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Abstract— In this paper we develop an approach for learn-
ing user preferences for complex task specifications through
human-robot interaction. We consider the problem of planning
robot motion in a known environment, but where a user
has specified additional spatial and temporal constraints on
allowable robot motions. To illustrate the impact of the user’s
constraints on performance, we iteratively present users with
alternative solutions on an interface. The user provides a
ranking of alternate paths, and from this we learn about the
importance of different constraints. This allows for an accessible
method for specifying complex robot tasks. We present an
algorithm that iteratively builds a set of constraints on the
relative importance of each user constraint, and prove that with
sufficient interaction, the algorithm determines a user-optimal
path. We demonstrate the practical performance by simulating
realistic material transport scenarios in industrial facilities.

I. INTRODUCTION

While autonomous robots are finding increasingly
widespread application, specifying robot tasks usually re-
quires a high level of expertise. To enable a broader range
of users to direct autonomous robots, human robot interfaces
that allow non-expert users to set up complex task specifi-
cations [1], [2], [3] are required.

In many applications of autonomous mobile robots, it is
desirable to restrict or specify the robot’s behaviour due to
safety reasons or to adjust to existing work flows [4]. For
instance, in a warehouse or manufacturing environment a
facility operator might define regions a robot should avoid
or road rules. This can be accomplished by tagging the
environment on a graphical user interface in order to define
constraints like areas of avoidance, one way roads or speed
limits. However, it might not be obvious to the user what
impact each constraint has on the performance of the robot
task. They might be willing to accept the robot violating
less important constraints that are not mandatory for safety
reasons if it is sufficiently beneficial. For instance, Figure 1
shows an industrial environment with several user defined
constraints. In (a) the robot path respects all constraints,
while in (b) the user agreed to the robot traversing (i.e., vi-
olating) one constraint as this enables significant reduction
in the time to travel from start to goal. Instead of asking
the user to specify costs for each constraint, we propose
a procedure where we iteratively present the user with
alternative solutions in order to learn their preferences.
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(b) Path after learning user weights

Fig. 1. Example environment (white) with obstacles (black) and user
defined constraints. There are two one way roads, drawn in purple with
an arrow indicating the direction, a speed limit zone drawn in yellow where
only half the maximum speed is allowed and several areas of avoidance,
drawn in red. Blue indicates the shortest path from s to g. We compare
(a) the initial path respecting all user constraints with a completion time of
62s and (b) the optimal path after learning user preferences that traverses
an area of avoidance with a completion time of 46s.

In this work we consider a known environment where the
robot must traverse from start to goal locations. We propose a
user-on-the-loop algorithm: Starting with an initial solution,
we iteratively generate alternative paths and request user
feedback. Thereby, the user is ”on-the-loop”, i.e., does not
need to constantly provide feedback as the best solution so
far can already be executed. We assume that the user has
some hidden cost for each constraint which expresses for
what time benefit they will accept a violation. For known user
costs the shortest path can easily be found using algorithms
like Dijkstra’s or A* [5]. By presenting alternative solutions
to the user and requesting feedback, we iteratively learn in
what range the hidden user costs lie. Eventually, we approach
a unique solution for the shortest path problem and have then
sufficiently learned the user preferences.

Related work: Learning user preferences has been stud-
ied in the area of route selection in navigation systems [6].
Although a user does not explicitly define constraints, they
choose paths based on route-related attributes other than
just shortest travel time. These preferences are learned by



observing the user’s choices of alternative route options.
Our problem can also be understood as planning in par-

tially known environments [5], [7]. While we have complete
knowledge about the physical environment, the user costs are
unknown. In our case, the costs are updated based on user
feedback instead of observations.

Constraint revision for temporal logic specification is
discussed in [8] and [9]. Thereby, the user provides a task
specification in linear temporal logic (LTL), which is then
subject to revision. Strictly following the specification might
be infeasible [9], or result in a low probability of success
[8]. The problem is to find a minimal revision, i.e., satisfy
the original specification as far as possible. This is closely
related to our problem: The initial specification does not
violate any user constraints, but may result in long execution
times. However, as the costs are unknown, we need to learn
what revisions (i.e., violations) are acceptable to the user via
human-robot-interaction.

In [10] interactive task learning is introduced as a new
area of research, emphasizing the increasing demand for
specifying robot tasks in an intuitive, interactive manner.
Closely related to our work, [11] focuses on a multi-objective
shortest path problem. A graphical user interface is designed
to capture human intent and then explore trade-offs between
different objectives. In our work we trade-off task perfor-
mance and violation of the user specification. Nonetheless,
instead of prompting the user with an attributes palette we
investigate how user preferences can be learned from the
feedback to alternative solutions.

Contributions: The main contributions of this paper
are as follows: First, we introduce a problem formulation
that combines the shortest path problem with user defined
constraints. We define the cost of the constraints to be
the minimal time benefit for which a user would accept a
violation. Based on this we introduce a linear, determinis-
tic user model that describes how the user would choose
between alternative paths. Using this model, we propose a
complete algorithm to learn user preferences through user
interaction. Finally, we demonstrate that the algorithm has a
good practical performance in a simulated material transport
scenario.

II. PROBLEM FORMULATION

A. Preliminaries

Following [12], a graph is an ordered pair G = (V,E),
where V is a set of vertices and E is a set of edges. Multi-
graphs are described as a triple G = (V,E,Ψ), the function
Ψ : E → {(v, w) ∈ V × V : v 6= w} associates each edge
with an ordered pair of vertices. Two edges are called parallel
if they connect the same ordered pair of vertices.

In a weighted graph a real value function associates
weights to each edge of the graph: c : E(G) → R. Doubly
weighted graphs have two independent weight functions
(c1, c2) for all edges. We write a weighted multi-graph as
G = (V,E,Ψ, c) and a doubly weighted graph as G =
(V,E,Ψ, c1, c2).

A walk between two vertices v1 and vk+1 on a
graph G is a finite sequence of vertices and edges
v1, e1, v1, e2, . . . , ek, vk+1 where e1, e2, . . . ek are distinct.
A path Pv1,vk+1

between two vertices v1 and vk+1 is
defined as a graph ({v1, v2, . . . , vk+1}, {e1, e2, . . . , ek})
where v1, e1, v1, e2, . . . , ek, vk+1 is a walk. On a weighted
graph, the cost of a path is defined as c(P ) =

∑
e∈P c(e). In

doubly weighted graphs we can define two costs c1 and c2
where c1(P ) =

∑
c1(e), e ∈ P, c2(P ) =

∑
c2(e), e ∈ P .

Notation: We denote vectors with bold, lower case
letters v. An element of a vector is indicated with a subscript
index vi, while a superscript index vi identifies some specific
vector. Upper case letters denote a set (G), bold upper case
letters represent a matrix (A).

B. Problem statement

We consider planning the path from a start to a goal in a
robotic roadmap encoded as a graph. A user specification is
given as a set of constraints, however without an explicitly
defined weight. We want to minimize a cost that captures
time and constraint violation. To learn the importance of a
constraint relative to the time saved by violating it, we can
ask for user feedback on alternative paths.

The problem has the following inputs:
• A single weighted strongly connected multi-graph G′ =

(V,E,Ψ, t) representing a robot’s motion in an environ-
ment including obstacles. The weight function t : E →
R≥0 describes the traversal time for all edges e ∈ E of
the graph. Parallel edges in G′ express different traversal
speeds, e.g., between two nodes u and v there could be
two edges with t1 = 1 and t2 = 3.

• A user specification consisting of n user constraints:
Γ = {γ1, γ2, . . . , γn}. A user constraint is defined as a
pair (Ei, wi) where Ei ⊆ E and wi is some constant
in R≥0, defining a second weight for all edges e ∈ Ei.
We refer to this weight as the user preference, which is
also in units of time. The values of wi are hidden.

• A start and a goal vertex vstart, vgoal in V .
G′ and Γ can be combined into a doubly weighted multi-

graph G = (V,E,Ψ, t, w) if the hidden weights wi are
known. On G, w is defined as follows:

w(e) =
∑

γi∈Γ|e∈Ei

wi (1)

Moreover, for all connected pairs of vertices on G we delete
all parallel edges where w(e) = 0 with exception of the
one with the minimal value for t. On G we want to find an
optimal path from vstart to vgoal minimizing t and w:

min
P

∑
e∈P

w(e) + t(e) (2)

We state this objective without a scaling factor as w is in
units of time. That is, w captures the increase in completion
time that the user is willing to allow in order to satisfy the
constraint. Even though the values for wi are unknown, we
can pick an estimate for all wi. Then, the graph collapses to
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Fig. 2. Example scenario. The traversal times te between all edges are
t, with exception of the outer pair between vertex 3 and 4. w1, w2, w3

indicate the cost associated with the constrained edges, shown in red.

a singly-weighted directed graph, and the shortest path can
be efficiently computed with Dijkstra’s algorithm or A*. The
goal is to find estimates for all wi such that the corresponding
path is optimal according to objective (2).

Example 1 (Problem setup). In an industrial facility a user
specifies a transportation task with a start and a goal location
as well as constraints for the robot’s movement like areas of
avoidance, one-way roads or speed limits.

Our problem can describe such a scenario as follows: The
physical environment is represented with the single weighted
multi-graph G′, where the weight describes the traversal time
between locations. The user constraints then define a second
cost for some edges according to equation (1). Figure 2
shows an example of the resulting graph G, the traversal
time te for all edges is some constant t, with the exception
of the outer edges between vertices 3 and 4. The user defines
a no-go area between vertices 2 and 5, resulting in a cost for
traversing the respective edges. Moreover, a one way road is
set up between vertices 5 and 8: A user constraint assigns
a cost for moving from 5 to 8, but not for the opposite
direction. Finally, there is a speed limit between 3 and 4 for
both directions. In this case, we keep two parallel edges, one
with the normal traversal time and the other with t(e) = 2t.
While the edges with half speed have no user cost, a third
user cost is assigned for traversing with full speed. Our goal
is then to plan a path from start to goal that minimizes
objective (2). To do so, we need to gain information about
the hidden user preferences wi.

III. APPROACH

We wish to learn user preferences by iteratively presenting
the user with alternative paths. Based on the user feedback
we learn the weights wi of each constraint.

A. User constraints and interaction
Let (G′,Γ, vstart, vgoal) be an instance of our problem.

We summarize the weights of all constraints γi ∈ Γ with a

column vector w =
[
w1 w2 · · · wn

]T
. Our estimate of

the weight vector is denoted by ŵ.

Definition 1 (Constraint violation). Consider a path P on G
and a user constraint γi. We say that P violates γi if and
only if there exists an edge in P that is in Ei.

We introduce a variable to count the violated edges
φi(P ) = |E(P ) ∩ Ei|. Moreover, we define φ(P ) =[
φ1(P ) φ2(P ) . . . φn(P )

]
as the row vector summa-

rizing all violations of P , called the violation vector. If a
path P is the shortest path according to equation (2) for
some estimate ŵj , we write P j . Moreover, we denote the
time of a path t(P j) as tj and the violation vector as φj .
The estimated cost of a path for a weight ŵj then is

Ĉ(P j) = φ(P j)ŵj + t(P j) = φjŵj + tj (3)

Now, we specify the user interaction: Let P best be the
currently best path. For a set of k ≥ 1 different weights the
user is presented with the corresponding paths, the violation
vectors and the time improvements compared to P best. They
then provide a feedback in form of a vector u ∈ Rk≥0.
Thereby, ui expresses the user preference for path P i. If
ui < uj , then the user prefers P i over P j . Consequently, u
is a ranking of all presented alternatives. The user behaviour
over multiple interactions is considered consistent if and only
if all triplets (u1, u2, u3) have a transitive relation.

Finally, we define the true user cost C. Let P j be some
arbitrary path. If the true user weights w were known, we
could directly compute the true user cost of P j as follows:

C(P j) = φjw + tj . (4)

B. Equivalence region

Shortest paths are sensitive to the edge weights on the
graph [13]. As different values for ŵ do not automatically
lead to distinct solutions, we introduce equivalence regions.

Definition 2 (Equivalence region). Let wi and wj be two
different user weights and let P i and P j be their correspond-
ing shortest paths. If t(P i) = t(P j) and φ(P i) = φ(P j),
we call wi and wj equivalent. An equivalence region of a
weight wi is then the set of all weights that are equivalent
to wi: Ω(wi) = {wj ∈ Rn≥0|wj is equivalent to wi}.

Note that equivalence is also applicable to estimated
weights. Let ŵi and ŵj be equivalent. Then C(P i) =
C(P j) and Ĉ(P i) = Ĉ(P j), however, the paths themselves
are not necessarily the same. Moreover, a weight ŵ lies in
multiple equivalence regions when the shortest path given
ŵ is not unique. Equivalence regions are closely related to
sensitivity of the shortest path to changes in the weights
of the graph. According to [14], given a shortest path P ∗

on a weighted graph G, its sensitivity describes for which
disturbances of the weights P ∗ remains optimal. In our case,
the weight of an edge is described by t(e) +w(e), hence an
equivalence region describes the sensitivity towards w.

Lemma 1 (Convexity). Equivalence regions are convex.



Fig. 3. Flowchart of the learning process. j denotes the single iteration,
J is the maximum number of user interactions.

Proof. We consider a weighted graph G = (V,E,w) and
investigate the sensitivity of the shortest path between some
vstart and vgoal with respect to all edge weights. Let |E| =
m. As a walk is a distinct sequence of vertices and edges,
there is a finite number of paths P 1, P 2, . . . P l on the graph.
The set of weights for which a path P i is optimal satisfies∑

e∈P i

w(e) ≤
∑
e∈P j

w(e), ∀i 6= j, i, j = 1, 2, . . . , l. (5)

All constraints in (5) define a half-space in Rm≥0. By defini-
tion, the intersection of halfspaces form a convex set [13].
Equivalence regions describe a special case where only some
edge costs can vary, thus are also convex.

C. Learning user preferences

We now present the procedure for learning user prefer-
ences, illustrated in Figure 3. Assuming that there exists
a path from start to goal that does not violate any user
constraints, we find such a path and denote it by P 0. In
each iteration we select the path that received the best user
feedback in the previous iteration P best and execute it. We
then iteratively generate sets of new paths in accordance
to what we have learned about the user weights w. After
requesting user feedback for these alternative paths and
P best, we update our knowledge about the user weights.
The process is repeated until the maximum number of user
interactions J is reached or w is sufficiently learned. The
user feedback is on-the-loop: At any time P best is executed,
new user feedback might improve the solution but is provided
at the user’s convenience.

User model: Let P i and P j be two different paths
for some ŵi and ŵj . If C(P i) > C(P j) the user always
provides a feedback where ui > uj . In this case, we assume
that the user prefers P j by at least some small ε > 0. If
C(P i) = C(P j) the user feedback is ui = uj . Using the
definition of C in Equation (4) we can derive the following
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(a) Graph with different paths (b) Feasible space.

Fig. 4. (a) illustrates an example environment with two constraints (red)
and two distinct paths (blue and green) from start to goal. (b) shows how the
hyperplane learned from comparing the paths separates the weight space.

constraints on the true user weights:

if uj < ui then
(
φj − φi

)
w ≤ ti − tj − ε,

if uj = ui then
(
φj − φi

)
w ≤ ti − tj , and(

φi − φj
)
w ≤ tj − ti.

(6)

From each pair (ui, uj) we learn that the user weight
lies either on one side of the the hyperplane described by
equation (6) if ui 6= uj , or on the hyperplane if ui = uj .

Definition 3 (Feasible space). Given a user feedback u of
length k, we can derive k − 1 non-redundant constraints on
the user weights w from expression (6). The feasible space
is the intersection of all k − 1 half-spaces and hyperplanes
described by these inequalities and is a convex set. It can be
written as a polyhedron of the form Aw ≤ b [13].

The initial feasible space before any user feedback is
bounded by some finite values wmax as all paths on G have
finite length. If prior information about the user constraints is
available, it can be incorporated by adding rows to Aw ≤ b,
which define the feasible space, given the prior is linear.

Example 2 (Learning constraints of the feasible space). We
consider a simplified version of the introductory example
with undirected edges. We define two areas of avoidance both
affecting one edge, shown in Figure 4. The traversal time
of any edge is 1. The path P 1 (blue) traverses the vertices
{s, 2, 5, 8, g} while P 2 (green) traverses {s, 2, 3, 4, 5, 8, g}.
Hence, φ(P 1) =

[
1 1

]
, t(P 1) = 4 and φ(P 2) =

[
1 0

]
with t(P 2) = 6. Given a user feedback that u2 ≤ u1 we
can infer that

([
1 0

]
−
[
1 1

]) [
w1 w2

]T ≤ 4 − 6, and
therewith w2 ≥ 2. The feasible space then is defined by[
0 −1

] [
w1 w2

]T ≤ [−2
]
.

D. Learning Algorithm

Notice that the user ranks paths of equivalent weights
equally. Thus, our goal is to find a weight ŵbest that lies in
the equivalence region of the true user preference w. Based
on the flowchart in Figure 3, we introduce Algorithm 1.

In line 1 of the algorithm we initialize the feasible space
with some finite upper bounds wmax. We initialize ŵbest =
wmax and find the corresponding path P best, which does not



Algorithm 1: Learning user weights
Input: G′, Γ, J , k
Output: ŵbest

1 Initialize A, b, ŵbest, P best and W = ∅
2 for j = 1 to J do
3 Wnew ← π(A, b, k,W,wbest)
4 if Wnew = ∅ then
5 return ŵbest

6 Compute paths P 1, . . . , P k for all ŵ ∈ Wnew

7 Get user feedback uj for paths P best, P 1, . . . , P k

8 Update A and b based on uj (Definition 3)
9 Choose ŵbest as the element from ŵbest ∪Wnew

with the best user feedback, P best = P (ŵbest)
10 W =W ∪Wnew

11 return ŵbest

violate any user constraints. Values for wmax can be found
according to the following lemma:

Lemma 2 (Upper bound). A weight wmax such that the
corresponding path does not violate any constraints can be
found as follows: Find the path P (w∞) where w∞i = ∞
for all i = 1, . . . , n. Then choose wmax = t(P (w∞)) and
wmax = wmax1T .

Proof. Let P ′ be a path that violates at least one constraint.
According to equation (3), we have Ĉ(P ′) ≥ wmax + t(P ′).
As t > 0 for all edges, P ′ has a higher cost than Pmax.

In line 4, we iteratively find k new weights according to
some admissible policy π, which is defined as follows:

Definition 4 (Admissible policy.). A policy is a function π
that maps from (A, b, k,W, ŵbest) to a set of k weights
Wnew. A policy is admissible if each ŵ ∈ Wnew satisfies:

(i) Aŵ ≤ b, and
(ii) ŵ is not equivalent to any previous weight inW or any

of the other new weights in Wnew.

We discuss two alternative policies in Sections III-E and
III-F. In lines 7-8 we compute the corresponding paths and
present them to the user together with the best path so
far. Based on the user feedback, the feasible space and the
path with the best user response so far are updated (line 9-
10) and all new weights are added to the set W (line 11).
Eventually, the policy will not be able to find new weights.
Then, an empty set is returned and the algorithm terminates
in line 6. Using equivalence regions we can formally state a
proposition for optimality:

Proposition 1 (Termination). If there exists an equivalence
region containing all vertices of the polyhedron Aw ≤ b,
then ŵbest is equivalent to w and the optimal solution is
obtained.

Proof. Suppose there exists an equivalence region containing
all vertices of Aw ≤ b. By convexity of the feasible space
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(a) Graph with initial path P 0. (b) Feasible space

Fig. 5. (a) shows the initial Path P 0 on the graph. In (b) we see the initial
feasible space with wmax.

Fig. 6. Feasible space after three comparison. The solution is now uniquely
determined.

and the equivalence regions, we conclude that all feasible
weights lie in the equivalence region. As w lies in the
feasible space, all feasible weights are equivalent to w.
Trivially, the corresponding path is optimal.

Naively checking if all vertices of the feasible space are
equivalent might be impractical as the number of vertices
can grow exponentially with the number of user feedback.
However, in the current work we focus on approximating the
optimal solution.

Example 3 (Learning user preferences). Again, we consider
the graph from Figure 4. We initially find the upper limit
wmax = 8 and obtain a path P 0 with t(P 0) = 8, shown in
Figure 5. We then pick a new point of the feasible space,
say ŵ1 =

[
0 0

]T
. The resulting path P 1 is the same as

the previous example with φ1 =
[
1 1

]
. We present the user

with P 0 and P 1 and they prefer P 1. According to expression
(6) we learn w1+w2 ≤ 4. In the next iteration we present P 2

from the previous example and get the additional constraint
w2 ≥ 2. The resulting polyhedron is shown in Figure 6.
After three iterations all vertices of the feasible space are
equivalent and result in path P 2.

Using equivalence regions we establish our main result:

Proposition 2 (Completeness). Suppose that we have an
admissible policy π. Then Algorithm 1 is complete.

Proof. Let ŵi and ŵj be non-equivalent weights. From the
user model and inequalities (6) we derive the following
relation when the user prefers P i over P j :

ui < uj =⇒ w /∈ Ω(ŵj). (7)



In each iteration where the user chooses one path over
the other, we reduce the feasible space by at least one
equivalence region. Now we consider that the user does not
prefer either path:

ui = uj =⇒ w ∈ span (Ω(ŵi) ∩ Ω(ŵj)) . (8)

We notice that the interior of Ω(ŵi) and the interior Ω(ŵj)
are disjoint. Thus, the intersection of the equivalence regions
is of lower dimensionality. In the case that ui = uj we reduce
the dimension of the feasible space.

As both, the number of equivalence regions and the num-
ber of user constraints, i.e., dimensions, are finite, the feasible
space eventually either consists of only the equivalence
region Ω(w), or w is uniquely determined. Hence, algorithm
terminates after finite iterations.

Notice that in a worst case the number of iterations of
Algorithm 1 equals the number of paths between the start
and goal vertex, which can be exponential in the size of the
input. Nonetheless, in Section IV we show that in practice
the number of iterations is linear in the size of the input.

E. Vertex Search

We propose the policy πvertexSearch to find new vertices,
shown in Algorithm 2. The feasible space can be understood
as an unknown graph, where the vertices are the extreme
points of the polyhedron, connected by its edges. We apply
depth first search (DFS) to explore the feasible space, starting
at the previously best solution ŵbest. Line 5 and lines 8-
12 explore neighbouring vertices, which is computationally
inexpensive and similar to the pivot step in the simplex
algorithm for linear programs [13]. If a new vertex is found,
it is added to the set Wnew (line 6-7). The algorithm stops
when either k new vertices have been found, the DFS has
exhausted all vertices or a maximum number of iterations is
reached. The policy is a form of pattern search [15], where
the set of search directions consists of the vectors from the
current weight to all vertices of the feasible space. Notice
that for imax → ∞ the policy is admissible. Furthermore,
DFS explores a given graph in linear time.

F. Minimal Vertex

As πvertexSearch potentially exhausts an exponentially
growing graph, we introduce a heuristic policy. The previous
approach did not use any information from the shortest path
problem and explored the weight space in a naive way.
For instance, a user specification may contain numerous
constraints that do not affect the path between a start and
goal, which makes them irrelevant for the problem instance.

Therefore, we propose the heuristic policy πminSearch that
always tries to minimize the weights within the current
feasible space, illustrated in Algorithm 3. In lines 2-4, we
find the minimal feasible weight and add it to the set Wnew

if it is not equivalent to previous weights. If k = 1 and the
minimal weight was not previously preferred by the user,
the algorithm terminates in line 6. Otherwise, we invert the
search direction for all constraints that the path based on the

Algorithm 2: πvertexSearch, find new weights using DFS

Input: A, b, k, W , ŵbest

Output: Wnew

1 Initialize set Wnew = ∅, openList = {ŵbest} and
maximum iterations imax

2 for i = 0 to imax do
3 if |Wnew| = k or openList is empty then
4 return Wnew

5 w̃ = openList.pop()
6 if w̃ is not equivalent to any ŵ ∈ Wnew ∪W then
7 Add w̃ to Wnew

8 if w̃ is not labelled as discovered then
9 Label w̃ as discovered

10 for all w′ ∈ getAdjacentVertices(w̃) do
11 if w′ /∈ openList and w̃ is not labelled as

discovered then
12 openList.insert(w′)

13 return Wnew

minimal weight violates (line 7-11) to generate new weights
(line 13-15). Finally, if the heuristic has been unsuccessful,
πvertexSearch is called (line 18).

IV. EVALUATION

In the experiments we used layouts of real industrial
facilities. We generate graphs G′ by uniform grid-based
sampling. For instance, in the environment from Figure 1,
G′ has 3646 vertices and 12456 edges. User feedback in
each iteration is simulated using the true user cost C from
equation (4). The quality of a path is evaluated using the
relative error errrel(P ), which is defined as follows:

errrel(P ) =
C(P )− C(P user)

C(P user)
(9)

If ŵ is equivalent to w, then errrel = 0. Algorithm 1 does
not have access to C(·). Therefore, alternative paths are
presented even if the optimal solution was already found.
A classic path planning approach without learning user
preferences only finds paths that do not violate any user
constraints, i.e., the path P 0 of our algorithm. Therefore, P 0

is used as a baseline to highlight the benefit of our approach.
We conduct two experiments: In the first, we propose

models for three different types of users and their weights,
while in the second experiment we randomly generate user
weights for a predefined set of constraints. In both exper-
iments, we set the maximum number of user iterations J
to 30. As discussed in the previous chapter, the check for
convergence is approximated. We choose imax = 50 as the
number of iterations for πvertexSearch. In each iteration the
user is presented one new as well as the currently best path.

Experiment 1: In this experiment, we consider three
user classes to mimic different realistic users, summarized in



Algorithm 3: πminSearch, find minimizing new weights

Input: A, b, k, W ,ŵbest

Output: Wnew

1 Wnew = ∅
2 ŵ = min1Tw s.t. Aw ≤ b
3 if ŵ /∈ W then
4 add ŵ to Wnew

5 if |Wnew| = k then
6 return Wnew

7 newSearchDirections = ∅
8 for γi where φi(P (ŵ)) > 0 do
9 c̄ = c

10 c̄i = −1
11 add c̄ to newSearchDirections

12 for c̄ ∈ newSearchDirections do
13 w̃ = min c̄Tw s.t. Aw ≤ b
14 if w̃ /∈ W then
15 add w̃ to Wnew

16 if |Wnew| = k then
17 return Wnew

18 W ′ ← πvertexSearch(A, b, k − |Wnew|,W ∪Wnew, ŵ)
19 return Wnew ∪W ′

TABLE I
DIFFERENT TYPES OF USER FOR EXPERIMENT 1.

User type description # constraints

low-trust specifies many constraints 20
with a range of weights

moderate specifies fewer constraints 10
with moderate or high weights

high-trust specifies very few constraints, 4
all have high weights

Table I. Problem instances are generated from a set of start-
goal configurations. In Figure 7 we compare πminSearch and
πvertexSearch for learning the preferences of all three users.
We show the relative error of the best path so far P best in
subfigure (a) as well as the relative error of the new path P j

in subfigure (b), at each iteration j averaged over all trials.
In Figure 7 we see the most considerable improvement

for the low-trust user. We recall that P 0 respects all user
constraints, but as the low-trust user has a relatively low
preference for each, the optimal path is likely to be violating
some constraints. In contrast, the high-trust user seldom
accepts any violation. Therefore, P 0 is already the optimal
solution in most cases. Moreover, for the low-trust user
πminSearch finds relatively good solutions more quickly than
πvertexSearch. For the moderate user we observe an interme-
diate result: While the error evolves similar to the low-trust
user, the improvement compared to P 0 is smaller.

Although the three users feature different numbers of con-
straints, the algorithm converges after five to eight iterations.
There are two reasons for this. First, additional constraints
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Fig. 7. Comparison of the policies πminSearch and πvertexSearch for all
three users, described in Table I

TABLE II
COMPARISON OF πvertexSearch AND πminSearch .

Iteration j 1 2 3 4 5 6 7 8 9

πminSearch 0 27 24 23 20 7 3 1 0
πvertexSearch 0 10 10 9 2 0 0 0 0
Tie 100 63 66 68 78 93 97 99 100

Each row indicates in how many trials (%) each policy achieved a lower

C(Pbest) at iteration j.

are not always relevant for each shortest path problem,
the number of equivalence regions does not necessarily
increase with an additional constraint. Second, even though
the number of equivalence regions increases, Algorithm 1
does not necessarily search through them exhaustively. Some
hyperplanes according to expression (6) reduce the feasible
space by more than one equivalence region.

In summary, the user type has little influence on the
number of iterations. Nonetheless, especially the low-trust
user benefits from our approach compared to classic path
planning; the optimal path outperforms P 0 by over 80%.

Experiment 2: User weights are uniformly drawn from
[0, λwmax] where 0 < λ ≤ 1 and wmax is found as in Lemma
2. High values for λ imply that the user has a widely varying
weights, including increasingly more high preferences such
that violations are accepted more rarely. Table II compares
the best solutions each policy finds after j iterations. Even
though in many cases both policies perform equally well,
πminSearch still outperforms πvertexSearch between iteration
two and eight.

Consequently, Table III shows the results of using
πminSearch. The number of iterations until convergence is
growing more slowly than the number of constraints. From
the I10% column we see that relatively good solutions are



TABLE III
RESULTS OF THE SECOND EXPERIMENT USING πminSearch .

n λ I I10% ∆C[%] #A∗ tmean[s]

5
0.005 7 1 24.9 59 33.1
0.05 9 9 22.3 66 40.2
0.5 4 1 8.1 28 27.5

10
0.005 6 1 27.6 72 38.3
0.05 9 9 26.1 72 34.7
0.5 12 1 9.7 58 30.6

20
0.005 11 2 38.1 131 54
0.05 11 8 33.5 113 42.9
0.5 11 1 15.4 56.0 22.5

n the number of constraints, λ is the range for sampling weights, I the
number of iterations until convergence, I10% the number of iterations
until a 10% approximation is found, ∆C the improvement of the final
Pbest compared to P 0, #A∗ the number of A* calls and tmean the
mean runtime to find a new weight in each iteration.

often found before convergence, however, for λ = 0.5 this
is because P 0 is often the optimal path. The improvement
of the optimal path ∆C monotonically increases with the
number of constraints. When P 0 has to take large detours to
respect all constraints, violations lead to larger improvements
encouraging the user to accept an alternative path. Overall,
the final solution outperforms P 0 in 57.4% of the trials.
The number of shortest path problems Algorithm 1 has to
solve (#A∗) increases roughly linearly with the number
of constraints. The runtime for finding new non-equivalent
weights tmean in each iteration generally increases with n,
however, only for λ = 0.005 monotonically.

V. DISCUSSION AND CONCLUSION

In this paper we proposed a methodology to learn user
preferences for spatial and simple temporal constraints in a
shortest path problem via human-robot interaction. Based on
a deterministic user model, we have shown how information
about feasible weights can be derived from simple user
feedback, and introduced equivalence classes to partition
the weight space. Using these results a learning algorithm
was proposed followed by its proof for completeness. After
introducing two policies, we showed simulation results based
on real world environments. In our evaluation, the number of
iterations grows more slowly than the number of constraints.
Moreover, especially for low user weights the performance
of the robot task improves significantly by learning the
user preferences, allowing for a user-on-the-loop robot task
specification in an accessible way.

Nonetheless, the current work has three main areas of
improvement: First, even though the proposed algorithm is
complete, the runtime for finding new weights might increase
drastically for high dimensions. A more detailed study of the
equivalence regions is needed to characterize the problem;
however, we believe that finding equivalence regions in
general is computationally intractable. Second, our work is
based on a deterministic, linear user model. This is a po-
tential shortcoming as real users at least occasionally might
violate these assumptions, i.e., contradict their own choices.

To handle such cases, an extension to a probabilistic user
model should be investigated. Third, in the evaluation we
used either manually designed or randomly generated data
that do not necessarily reflect real users. Future work should
include user studies to generate more realistic data. When
the user input is not simulated but comes from a human
operator, additional performance measures can be captured.
Furthermore, different heuristics could be studied in order
to find a policy that is not only computationally efficient but
also proposes alternative plans with consideration of the user.
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