
Multi-Vehicle Refill Scheduling with Queueing

Giovanni D’Ursoa,⇤, Stephen L. Smithb, Ramgopal Mettuc,1, Timo Oksanend, Robert Fitche,2

aAustralian Centre for Field Robotics, The University of Sydney
bDepartment of Electrical and Computer Engineering, University of Waterloo

cDepartment of Computer Science, Tulane University
dDepartment of Electrical Engineering and Automation, Aalto University

eCentre for Autonomous Systems, University of Technology Sydney

Abstract

We consider the problem of refill scheduling for a team of vehicles or robots that must contend for

access to a single physical location for refilling. The objective is to minimise time spent in travelling

to/from the refill station, and also time lost to queuing (waiting for access). In this paper, we present

principled results for this problem in the context of agricultural operations. We first establish that the

problem is NP-hard and prove that the maximum number of vehicles that can usefully work together

is bounded. We then focus on the design of practical algorithms and present two solutions. The first is

an exact algorithm based on dynamic programming that is suitable for small problem instances. The

second is an approximate anytime algorithm based on the branch and bound approach that is suitable

for large problem instances with many robots. We present simulated results of our algorithms for

three classes of agricultural work that cover a range of operations: spot spraying, broadcast spraying

and slurry application. We show that the algorithm is reasonably robust to inaccurate prediction of

resource utilisation rate, which is di�cult to estimate in cases such as spot application of herbicide for

weed control, and validate its performance in simulation using realistic scenarios with up to 30 robots.

Keywords: Agricultural robotics, Multi-robot systems, Multi-robot scheduling, Multi-vehicle

scheduling, Refill scheduling, Queuing, Spot spraying, broadcast spraying, slurry application

1. Introduction1

In agricultural operations, timing is crucial; if operations are completed too early, or specifically2

too late, profitability is reduced due to decreases in crop yield or quality. Timing of operations can3

be negatively impacted by issues with the required components, such as: agricultural vehicle(s), the4
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input material (seeds, fertilizer, herbicide, etc.), and the driver(s). Late completion of the opera-5

tion can be caused by too few machines, problems in logistics of input material, and availability of6

driver/operator. By using robotics, the issue of driver/operator availability can be solved through7

autonomous operation. However, core questions remain concerning the proper number of machines to8

use and the parameters of these machines, such as operational width. In the case of multiple machines9

(autonomous or human driven) the logistics of input material also plays an important role with respect10

to operational e�ciency.11

Operational e�ciency, or more specifically field e�ciency, is defined in the ASAE D497.7 (2011)12

standard as the real operational performance of a vehicle compared to its theoretical maximum with13

the given speed and width, without turns. Field e�ciency is less than 100% due to turning, irregularly14

shaped field plots, and refilling, among other factors. Derived from collected data, the ASAE D497.715

(2011) standard defines 70% (+/- 10%) field e�ciency for fertiliser spreaders and 65% (+/-15%) for16

boom sprayers. These numbers are typically used when selecting the proper size of machine for a17

specific farm.18

In the case of multiple robots or vehicles, an important factor in maintaining high field e�ciency19

is to determine the proper refill timing for each unit. Refilling the container of the vehicle with seeds,20

fertilisers, herbicide, fungicide, pesticide, manure, slurry, lime or fuel is usually done at the edge of21

the field area. Refilling, or replenishing, the supply of input materials must be done semi-regularly at22

refill stations and the refill procedure can require a substantial amount of time. Due to varying shaped23

fields and the distances that vehicles must travel to the refill station, the order in which vehicles are24

refilled cannot always be the same. Otherwise, the quickest vehicle with the shortest routes has to25

wait until the others have refilled. Harvesting operations where tanks are emptied at the edge of the26

field or at a central storage location are analogous to refilling, but for simplicity, in this work we focus27

our discussion on refilling. If multiple vehicles work simultaneously, a given vehicle may need to wait28

its turn, or queue, at the refill station.29

We are interested in understanding the optimisation problem that arises in these scenarios: at what30

points in time should a vehicle pause its work and travel to a refill station such that total refill time31

(travel, queuing, and refilling) is minimised? We refer to this optimisation problem as refill scheduling32

with queuing.33

The refill scheduling problem is relevant to both traditional and robotic agricultural operations. In34

traditional broadacre agriculture, for example, broadcast spray rig operators typically employ a greedy35

decision strategy where they wait until the spray tank is empty and then drive to the refill station.36

This strategy, unfortunately, can lead to surprisingly large time losses. Agricultural robots are subject37

to similar, or worse, time losses (Richards et al., 2015). These losses are exacerbated in small, relatively38

slow-moving robot systems operating in large areas; a single round-trip to a refill station can require39
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several hours of travel time, as we show through experiments in Sec. 6. It is critically important to40

develop a principled theoretical understanding of this problem in order to design e�cient algorithms41

that will support current and future applications of agricultural robots, and increase e�ciency in42

traditional operations.43

Interestingly, there has been surprisingly little work that addresses refill scheduling with queu-44

ing. Oksanen and Visala (2009) proposed an e�cient greedy algorithm that addresses travel time, but45

not queuing. Bochtis and Sorensen (2009) formulated a variety of related problems under the umbrella46

of the vehicle routing problem, which is NP-hard, but did not provide a rigorous complexity analysis.47

The existence of polynomial-time algorithms for certain variants (Oksanen and Visala, 2009; Patten48

et al., 2016) contradicts the assumption that all variants that can be formulated as vehicle routing49

problems are NP-hard, and thus motivates the need for a more rigorous approach.50

In this paper, we present analysis and algorithms for refill scheduling with queuing. We show that,51

although polynomial-time algorithms exist for the case of instantaneous refill time, the general problem52

with non-zero refill time is NP-hard. We also show that the ratio of working time to refill time imposes53

a limit on the number of vehicles that can work together productively given a single refill station. Based54

on this analysis, we present two algorithms. The first is an exact algorithms that computes an optimal55

refill schedule, but is infeasible in practice for all but the smallest problem instances. The second56

algorithm computes an approximately optimal solution and is e↵ective in practice. The algorithm57

maintains upper and lower bounds on the optimal solution, and tightens these bounds iteratively.58

Thus, the algorithm produces higher quality solutions given more computation time, but can produce59

a valid solution at any time. An algorithm with this property is known as an anytime algorithm.60

We report simulation results, using examples of spot spraying, broadcast spraying and slurry spread-61

ing robots, that characterise the practical performance of our solution in comparison to the greedy62

approach. Our results show that the performance gap between methods, measured in terms of total63

time attributed to refilling, can be wide. Importantly, we also analyse the sensitivity of our solution to64

variations in the actual rate of resource consumption versus the estimated rate. This analysis shows65

that our algorithm exhibits reasonable performance, particularly in the case where the usage rate is66

overestimated, and motivates further work in developing methods that directly consider uncertainty67

in the consumption rate estimate.68

The contributions of this work are to provide the first complexity analysis of the refill scheduling69

with queuing problem, and to present exact and approximate solutions. Our algorithms support the70

design of software tools that apply to any agricultural robot system that consumes and refills physical71

resources, and similarly to manually operated agricultural vehicles.72

Throughout the paper, we use the term robot to loosely imply either an autonomous or human-73

operated vehicle. We use the term field plot to mean an agricultural area where crops are grown.74
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2. Related Work75

The work most closely related to ours is by Oksanen and Visala (2009), who propose a greedy76

algorithm for refill scheduling to reduce time lost in travelling to and from a refill station. The77

robot monitors its resource level and greedily chooses when to refill. In our previous work, we give78

an optimal polynomial-time algorithm for this case (Patten et al., 2016). Neither paper, however,79

considers queuing.80

A series of papers has explored the idea of modelling a wide range of optimisation problems in81

agricultural field operations as instances of the general vehicle routing problem (VRP) (Bochtis and82

Sorensen, 2009, 2010; Jensen et al., 2015a,b). This work is important for multiple reasons; it focuses83

attention on the benefits of addressing the computational problems inherent in field operations, and84

provides a pathway to the convenient use of o↵-the-shelf solvers. However, there are two severe85

limitations of this approach. First, the VRP cannot express all possible computational problems86

of interest to field operations. The problem we study in this paper is one such instance. Second,87

formulating a problem as an instance of a VRP does not theoretically imply that the problem is as88

computationally di�cult as the VRP. Our previous work (Patten et al., 2016) provides a concrete89

example of a variant that can be solved in polynomial-time, but also can be (undesirably) formulated90

as a VRP.91

The branch and bound approach is one method that can be used to solve VRPs (Toth and Vigo,92

2002) and a wide range of other problems such as information gathering (Best and Fitch, 2016; Binney93

and Sukhatme, 2012). In adopting this approach, it is necessary to compute upper and lower bounds on94

the cost of the (unknown) optimal solution. We develop specific algorithmic procedures for calculating95

bounds that both minimise total refill time (including queuing) and also exhibit reasonable run-time96

performance. Our work also allows for replanning to account for uncertainty in usage rate estimation,97

as in Edwards et al. (2015), but we show that replanning is not always necessary.98

The problem of computing a plan that visits the entire area of a field plot is an instance of cov-99

erage planning, a well-studied problem in robotics. A recent survey can be found in Galceran and100

Carreras (2013). Both single- and multi-robot coverage are NP-hard problems (Rekleitis et al., 2008),101

but reasonable solutions can be computed using simple methods such as the boustrophedon decompo-102

sition (Choset et al., 2005). Recent work specific to agricultural applications focuses on choosing an103

optimal track orientation (Oksanen and Visala, 2009; Jin and Tang, 2011; Hameed, 2014). Here, we104

assume that track orientation is given, and that the output of a coverage planner is also given. These105

are reasonable assumptions because track orientation is often fixed ahead of time (as in controlled106

tra�c farming), and coverage planning solutions for this case are readily available in the literature.107

Our formulation of refill scheduling is related to the problems of fixed-route vehicle refuelling (Suzuki,108
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2014; Lin et al., 2007) and electric vehicle recharging (Schneider et al., 2014; Bruglieri et al., 2015;109

Keskin and Catay, 2016). This work does not address queuing, however. Nam and Shell (2015) address110

resource contention, but in the context of multi-robot task allocation which does not directly apply to111

refill scheduling.112

In our work we assume that a given field plot has been segmented and that the area to be covered113

by each robot is thus known. Another view of the refilling problem is then as a scheduling problem in114

which refilling each robot is a task that must be scheduled periodically (i.e., the span of time in which a115

robot does not refill has a hard upper bound). At any point on the path of a robot, there exists a fixed116

cost to schedule the task that is simply the travel distance to the refill station. Then, the goal is to117

schedule k tasks in a periodic fashion so as to minimise total time spent due to queuing and scheduling118

costs. This problem bears closest resemblance to group interval scheduling (Keil, 1992), in which a119

set of n independent tasks of possibly di↵ering execution times must be scheduled for execution. This120

problem is considerably simpler than ours and, due to the queueing costs, even a simple problem has an121

exponentially sized number of jobs. Our problem can also be formulated as other scheduling problem122

variants (Leung, 2004). However, these formulations are not practical and are hard to solve (Chen123

et al., 1998) due to the number of intervals involved.124

3. Problem Statement and Characterisation125

In this section we explain our formulation of the problem, prove that the problem is NP-hard, and126

provide bounds on the amount of work that multiple robots can perform concurrently.127

Intuitively, we define the refill scheduling problem as the question of how to modify robots’ paths128

by judiciously splicing in trips to a refill station. In other words, the problem is how to take an initial129

path in which a robot prematurely exhausts its resource (herbicide, for example), and create a new130

path by choosing points at which the robot stops and refills. This new path is constructed such that131

the robot can complete its work without running empty. We would like to minimise the additional time132

spent in refilling, which includes travel, queuing, and the refill operation itself. We assume that we are133

given: the number of robots, a path that completes the task without refilling, and the performance134

characteristics of the robots (e.g., travel speed, resource usage rate, refill rate). We further assume135

that the robots are identical, or homogeneous and that resource usage rate is constant within a field136

plot. Because we are motivated by agricultural applications, we assume that a robot must traverse a137

road network to reach the refill station, as opposed to taking the shortest obstacle free path (which138

likely would involve the undesirable arbitrary traversal of a field plot). Two potential solutions for an139

example problem are shown in Fig. 1.140

Formally, we state the refilling problem as follows. We are given a graph G = (V,E) whose vertices141
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Figure 1: An example multi-robot refill scheduling problem where each robot needs to perform at least one refill. The

left schedule may appear optimal, but if the refill time is lengthy, the right could be less costly. By forcing one of the

robots to take a longer path to the refill station and incurring a longer travel cost, queuing can be avoided.

represent waypoints in the field plot, and whose edges represent travel between waypoints (i.e., straight142

line travel, turns etc.). There are k robots, and each robot is assigned a portion of the field plot a priori.143

The vertices are partitioned accordingly into sets V 1
, V

2
, . . . , V

k. Robot j must cover all vertices in V
j

144

to complete its task and can decide at each vertex whether to refill its resource. Naturally, we assume145

that the capacity of each robot is insu�cient to fully complete its assigned task without refilling;146

otherwise we would not have to make any refilling decisions along the path.147

For notational simplicity, we assume that the field plot is equally partitioned and that each set V j
148

has n vertices. We also assume without loss of generality that robot j visits vertices V
j in sequence149

(i.e., vj1, v
j

2, . . . , v
j
n
). We denote the edge (vj

i
, v

j

i+1) as e
j

i
for convenience. We consider the refilling150

problem with a single refill station at a fixed location in the field plot. Let Td denote the capacity of151

the resource held by the robot (e.g., charge, fertiliser, herbicide, etc.) which decreases at a known rate152

Rf during operation, and let Tw be the amount of time the robot can work before refilling (equivalent153

to Tw = Rf/Td). Let Tr denote the amount of time needed to refill from empty. We assume that a154

robot can also refill from a non-empty state in proportionately less time (i.e., Tr/2 time to refill from155

Td/2 capacity). We assume that the robot starts with full capacity and must complete its task with156

full capacity. At vertex v
j

i
, robot j is also assigned a travel time cost r

j

i
for travelling to and from157

the refill station. We define the time spent working and travelling between subsequent vertices vj
i
and158

v
j

i+1 without refilling as d(vj
i
, v

j

i+1). Thus, the time cost for working and travelling without refilling159

between two given vertices: vj
i
and v

j
m

is d(vj
i
, v

j
m
) =

P
m�1
c=i

d(vj
c
, v

j

c+1). This is equivalent to the sum160

of the time taken to traverse each edge in the path between the two vertices.161

Our goal is to select, for each robot j, a set of waypoints W
j
✓ V

j that defines the points where162

robot j will stop working and perform a refill operation. In order to capture traversal from the163

start to the first chosen waypoint, W j must contain v
j

1, the first vertex in a robot’s path. We now164

formally define the objective function we are interested in optimising. We need to select subsets W j ,165
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j 2 {1, . . . , k} that minimise the total refill and waiting times:166

kX

j=1

X

vi2W j

⇣
r
j

i
+ Tr · (1� f(vi, vi+1)) +Q(vi,W

1
, . . . ,W

k)
⌘

(1)

Subject to f(vi, vi+1)  Td 8vi 2W
j

Where Q(·) measures the waiting time for robot j after travelling to the refill station from vertex167

v
j

i
. Function f(vi, vm) is the amount of resource used to traverse from vertex vi to another vertex vm168

without refilling.169

3.1. Complexity Analysis170

In this section we prove the complexity class of the refilling problem by reducing the group interval171

scheduling problem to it. The reduction uses the fact that the group interval scheduling problem has172

been proven to be NP-complete to prove the complexity of the refilling problem.173

The group interval scheduling problem is defined as follows.174

Problem 3.1 (Group interval scheduling problem). We are given m sets (groups), each containing175

several nonempty intervals of R�0. We write set Tj , j 2 {1, . . . ,m} as176

Tj = {[sj1, e
j

1], . . . , [s
j

nj
, e

j

nj
]}.

Does there exist a selection of one interval from each set Tj such that all intervals are pairwise disjoint?177

This problem is NP-complete, even when each interval has identical width and each group has the178

same number of intervals (Keil, 1992). We use this problem to establish the following result.179

Theorem 3.2. The multi-robot refilling problem is NP-hard.180

Proof. Consider an instance of group interval scheduling in which each group contains n intervals of181

equal width. To establish the result, we give a reduction from this instance of group interval scheduling182

to multi-robot refilling (that is, we show how an optimal algorithm for multi-robot refilling could be183

used to solve group interval scheduling). Consider a group Tj for some j 2 {1, . . . ,m}, which consists184

of intervals [sj
i
, e

j

i
], for i 2 {1, . . . , n}. We begin by sorting the intervals such that sj1  s

j

2  · · ·  s
j
n
.185

Since each interval has equal width, there is a constant �t > 0 such that for each j,186

ej � sj = �t.

To encode this group of intervals as a multi-robot refilling problem, we introduce a robot j with a187

path v
j
s
, v

j

1, v
j

2, . . . , v
j
n
, v

j

f
, where v

j
s
and v

j

f
are the start and finish vertices of the robot path, and188

v
j

1, v
j

2, . . . , v
j
n
are n intermediate vertices.189
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We define the resource consumed to move between vertices on this path as

f(vj
s
, v

j

1) =
1

2

f(vj
i
, v

j

i+1) � 0 for all i 2 {1, . . . , n� 1}

f(vj
n
, v

j

f
) =

1

2
,

where the terms f(vj
i
, v

j

i+1) are any positive numbers satisfying190

n�1X

i=1

f(vj
i
, v

j

i+1) =
1

2
.

By this construction, one-half of the resource tank is required to travel from the start vj
s
to v

j

1. Another191

one-half of the tank is needed to travel from v
j

1 to v
j
n
. Finally, one-half of the tank is needed to travel192

from v
j
n
to the finish v

j

f
. Since the total resource needed from start to finish is one and one-half tanks,193

the robot must refill at least once.194

We define the tank to be full when the robot starts at vj
s
, and allow the tank to reach empty at the195

moment when v
j

f
is reached. Notice that by this construction, the robot can reach v

j

f
with an empty196

tank by refilling exactly one-half of its tank at any of the vertices vj1, . . . , v
j
n
.197

Next, we define the time Tr to refill as198

1

2
Tr = �t.

We fix a constant c > 0, and define the time to travel from vertex i to and from the refill station as199

r
j

i
= c for each vertex i. The time from vertex i to the refill station is c/2, as is the time from the refill200

station back to vertex i.201

Finally, the times to travel between vertices d(·, ·) are defined such that if the robot travels directly202

from v
j
s
to v

j

i
without refilling, then it arrives at vertex v

j

i
at the time s

j

i
� c/2. Thus, in this case the203

robot arrives at the refill station at time s
j

i
, and if there is no wait to refill, it finishes refilling at time204

e
j

i
.205

From this construction, the minimum amount of time for robot j to complete its path is achieved206

by refilling exactly once at a vertex v
j

i
without any wait at the station. In this case the total time is207

d(vj
s
, v

j

i
) +

c

2
+�t+

c

2
+ d(vj

i
, v

j

f
) = d(vj

s
, v

j

f
) + c+�t.

Any solution in which the robot refills more than once will incur the cost c twice, and thus will require208

strictly more time. Moreover, any solution in which the robot must wait to refill will result in the209

robot departing the refill station at a time after ej
i
and thus a strictly larger time.210

Therefore, after performing this construction for each group of intervals j 2 {1, . . . ,m}, we have a211

multi-robot refilling problem with m robots. If the optimal refilling schedule for this problem has each212
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robot refill exactly once, and with no waiting, then the corresponding refill vertices vj
i
for each robot j213

yield an interval from each set Tj that are pairwise disjoint, and thus show that there exists a solution214

to the group interval scheduling problem. If the optimal refilling schedule requires multiple refills for a215

robot, or requires a robot to wait, then there is no solution to the group interval scheduling problem.216

Since the construction of the multi-robot refilling instance can be performed in polynomial time, the217

reduction is complete, and the result established.218

In our proof we assume each robot has the initial condition of a full tank and the termination219

condition of an empty tank. We conjecture that a similar proof can be formulated for the more general220

cases of arbitrary initial and termination conditions for problem variants with those properties.221

3.2. A Bound on Concurrency222

In this section we give a bound on the maximum number of robots that can work concurrently223

without queuing. This bound is a function of the refill operation length (Tw/Tr).224

Let kmax be the maximum number of robots that can e↵ectively work together such that all robots225

are either working or refilling (i.e., no robots are queuing at the refill station). For the purposes of this226

proof, we also assume that there is no travel cost involved in travelling to the refill station.227

Given the definition of kmax, we can prove that this number is essentially limited by the ratio of a228

robot’s work time (how long a robot can work before needing to refill) to refill time (how long it takes229

for a robot to refill itself to maximum capacity).230

Theorem 3.3. The maximum number of e↵ective working robots kmax satisfies kmax 
Tw
Tr

+ 1.231

Proof. Let t1 and t2 be points in time during the schedule. We define F
j(t) as the remaining amount232

of resource for robot j at time t. We then define a steady-state time interval T as233

T = min (t2 � t1) (2)

subject to t2 > t1

F
j(t1) = F

j(t2)8j 2 (1, . . . k)

such that T is a su�ciently long minimal time window. This time window is a “snapshot” of the234

system in operation. At the start of this time interval, each robot has a certain capacity remaining235

before needing to refill. By steady-state, we mean that each robot has the same capacity at the end of236

the time interval as it had at the start.237

In order to maintain capacity according to our definition of steady-state, any work time in T must238

be balanced by an equivalent amount of refill time, which we denote as R. The refill time can be split239

across multiple refill events. Time R is simply the refill time required in total to maintain capacity240

within the given time interval.241
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We define R in terms of depletion and refill time: R = T ( Tr
Tr+Tw

). Now, in order for no robot242

to queue, the sum of refill times of all robots must not exceed the total time available, which is T .243

Therefore, we have kR  T .244

Now we solve for k in order to determine kmax. Rearranging terms, we have k 
T

R
. Substituting245

for R, we get k  T

T ( Tr
Tr+Tw

)
. Eliminating T , we have k 

1
Tr

Tr+Tw

= Tw
Tr

+ 1, as claimed.246

This theorem implies that it is not always advantageous to construct very large robot teams; excess247

robots will simply queue for the refill station indefinitely. Conversely, any increase in productivity of a248

system through robots working in parallel necessarily involves an appropriate increase in the number249

or capacity of refill stations. This notion is intuitive but the value of our formalism is to provide simple250

analytical methods for designing systems.251

4. Exact Solution252

In this section we present our first solution approach, which solves the refill scheduling problem253

optimally. We then briefly discuss the applicability of this solution in practice.254

The algorithm we present is based on an algorithmic technique known as dynamic program-255

ming (DP) (Cormen et al., 2001). DP is a method of finding an exactly optimal or “best” solution256

to a problem with respect to some metric or cost function. DP works by breaking the initially large257

and hard-to-solve problem into smaller subproblems that can be solved more easily. A problem that258

can be solved by combining optimal solutions to subproblems is said to have the property of optimal259

substructure. Utilising this decomposition allows DP algorithms to recursively compute the optimal260

solution by reusing optimal solutions to subproblems, thereby avoiding an exhaustive search over the261

solution space. Avoiding exhaustive searching allows dynamic programming to calculate a far smaller262

number of possible solutions and thus reduce the amount of computation required to compute an263

optimal solution.264

4.1. Formulation for a Single Robot265

For exposition, we first we give the optimal substructure for the case in which we have a single266

robot (i.e., k = 1) that must choose waypoints for refilling. We use the terminology given in Sec. 3267

except we drop the superscript since we only have a single robot. For 1  i  n, let ti be the optimal268

cost that is achievable at vertex vi. Then, we seek to compute tn, along with refilling decisions at269

every vertex. We have that270

tn = min
i|f(i,n)1


ti + d(vi, vn) + rn + Tr · (1� f(vi, vn))

�
, (3)
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where f(i, n) is the resource cost of travelling from vi to vn without any refilling. This characterisation271

of tn admits a dynamic programming approach because we can compute ti, for 1  i  n successively;272

we note that fi can be computed simultaneously. This algorithm runs in O(n2) time.273

4.2. Formulation for k Robots274

We can generalise the above formulation by including a term that captures queuing at the refill275

station that corresponds to Q in the objective function. Let Tn be the cost of an optimal joint schedule276

for all k robots to complete their tasks. We then have that277

Tn = min
A1,n,...,Ak,n

2

4
nX

j=1

0

@t
j

n
+ d(vi, vn) + r

j

n
+

X

l|Al,n<Aj,n

r
l

n
/2 + Tr · (1� f(vl

i
, v

l

n
))

1

A

3

5 ,

where Aj,n is the arrival time of robot j at the refill station from v
j
n
. We note that these arrival times278

can be computed along with f(vl
i
, v

l
n
). For any robots that do not refill, Aj,n can be set to a sentinel279

value that excludes it from the summation.280

To give an upper bound on running time we examine the worst case scenario where each robot has281

enough resource to reach the penultimate vertex in its schedule without refilling. For each robot, there282

are (n� 1)! possible refill schedules, because at each vertex the robot can reach any of the remaining283

vertices without refilling. All combinations for the k robots must be considered. Thus, the worst case284

running time is O([(n� 1)!]k).285

4.3. Feasibility in Practice286

Because the refill scheduling problem is NP-hard (proved earlier in Sec. 3.1), it is not feasible to287

find an exact solution for large problem instances. However, the exact approach may be useful for288

small problem instances and therefore it is interesting to consider the limitations of the exact approach289

in practice. The computational cost of considering additional robots is exponential in k due to the290

large number of possible schedules that must be evaluated. This combinatorial e↵ect dominates both291

the computation and memory cost; solving multi-robot problems exactly, in a timely manner, and292

with limited memory resources becomes infeasible. This issue is discussed in more detail in Sec. 6.2.293

If the number of robots and rows are limited (such as in smaller scale agriculture operations), the DP294

approach is feasible and can be utilised to calculate an exact solution. As we discuss next, we can295

address the issues with solving multi-robot problems by considering an approximate solution (with a296

provably bounded cost).297

5. Branch and Bound Solution298

We mitigate the memory and computation time requirements of our DP approach by designing a299

branch and bound (BnB) algorithm. BnB algorithms search the solution space (all possible solutions)300
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by building a tree that partitions the solution space iteratively. An example is shown in Fig. 2. In301

this tree the root corresponds to the entire solution space and its children correspond to a partition302

of the solution space. For each of these children we calculate bounds on the cost of the partition the303

child represents. If a given child is identified to have potential, then a branching step is performed304

which further partitions the search space. Alternatively if a child has no potential it can be safely305

eliminated (pruned). This process continues until the algorithm is terminated by a user or completes306

its exploration of the search space. A beneficial feature is that the algorithm is anytime: it can be307

stopped at any time to output the current best solution. The algorithm also provides the cost for a308

given solution along with bounds on the cost of the optimal solution. Hence the algorithm is capable309

of giving a quantitative statement of solution quality (nearness to optimal).310

In this section we formally define our BnB algorithm (Algorithm 1), including algorithms for311

computing both upper and lower bounds (Algorithm 2), and branching. We also provide complexity312

analysis for the bounds computations, and give branching heuristics that improve the algorithm’s rate313

of convergence to an optimal solution.314

5.1. Branch and Bound Formulation315

We formulate the branch and bound tree T = (N,E), where nodes (or equivalently, vertices)316

N represent refilling stop decisions for k robots, and edges E represent the working area covered317

between refill stops. Leaf-to-root paths in the tree encode a complete refill schedule, and paths from318

interior nodes to the root likewise represent a partial schedule. We define a node b such that Nb =319

{v
1
n
, . . . , v

j
n
, . . . , v

k
n
} where v

j
n
is the nth vertex in V

j for robot j, and N
j

b
corresponds to the vertex in320

Nb for robot j. Let P j

b
be the path from the root to a given node b for a given robot j.321

To maintain the resource budget constraint, the BnB tree is constructed only using valid edges. An322

edge is valid if no robot exceeds its resource budget f(Np, Nc)  Td, where Np is a parent node, Nc is a323

child node, and f(l,m) is the resource cost of travelling from v
j

l
to v

j
m

without refilling. Consequently,324

we say that a schedule is valid if it consists entirely of valid edges.325

The cost assigned to a tree node Cb is the sum of the cost to follow a refill schedule Pb and the326

cost of performing a refilling operation (including the queuing time cost):327

Cb = Cp +

0

@
kX

j=1

d(N j

p
, N

j

b
) + r

j

p
+ Tr · (1� f(N j

p
, N

j

b
)) +Q(vj

b
, P

1
b
, . . . , P

k

b
)

1

A ,

where d(l,m) is the cost of covering the work area between vertices vj
l
and v

j
m
, and Cp is the cost of328

the parent of node b.329

12



Figure 2: Diagram of BnB tree construction for an example problem with two robots (robot A and robot B). Each robot

needs to perform at least one refill before reaching the end of its path, and the letter-number pairs indicate candidate

refill locations. At each iteration the BnB algorithm uses its computed bounds to determine which nodes to branch and

which to prune. The node examined in Iteration 1 is a branch node because its subtree has potential to contain a better

(lower cost) solution than has been found so far. In Iteration 2 the examined node does not have potential to improve

the best solution, so it can be safely pruned. This process continues until the entire search space has been examined or

the algorithm is terminated by the user.

5.2. Computing Upper and Lower Bounds330

The BnB approach is based on the idea of computing bounds on the cost of an (unknown) optimal331

solution. Bounds are computed such that the optimal solution cost for a given partition of search332

space is known to fall within these bounds, even though the optimal solution’s actual cost is unknown.333

There are two types of bounds: upper and lower. The actual cost must be at least as large as the lower334

bound, but no more than the upper bound. An important computational challenge is to develop an335

e�cient method of finding bounds that is faster than finding the optimal solution for a given partition.336

Otherwise, the benefit of computing bounds is diminished. Pseudocode for computing bounds is337

detailed in Algorithm 2.338

13



We first address the case of computing lower bounds (LB). The tightest possible lower bound339

would, of course, be equal to the cost of an optimal solution. However, computing the optimal solution340

here is infeasible due to the exponential size of the joint action space induced by the interaction of341

multiple robots. One of the reasons that we need to consider the joint action space is to compute the342

cost of queuing. It is possible to consider a lower bound that ignores queuing cost, but unfortunately343

this bound would still be di�cult to compute because the problem space remains large. Relaxing the344

queuing constraint does have a benefit; it also removes interactions between robots and decouples their345

costs. The lower bound computation we propose makes use of this insight. Rather than reasoning346

about joint actions, we instead compute a lower bound by considering each robot independently. Recall347

that each node in the BnB tree encodes a partial schedule. To bound the cost of a complete schedule348

that passes through a given node, we use the single-robot DP algorithm (Sec. 4.1) to complete the349

partial schedule optimally. The sum of the single-robot costs underestimates the true cost because it350

ignores queuing, and therefore represents a lower bound. The computational benefit of this approach351

is that the bound can be computed in polynomial time.352

The lower bound for node b is formulated mathematically as:353

LBb = Cb +

0

@
kX
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j
b \Pb)
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, v
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1

A

where OPT
j

b
is an optimal single robot schedule that passes through node b for a given robot j.354

Computation time can be further reduced by taking advantage of memoisation (caching the results355

of computation). Memoisation is e↵ective here because many of the independent schedules appear in356

multiple joint schedules. Thus, the algorithm avoids the computational cost of evaluating bounds for357

any given independent schedule multiple times.358

The upper bound (UB) is based on the schedules produced by the lower bounds; the single-robot359

schedules are combined into a multi-robot joint schedule (a schedule for the entire team). The key360

point is that, because an upper bound must be greater than or equal to the cost of the optimal solution,361

we must now now consider the cost of queuing. Our approach is to reuse the lower bound solution,362

but incorporate an estimate of the queuing cost. We sum the costs of the schedules for each robot (as363

with the lower bound) and add the queuing cost given that joint schedule. The cost of this solution364

cannot underestimate the optimal (because it is the cost of a complete, valid schedule) and therefore365

represents a valid upper bound.366

Formally the upper bound on the cost of node b is defined as:367

UBb =
kX
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j
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)

The upper bound defined in this way can be computed in polynomial time. Its e�ciency is due to368
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the polynomial time complexity of evaluating the cost of (as opposed to finding) a joint schedule;369

evaluating a given schedule does not involve a combinatorial decision, because the refill stops have370

already been selected.371

Another benefit of this formulation is that it naturally allows the BnB solution to act as an anytime372

algorithm. A valid solution is available at any time because the upper bound computation provides a373

complete valid refill schedule and associated cost. We maintain a copy of the current best upper bound374

and corresponding schedule, which can be output when the algorithm is terminated. The algorithm can375

be terminated while it is still searching (after a fixed period of time, for example) for an approximately376

optimal solution, or it can be allowed to run to completion and will yield an exact optimal solution.377

The quality of the solutions produced by the upper bound computation are discussed later in Sec. 6.1.378

Amajor benefit of our lower and upper bound definitions, in combination, is to provide an indication379

of the quality of the approximate solution. The global optimal solution falls between the lower bound380

of the root and the upper bound of the candidate solution, and the cost of our approximate solution381

also falls between these bounds. Thus, the error between the optimal solution and our approximation382

can be no more than the di↵erence between these upper and lower bounds. In practice, the benefit is383

that this di↵erence can be used to determine by how much a solution could potentially improve if the384

BnB algorithm were allowed to continue its computation.385

5.3. Branching386

The other main component of the BnB algorithm is the branching step. Branching is the process by387

which a partition of the search space represented by a node is further partitioned. Branching considers388

two cases: 1) a partition can contain a solution that has potential to reduce cost if expanded, and 2)389

there is no possible way to reduce the cost further. A region of the search space can contain a solution390

with lower final cost when the lower bound is strictly less than the current best upper bound found391

so far. Functionally this means that there may exist a full schedule, based on this partial schedule,392

that has a lower cost. Alternatively if the lower bound is strictly greater than or equal to the current393

best upper bound, the solution can be safely deleted or pruned, as there is no possible schedule in that394

partition that will reduce the cost further.395

The branching step is outlined in pseudocode as Algorithm 3. Branching expands partial solutions396

by creating child or branch nodes that represent all the next possible valid refill stops. The e↵ect of397

branching is to incrementally extend the given partial schedule. We compute the set of child nodes as398

follows. We first step along each robot’s path and build a list of all stops that are reachable without399

requiring a refill. Secondly we create a child node for each combination of reachable stops from the400

resulting lists.401

The rate at which the cost converges to optimal can be improved by using additional pruning rules,402
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Algorithm 1 Branch and Bound (BnB) for fill scheduling with queuing

Precondition: k: number of robots, G: graph of field plot, Td: resource capacity, Tr: resource refill

time, compT ime: computation time budget, n: cardinality of robot graph segments

1: function BnB(k,G, Td, Tr)

2: root  InitialiseTree()

3: optCost  CalculateLowerBound(root, 0, G, k) . Lower bound of root is global optimum

4: bestUpperBound, candidatePath  CalculateUpperBound(root)

5: unexplored  AddChildren(root, Td, Tr, k, n) . unexplored is a stack

6: startTime, currTime  GetSystemTime()

7: while Length(unexplored) > 0 and compT ime� (startT ime� currT ime) > 0 do

8: currTime  GetSystemTime()

9: node  unexplored.pop()

10: nodeCost  
P

k

j=1 (coverageCost(j) + refillCost(j)) + queuing(node)

11: lowerBound, lowerPaths  CalculateLowerBound(node, nodeCost,G, k) . Lower bound

12: if lowerBound  bestUpperBound then . Branch

13: upperBound, upperPath  CalculateUpperBound(node, lowerPaths) . Upper bound

14: if upperBound  bestUpperBound then

15: BestUpperBound,candidatePath  UpperBound, UpperPath

16: end if

17: children  addChildren(node, Td, Tr, k, n)

18: unexplored  children

19: else

20: Prune(node) . prune sub tree

21: end if

22: end while

23: approxRatio  bestUpperBound�optCost

optCost

24: return bestUpperBound, candidatePath, approxRatio

25: end function
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Algorithm 2 Calculating bounds for a BnB node

1: function calculateLowerBound(node, nodeCost,G, k)

2: lowerPaths  []

3: costs  []

4: for j  1 to k do

5: lowerPaths[j],costs[j]  SingleRobotDP (node,G, j)

6: end for

7: lowerBound  nodeCost+
P

k

j=1 costs[j]

8: return lowerBound, lowerPaths

9: end function

10: function calculateUpperBound(nodeCost, lowerBoundPaths)

11: upperPath  makeJointPath(lowerBoundPaths)

12: lowerBound  nodeCost+ CalculateCostOfPath(upperPath)

13: return upperBound, UpperPath

14: end function

Algorithm 3 Adding childBnB node

1: function AddChildren(node, Td, Tr, k, n)

2: children  []

3: reachable  []

4: for j  1 to k do

5: for i node
j

i
to n do

6: if Td � Tr · (1� resourceUse(nodej
i
, v

j

i
)) then . reachable refill stops

7: reachable[j]  v
j

i

8: end if

9: end for

10: end for

11: for b 2 C(reachable, k) do . combinations of reachable vertices for k robots

12: children  b

13: node.children  b

14: end for

15: return children

16: end function
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which are possible due our formulation of the bounds. Additional pruning can be performed if the403

upper and lower bounds of a node are equal; there is no further benefit that can be found by branching404

on this solution. If the bounds are not equal, there still may be an opportunity to prune. For a given405

node b, we can use the upper and lower bounds to infer if queuing occurs in the unexpanded section of406

the partial schedule. In other words, if UBb minus the cost of Pb is equal to OPTb, then no queuing407

occurs in the optimal expansion of the schedule and it can be pruned safely.408

The convergence rate can also be increased heuristically by exploring high-quality candidate branches409

first. High-quality candidates are schedules that do not deviate far from the lower bound schedule,410

measured by the path distance between the next chosen refill stop and the lower bound schedule.411

Recall that the cost function is a sum of refilling and queuing costs. Deviating from the lower bound412

schedule will incur an increase in refilling path cost, and the total cost will be reduced only if there413

is an equal or greater reduction in queuing cost. Due to this property our algorithm first evaluates414

branch nodes that lie within some deviation from the next optimal stop given by the lower bound415

schedule computed from the parent node. Otherwise, the algorithm evaluates potential improvements416

ordered by greatest amount of resource usage.417

6. Experiments and Results418

In this section we report experimental results in simulation that validate the behaviour of our419

algorithms and evaluate their performance. We explain our experimental setup, present results for420

both algorithms, and conclude with a sensitivity analysis that shows that our algorithm is reasonably421

robust to errors in estimation of spray rate.422

6.1. Experimental Setup423

To validate the performance of our algorithms, we perform extensive experiments in simulation.424

Here, simulation requires modelling (creating digital versions of) both the environment and the robots.425

Our simulated environments consist of five field plots, based on real-world field plot geometry and426

given refill station locations, from a farm in Queensland, Australia. The five field plots span an area427

of roughly 1000 hectares in total; these field plots are shown in Fig. 3.428

Coverage paths input to our algorithm can be generated by any coverage algorithm. Here we simply429

generated a boustrophedon or “lawnmower”-style path in the tradition of Choset et al. (2005). This430

path (G) was partitioned into approximately equi-distance segments (V j) and allocated to the robots.431

Example coverage paths for three of the field plots are shown in Fig. 4. The coverage paths were432

generated for ten robots at eight-meter row spacing.433

For the simulated robot models, we assume that robots are performing weed control using sprayed434

herbicide or slurry spreading and that fuel is not a limiting factor. We thus ignore fuel and consider435

18



Figure 3: Overhead view of the field plots, in which the geometry and their relative sizes can be seen. Each field plot is

assigned a number and colour: 1) yellow, 2) green, 3) black, 4) red, 5) blue.

(a) Field plot 1 (132 rows) (b) Field plot 4 (213 rows) (c) Field plot 5 (107 rows)

Figure 4: Example coverage paths for 10 spot spraying robots at eight-meter row spacing. The refill station is shown as

the R inside a circle, and each robot path is shown as a di↵erent colour. Allocating equal length paths results in varying

numbers of rows for each robot, which can be seen as the varying sizes of the path segments in the y dimension.

three operational cases: 1) spot spraying 2) broadcast spraying and 3) slurry application. Spot spraying436

is typified by small resource tank capacity and low usage rate. Broadcast spraying requires large tank437

capacity and uses resources at a higher rate. Slurry application is a bulk process and requires very438

large tank capacities and uses resources at a rapid rate. For the spot spraying robot model we base439

the parameters on a multi-robot system that is operating commercially in agriculture (Swarmfarm440

Robotics). To model the broadcast case we assume a commercially available boom sprayer, such as441

the Pegasus 6000 (Pegasus Boomsprays), with high-flow spray nozzles and a high-flow refill pump.442

The slurry spreading robot model is based on a commercial slurry spreader such as the Vredo VT443

4556 (Vredo VT 4556). The parameters of the robot models are given in Tab. 1. To model spraying444

we chose to calculate a constant usage rate per linear meter traveled based on the area covered per445
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Parameter Spot spray Broacast Slurry application units

Resource Tank capacity Td 400 6000 16000 Litres

Area covered per tank 20 75 1 Hectares

Travel speed 8 15 20 Km/h

Tank refill time Tr 6 10 10 Minutes

Row Spacing 8 36 20 Meters

Maximum e↵ective team size kmax 33 10 2 Robots

Table 1: Robot model parameters

tank and the row spacing (and hence robot width). Spraying material is assumed to be used at this446

rate for both spraying cases regardless of the number or presence of weeds. The slurry application rate447

is also assumed to be constant.448

Further, we assume the following: the robots are homogeneous, there are no collisions during travel,449

resources are used at a constant rate, the resource application rate is known accurately, and robots450

travel at a constant velocity. The strongest of these assumptions is that the resource application rate451

for spot spraying is known accurately. We investigate the practical e↵ects of this assumption later in452

Sec. 6.4, and establish that algorithm performance is acceptable given reasonable inaccuracy in the453

resource application rate estimate.454

In spot spraying and broadcast spraying, the graph vertices (potential stopping points) are located455

at the ends of each row of the field plot. Travel to/from the refill station is restricted to the road456

network to avoid unnecessary row traversal and limit soil compaction.457

The slurry application required denser placement of potential stopping points to allow for the high458

rate of resource usage; it may not be possible to traverse a single row without refilling. Therefore,459

vertices were added along the rows at 250-meter intervals.460

The hardware used to perform the experimental evaluation is a desktop computer with an i7-6700461

CPU and 32 Gb system memory, running a 64-bit Ubuntu 15.10 operating system. The software was462

written in 64-bit Python 2.7.463

6.2. Experiments with the Exact Algorithm464

To analyse the dynamic programming formulation given in Sec. 4, we compare its results with465

those of a naive distance-based greedy heuristic approach. A greedy algorithm was selected because466

it produces valid schedules and is an intuitive, simple solution to the problem. The greedy algorithm467

represents the scenario where each robot drives until its resource tank is empty and does not consider468

refilling costs or the e↵ects of queuing. This is the typical approach used in current practice.469
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Figure 5: Example sub-optimal and unstable refilling choices of the greedy algorithm. A slight perturbation in the

problem instance (in this case robot tank capacity) can negatively impact the algorithm’s performance. This impact can

be arbitrarily bad as it depends on the refill travel distance, queuing costs and the number of robots. The refill station

is shown as the R inside a circle, and each robot path is shown as a di↵erent colour. The DP solution is shown as circles

and greedy as triangles.

The greedy algorithm was found to produce sub-optimal results with highly variable quality. This470

variability is highlighted in Fig. 5, where a small perturbation in spray rate a↵ected the greedy solution471

cost by over 10%. This figure also demonstrates a cause of the sub-optimality; the greedy algorithm472

can choose a number of refills far away from the refill station and incurs a high cost for those refills473

in contrast to the DP algorithm, which tends to refill closer to the refill station. For some problems474

the optimal solution can require a long travel distance to avoid queuing, but since the greedy solution475

does not consider these e↵ects, its results can be arbitrarily poor.476

The DP formulation was capable of solving the problem optimally for small problem instances. DP477

was found to be impractical for problems with more than 10-20 rows and 4 robots due to excessive478

system memory and computation time requirements. The exponential growth in computation time479

limits the practicality of the DP approach to small instances such as those with 2-3 robots and under480

50 rows. Average computation times and solution quality is given in Tab. 2. Intuitively, it would seem481

that the DP algorithm should be capable of dealing with larger problem instances, because not all stops482

are reachable from each other. This sparse reachability means that not every possible permutation of483

refill stops needs to be computed. A smaller search space would imply that the running time would be484

favourable, compared to the worst case complexity bounds. In practice this e↵ect is dominated by the485

combinatorial explosion of the search space due to the number of robots. This domination can be seen486

by observing in Tab. 2 that the running time is more strongly a↵ected by an increase in the number487

of robots compared to an increase in the number of rows.488
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20 rows 30 rows

Number of robots Greedy DP Greedy DP

1 0.000053 0.00087 0.000045 0.0092

2 0.0003 0.034 0.00079 0.15

3 0.00081 383.95 0.0031 962.1

4 0.0023 1043.2 0.004 4278.3

Table 2: The computation time (in seconds) of the greedy and dynamic programming algorithms on field plot 3. The

greedy algorithm completes in polynomial time, compared to the DP algorithm which runs in exponential time. The

addition of robots has a stronger e↵ect on computation time than the addition of rows.

6.3. Experiments with the Branch and Bound Algorithm489

For the following set of experiments our BnB algorithm was given a computation time budget of490

one second. The approximation quality may be improved with longer computation time, but these491

results still demonstrate that even with short computation time our approach is e↵ective. Later in the492

section we investigate the e↵ect of computation time on BnB approximation quality.493

The colours used in the figures in this section correspond to the field plots as shown in Fig. 3. The494

approximation factor is calculated as the ratio of the slack between the upper and lower bounds scaled495

by the lower bound. Formally, the approximation factor is (UB � LB)/LB.496

For spot spraying robots our BnB algorithm achieves a near-optimal result. The quality of these497

results is shown in Fig. 6a. For all experiments the solution cost is within 35 percent of optimal (6498

percent on average), and achieves a 4-40 percent reduction in cost compared to greedy (13 percent on499

average), even for the worst performing field plot. Interestingly, the algorithm continued to produce500

high quality results for a fixed computation budget, despite the growth in number of robots.501

For the broadcast spraying case, our algorithm achieves performance increases over greedy, as shown502

in Fig. 6b. In all experiments the solution cost is within 80 percent of optimal (29 percent on average),503

and achieves a 6-50 percent reduction in cost compared to greedy (22 percent on average).504

Results for the slurry application are shown in Fig. 7a. The e↵ect of queueing is severe because505

the system requires a large number of refills. The performance of our algorithm approaches that506

of the greedy approach because the frequent refills severely restrict the number of potential waypoint507

selections. Multiple refill stations may be necessary to reduce queuing in this class of problem instances.508

To understand how system throughput scales with additional robots, we measured work time509

(the maximum single-robot cost) for teams of varying size. Increasing the number of robots led to510

22



(a) (b)

(c) (d)

Figure 6: (a) shows that the BnB algorithm produces an average approximation ratio of 1.06 for a team of spot spraying

robots. (b) shows that the BnB algorithm produces an average approximation ratio of 1.28 for a team of broadcast

spraying robots. (c) shows how the number of robots a↵ects the work time for a team of spot spraying robots. (d) shows

how the number of robots a↵ects the work time for a team of broadcast spraying robots. Work time is defined as the

maximum single-robot cost, which indicates the completion time of the entire robot team.

diminishing benefits for all three system types: spot spraying shown in Fig. 6c, broadcast spraying511

shown in Fig. 6d, and slurry application shown in Fig. 7b. This e↵ect is due to the increase in time512

spent queuing and is expected; in Sec. 3.2 we proved that there is a limit on the maximum number of513

robots that can work together e↵ectively, and therefore the benefit of adding robots eventually reaches514

zero.515

To understand how the algorithms can a↵ect the performance of real world systems we use the516

measure of e↵ective field e�ciency. We calculate the e↵ective field e�ciency as the mean field e�ciency517

for boom spraying systems given in ASAE D497.7 (2011) divided by the average approximation ratio.518

An approximation ratio of 1 means the system performs optimally and would result in the ideal e↵ective519

e�ciency. Larger approximation ratios mean the system result in lower e�ciency due to more than520
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(a) (b)

Figure 7: E↵ects of number of robots on slurry application scenarios. Both the BnB and greedy algorithms perform

poorly in this scenario. The approximation ratio is large due to the large amount of queuing.

(a) (b)

Figure 8: E↵ects of number of robots on e↵ective field e�ciency. Out of a best case of 65% field e�ciency, our BnB

algorithm achieves an average e↵ective field e�ciency of 61.6% for spot spraying and 50.4% for broadcast spraying.

the ideal amount of time spent refilling or queuing. For spot spraying systems, shown in Fig. 8a, our521

BnB algorithm has an average e↵ective field e�ciency of 61.6%, compared to 54.7% for the greedy522

algorithm, resulting in an improvement of 6.9% in e↵ective field e�ciency over the greedy approach.523

Similarly, for broadcast spraying systems, shown in Fig. 8b, the average e↵ective e�ciency is 50.4% for524

the BnB algorithm compared to 44.2% for greedy, an improvement of 6.2% in e↵ective field e�ciency525

over the greedy approach. For slurry applications our algorithm performed the same as the greedy526

approach hence there is no change in field e�ciency between the two algorithms.527
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Figure 9: E↵ect of increasing computation time on BnB approximation. Additional computation time non-linearly

improves the approximation ratio. Improvement is slow because the search space is large and the algorithm has to find

solutions that reduce queuing costs without increasing travel costs.

6.3.1. E↵ect of Computation Time528

To examine the e↵ect of the BnB computation time on solution quality, we allowed the algorithm529

to run for increasing lengths of time and observed the approximation quality. These computation530

time experiments are run on field plot 2. Slurry application systems exhibited a lack of flexibility in531

schedule selection, hence we focus our analysis on spot spraying and broadcast systems where there is532

more opportunity for further schedule optimisation.533

Additional computation time improves the approximation in a non-linear fashion. It can be seen in534

Fig. 9 that for most scenarios, with additional computation, the BnB algorithm improves the approx-535

imation ratio and produces lower cost schedules. The improvements generally increase in magnitude536

as the number of robots increases, because the e↵ect of queuing becomes more exaggerated, and there537

is more potential for small changes to have a cascade e↵ect (one robot forces another to queue, which538

causes more queuing, and so on). However, a larger number of robots also results in an exponentially539

larger search space so improvements can take significantly longer to find.540

6.4. Sensitivity Analysis541

One potential limitation of our work is that it can be di�cult to predict spray rate, and thus542

it is important to understand how our algorithms break down when faced with errors in spray rate543

estimation. Broadcast spraying typically involves a constant chemical application rate target, but544

the spot spraying case is more challenging. Unlike broadcast, it is di�cult to accurately estimate545

the amount of liquid applied per unit area because it is variable. One such example would be field546

plots with higher weed density than expected (underestimating the usage rate), or lower weed density547

(overestimating the usage rate).548
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(a) 5 robot sensitivity (b) 10 robot sensitivity (c) 15 robot sensitivity

Figure 10: Regret caused by incorrectly estimating resource usage rate for 5, 10, 15 robots (field plot 4).

(a) 5 robot sensitivity (b) 10 robot sensitivity (c) 15 robot sensitivity

Figure 11: Regret caused by incorrectly estimating resource usage rate for 5, 10, 15 robots (field plot 3). Overestimation

has a lower regret than underestimation which provides insight about how to estimate usage rates when considering

uncertainty.

To analyse the potential operational impact of this assumption, we investigate the sensitivity of549

the schedule to the estimation error of the spray usage rate. We measure this sensitivity using regret.550

In this case regret is defined as the extra cost incurred due to error in estimating the spray rate, either551

by: 1) overestimation causing a sub-optimal schedule, or 2) underestimation invalidating schedules552

and requiring replanning to fix. Formally, to calculate regret, let the spray rate estimation error �553

be the di↵erence between the estimated spray rate and the actual spray rate. Let E0 be the cost of a554

schedule using the estimated (expected) spray rate and let I� be the ideal cost of a schedule using the555

real spray rate calculated as if there is no estimation error. These ideal and estimated costs are given556

by the lower bound of the BnB root, which allows us to bound the regret and account for variability557

in feasible solution costs (due to approximation).558

Let A� be the cost of a schedule that was computed using an estimated spray rate, but evaluated

using the actual spray rate. If the schedule remains valid, this cost is equivalent to the BnB solution’s

upper bound. If the schedule is no longer valid, due to exhausting the spray resource earlier than

estimated, it needs to be modified. Schedules are modified using a reactive greedy strategy. This

strategy chooses to refill at the last possible stop before the spray resource is exhausted, resulting in
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a valid schedule. Let the o↵set from 0 be � = A0�I0
Es
⇥ 100. Regret for a given estimation error � as a

percentage of the estimated schedule cost is then calculated as:

✓
A� � I�

E0
⇥ 100

◆
� �.

It can be seen from Fig. 11 and Fig. 10 that the solution is far more sensitive to underestimation559

than to overestimation. The reactive greedy strategy can lead to large regret, because the new schedules560

have higher refill counts and sub-optimal refill stop selections. Overestimation can quickly invalidate561

schedules, because the schedules tend to minimise the number of refills and hence maximise the amount562

of resource used. Alternatively the system seems fairly robust to overestimation, because the schedules563

are still valid. Schedules with overestimation still have some associated regret because they refill more564

frequently than necessary.565

This sensitivity analysis suggests guidelines to be used by practitioners. Any inaccuracy in esti-566

mation sacrifices optimality, but overestimation is preferable to underestimation and the algorithm is567

not particularly sensitive to the magnitude of overestimation. Results for underestimation are unpre-568

dictable and may lead to large variance in run time (biased towards larger run times), because the569

algorithm behaviour is forced to be reactive, which devolves into a greedy replanning strategy. This570

analysis supports the use of our algorithm in practice because, with reasonably accurate rate estima-571

tion (up to 30% error underestimation and 5% overestimation error), even in the unfavorable scenarios572

our algorithm outperforms (or devolves to) a reactive greedy approach.573

7. Discussion574

In this section we discuss the practical implications of our work. We discuss the e↵ect of reducing575

travel and queuing time for practical systems, capability to inform choice of robot team size, perfor-576

mance in spot spraying versus broadcast spraying, alternative spray tank finishing capacity constraints,577

the potential for using our algorithm to position the refill station, and future work.578

The problem analysis and solutions presented here have strong potential to be useful in practice.579

The refill scheduling problem a↵ects both teams of traditional vehicles and multi-robot systems in a580

breadth of circumstances including spraying, cargo delivery, and other tasks that involve replenishing581

resources at a shared location. Improving their refilling e�ciency has appreciable positive benefits.582

The spraying operations (in this work) improve the field e�ciency, by 6.9% for spot spraying and583

6.2% for broadcast spraying, compared to the typical approach. Reducing the refilling costs allows584

the robots to spend less time transiting to/from the refill station and queuing, thus improving system585

throughput and the amount of fuel used. Both benefits result in lower operational costs and improve586

the environmental impact of spraying systems.587
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Another practical outcome of this work is that it informs the choice of how many robots to use for588

a given scenario. Our results show that, in practice, as the size of the robot team grows the queuing589

cost starts to the dominate the benefit of increasing the robot team size, and the throughput is limited.590

Hence, there is an ideal number of robots that should be deployed for a given problem, due to a growth591

in associated operational overhead and a reduction in marginal utility (due to queuing costs). Our592

algorithm makes it possible to easily explore the expected performance of teams of various sizes, and593

potentially can be used as an operational design tool.594

A useful benefit of our approach is that it can be used to understand the scalability of multi-robot595

broadcast and spot spraying systems. The results show that the marginal benefit of adding more robots596

to a broadcast spraying system is less than that of spot spraying system. The reason is that broadcast597

systems have a lower work time/refill time ratio. A low ratio leads to sizable queuing periods, and598

this e↵ect is worsened by the addition of more robots. The implication for broadcast systems is that599

adding more robots requires either a higher work/refill time ratio or additional refill stations.600

Another area for consideration when applying our work is the amount of spraying material a robot601

should have left in the tank at the end of an operation. This requirement is dependent on the particular602

operation required. For our problem formulation we defined for the robot to finish with a full tank,603

such as would occur in a contract spraying scenario. Contract operators may often want the system604

to end with a full tank, in order to know exactly how much chemical was used (which is billed to the605

client). The robots start and end full, and then the amounts added at each refill (measured at the606

pump) is summed to compute the total chemical bill. Alternatively, there can be operations that would607

prefer the system to finish empty or with an arbitrary capacity. A scenario that motivates finishing608

with an arbitrary tank capacity is an operation where the spray tanks need to be flushed and the609

chemicals changed between field plots. To handle the arbitrary finishing tank capacity our problem610

formulation needs to be modified slightly. The problem needs to be constructed such that rj
n
= 0 and611

f(i, n) = 0 this means the final refill will have no time cost and is e↵ectively ignored, thus allowing the612

system to finish with an arbitrary resource amount. Subsequently, there needs to be a separate check613

to ensure that the resource used to reach the final vertex does not exceed the tank capacity constraint,614

since the cost is set to 0. These modifications would allow the system to handle di↵erent operational615

realities.616

Lastly, our approach can be used to inform the choice of where to place the refill station. It is617

su�cient to run the algorithm iteratively for various placements and choose the best result. This618

process is feasible because the algorithm is anytime and o↵ers reasonable approximation quality. More619

interestingly, with a straightforward extension to the algorithm this process can also be used to consider620

placement of more than one refill station. A simple scenario is one fixed station plus one mobile station621

that can be towed into a chosen position. Adding further refill stations can reduce travel and queuing622
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time, but also increases the complexity of the decision problem exponentially.623

Multi-robot refill scheduling is a rich problem area with many important avenues of future work.624

Problem variants that could lead to reduced work time include those that consider multiple refill625

stations, mobile refill stations, and partial refilling. It would also be interesting to understand the626

e↵ects of di↵erent coverage patterns (such as row interleaving) on travel/queuing time. Promising627

approaches to improve stability include probabilistic methods that deal with uncertainty in spray rate628

estimation, and replanning.629

Areas for future improvement that instead focus on improving practicality include parallelising630

the algorithm, and producing a cloud based service. Our work focused on the characterisation of the631

problem and design of the approach, not the optimisation of the implementation. The design of our632

BnB algorithm lends itself to a parallelised approach, which would lead to speed increases proportional633

to the amount of hardware used. Lastly, establishing a cloud based service would allow agricultural634

system operators to more easily access the benefits of our results and promote wider adoption.635

8. Conclusion636

In this work, we characterised and provided solutions for the multi-robot refill scheduling problem637

with queuing. We defined the problem by constructing a subset selection problem with a non-linear638

cost metric. Also we proved that the problem is NP-hard and that there is a bound on the number639

of robots that can work e↵ectively. We designed an algorithm based on dynamic programming that is640

capable of solving the problem optimally, but due to exponential complexity its practicality is limited641

to small problem instances. Realistic instances can be solved quickly and approximately using our642

anytime branch and bound algorithm. This anytime property allows BnB algorithm to be terminated643

at any time and to provided a feasible and valid solution for the problem, which is important for644

real-time systems. Another benefit is the bounds of the BnB algorithm provide information about645

the approximation quality and were designed to be computed in polynomial time. We tested our646

BnB algorithm on a range of simulated of real world agricultural applications, from small dose rate647

spot spraying to high dose rate slurry application and the results show functionality and applicability648

of the algorithm for the full range of agricultural operations. We also show empirically that our649

BnB algorithm produces quality approximately optimal solutions and out performs the typical greedy650

approach used in practice. The strongest assumption made by our algorithm is that the usage rate651

is known. It is di�cult to accurately estimate the spray rate for spot spraying, but our sensitivity652

analysis showed that our algorithm’s performance is reasonably robust to inaccurate estimates.653
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