist(q1, q2)
satisfies

dist(q1, q2) ≤ Euc(q1, q2) + C,
where Euc is the time to travel then Euclidean distance
between the points (xq1 , yq1) and (xq2 , yq2). C is defined in
terms of the vehicle model as

(i) C = 7π
3vRmin for Dubins;

(ii) C = π
2v

L
r for Differential Drive; and

(iii) C = π
vRmin for Reeds-Shepp.

To compare the performance bound on the insertion
methods to the existing approximation in Lemma 4.8 we
assume that each task consists of a single workspace lo-
cation, i.e., |Xi| = 1. In this case, the Euclidean distance
between the vertices inside the same vertex set is zero, and
thus dmin = C and ρ = C

ε . For the case of a Dubins vehicle,
the distance bounds from Lemma 4.8 allow us to provide
tighter performance bounds. To this end, we redefine the
edge costs in the graph G′ to the Euclidean distance be-
tween the vertices, i.e., c′(si, sj) = Euc(xsi ,xsj).

The distance between the configurations, by the
Lemma 4.8, satisfies the following,

dist(q1, q2)

dist(q2, q1)
≤ 1 + ρ.

Then the constant k in Assumption 4.2 becomes 1+ρ. Thus,
the bound in (1) becomes

INSERT(G) ≤ (1 + 2ρ)2(dlogme+ 1)TSP(G′).

March 14, 2017 17:7 task˙allocation

Decentralized Large Neighborhood Search For Task Allocation In Heterogeneous Systems 7

Let VTSP be the optimal tour cost for a vehicle model
in Section 2.3 in a workspace X = R2, then we have the
following result.

Corollary 4.9. The total tour cost constructed by the
nearest or cheapest insertion is bounded by

INSERT(G) ≤ 2(1 + ρ)VTSP.

Proof. From Lemma 4.8 and inequality (3), the cost of in-
serting any vertex in the tour at step i by the nearest and
cheapest insertion is

cost(Ti, si) ≤ c(u, si) + c(si, u) ≤
2(1 + ρ)Euc(xp,xq) ∀p ∈ VTi , q ∈ S \ VTi .

From Lemma 4.7, we have,

INSERT(G) =

m∑
i=1

cost(Ti, si) ≤ 2(1 + ρ)MST(G′). (5)

The MST(G′) are the minimum spanning tree and the
optimal TSP in the graph G′, respectively. The minimum
spanning tree and the optimal tour on the task locations
are shorter than the optimal tour between the locations for
the vehicles VTSP. Finally, the approximation factor for
our cheapest and nearest insertion methods is as follows:

INSERT(G)

VTSP
≤ min{(dlog me+ 1)(1 + 2ρ)2, 2(1 + ρ)}.

Note that for environments with large values of ρ andm ≥ 5
this bound becomes 2(1+ρ), which is an improvement over
the bound for the Dubins TSP method in [9], which was

min{(1 + ρ) log m,
3

2
(1 + ρ)2}.

In the case that the minimum turning radius for the Du-
bins and the Reeds-Shepp’s models and distance between
the wheels for the DD robot are negligible compared to
the distances between task location i.e. ρ ≈ 0, the problem
becomes the TSP on the task locations, and both near-
est and cheapest insertion provide 2-approximations to the
optimal.

5. Bounds on the Tours of Multiple Robots

In Section 4.2, we provided the approximation factors of
the insertion methods for a single robot. In this section,
we extend the analysis to multiple robots with various mo-
tion dynamics. The high-level idea is to reduce the mGTSP
problem to a GTSP problem and construct a tour using the
insertion methods.

5.1. Transformation of mGTSP to GTP

The problem of allocating tasks to multiple robots is for-
mulated as an mGTSP in [44,45], and transformations are
given from mGTSP to single GTSP problem. The transfor-
mation creates a GTSP instance consisting of duplicates of
tasks for each robot and a duplicate of each depot. In this
subsection, for completeness, we present the transformation
from [44]. Our presentation includes a slight modification,
by adding a dummy vertex, which we require to establish
bounds on the cost of multiple tours constructed by cheap-
est and nearest insertion methods.

Recall from Section 3.1 that a vertex in the GTSP
graph represents a configuration at a task. However, in a
heterogeneous system of robots, the discretized configura-
tions and the time to travel between two configurations
are, in general, different for each robot. Therefore, we let
V ri denote the vertex set consisting of the configurations
of robot r at task i. Each vertex u is a associated with a
configuration of a robot, and we let model(u) denote the
model governing the motion of the robot. Two vertices u, v
in V ri and V ki are considered equal if and only if they repre-
sent an identical configuration and model(u) = model(v).
Since, only one configuration should be visited at task i,

the vertex set Vi is defined as Vi =
⋃Nr

r=1 V
r
i .

Let V = {V 1, . . . , V Nr
} denote the set of depots for

the robots. Each V r is a vertex set consisting of the dis-
cretization of the configuration space at the depot location
of robot r. Also, the replicas of the vertices at the depots

are defined in the set V
′

= {V ′1, . . . , V
′
Nr
}. With a slight

modification, we introduce a dummy vertex as a starting
point for the insertions.

Let dist : (V ∪V)×(V ∪V ′)→ R record the distance be-
tween any two robot configurations (at tasks or depots). For

u ∈ V ∪V and v ∈ V ∪V ′ such that model(u) = model(v),
we define dist(u, v) to be the minimum time required to
travel from u to v using model(u). For all other pairs of
vertices, we set the distance to a large number M that ex-
ceeds the total length of all robot tours:

M = (Nt +Nr) max{dist(u, v) | model(u) = model(v)}.

The transformation of the multi-robot task allocation
to the single GTSP problem is as follows. We define a com-
plete weighted graph G = (W,E, c) where

W = V ∪ V ∪ V ′ ∪ {dummy}.

The edge costs c(u, v) for each u, v ∈W are set to

(i) dist(u, v) if u ∈ V ri , v ∈ V kj ,∀r, k ∈ {1, . . . , Nr}
and ∀i, j ∈ {1, . . . , Nt};

(ii) dist(u, v) if u ∈ V r, v ∈ V ri , r ∈ {1, . . . , Nr} and
i ∈ {1, . . . , Nt};

(iii) dist(u, v) if u ∈ V ri , v ∈ V ′r, r ∈ {1, . . . , Nr} and
i ∈ {1, . . . , Nt};

(iv) zero if u = dummy and v ∈ V 1;

(v) zero if v = dummy, u ∈ V ′i and r ∈ {1, . . . , Nr};

March 14, 2017 17:7 task˙allocation

8 Armin Sadeghi, Stephen L. Smith

(vi) zero if u ∈ V ′r, v ∈ V r+1 and r ∈ {1, . . . , Nr − 1};
and finally

(vii) zero if u ∈ V r, v ∈ V
′
r and r ∈ {1, . . . , Nr} .

For all other edges, the cost c(u, v) = M .
Figure 1 shows an example of the G graph for a sys-

tem of two heterogeneous robots and two tasks. The ver-
tices associated with the configurations of each robot are
represented with similar shapes to the depots. For clarity,
edges with cost M are not included and the zero cost edges
are represented with dashed lines.

V2

V1

V 1

V
′
1

V 2

V
′
2

dummy

Fig. 1. Graph G, without cost M edges, for an instance with
two heterogeneous robots and two tasks. Similar shapes are used
to represent the depots and the configurations at task locations
for each robot. The dashed edges represent the zero cost edges
in G.

5.2. Constructing Multiple Tours with
Insertion Methods

Let INSERT(G) be the cost of the tour generated by the
nearest or cheapest insertions on G and TSP be the total
cost of the optimal tours. Let S be the set of vertex sets
selected by an insertion method. Now, we define a complete
symmetric weighted graph G′ = (S,E′, c′) where the edge
cost c′(u, v) for u, v ∈ S is set to

(i) Euc(xu,xv) if u, v ∈ V ;
(ii) Euc(xu,xv) if u ∈ V r and v ∈ V ;

(iii) Euc(xu,xv) if u ∈ V , v ∈ V ′r and r ∈ {1, . . . , Nr};
(iv) zero if u = dummy, v ∈ V 1;

(v) zero if v = dummy, u ∈ V ′r and r ∈ {1, . . . , Nr};
(vi) zero if u ∈ V ′r, v ∈ V r+1 and r ∈ {1, . . . , Nr − 1};

and finally

(vii) zero if u ∈ V r, v ∈ V
′
r and r ∈ {1, . . . , Nr} .

For all other edges, the cost is set to M .
Prior to providing the bounds on the tours constructed

by the nearest and cheapest insertion methods for multi-
ple robots we first establish a result on lower bounds for
optimal tours.

Let mVTSP be the minimum total cost of the tours for
multiple robots with differential constraints in a workspace
X = R2, and let TOUR be the set of optimal tours with
optimal allocation, ordering and configurations. Then we
have,

Lemma 5.1 (Lower bound on optimal tours). The
length of the minimum spanning tree MST(G′) on the
graph G′ is less than or equal to mVTSP.

Proof. Deleting an edge from each optimal tour in TOUR
result in a set Nr trees. These trees collectively visit all the
depots and the tasks with optimal configurations. Connect-
ing these trees with zero costs edges to a dummy vertex
creates a spanning tree on the optimal configurations. Note
that the spanning tree is a lower bound on the total cost
of the optimal tours. Note that for every edge (u, v) in
the constructed minimum spanning tree, the cost c(u, v)
is lower-bounded by the Euc(xu,xv). Therefore, MST(G′)
is at most equal to the cost of the spanning tree on the
optimal configurations.

In Section 4.2, we defined ρ for three vehicle dynamics.
Let ρmax be the maximum ρ in the set of multiple hetero-
geneous robots.

Theorem 5.2 (Total cost of multiple tours). The to-
tal tour cost constructed by the nearest or cheapest inser-
tion is bounded by

INSERT(G) ≤ 2(1 + ρmax)mVTSP.

Proof. Consider tour Ti as the sub-tour constructed by
the nearest or cheapest insertions at step i on graph G.
Starting from the dummy vertex, the nearest insertion
method inserts the vertex at the first depot u ∈ V 1 with
distance zero from the dummy vertex (since this is the only
outgoing edge from dummy at distance zero). At the next
step, the closest vertex set to the tour is the replica of the
previously selected depot with zero cost. The nearest in-

sertion method selects the replica of u in ∈ V ′i, namely u′,
and inserts u′ in the tour (recall c(u, u′) = 0).

The nearest insertion continues to insert a vertex in
each depot and again inserts the replica of the vertex af-
terward. Since the vertices are inserted in a position in
the sub-tour with the minimum insertion cost, each vertex

u′ ∈ V ′i is adjacent to the vertex u ∈ V i in the sub-tour.
Otherwise, the insertion cost in each insertion is M .

March 14, 2017 17:7 task˙allocation

Decentralized Large Neighborhood Search For Task Allocation In Heterogeneous Systems 9

The nearest insertion creates a sub-tour consisting of
all the depots and their replicas with zero cost edges. There-
fore, the total sub-tour cost after adding all the depots and
their replicas is zero. Note that the cheapest insertion con-
structs the same sub-tour by inserting vertices with zero
insertion cost. Also, note that, by the definition of the zero

costs edges in the graph G, the u′ ∈ V ′r in the sub-tour is
adjacent to the vertex in V r+1. Proceeding in the process
of inserting the tasks, the nearest insertion inserts the ver-
tices in V to the tour. Note that, by the definition of the
edge costs in G, the insertion cost of a task in V between

V
′
r and V r+1 is 2M . Similarly, the cost of inserting a ver-

tex in between V
′
i and the dummy vertex is 2M . Therefore,

the nearest or cheapest insertion methods only insert tasks
in between depots and their replicas, i.e. between V r and

V
′
r, r ∈ {1, . . . , Nr}. Suppose, at the step ith of insertions,

the insertion methods insert si in between V r and V
′
r. By

Lemma 4.6, at each insertion of the nearest and cheapest
insertion methods we have,

cost(Ti, si) ≤ 2(1 + ρr)Euc(p, q) ∀p ∈ Ti, q ∈ S \ Ti. (6)

By Lemma 4.7, the inequality (6) is sufficient to show
that the sum of the right-hand side of Equation (6) is
INSERT(G), and the sum of the left-hand side is the
minimum-spanning tree on G′. Therefore, from Lemma 5.1
and inequality (6) we conclude the bound on INSERT(G).

Obtaining Nr tours from the tour constructed by the inser-
tion methods in G consists of two steps. First, deleting the
zero cost edges and the dummy vertex outputs Nr paths.
Second, deleting the vertices in the replicas of the depots
and closing the paths by adding the edge from the last ver-
tex of each path to the vertices of the depots result in Nr
tours. Note that the total tour length is preserved under
the extraction of Nr tours, since the added edge costs to
close the paths are equal to the edge costs of the deleted
edges.

So far, the algorithms of creating tours by the insertion
methods were centralized. In the next section, we propose
a decentralized algorithm for constructing the tours.

6. A Decentralized Auction-Based
Algorithm

We now present a decentralized algorithm for task alloca-
tion and sequencing. The algorithm leverages the GTSP
insertion mechanisms presented in Section 4 in a manner
similar to large neighborhood search (LNS) [32].

6.1. Large Neighborhood Search (LNS)

The large neighborhood search (LNS) meta-heuristic is
a framework initially introduced for the routing prob-
lems [32]. In LNS, the solution is repeatedly improved
through destroy (deletion) and repair (insertion) opera-
tions. This method is a form of local search where at each

iteration an improving solution is found by searching in a
“large neighborhood” of the current solution. Typically, by
searching in a larger neighborhood one is able to find higher
quality locally optimal solutions. The neighborhood is de-
fined by the heuristics used to destroy and repair solutions
(in our case, the heuristics used to remove and reinsert ver-
tices in the tour). The basic idea is to perform repeated
rounds of insertions to improve the tour. First, an initial
insertion method (e.g., nearest or farthest insertion from
Section 2.2) is chosen and a tour is constructed. Second,
a subset of vertices on the tour are deleted and then the
corrosponding vertex sets are reinserted into the tour using
a chosen insertion method. The insertion method is chosen
by a criterion (e.g., an adaptive probability density function
as in [13]). In this paper, the insertion methods are cho-
sen via the roulette wheel random selection algorithm [33].
This procedure is repeated, accepting tours when they pass
an acceptance criterion (for example, if the new tour has
smaller cost). In practice, one can perform LNS heuristic
on the tours constructed in Section 4.1 to improve the tour
quality. Recently a solver for the GTSP problem is proposed
in [13] based on the LNS method. In contrast the proposed
method in this paper is decentralized and addresses the
multiple GTSP problem. Algorithm 1 shows a high-level
description of LNS for the GTSP problem.

Algorithm 1 The LNS Framework for the GTSP

Input: A GTSP instance G
Output: A GTSP tour T on G
1: T ← Create an initial tour
2: while stopping criteria not met :
3: Select an insertion method I for the GTSP
4: Delete a set of vertices in the tour T
5: Create Tnew by reinserting vertices into T via I
6: if cost(Tnew) ≤ cost(T) :
7: T ← Tnew

6.2. LNS-Auction Algorithm

The high-level idea of our decentralized implementation of
LNS, namely LNS-Auction, is to delete a set of tasks from
a robot’s tour and then reinsert them in new robot tours
via an auction. We assume that there is an initial assign-
ment of tasks to robots that is conflict-free, i.e., each task is
assigned to one robot, and that the communication graph
between robots is connected for all time. In the literature,
conflicts are solved by an additional consensus algorithm.

The high-level description of the auction procedure is
as follows:

(i) A robot randomly decides to begin an auction by
selecting a set of robots in its communication
range.

(ii) The robot randomly selects a set of tasks and
sequentially deletes them from its tour, takes the
auctioneer role and offers the selected robots to

March 14, 2017 17:7 task˙allocation

10 Armin Sadeghi, Stephen L. Smith

bid on the tasks.
(iii) The robots select an insertion method and place

bids on subsets of tasks that can be inserted as a
continuous segment on its tour.

(iv) Each robot sends its bids (each consisting of a
subset of tasks and a corresponding bid value) to
the auctioneer, who solves the combinatorial
auction problem to allocate the tasks.

(v) The auctioneer communicates the result of the
auction to the winning robots.

(vi) Each robot inserts the tasks it has won and
locally optimizes its tour.

We now give a more detailed description of the steps.
In Step (i), each robot assigns a score to each other robot
and increases scores of the winning robots after each auc-
tion. The robot selection operation is a roulette wheel se-
lection algorithm.

The bidding starts at Step (ii). Assume the auction-
eer is robot r. Its bids are generated by sequentially delet-
ing tasks from its tour T r. Without loss of generality, let
V1, V2 . . . , Vd be the tasks deleted from the auctioneer’s tour
and Sri = {V1, . . . , Vi}, i ∈ {1, 2, . . . , d} be the subset of
tasks until the ith step of deletions.

The bidding algorithm generates a bid after each dele-
tion, which is a pair consisting of subset of Sri containing
Vi and a non-negative bid on the subset:

BIDr
i = (bid-seti, bid-valuei).

The set bid-seti is the largest subset of Si containing Vi
that forms a continuous segment of T r and bid-valuei is
the insertion cost of the segment of T r corresponding to
bid-seti, see Figure 2.

V6 V3

V2
V4

V7

V1

Fig. 2. Largest subset of S4 = {V1, V2, V3, V4} containing V4
that forms a segment on the tour is {V3, V2, V4}. The insertion
cost of {V3, V2, V4} is the difference between the cost of the seg-
ment shown in dashed arrows and the cost of the edge from V6
to V7.

At Step (iii) robots generate subsets to bid on given
their current tour and the set of tasks from the auction-
eer. Given a set of tasks up for auction {V1, V2, . . . , Vd},
each robot in the auction selects an insertion method
and sequentially inserts the tasks in their tour. The set
Sri , i ∈ {1, 2, . . . , d} is the set first i tasks inserted in the
tour of robot r. Again we assume (without loss of gener-
ality) that Sri = {V1, . . . , Vi}. Let T ri be the tour of robot
r at step i of insertions. The bidding mechanism is closely
related to the auctioneers bidding process in Step ii with

a subtle but important difference. Unlike, the bidding for
the auctioneer where the algorithm searches for the largest
segment on the original tour, the algorithm for all other
robots returns the largest segment in T ri . More precisely,
in BIDr

i , the set bid-seti is the largest subset of Sri con-
taining Vi that forms a continuous segment of T ri . The bid
value bid-valueri is the insertion cost of the segment in
T ri .

The auctioneers goal is to find an allocation that as-
signs each task to exactly one robot and such that the sum
of the winner bids on the subsets is minimum. Determining
the winners of the auction at Step (iv) is formulated as a
combinatorial auction problem whose integer programming
formulation (IP) is as follows:

minimize
∑
i,r

bid-valueri · xri

subject to∑
i,r

xri = 1 for all i ∈ {1, . . . , d}, r ∈ Ir,

xri ∈ {0, 1} for all i ∈ {1, . . . , d}, r ∈ Ir.

(7)

where xri is an integer variable equal to 1 if the bid BIDr
i

is accepted and 0 otherwise, and Ir contains the indices of
all robots participating in the auction. Note that the IP is
feasible since the auctioneer’s bids form a feasible solution.
Several techniques are proposed to reduce the run-time of
solving this IP [46] which enables fast solutions for large
sizes. We show in Lemma 6.1 that the number of the vari-
ables is linear in the size of the problem, and in Section 7
we experimentally evaluate the fraction of time needed to
solve the IP.

Step (v) is a simple process by the auctioneer to broad-
cast the result of the auction. At Step (vi) each robot inserts
its winning bids in the same position on the tour it used
to generate the bid. The consistency of the insertion meth-
ods in the bidding and insertion steps is required to prove
the monotonic decrease in the total tour cost after each
auction. Further optimization is done by robots locally. Af-
ter completing the auction, each robot locally optimizes its
tour by deleting tasks from its tour and reinserting then
via the GTSP insertion methods of Section 4.

Let D be the maximum number of tasks offered for an
auction. Assuming that each edge cost can be encoded with
at most k bits, the following lemma summarizes properties
of the proposed algorithm.

Lemma 6.1 (Auction algorithm properties). The de-
centralized auction algorithm has the following properties:

(i) The message size per robot per auction is at most
D(D logD + k).

(ii) The number of the variables in the IP (7) for a
set of m robots is at most min{mD, 2D − 1}.

(iii) The total tour cost monotonically decreases after
each auction.

Proof. Proof of (i): At each step of bidding, only a single

March 14, 2017 17:7 task˙allocation

Decentralized Large Neighborhood Search For Task Allocation In Heterogeneous Systems 11

new bid is added. Therefore, in total D bids are submitted
by each robot. Moreover, the cardinality of the bid-sets is
at most D. Each bid value is a result of the summation of
D−1 edge costs and each bid value is encoded by logD+k
bits. Thus, the number of bits transferred in an auction per
robot is at most D(D logD + k).

Proof of (ii): Note that the set of all possible combi-
nations of tasks is the power-set of the tasks. Also, note
that without loss of optimality we can replace all the bids
submitted on the same bid-set by the bid with minimum
bid-value. From i, we know that each robot submits at most
D bids, therefore, the total number of bids in the IP (7) is
equivalent to min{mD, 2D − 1}

Proof of (iii): Let cost(T r) be the tour cost of robot r
prior to the auction. Let operation ⊕ represent inserting a
set of tasks to a tour by an insertion method. Define the
set win(r) as the set of tasks that robot r has won. The
bid-values are the insertion costs of the bid-sets. Therefore,

cost(T r ⊕ win(r)) = cost(T r) +
∑
i

bid-valueri · xri .

This holds for any robot in an auction. Let z∗ denote the
optimal solution to the integer program (7) and z be the ob-
jective value of assigning all tasks to the auctioneer. Thus,
the total path tour is∑

cost(T r ⊕ win(r))−
∑

cost(T r) = z∗ − z. (8)

Note that assigning all the tasks to the auctioneer is a fea-
sible solution to (7). As a consequence, the right-hand side
for (8) is not greater than zero.

7. Simulation Results

In this section, we compare our decentralized algorithm to
several different existing methods. We compare to two dif-
ferent implementations of the Consensus-Based Bundle Al-
gorithm (CBBA)b from [21]. The CBBA algorithm plays
the benchmarking role in recent studies as the state of the
art decentralized task allocation algorithm [47,48]. We also
compare results to the Multi-Vehicle Algorithm (MVA) [37]
and to a centralized algorithm [44].

7.1. LNS-Auction Implementation Details

The experiments featuring the LNS-Auction are initiated
with a random allocation of the tasks to the robots. The
number of auctions in our experiments is limited to Nt,
where at each round of auctions the auctioneer is selected
randomly. The auctioneer communicates with all the neigh-
bor robots in the communication graph, and offers a num-
ber of tasks which is selected randomly between two and
the number of task in the tour of the auctioneer.

In the LNS-Auction, each robot locally optimizes its
tour after each round of the auction, using the method de-
tailed in [1, Section 4]. Given a tour, this method fixes
the ordering of the vertex sets, and re-optimizes the vertex
chosen from each set. With a fixed ordering of the tasks,
the graph G is a multi-partite graph. Therefore, in a prob-
lem with n vertices for each task, the vertex optimization
method performs n breadth-first-searches [1].

Once all auctions are finished, each robot performs
one final re-optimization of its tour. This optimization
method is a modified implementation of Algorithm 1. The
tour acceptance criteria in this optimization method is
a simulated-annealing method [33] criterion. The robots
randomly select a set of tasks from their tours and re-
inserts by the GTSP insertion methods to re-optimize the
tour. The selection of the insertion method at the final
re-optimization step follows the adaptive method detailed
in [32]. Each insertion method is assigned an initial score.
After each iteration and if the cost of the tour has im-
proved, the score of the insertion method is increased by
a constant value. The insertion method at each iteration
is selected randomly with probability proportional to the
scores (i.e., roulette wheel selection). The stopping criteria
for the rounds of insertions and deletions is the number of
the rounds without improvement in the tour cost. This is
set to 1000 in our experiments.

7.2. Existing Methods For Comparison

In this section, we provide a brief description of the existing
approaches for the task allocation problem.

CBBA-AA: The first implementation of CBBA finds
the assignment without considering dynamics for the
robots. Each task consists of visiting a location with any
heading, and we consider Dubins vehicle dynamics. In this
implementation, we linked the CBBA and the Alternating
Algorithm (AA)[8] to create feasible solutions to the Du-
bins vehicle after the assignment. Given an Euclidean TSP
solution, the AA assigns a heading to each point based on
the position of the point in the tour. Let Tij be the jth task
in the tour of robot i. If j is odd then heading with the AA
procedure is the orientation of segment from Tij to Ti(j+1),
otherwise the heading is equal to the heading assigned to
the previous point in the tour.

CBBA-GLKH: In the second implementation of the
CBBA, we linked the CBBA and the state of the art GTSP
solver, GLKH [12]. After assigning the tasks by CBBA,
the set of tasks assigned to each robot is transformed to
a GTSP instance by discretization of the heading at each
task location and solved separately by GLKH. The GTSP
instance consists of vertices representing the configuration
of the robots and the edges representing the optimal Dubins
path length between each pair of configurations.

MVA: The MVA algorithm presented in [37], considers
decoupling the dynamic constraints of the robots from the

bThe CBBA code is available at http://acl.mit.edu/projects/cbba.html

March 14, 2017 17:7 task˙allocation

12 Armin Sadeghi, Stephen L. Smith

assignment problem. After task assignment and sequenc-
ing by a decentralized variation of the Prim’s algorithm, a
heuristic method is proposed to construct feasible Dubins
tours on the sequenced tasks. Assuming 2Rmin pair-wise
Euclidean distance between the tasks and starting from a
configuration at a depot, the algorithm plans the optimal
path to the next task in the tour. The MVA algorithm
is constrained to the 2Rmin distance between the points,
therefore, this algorithm is augmented by an exhaustive
search method for the cases where the pair-wise Euclidean
distances between the tasks are smaller than 2Rmin. The ex-
haustive search method searches all the candidate optimal
Dubins paths to the next point with a fine discretization
of the headings (0.1 degree) at the point and returns the
Dubins path with minimum cost.

Centralized: Our method is compared to a centralized
algorithm [18] in both heterogeneous and homogeneous sys-
tem of robots. The problem of task allocation and sequenc-
ing for multiple robots with dynamic constraints is trans-
formed to a GTSP problem and solved by the state-of-the-
art GTSP solver [12]. The GTSP construction is detailed
in Section 5.1.

The experiments are conducted on random communi-
cation graphs in which robot i and j can communicate with
probability p. In each experiment, robots are initialized by
randomly assigning the tasks without any conflicts. Given
the initial allocation, each robot constructs a path by an
insertion method.

7.3. Random Instances

In this section, we compare the quality of the multiple tours
constructed by our decentralized implementation of LNS,
namely LNS-Auction, to the various centralized and decen-
tralized methods. The experiments are conducted on uni-
formly randomly generated tasks in X = [0, 10] × [0, 10],
and a task is accomplished by visiting the task location
with any heading, i.e., Θ = [0, 2π[.

20 30 40 50 60 70 80
Number of Tasks

20

40

60

80

100

120

T
o
ta

l
T
o
u
r

C
o
st

CBBA-LKH

Centralized

LNS-Auction, p = 1

LNS-Auction, p = 0.4

Fig. 3. Total tour cost versus the number of tasks for seven
robots on uniformly randomly generated instances in a 10 × 10
square environment. The robots do not have any constraint on
their motion ρ = 0. For each different number of tasks, 30 ran-
dom instances are generated. The reported tour cost for each

number of tasks is the average of 30 instances, each solved 10
times. The error bars represent the standard deviation of the
results in different runs and instances.

Figure 3 compares the total tour cost of the LNS-Auction
to CBBA-GLKH and the centralized method for different
random instances. Since the published CBBA implemen-
tation constructs paths instead of tours, therefore, a post-
processing on the paths by the state of the art GTSP solver,
namely GLKH, is performed on the paths in order to im-
prove the quality. The communication graphs are gener-
ated for each p ∈ {0.4, 1}. Note that the experiments with
p = 1 corresponds to task allocation with all-to-all com-
munication. At each run of the algorithm, a new communi-
cation graph is generated. The seven robots in the system
are assumed to have no motion constraints. The number
of auctions for the LNS-Auction algorithm is equal to the
number of the tasks. Without considering any dynamics for
the robots, Figure 3 shows that the LNS-Auction algorithm
for different communication graphs gives considerable im-
provements in tour quality compared to CBBA-GLKH.

20 30 40 50 60 70 80
Number of Tasks

102T
o
ta

l
T
o
u
r

C
o
st

CBBA-AA

CBBA-GLKH

Centralized

MVA

LNS-Auction, p = 1

LNS-Auction, p = 0.4

Fig. 4. Total tour cost versus the number of tasks for seven Du-
bins’ vehicles with turning radius of 1 on uniformly randomly
generated instances in a 10 × 10 square environment. For each
different number of tasks, 30 random instances are generated.
The reported tour cost for each number of tasks is the average of
30 instances, each solved 10 times. The error bars represent the
standard deviation of the results in different runs and instances.

In the next experiment, we replace the robots with seven
Dubins vehicles with minimum turning radius of 1. To con-
struct the GTSP instance we discretize the heading at each
location with 5 equally spaced headings. Figure 4 shows
the tour costs in different random instances compared to
the CBBA-AA, CBBA-GLKH, MVA and the centralized
method on random instances. The maximum deviation of
the tour cost of the LNS-Auction from the centralized al-
gorithm is 37% and the average is 16%. However, the max-
imum deviation of the tour cost of the CBBA-GLKH from
the centralized algorithm is 76% and the average deviation
is 65%.

March 14, 2017 17:7 task˙allocation

Decentralized Large Neighborhood Search For Task Allocation In Heterogeneous Systems 13

Table 1. Total tour cost on TSPLIB instances. The LNS-Auction used the communication graph with p = 1.0. Avg. denotes the
average total tour length and Min. denotes the minimum total tour length on different runs of the LNS-Auction. Auction indi-
cates the fraction of the total LNS-Auction time which is spent for solving I.P. (7), and Ratio indicates the average ratio of time
for LNS-Auction to the CBBA-GLKH approach. The results for LNS-Auction are average of 20 experiments on each instance.

Centralized LNS Auction CBBA-GLKH CBBA-AA Time
Average Minimum Auction Ratio

ulysses22 35.3 65.1 46.2 99.0 103.0 0.051 5.13
att48 90.4 134.2 117.7 146.4 213.8 0.008 4.23
eil51 96.7 133.3 122.6 153.3 221.6 0.010 3.11
berlin52 91.3 127.0 119.8 169.7 234.6 0.024 2.32
st70 131.4 175.4 170.4 194.4 302.3 0.010 2.51
eil76 125.1 185.2 165.0 202.7 302.6 0.027 2.10
pr76 128.8 172.3 167.2 198.3 325.2 0.023 2.31
rat99 163.0 238.5 219.3 259.8 404.7 0.045 1.34
kroA100 170.7 246.1 244.3 263.7 429.9 0.021 0.74
kroB100 173.6 244.6 229.0 263.1 417.1 0.045 0.91
eil101 164.6 222.0 178.9 304.6 471.0 0.009 3.01
lin105 150.1 190.7 184.3 232.0 362.8 0.017 0.97
bier127 181.5 299.4 285.1 324.4 490.7 0.013 0.65
ch130 212.9 300.2 286.7 448.7 537.0 0.022 0.77
ch150 234.2 338.9 321.4 365.5 595.7 0.009 0.66
kroA150 239.8 343.4 335.0 364.6 564.3 0.001 0.81

7.4. TSPLIB Instances

The TSPLIB [49] provides a large library of TSP instances
on which we can test the performance of our algorithm.
Table 1 shows the total tour cost of the CBBA implemen-
tations, centralized and LNS approaches for a system con-
sisting of seven Dubins vehicles with minimum turning ra-
dius of 1. To provide a fair comparison of the tour quality
of each auction-based method with the centralized method,
we use a complete communication graph (p = 1). The ex-
periment includes several medium-size geometric instances
from TSPLIB. To be consistent on the ratio of the distances
to the minimum turning radius, we scale the task locations
in each instance so that they lie in a 10× 10 square. The ini-
tial location of the seven robots are the first seven locations
in each instance. The quality of the tours constructed by
LNS-Auction algorithm is compared to the two implemen-
tations of the CBBA algorithm, namely CBBA-GLKH and
CBBA-AA. The published versions of CBBA, GLKH and
LNS-Auction are implemented in MATLAB, C and Python,
respectively. Although the times are not completely compa-
rable, we provide the time ratio for LNS-Auction to CBBA-
GLKH. The total time of the LNS-Auction on ulysses22
and kroA150 instances on a Corei5 @2.5Ghz processor are
10.14 and 62.84 seconds, respectively.

7.5. Heterogeneous Robots

In this section, we compare our method to a centralized
method for heterogeneous systems. The experiments are
conducted on uniformly randomly chosen task locations.

We consider Dubins and DD vehicle dynamics with unit
translational velocity. The DD robot accomplishes a task
by visiting the location (xi, yi) with free heading, i.e., task
i is defined as follows:

ti = {(x, y, θ)|(x, y) = (xi, yi), θ ∈ [0, 2π)}.

The Dubins vehicle accomplishes a task by visiting any lo-
cation in a unit circle centered at the task, i.e., task i is
defined as follows:

ti = {(x, y, θ)|(x− xi)2 + (y − yi)2 = R2
min, θ ∈ [0, 2π)}.

The minimum turning radius of the Dubins vehicles,
Rmin, and the distance between wheels of the DD vehi-
cle, L, are assumed to be 1. The circular neighborhoods
for the Dubins vehicle are discretized with 5 random loca-
tions and 5 equally spaced headings at each location. Sim-
ilarly, the configuration space at the task location for the
DD vehicles are discretized with 5 equally spaced head-
ings. Table 2 shows the total tour cost of the centralized
and LNS-Auction approaches for different systems of robots
and numbers of tasks. Moreover, the experiment shows the
ratio of the total time of the LNS-Auction to that of the
centralized approach. Each row of the table is a class of 20
random instances with the same problem parameters: that
is, the number of tasks N, the number of DD vehicles, and
the number of Dubins vehicles. The averages are on 10 runs
of the LNS-Auction on instances of each class.

Finally, Figure 5 shows tours for our implementation
of the LNS-Auction for a system of three DD vehicles and
one Dubins vehicle on 20 task locations.

March 14, 2017 17:7 task˙allocation

14 Armin Sadeghi, Stephen L. Smith

Table 2. Total tour cost on TSPLIB instances. The LNS-Auction used the communication graph with p = 1.0. N
in the instance class name denotes the number of tasks, DD denotes the number of DD vehicles and Dubins denotes
the number of Dubin vehicles in the system. Auction indicates the fraction of the total LNS-Auction time which is
spent for solving I.P. (7), and Ratio indicates the average ratio of time for LNS-Auction to the centralized approach.

Instances Centralized LNS Auction
Average Minimum Time Average Minimum Auction Ratio

N10DD1Dubins1 32.6 25.5 12.8 36.4 27.1 0.22 0.09
N20DD1Dubins1 44.8 42.2 72.4 55.4 40.0 0.11 0.07
N30DD1Dubins1 57.2 51.4 222.0 70.8 55.6 0.08 0.06
N10DD3Dubins1 32.3 26.3 19.8 36.5 27.9 0.18 0.07
N20DD3Dubins1 44.9 38.5 106.2 50.5 42.4 0.13 0.05
N30DD3Dubins1 58.6 56.3 305.2 64.3 53.9 0.08 0.05

0

2

4

6

8

10

12 0

2

4

6
8

10
12

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 5. Tours for a Dubin vehicle with Rmin = 1 and three DD
vehicles with L = 1. The Dubins vehicle, shown with a triangle,
completes a task by visiting a location in the neighborhood of
the task. The neighborhoods are circles with radius 1. The DD
vehicles, shown with squares, complete tasks with visiting the
location of the tasks with free heading. The 20 task locations
are randomly generated in a 10 × 10 square.

8. Conclusion

This paper considered task allocation and sequencing for
heterogeneous robots with differential motion constraints.
Our approach was based on transforming the problem to
a multi-vehicle GTSP. We leveraged the existing insertion
heuristics for the GTSP to construct dynamically feasible
tours for robots, and gave bounds on their performance. We
proposed a novel decentralized implementation of the LNS
method for repeatedly removing and reinserting tasks. Our
method leverages combinatorial auctions in order to cou-
ple task allocation and sequencing. We also proved that
the auctions monotonically decrease the total tour length
with limited number of bids – a crucial factor in the run-
time. For future work, we are pursuing the idea of inserting
tasks without explicitly constructing samples of the allow-

able configurations for each task. Instead, we determine
the appropriate robot configuration at the time a task is
inserted.

Acknowledgements

This research is partially supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC) and
through a collaboration with Clearpath Robotics.

Appendix A Appendices

Proof. [Proof of Lemma 4.8] Proof of (ii): Without loss of
generality assume that the initial condition is q1 = (0, 0, 0),
q2 = (x2, y2, θ2) and ur, ul ∈ {−1, 1}. Let α be the angle
of the line segment connecting the points (0, 0) and (x, y),
β be the angle between the final heading and the line seg-
ment. The following are two feasible suboptimal paths:

• Rotate by α, translate a distance Euc(q1, q2), and
rotate by β; and

• Rotate by π − α, translate a distance Euc(q1, q2)
with reverse gear, and rotate by π − β.

The total rotation in one of the paths, i.e., θ + α or 2π −
(θ+α), is less than or equal to π. The time for traveling on
the optimal path between dist(q1, q2) ≤ Euc(q1, q2) + π

2
L
r .

Proof of (iii):
We begin with showing the feasible paths for the Reed-

Shepp’s car to change the heading by θ. Without loss of
generality we assume that the initial configuration of the
car is q1 = (0, 0, 0) and the destination is q2 = (0, 0, θ). For

θ ∈]0, π], Path1 in Figure A.1 consists of arcs
_

OM+,
_

MN−

and
_

NK+. Superscripts on the arcs shows the forward and
reverse gear motions. Note that the triangles AED and
AOD are equilateral. Therefore, we have ∠ADE = ∠DAE
and ∠ODA = ∠DAO. Thus the following holds in the tri-
angles:

∠AED + ∠EDO + ∠EAO = ∠AOD.

Then the distance between the configurations is as fol-

March 14, 2017 17:7 task˙allocation

Decentralized Large Neighborhood Search For Task Allocation In Heterogeneous Systems 15

lows:

dist(q1, q2) = l(
_

OM) + l(
_

MN) + l(
_

NK)

= Rmin(∠AED + ∠EDO + ∠EAO)

= Rmin(∠AOD) = Rminθ.

Path2 in the figure shows the feasible path to reach q′2 =

(0, 0, θ + π), consists of arcs
_

OL+,
_

LK− and
_

KO+, with
length Rmin(π − θ). The case for θ ∈ [π, 2π[is similar to
Figure A.1. With this result, the path construction pro-
cedure for a DD robot also applies to the Reed-Shepps
model. Thus, the optimal path between the configurations
q1 = (0, 0, 0) and q2 = (x2, y2, θ2) is not greater then
Rminπ + Euc(q1, q2).

Fig. A.1. Feasible Reeds-Shepp’s paths to change the heading
at point O by θ ∈]0, π] and π+θ, Path1 and Path2, respectively.

References

[1] M. Fischetti, J. J. Salazar Gonzalez and P. Toth, A
branch-and-cut algorithm for the symmetric general-
ized traveling salesman problem, Operations Research
45(3) (1997) 378–394.

[2] B. P. Gerkey and M. J. Matarić, A formal analysis
and taxonomy of task allocation in multi-robot sys-
tems, The International Journal of Robotics Research
23(9) (2004) 939–954.

[3] G. A. Korsah, A. Stentz and M. B. Dias, A compre-
hensive taxonomy for multi-robot task allocation, The
International Journal of Robotics Research 32(12)
(2013) 1495–1512.

[4] K. Helsgaun, An effective implementation of the
Lin–Kernighan traveling salesman heuristic, European
Journal of Operational Research 126(1) (2000) 106–
130.

[5] B. Korte and J. Vygen, Combinatorial Optimization:
Theory and Algorithms, Algorithmics and Combina-
torics,, Vol. 21, 4 edn. (Springer-Verlag, 2007).

[6] D. J. Rosenkrantz, R. E. Stearns and P. M. Lewis,
II, An analysis of several heuristics for the traveling
salesman problem, SIAM journal on computing 6(3)
(1977) 563–581.

[7] Z. Tang and U. Ozguner, Motion planning for mul-
titarget surveillance with mobile sensor agents, IEEE
Transactions on Robotics 21(5) (2005) 898–908.

[8] K. Savla, E. Frazzoli and F. Bullo, Traveling salesper-
son problems for the Dubins vehicle, IEEE Transac-
tions on Automatic Control 53(6) (2008) 1378–1391.

[9] J. Le Ny, E. Feron and E. Frazzoli, On the Dubins
traveling salesman problem, IEEE Transactions on
Automatic Control 57(1) (2012) 265–270.

[10] C. E. Noon and J. C. Bean, An efficient transformation
of the generalized traveling salesman problem, INFOR
31(1) (1993) p. 39.

[11] D. Karapetyan and G. Gutin, Lin–Kernighan heuris-
tic adaptations for the generalized traveling salesman
problem, European Journal of Operational Research
208(3) (2011) 221–232.

[12] K. Helsgaun, Solving arc routing problems using the
lin-kernighan-helsgaun algorithm, tech. rep., Roskilde
Universitet (2015).

[13] S. L. Smith and F. Imeson, GLNS: An effective large
neighborhood search heuristic for the generalized trav-
eling salesman problem, Computers & Operations Re-
search (March 2016) Under Review.

[14] M. Saha, T. Roughgarden, J.-C. Latombe and
G. Sánchez-Ante, Planning tours of robotic arms
among partitioned goals, The International Journal
of Robotics Research 25(3) (2006) 207–223.

[15] J. T. Isaacs and J. P. Hespanha, Dubins traveling
salesman problem with neighborhoods: a graph-based
approach, Algorithms 6(1) (2013) 84–99.

[16] F. Imeson and S. L. Smith, Multi-robot task planning
and sequencing using the SAT-TSP language, IEEE
Int. Conf. on Robotics and Automation, (2015), pp.
5397 – 5402.

[17] J. J. Enright and E. Frazzoli, The traveling salesman
problem for the Reeds-Shepp car and the differential
drive robot, IEEE Conf. on Decision and Control ,
(2006), pp. 3058–3064.

[18] P. Oberlin, S. Rathinam and S. Darbha, A transforma-
tion for a multiple depot, multiple traveling salesman
problem, American Control Conference, IEEE (2009),
pp. 2636–2641.

[19] M. Turpin, N. Michael and V. Kumar, An approxima-
tion algorithm for time optimal multi-robot routing,
Algorithmic Foundations of Robotics XI , (Springer,
2015), pp. 627–640.

[20] D. Bhadauria, O. Tekdas and V. Isler, Robotic data
mules for collecting data over sparse sensor fields,
Journal of Field Robotics 28(3) (2011) 388–404.

[21] H.-L. Choi, L. Brunet and J. P. How, Consensus-
based decentralized auctions for robust task alloca-
tion, IEEE Transactions on Robotics 25(4) (2009)
912–926.

[22] E. Kivelevitch, B. Sharma, N. Ernest, M. Kumar and
K. Cohen, A hierarchical market solution to the min–
max multiple depots vehicle routing problem, Un-
manned Systems 2(01) (2014) 87–100.

[23] M. G. Lagoudakis, E. Markakis, D. Kempe, P. Ke-

March 14, 2017 17:7 task˙allocation

16 Armin Sadeghi, Stephen L. Smith

skinocak, A. J. Kleywegt, S. Koenig, C. A. Tovey,
A. Meyerson and S. Jain, Auction-based multi-robot
routing., Robotics: Science and Systems, 5 (2005).

[24] L. Liu and D. A. Shell, An anytime assignment algo-
rithm: From local task swapping to global optimality,
Autonomous Robots 35(4) (2013) 271–286.

[25] S. L. Smith and F. Bullo, Monotonic target assign-
ment for robotic networks, IEEE Trans on Automatic
Control 54(9) (2009) 2042–2057.

[26] S. Sariel and T. Balch, Real time auction based al-
location of tasks for multi-robot exploration problem
in dynamic environments, Proceedings of the AAAI-
05 Workshop on Integrating Planning into Scheduling ,
(2005), pp. 27–33.

[27] M. Berhault, H. Huang, P. Keskinocak, S. Koenig,
W. Elmaghraby, P. Griffin and A. Kleywegt, Robot ex-
ploration with combinatorial auctions, IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems, 2, IEEE (2003), pp. 1957–1962.

[28] L. Lin and Z. Zheng, Combinatorial bids based
multi-robot task allocation method, IEEE Interna-
tional Conference on Robotics and Automation, IEEE
(2005), pp. 1145–1150.

[29] M. G. Lagoudakis, M. Berhault, S. Koenig, P. Ke-
skinocak and A. J. Kleywegt, Simple auctions with
performance guarantees for multi-robot task allo-
cation, Intelligent Robots and Systems, 2004.(IROS
2004). Proceedings. 2004 IEEE/RSJ International
Conference on, 1, IEEE (2004), pp. 698–705.

[30] M. H. Rothkopf, A. Pekeč and R. M. Harstad, Compu-
tationally manageable combinational auctions, Man-
agement science 44(8) (1998) 1131–1147.

[31] M. Mito and S. Fujita, On heuristics for solving win-
ner determination problem in combinatorial auctions,
Journal of Heuristics 10(5) (2004) 507–523.

[32] D. Pisinger and S. Ropke, A general heuristic for ve-
hicle routing problems, Computers & operations re-
search 34(8) (2007) 2403–2435.

[33] S. Ropke and D. Pisinger, An adaptive large neigh-
borhood search heuristic for the pickup and delivery
problem with time windows, Transportation science
40(4) (2006) 455–472.

[34] E. Demir, T. Bektaş and G. Laporte, An adaptive
large neighborhood search heuristic for the pollution-
routing problem, European Journal of Operational Re-
search 223(2) (2012) 346–359.

[35] M. Turpin, N. Michael and V. Kumar, CAPT: Concur-
rent assignment and planning of trajectories for multi-
ple robots, International Journal of Robotics Research
33(1) (2014) 98–112.

[36] B. Chow, Assigning closely spaced targets to multi-
ple autonomous underwater vehicles, Master’s thesis,
University of Waterloo (2009).

[37] S. Rathinam, R. Sengupta and S. Darbha, A re-
source allocation algorithm for multivehicle systems
with nonholonomic constraints, Automation Science
and Engineering, IEEE Transactions on 4(1) (2007)
98–104.

[38] S. S. Ponda, L. B. Johnson, A. Geramifard and
J. P. How, Cooperative mission planning for multi-
uav teams, Handbook of Unmanned Aerial Vehicles,
(Springer, 2015), pp. 1447–1490.

[39] B. Korte, J. Vygen, B. Korte and J. Vygen, Combina-
torial optimization (Springer, 2002).

[40] S. M. LaValle, Planning algorithms (Cambridge uni-
versity press, 2006).

[41] S. Karaman and E. Frazzoli, Sampling-based algo-
rithms for optimal motion planning, The International
Journal of Robotics Research 30(7) (2011) 846–894.

[42] L. Janson, E. Schmerling, A. Clark and M. Pavone,
Fast marching tree: A fast marching sampling-based
method for optimal motion planning in many dimen-
sions, The International Journal of Robotics Research
34(7) (2015) 883–921.

[43] H.-S. Kim and O. Cheong, The cost of bounded curva-
ture, Computational Geometry 46(6) (2013) 648–672.

[44] P. Oberlin, S. Rathinam and S. Darbha, Today’s trav-
eling salesman problem, Robotics & Automation Mag-
azine, IEEE 17(4) (2010) 70–77.

[45] N. Mathew, S. L. Smith and S. L. Waslander, Multi-
robot rendezvous planning for recharging in persistent
tasks, Robotics, IEEE Transactions on 31(1) (2015)
128–142.

[46] R. S. Garfinkel and G. L. Nemhauser, The set-
partitioning problem: set covering with equality con-
straints, Operations Research 17(5) (1969) 848–856.

[47] J. Turner, Q. Meng and G. Schaefer, Increasing al-
located tasks with a time minimization algorithm for
a search and rescue scenario, Robotics and Automa-
tion (ICRA), 2015 IEEE International Conference on,
IEEE (2015), pp. 3401–3407.

[48] D. Di Paola, A. Gasparri, D. Naso and F. L. Lewis, De-
centralized dynamic task planning for heterogeneous
robotic networks, Autonomous Robots 38(1) (2015)
31–48.

[49] G. Reinelt, TSPLIB – a traveling salesman problem li-
brary, ORSA Journal on Computing 3(4) (1991) 376–
384.

Armin Sadeghi received B.Sc. degrees in mechanical en-
gineering and aerospace engineering from Sharif University
of Technology, Iran, in 2013, and the M.A.Sc. degree in
electrical and computer engineering from the University of
Waterloo in 2016. From 2014 to 2016, he was Researcher
at the University of Waterloo, and worked on the project
of task allocation for robots with motion constraints. He is
continuing his PhD studies in the Department of Electrical
and Computer Engineering at the University of Waterloo.

Armin Sadeghi’s research interests include motion
planning, optimization and robotics.

Stephen L. Smith received the B.Sc. degree in engi-
neering physics from Queens University, Canada, in 2003,
the M.A.Sc. degree in electrical and computer engineering
from the University of Toronto, Canada, in 2005, and the
Ph.D. degree in mechanical engineering from the University

March 14, 2017 17:7 task˙allocation

Decentralized Large Neighborhood Search For Task Allocation In Heterogeneous Systems 17

of California, Santa Barbara in 2009.
He is currently an Associate Professor in electrical

and computer engineering at the University of Waterloo,
Canada. From 2009 to 2011 he was a Postdoctoral Asso-
ciate in the Computer Science and Artificial Intelligence
Lab at the Massachusetts Institute of Technology. His main
research interests lie in the control of autonomous systems,

with a particular emphasis on robot motion planning, op-
timization, and distributed coordination. Dr. Smith is a
recipient of the 2016 Ontario Early Researcher Award, the
NSERC Discovery Accelerator Supplement Award, and the
2015 Outstanding Performance Award from the University
of Waterloo.

