
A Patrolling Game for Adversaries with Limited Observation Time

Ahmad Bilal Asghar Stephen L. Smith

Abstract— In this paper we consider a robot patrolling
scenario on a weighted graph where an intruder can observe the
patrolling path and use the information gained by observation
to attack the graph’s vertices. We pose the problem of finding
a patrolling strategy as a multi-stage two player game. The
patroller commits to a strategy that is unknown to the intruder.
The intruder observes the patroller’s actions for a finite amount
of time to learn the patroller’s strategy and then decides to
either attack or renege based on its confidence in the learned
strategy. We characterize the expected payoffs for the players
and show that finding a k-factor approximation to the optimal
patrolling strategy is NP-hard even when the patroller’s strategy
set is constrained to time homogeneous Markov chains. We
propose a search algorithm to find a patrolling policy in such
scenarios and illustrate the trade off between hard to learn and
hard to attack strategies through simulations.

I. INTRODUCTION

Patrolling locations of importance to protect against pos-
sible attacks arises in several security applications including
ports, airports, and environmental resources [1]. Limited
resources mean that perfect coverage cannot be provided
to all locations and hence they have to be patrolled. An
adversary can observe the patrolling path over time and use
its knowledge about the path to its advantage. Deterministic
paths are easier to exploit because they can be learned
quickly and the attacker can plan the attack to avoid the
patroller. This motivates randomizing of patrolling paths in
order to make them less predictable [1], [2]. The focus of this
paper is on strategies for generating random patrolling paths.
The existing literature usually assumes that the adversary has
knowledge of the patrolling strategy with the argument that
the adversary can observe the patroller long enough to derive
the strategy [3]. This assumption might not always be true
in practice [4], as the adversary might not have enough time
to perfectly learn the patrolling strategy. Therefore, we focus
on the scenarios where the adversary has a limited time to
observe the patrolling path to infer the patrolling strategy. It
then decides to attack or renege based on its confidence in
the learned strategy. Designing a patrolling strategy that takes
longer to learn will increase the chances of the adversary
reneging. However, the strategy should also minimize the
chances of a successful attack in case the adversary attacks.

Related work: There is a substantial amount of work re-
lated to design of patrolling policies in robotics, control, and
game theory. Random patrolling paths are advocated in [5]
by showing that it is hard to find deterministic strategies

This research is partially supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

The authors are with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo ON, N2L 3G1 Canada
(abasghar@uwaterloo.ca; stephen.smith@uwaterloo.ca)

that satisfy the surveillance criterion of visiting vertices
proportional to their importance. Stochastic surveillance is
considered in [6] so that the intruders cannot easily exploit
the predictability of a deterministic path. Intelligent intruders
in a perimeter patrol problem are considered in [7]. Different
ways of randomizing paths are used in [8] to empirically
show that randomizing the paths can decrease the probability
of successful intrusions. In [9] strategic attacker is considered
that plays two player zero sum game with the patroller.

Markov chains are often used to model random paths on a
graph [5], [6], [10]. A common objective is to minimize mean
first passage time of a Markov chain [10]. Different intruder
models are considered in [11] to find Markov chains for
patrolling in the presence of such intruders. We also restrict
the search of the optimal policy to the set of Markov chains.

In game theory, security games are usually posed as
Stackelberg games [2], [12]–[15]. In [16], a finite set of
Markov chains is used to formulate the patrolling problem
as a Bayesian Stackelberg Game where the patroller first
picks a mixed optimal strategy and the adversary then picks
the region to attack to maximize its payoff. In [17] the
patrolling problem is studied on the graphs where traversing
edges incurs different costs but the same amount of time
and the attacker prefers to attack as soon as possible. One
of the intruder models discussed in [11] and the problem
setting considered by [3] is closest to ours, however the
key difference is that the patrolling strategy is unknown
to the attacker beforehand, and is learned through limited
observations.

Limited observation time for the adversary leads to it
having uncertainty about its own payoffs. In [18] security
games where the defender is uncertain about the attacker’s
payoff is considered. In [4] a player ‘Nature’ decides whether
the follower will observe the leader’s actions or not and
the leader does not know Nature’s choice. We will also
use Nature in our game model to pick the time allowed
for observation. In [19] the attacker observes the defender
for a limited time before attacking. These works, however,
consider placing static resources on different locations rather
than the problem of a patroller traversing a graph.

Contributions: We present a game model for the scenario
where the adversary has a limited time to learn the patroller’s
strategy (Section II). We devise a strategy for a rational
adversary and characterize the expected payoffs for the
players (Section III). We set up the problem as a linearly
constrained non-convex, non-smooth optimization problem
and show that the objective function is locally Lipschitz so
that direct search methods guarantee convergence to a Clarke
Stationary point (Section IV). We also show that finding a k

factor approximation to the optimal patrolling strategy is NP-
hard. We propose a heuristic search algorithm (Section IV)
and share the experimental results (Section V).

A. Background

We will use time homogeneous Markov chains to model
random paths on graphs. The transition matrix P of a
Markov chain gives the transition probabilities between its
states. A Markov chain is said to be irreducible if it is
possible to get to any state from any state. Since we are
considering patrolling on a graph with a single patroller,
we only consider irreducible Markov chains. We denote the
stationary distribution of an n state Markov chain by π ∈ Rn.
For a vertex i of a graph, we denote the neighbors of that
vertex by N (i). The element wise product of two matrices A
and B is denoted as A ◦B. The expression 1b(a) evaluates
to 1 if a = b and 0 otherwise.

II. PROBLEM DEFINITION

A. Patrolling Scenario

The patrolling scenario involves an agent patrolling along
the edges of a directed weighted graph G = (V,E,W)
where the vertices V = {1, 2, ..., n} represent the locations
to be monitored. The matrix W = [wij] represents integer
travel times on edges of the graph. Each vertex i of the
graph has a value φi ≥ 0 that represents the value of that
vertex. An intruder waits outside the environment observing
the patrolling agent’s path. It can attack any vertex of the
graph and stay there for l time steps1 to complete the attack.
The patrolling agent cannot observe the intruder unless it
visits a vertex i while it is being attacked, in which case
the intruder is captured and incurs a penalty ψ whereas
the patroller receives a reward ρ. Otherwise, the attack is
successful and the intruder receives the reward φi.

Patrolling games are usually modeled as Stackelberg
games where the defender chooses a strategy first, and the
intruder being the follower knows the patroller’s strategy and
plays the best response. We consider the case where the
intruder does not know the patrolling strategy beforehand.
It has a fixed time budget to observe the patrolling path and
it uses those observations to learn the patrolling agent’s strat-
egy. It then decides whether it will attack the environment
or leave without attacking.

B. Game Model

We now model the above mentioned patrolling scenario as
a multi-stage game, building on the game in [3] to include
the learning aspect of the intruder. The game involves two
players, the patrolling agent (defender) and the intruder
(attacker). The players act simultaneously at each stage of the
game. The attacker can observe the actions of the defender
whereas the defender cannot observe the actions of the
attacker. We also employ a move by nature to formally model
the time allowed for the attacker to learn the defender’s

1We use the uniform length l for simplicity of presentation. The length
of attack can be different for each vertex and the results of the paper will
hold with a slight change in payoff equations.

strategy. Nature selects a time T that denotes the maximum
allowed time for the intruder before it decides whether it
will attack or leave without attacking. The attacker knows
the time T , however, the defender only knows the probability
distribution q : t ∈ Z+ → [0, 1] representing the probability
of nature selecting time t. The game starts at time zero.
Actions: The defender can go to a neighboring vertex of
its current vertex i by taking the action move(j) where
j ∈ N (i). Let H represent the set of all possible histories of
vertices visited by the patroller, i.e. h ∈ H is a sequence
of vertices of some length. The available actions for the
attacker are obs, renege or attack-when(j, h) for i ∈ V and
h ∈ H . Action obs corresponds to observing the current
action of the defender for the sake of learning its strategy.
Note that obs cannot be played after time T has elapsed
from the start of the game. Also note that time steps are
not analogous to stages of the game since the graph is
weighted. Traversal of an edge by the defender can take
multiple time steps but spans one stage of the game since
both the attacker and defender play one action during that
time. Playing attack-when(j, h) means that the attacker will
wait until the defender has followed history h and then start
the attack at vertex j. The attacker cannot take any other
action after playing attack-when(j, h) and the game will
conclude either in a successful attack or the capture of the
intruder. Playing renege means that the attacker will leave
without attacking the environment.
Outcomes: In case the intruder plays renege, the out-
come of the game will be no-attack. If the attacker plays
attack-when(j, h), it can either result in successful-attack-j
if the defender does not visit j while it was being attacked
or capture otherwise.
Payoffs: Both the player’s payoffs are given in the following
table. The attacker’s payoff is the value gained from attack-

outcome attacker’s payoff defender’s payoff

no-attack 0 0
successful-attack-j φj −φj

capture −ψ ρ

ing or the penalty incurred if it is captured. Setting ρ = 0
represents a defender that does not give priority to capture
over no-attack and only wants to stop a successful attack.
Strategies: The defender’s strategy σd(h) gives the proba-
bility with which the defender will move to a vertex that
is a neighbor of the last visited vertex in h ∈ H . Since
the defender cannot observe the actions of the attacker,
its strategy is not a function of the attacker’s actions. The
attacker’s strategy is a function from the patrolling history
to the possible actions obs, attack-when(j, h) or renege.

Remark 1. We assume that T is much greater than the time
the attacker waits to attack after deciding where to attack.
This models scenarios where the attacker can commit sig-
nificant resources/time to planning an attack relative to the
time scale on which the defender traverses the graph. In this
case the information gained while waiting will be negligible
compared to the information gained while learning.

III. SOLUTION APPROACH

For the scenario where the attacker has perfect knowledge
of defender’s strategy beforehand, the authors in [3] show
that the defender’s strategy will be Markovian with some
finite memory length. However, they argue this problem is
in general intractable and thus formulate their algorithms for
Markov chains with memory length one. Therefore, we also
restrict defender’s strategy to Markov chains with memory
one. Moreover, since the defender receives no information
about the attacker during the game unless the attacker is
captured (at which point the game ends), we only consider
stationary Markov chains. Thus, we represent the defender’s
strategy as the transition matrix P = [pij] of a Markov chain,
where pij gives the probability of the patrolling agent going
to vertex j when it is in i. In the rest of the paper, optimal
strategy for the defender will refer to the optimal Markov
chain.

A. Attacker’s Strategy
Assuming that the players are rational, the following

proposition simplifies the strategy of the attacker.

Proposition 2. Restricting the defender’s strategy to be a
time homogeneous Markov chain, an optimal strategy for
the attacker is to play the action obs until time T and then
to either play attack-when(j, i) for some i, j ∈ V or renege.

Proof. Actions attack-when(j, h1) and attack-when(j, h2)
for h1, h2 ∈ H such that the last vertex in h1 and h2 is
the same vertex i, will give the attacker the same expected
payoff, since the defender’s strategy only depends on the
current vertex occupied by the defender. Given an observa-
tion sequence ot of duration t ≤ T , consider the attacker’s
optimal action given by a(ot). Suppose that the expected
payoff for the attacker is maximized for some ot∗ where
t∗ < T . Then the attacker can still receive the same payoff
by playing the action a(o∗t) after observing oT because there
is no cost to play obs and the expected payoff for action
attack-when(j, i) is independent of the time the action is
played.

Given that the defender is using the transition matrix P
as its strategy, the attacker’s expected payoff for the action
attack-when(j, i) can be calculated as follows [3], [11]:

Ft(i, j) =

{
pij11(wij), t = 1∑
h6=j pihFt−wih

(h, j) + pij1t(wij), t ≥ 2

sij = 1−
l∑
t=1

Ft(i, j) (1)

uij = φjsij − ψ(1− sij). (2)

Ft(i, j) = 0 for non positive values of t. In the above set of
equations, Ft(i, j) represents the probability of the patroller
visiting vertex j for the first time from vertex i in exactly t
time steps, and sij gives the probability of the attack being
successful when the attacker plays attack-when(j, i). The
defender’s expected payoff for this action will be

xij = −φjsij + ρ(1− sij). (3)

The attacker, not knowing P , cannot calculate its expected
payoffs. Therefore, it uses the observations to learn the
defender’s strategy and uses the learned strategy to estimate
its expected payoffs. Let P̂ denote the estimated Markov
chain transition matrix after time T with the covariance
Cov(P̂). If uij was a linear function of P , then the attacker
could use ûij (obtained by using p̂ij instead of pij in
above expressions) to estimate the expected payoff. Since,
uij is not linear, maximizing ûij may not be optimal and
the attacker will need to consider higher moments of the
estimate. The defender needs the optimal attacker response
to optimize its own strategy. Since the Fisher information
matrix [20] can easily provide Cov(P̂), we approximate
the attacker’s response by only considering Cov(P̂) and
ignore the higher moments. We leave the true optimiza-
tion for a future work. The uncertainty in the estimated
strategy can then be propagated to evaluate var(ûij). Note
that Cov(P̂) and var(ûij) are functions of T . Given this
data, the problem is to decide whether to play renege or
attack-when(j, i) for some i, j. The efficient frontier for this
risk-reward trade-off can be represented as a special case of
Markowitz portfolio theory [21] where the attacker has to
pick only one action instead of a portfolio. For a parameter
Λ ≥ 0, let (i∗, j∗) = arg max(i,j){ûij − Λvar(ûij)}. Then
the attacker will play

attack-when(j∗, i∗) if ûi∗j∗ − Λvar(ûi∗j∗) > 0

renege otherwise.
(4)

Here Λ models how risk averse the attacker is, e.g. a large
value of Λ models a risk averse intruder who will attack a
vertex only if it is confident enough in its estimate of the
expected payoff. We will assume that the defender does not
know the value of Λ but has a probability distribution g(λ)
over the possible values of Λ.

B. Defender’s Strategy

The defender’s strategy should be hard to attack (minimize
the worst case attacker’s payoff) as well as hard to learn
(make attackers renege due to high payoff variance). The
following proposition formalizes the defender’s payoff to
design such a strategy.

Fig. 1. The ‘hard to attack’ (left) and ‘hard to learn and attack’ (right)
strategies in an environment with obstacles. The area of a vertex represents
its reward. The thickness of an edge represents the probability of traversing
that edge. Notice that the traversals in the strategy on the right are less
deterministic as compared to that on the left.

Proposition 3. If the defender’s strategy is given by P and
the attacker’s strategy is defined by (4) and Proposition 2,

then the expected payoff for the defender is given by(
1−

∑
t

∫ ∞
λ=maxi,j

ûij
var(ûij)

g(λ)dλq(t)

)
xi∗j∗ . (5)

Proof. Using (4), the attacker will renege if T and Λ are
drawn such that maxi,j{ûij−Λvar(ûij)} ≤ 0. This implies
Λ ≥ ûij/var(ûij),∀i, j and hence, the part inside the
parentheses in (5) is the probability that the attacker will
play attack-when(j∗, i∗) instead of renege. The defender’s
payoff is zero in case of no attack and, using Equation (3),
xi∗j∗ if the attacker plays attack-when(j∗, i∗).

Figure 1 gives an example of a hard to attack strategy that
maximizes xĩ,j̃ where ĩ, j̃ = arg maxi,j{uij} versus a hard
to learn and attack strategy that maximizes an approximation
of (5). Ideally, the defender should find P that maximizes
its expected payoff (5), but the values of ûij , var(ûij) and
xi∗j∗ depend on a realized path that the attacker observed
to calculate these quantities. Hence, maximizing the said
expression as it is, is not possible for the defender. We deal
with this issue as follows.
Lower Bound on Expected Payoff: Although the defender
does not know i∗, j∗, it can lower bound its expected payoff
using mini,j{xij} instead of xi∗j∗ in Expression (5). This
is equivalent to being prepared for the worst case scenario
in case the intruder attacks. Note that if learning was not
involved, and intruder knew the patrolling strategy P , then
the attacker would maximize its own payoff resulting in the
defender maximizing xĩ,j̃ where ĩ, j̃ = arg maxi,j{uij}.
Attacker’s Estimate: The attacker’s estimate of the expected
payoff ûij is not known to the defender. However, since it
knows P , it can calculate the actual value of the attacker’s
expected payoff uij . If the attacker is using a consistent
estimator, the estimate ûij converges to uij .
Variance in Estimate: Assuming the attacker is using an
efficient estimator, the covariance in the attacker’s estimate
of P is given by the inverse of the Fisher information matrix
of the Markov chain represented by IN (P), where N is
the number of transitions observed. The average time taken
during one transition of the Markov chain on a weighted
graph is given by π(P ◦ W)e where e is a column of
ones [10] . Hence, for large N and T ,

N ≈ T

π(P ◦W)e
. (6)

Therefore, theoretically, the defender can propagate the co-
variance using the expressions from [22] to find var(ûij)
as a function of T . However, the expression for uij in-
cludes iterative multiplications and summations of correlated
variables and in practice this propagation is computationally
expensive. Since the defender has access to P , it can use
Monte Carlo simulations to estimate these variances. We will
denote the variances calculated by the defender by var(uij)
although uij is not a random variable for the defender.

Now, we are in a position to write the optimization

problem to be solved by the defender. Let

f(P) = −

(
1−

∑
t

∫ ∞
λ=maxi,j

uij
var(uij)

g(λ)dλq(t)

)
min
i,j

xij ,

(7)
then the optimization problem can be written as follows.

minimize
P

f(P)

subject to ∑
j

pij = 1 for all j

0 ≤ pij ≤ 1 for all i, j
pij = 0 for (i, j) /∈ E.
P is irreducible

(8)

Note that we will relax the last constraint in our optimiza-
tion and instead we verify that the final solution satisfies this
constraint. This works well in practice because a Markov
chain with more than one communicating class means that
the chain cannot go from a state to all other states making
sij = 1 for all j for some value of i.

IV. COMPUTING THE PATROLLING STRATEGY

The function f(P) is a non convex function in general.
This can be easily observed by calculating the Hessian of sij
for some i, j. Moreover, the function is also non smooth in
general because it picks the minimum element among xij .
We now characterize the hardness of the problem.

Proposition 4. Unless P = NP , for any k ≥ 1, there does
not exist a polynomial time k-factor approximation algorithm
for Problem (8).

Proof. We use a reduction from the instance G = (V,E)
of the HAMILTONIAN CYCLE to an instance of our problem
with zero optimal value. Pass the graph G to the approxi-
mation version of Problem (8) with wij = 1,∀{i, j} ∈ E,
φ = 1, ψ = ρ = 0 and l = |V |. Choose any distributions for
g(λ) and q(t). A Hamiltonian cycle in G can be represented
using a transition matrix P and it will ensure that the payoff
of the attacker and the defender is zero which is optimal. If
no Hamiltonian cycle exists in G, the defender cannot visit
all the vertices within l time and the expected payoff for the
defender will not be zero.

A. Numerical Optimization

We will first show that our objective function is locally
Lipschitz under mild assumptions on g(λ) and q(t).

Proposition 5. If the variance var(uij) is calculated by
propagating the inverse of IN (P), and if the distributions
g(λ) and q(t) for t ∈ [Tmin, Tmax] are bounded, then the
objective function f(P) is locally Lipschitz at each point P .

Proof. The functions xij and uij are continuously differen-
tiable with respect to pxy,∀x, y, and hence, minxij is locally
Lipschitz. The product of two bounded and locally Lipschitz
functions is locally Lipschitz. The part inside the parentheses
in Equation (7) is a probability and hence is bounded, and

Algorithm 1 PATROLLINGSTRATEGY

1: Pick a starting transition matrix Po and γo
2: for k = 0, 1, 2, . . . do
3: if γk < γt then
4: stop
5: flag ← 0
6: for d ∈ Dk do
7: Q← Pk + γkd
8: if Q not feasible then
9: Q← PROJECT(Q)

10: if f(Q) < f(Pk)− ρ(γk) then
11: Pk+1 ← Q
12: γk+1 ← φkγk
13: flag ← 1
14: break
15: if flag = 0 then
16: γk+1 ← θkγk

xij is bounded if φ and ρ are bounded. So proving that the
probability of the attacker not reneging is locally Lipschitz
will complete the proof. Using the definition of Fisher
information matrix for a Markov chain along with the fact
that πi is a differentiable function of P [23], uij/var(ûij)
is differentiable2 and maxuij/var(ûij) is Lipschitz. It can
be easily shown that

∫ c
y(x)

g(λ)dλ and
∑Tmax
t=Tmin

z(x, t)q(t)

are locally Lipschitz for bounded g(λ) and q(t) if y(x) and
z(x, t) are locally Lipschitz.

Given that the objective function is non-convex, non-
smooth and locally Lipschitz, and the constraint set is
convex, Mesh Adaptive Direct Search method (MADS) can
be used to find a Clarke Stationary point [24]. Thus, we
can apply standard gradient-free optimization techniques [25]
to compute a patrolling strategy. Moreover, we also exploit
some structure of the problem to improve the performance.

At iteration k of Algorithm 1, a set of search directions Dk
is chosen and the function is evaluated at a given step length
γk along these directions. As soon as a better point is found,
it is chosen as the current point and the method proceeds to
the next iteration. The step length is decreased or increased
depending on whether a better point is found. The sufficient
decrease function ρ(γk) is Mγ

3/2
k where M is a constant,

as suggested by [25] for the algorithm to converge.
Direction set: For each row i of the transition matrix, the
constraints define a simplex in R|N (i)| dimensions. So, the
set Dk includes |N (i)| − 1 orthonormal directions on the
simplex for each row i. In our implementation, we also
include some random directions in Dk.
Projection onto the feasible set: The function PROJECT in
line 9 of Algorithm 1 projects the matrix Q onto the convex
set defined by the first three constraints of Problem 8. Since
each row i of matrix P lies in a |N (i)| dimensional simplex,
we can use the algorithm from [26] to project each row of
Q onto the desired simplex. This method employs simple
vector operations and is therefore more efficient as compared

2If var(ûij) = 0 for uij > 0, f(P) = −minxij is locally Lipschitz.

to projection using convex optimization.

V. SIMULATIONS

In this section we demonstrate that when intruders have
limited time to learn, solving for the patrolling strategies that
are hard to learn along with being hard to attack can be more
useful than optimizing for the worst case.

Strategy comparison: We conducted several experiments
with n vertices placed in a square plane including obstacles.
Each vertex was connected to a random number of its nearest
neighbors and the euclidean distances between the vertices
were rounded off to get integer edge weights. This construc-
tion of the graph is similar to the Probabilistic Roadmaps
that are used for robotic path planning. The problem data
for two of these instances is as follows.

Instance 1(n = 7) Instance 2(n = 10)

l = 8 l = 10

ψ = ρ = 5 ψ = ρ = 20

φ = [10, 5, 10, 5, 10, 10, 5] φi ∼ U [20, 50]

T ∼ U [90, 110] T ∼ U [200, 1000]

Λ ∼ U [0, 10] Λ ∼ U [0, 10]

We compare attacker’s average payoffs vlim and v∞ for
the ‘hard to learn and attack’ strategy Plim (obtained by
minimizing f(P)) and ‘hard to attack’ strategy P∞ (ob-
tained by minimizing −xĩ,j̃ where ĩ, j̃ = arg maxi,j{uij}).
Since ρ = ψ, it is a zero sum game and the defender’s
payoff is symmetric. These average payoffs are calculated
by simulating 100 attacks for each of these strategies and
then taking the average of the payoff acquired by each of
these attacks. The parameters T and Λ for these attackers
were drawn randomly from their respective distributions.

Figure 1 shows the graph for Instance 1 along with both
the strategies. For Plim, 67% attackers renege and vlim =
1.96, as compared to 1% reneging attackers and v∞ = 3.88
for P∞. If the intruder had perfect knowledge, the defender
payoffs would be v∞ = 4.25 and vlim = 6.79. It is to be
expected since the optimization for P∞ assumes the model in
which the attackers will not renege due to lack of knowledge
about the patrolling policy.

For Instance 2, we classify the attackers into different
types based on the drawn parameters and show the average
payoffs in Table I. For example, the attackers with Λ between
6.6 and 10 are risk averse attackers. Similarly the attackers
with t from 200 to 466 are given less time to learn. Note
that the strategy was calculated using T ∼ U [200, 1000]
and Λ ∼ U [0, 10], and the attackers were classified during
simulation to show the effect of T and Λ on attacker’s
payoffs.

For the Plim patrolling strategy, 33 out of 100 attackers
reneged. Some entries in the table for this strategy are
zero because all of the attackers of that category reneged
when this patrolling strategy was used. Note that for P∞,
corresponding entries are non zero, meaning that attackers
decided to attack. In fact, none of the 100 attackers reneged
for P∞. The fraction of reneging attackers agrees with our

TABLE I
THE COMPARISON OF THE ATTACKER PAYOFFS FOR THE PATROLLING

STRATEGIES. THE PAYOFFS ARE ROUNDED TO THE NEAREST INTEGER.

Λ vlim v∞ vlim v∞ vlim v∞

6.6 − 10 0 28 0 33 38 32
3.3 − 6.6 0 31 37 17 37 27
0 − 3.3 32 21 37 29 37 46

200 − 466 467 − 733 734 − 1000 T

TABLE II
COMPARISON OF MATLAB’S pattersearch FUNCTION WITH

ALGORITHM 1.

patternsearch Algorithm 1
n −xĩ,j̃ runtime −xĩ,j̃ runtime

10 44.7 108 32.1 26
30 46.4 600 38.9 600
50 47.8 600 44.5 600

expression of probability of reneging used in (7). It can also
be observed from the table that the risk averse attackers that
are given less time to learn are more likely to renege. The
average attacker payoff for Plim is 25 whereas it is 29 for
P∞. Hence, using the strategy for the attackers with limited
learning time resulted in a 13.7% decrease of the attacker
payoff. Also note that the starting point of the optimizations,
which was a randomly generated Markov chain resulted in
an average attacker payoff of 36.

Algorithm comparison: To evaluate the performance
of Algorithm 1, we compare it with the MATLAB pat-
ternsearch function that is an adaptive mesh based direct
search method [25]. For this experiment random graphs of
different sizes were generated as described above in an
obstacle free environment and the problem variables were
generated as follows.

l = 3/4(MST length of graph)

φ ∼ U [20, 50]

ψ = ρ = 20

For the purpose of this comparison, −xĩ,j̃ was minimized,
i.e., it was assumed that the attacker already knows de-
fender’s patrolling strategy. The algorithms were timed out
at 10 minutes. The attacker’s expected payoff −xĩ,j̃ for
different sizes of the graph is reported in Table II, which
shows that Algorithm 1 performs better in terms of final
objective value and runtime.

VI. CONCLUSIONS AND FUTURE WORK

We considered a patrolling game where the attacker learns
the patrolling strategy for a limited amount of time before
deciding to attack or reneging. We showed that in the cases
where the attackers have limited time, designing strategies
that are hard to learn along with being hard to attack can
be useful. The calculation of the variance in the estimates
of the attacker is expensive and we would like to investigate
methods to approximate this variance efficiently. Moreover,

inclusion of observation costs in the model is an interesting
direction for future work.

REFERENCES

[1] J. Pita, M. Jain, J. Marecki, F. Ordóñez, C. Portway, M. Tambe,
C. Western, P. Paruchuri, and S. Kraus, “Deployed armor protection:
the application of a game theoretic model for security at the los angeles
international airport,” in AAMAS, 2008, pp. 125–132.

[2] S. Alpern, A. Morton, and K. Papadaki, “Patrolling games,” Opera-
tions Research, vol. 59, no. 5, pp. 1246–1257, 2011.

[3] N. Basilico, N. Gatti, and F. Amigoni, “Patrolling security games:
Definition and algorithms for solving large instances with single
patroller and single intruder,” Artificial Intelligence, vol. 184, pp. 78–
123, 2012.

[4] D. Korzhyk, V. Conitzer, and R. Parr, “Solving Stackelberg games
with uncertain observability,” in AAMAS, 2011, pp. 1013–1020.

[5] K. Srivastava, D. M. Stipanović, and M. W. Spong, “On a stochastic
robotic surveillance problem,” in IEEE Conference on Decision and
Control and Chinese Control Conference, 2009, pp. 8567–8574.

[6] J. Grace and J. Baillieul, “Stochastic strategies for autonomous robotic
surveillance,” in IEEE Conference on Decision and Control and
European Control Conference, 2005, pp. 2200–2205.

[7] N. Agmon, G. A. Kaminka, and S. Kraus, “Multi-robot adversarial
patrolling: facing a full-knowledge opponent,” Journal of Artificial
Intelligence Research, vol. 42, pp. 887–916, 2011.

[8] T. Sak, J. Wainer, and S. K. Goldenstein, “Probabilistic multiagent pa-
trolling,” in Brazilian Symposium on Artificial Intelligence. Springer,
2008, pp. 124–133.

[9] K. Y. Lin, M. P. Atkinson, T. H. Chung, and K. D. Glazebrook, “A
graph patrol problem with random attack times,” Operations Research,
vol. 61, no. 3, pp. 694–710, 2013.

[10] R. Patel, P. Agharkar, and F. Bullo, “Robotic surveillance and Markov
chains with minimal weighted Kemeny constant,” IEEE Transactions
on Automatic Control, vol. 60, no. 12, pp. 3156–3167, Dec 2015.

[11] A. B. Asghar and S. L. Smith, “Stochastic patrolling in adversarial
settings,” in American Control Conference, 2016, pp. 6435–6440.

[12] P. Paruchuri, J. P. Pearce, M. Tambe, F. Ordonez, and S. Kraus, “An
efficient heuristic approach for security against multiple adversaries,”
in AAMAS, 2007, p. 181.

[13] M. Jain, D. Korzhyk, O. Vaněk, V. Conitzer, M. Pěchouček, and
M. Tambe, “A double oracle algorithm for zero-sum security games
on graphs,” in AAMAS, 2011, pp. 327–334.

[14] Z. Wang, Y. Yin, and B. An, “Computing optimal monitoring strategy
for detecting terrorist plots.” in AAAI, 2016, pp. 637–643.

[15] T. Brázdil, P. Hliněnỳ, A. Kučera, V. Řehák, and M. Abaffy,
“Strategy synthesis in adversarial patrolling games,” arXiv preprint
arXiv:1507.03407, 2015.

[16] T. Alam, M. Edwards, L. Bobadilla, and D. Shell, “Distributed multi-
robot area patrolling in adversarial environments,” in International
Workshop on Robotic Sensor Networks, Seattle, WA, USA, Apr. 2015.

[17] Y. Vorobeychik, B. An, M. Tambe, and S. P. Singh, “Computing
solutions in infinite-horizon discounted adversarial patrolling games.”
in ICAPS, 2014.

[18] C. Kiekintveld, T. Islam, and V. Kreinovich, “Security games with
interval uncertainty,” in AAMAS, 2013, pp. 231–238.

[19] B. An, D. Kempe, C. Kiekintveld, E. Shieh, S. Singh, M. Tambe, and
Y. Vorobeychik, “Security games with limited surveillance,” in AAAI
Conference on Artificial Intelligence, 2012, pp. 1241–1248.

[20] K. P. Murphy, Machine learning: a probabilistic perspective. MIT
press, 2012.

[21] H. Markowitz, “Portfolio selection,” The Journal of Finance, vol. 7,
no. 1, pp. 77–91, 1952.

[22] G. W. Bohrnstedt and A. S. Goldberger, “On the exact covariance
of products of random variables,” Journal of the American Statistical
Association, vol. 64, no. 328, pp. 1439–1442, 1969.

[23] P. J. Schweitzer, “Perturbation theory and finite Markov chains,”
Journal of Applied Probability, vol. 5, no. 2, pp. 401–413, 1968.

[24] C. Audet and J. E. Dennis Jr, “Mesh adaptive direct search algorithms
for constrained optimization,” SIAM Journal on Optimization, vol. 17,
no. 1, pp. 188–217, 2006.

[25] J. Nocedal and S. J. Wright, Numerical Optimization. Springer, 2006.
[26] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, “Efficient

projections onto the l 1-ball for learning in high dimensions,” in
International Conference on Machine Learning, 2008, pp. 272–279.

