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Abstract— This paper focuses on the problem of deploying a
set of autonomous robots to efficiently service tasks that arrive
sequentially in an environment over time. Each task is serviced
when the robot visits the corresponding task location. Robots
can then redeploy while waiting for the next task to arrive. The
objective is to redeploy the robots taking into account the next
N task arrivals. We seek to minimize a linear combination of
the expected cost to service tasks and the redeployment cost
between task arrivals. In the single robot case, we propose
a one-stage greedy algorithm and prove its optimality. For
multiple robots, the problem is NP-hard, and we propose two
constant-factor approximation algorithm, one for the problem
with a horizon of two task arrivals and the other for the infinite
horizon when redeployment cost is weighted more heavily than
service cost. Finally, we present extensive benchmarking results
to characterize both solution quality and runtime.

I. INTRODUCTION

In service applications, robots are tasked with responding
to requests for service that arrive periodically over time [1].
For example, in a hospital setting [2] a fleet of robots may
be used to provide assistance to patients by traveling to
their locations. A key aspect in such applications is where
the robots should wait (i.e., their deployment locations) to
optimally respond to the next service request. After a request
has been serviced, the robots can redeploy in order to re-
optimize their positions for future requests. There is an
inherent trade off between the expected response time for
a service request and the cost incurred to redeploying robots
between successive requests.

In this paper, we focus on the problem of deploying
a set of robots to service tasks arriving sequentially in
an environment. The robots’ motion in the environment is
captured as a road-map (i.e., graph), and each task arrives
at a node of the graph according to a known probability
distribution. A group of k£ robots moves on a common road-
map, and tasks arrive at the vertices of the road-map. A
task is serviced by a robot traveling to the task location. At
each task arrival, we consider minimizing the response time
and the redeployment cost (i.e., the cost of transitioning to
new deployment locations). The robots choose to redeploy
to another location between task arrivals. We consider this
objective on a horizon of next N task arrivals.

Related Work: The task allocation problem has been the
subject of extensive research [3], [4], [5], [6], [7]. Some of
the most related work is [3], [4], where tasks are assigned
dynamically to the robots in free space, and the objective is to
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deploy the robots such that the response time is minimized.
In contrast, we focus on dynamically assigning tasks for
robots moving on a roadmap, and look to minimize both
response time and redeployment cost.

The facility location problem [8], [9] is the problem of
installing facilities in a set of locations with a fixed cost of
opening a facility. Demands arrive at the different locations
and the objective is to minimize the time to respond to the
demand and the total cost of opening facilities. A special case
of the facility location problem is the k-median problem [9]
where the cost of opening facilities is zero.

An extension to the facility location problem is the mobile
facility location problem (MFL), introduced in [10]. The
objective is to move the facilities while minimizing the
total movement cost and the response time. In [11], authors
provide a simple local-search algorithm for the MFL with
a 3 + o(1) approximation ratio. In [12], an extensive set
of experiments conducted on the algorithm characterize its
performance in solution quality and the run-time. The two
main differences between our problem and the MFL are
1) robots service tasks by visiting the task location, thus
the configuration changes with each arrival and 2) MFL
considers just the next arrival and plans the next waiting
configuration for a single-ahead stage. In contrast, we plan
the next configuration of the robots for a horizon of N task
arrivals.

Online algorithms are presented in the literature for the
facility location problem [13], [14]. The results are also
extended to MFL with stochastic demands [15], [16]. A
related problem is the k-server [17] problem in which tasks
arrive sequentially over time, and each task is serviced
by visiting the corresponding task location. However, the
problem is defined on a metric space, rather than a road-
map, and the objective is to minimize the server travel
over the worst-case set of task arrivals. In contrast, we
consider a known spatial distribution for service requests,
capturing scenarios where prior information is available on
the frequency of service requests.

Another closely related area of research is dynamic vehicle
routing (DVR) [18]. In DVR tasks arrive sequentially over
time according to a stochastic process. The most closely
related results are on light-load policies, where the arrival
rate of tasks is low. However, these problems consider only
the service quality as a metric, and look at arrivals in the
Euclidean plane rather than roadmaps.

Contribution: Our first contribution is to formulate the
redeployment problem as a multi-stage optimization. We then
cast the problem as a dynamic program (DP), and show that
in the single robot case, a simple greedy policy is optimal.



Then we propose two simple policies for the multiple robot
problem with theoretical performance guarantees. In the first
policy, built on the existent a-approximation algorithm [11]
considering only one arrival, we provide a Sa-approximation
algorithm for the two-stage problem. In the second policy, the
planning horizon is extended to the infinity. We show that if
robots are initiated in the k-median, then the policy is a 2a-
approximation in a setting prioritizing the expected service
cost. Finally, we simulate the two policies on real-world
scenarios, namely high arrival rates and unknown probability
distribution of tasks, and provide performance of the policies
on both random environments and a work place floor plan.

The paper is organized as follows. In Section II, we
formulate the problem as a dynamic program. In Section III,
we provide a policy for the single robot problem. Section IV
consists of upper and lower bounds for the optimal value
and two policies for the multi-robot problem. Finally, in
Section V, we provide benchmarking results.

II. PROBLEM FORMULATION

Consider a set of k robots and a set of locations V for
the robots to wait and tasks to arrive. Let G = (V, €, ¢) be a
metric graph on vertices V, let £ be the edge setand ¢ : £ —
R, be the cost function defined on the edge set satisfying
the triangle inequality. A vertex of the graph represents a
state of the robots, e.g. position and heading for the Dubins
car, and cost of an edge represents the time robot takes to
travel between the states.

A subset of V occupied by the robots at a time stage is
called a configuration and it is denoted by @@ € Q where Q
is the set of all the possible configurations, i.e., all subsets
of V with size k.

The probability that a task arrives on vertex v € V
is p, > 0, where > _,p, = 1. Task arrivals occur
sequentially, with the time between arrivals sufficient for the
robots to reconfigure between arrivals. We explore the effect
of relaxing this assumption in Section V. This is analogous to
light load in DVR [18]. The task locations are independent
and identically distributed. A robot is assigned to the task
after the task arrival and services by visiting its location.

We consider a multi-objective problem of minimizing a
linear combination of the response time and the redeploy-
ment cost, where the latter part captures energy consumption,
or additional travel. The redeployment cost between two
configurations is denoted by Assgn(Qi,Q2) and is given
by the minimum cost for robots to transition from @7 to
@2, i.e., assignment cost. The minimum cost redeployment
between two configurations is the minimum cost assignment
of the vertices of two sets ()1 and Q2. Let d(Q,u) be the
closest distance from the vertices of () to u, then we define
the response time of a configuration as the expected distance
to the next arrival, i.e., >, -y, pud(Q, u). The configuration
after sending the closest robot in @ to u is denoted by Q.

Figure 1 illustrates the two stages of the problem. Robots
after servicing task 7+ — 1 at v are at configuration Q;_1 ,
(Figure 1a), i.e, closest robot in ;_; moved to v. Figure 1b
illustrates the redeployment to configuration ); waiting for
the next task to arrive. Task ¢ arrives at v and the closest

robot moves to service the task (Figure 1c), and finally the
robots redeploy to @;41 (Figure 1d).

The cost incurred at each stage ¢ is linear combina-
tion of the service time and the redeployment cost, i.e.,
Assgn(Qi—1, Qi) + B ,ey Pud(Qi, u), where 3 is a user-
defined variable. The large values of [ corresponds to a
scenario where minimizing the response time is the priority
and the small values of 3 prioritize the relocation cost.

In general, the optimal configuration at each stage depends
on the previous arrivals, therefore, we have to account for
the future tasks arrival at each stage. Therefore, we consider
problem of minimizing the discounted stage costs over N
next task arrivals. Let V;(Q) be the expected cost incurred
during stages 4,..., N at current configuration (), then we
can write the deployment problem as follows:

Vi(Qio1) = Assgn(Qi-1,Q:) + B Y pud(Qiu) (1)

ueV

+9 Y puVir1(Qi)-

uey

Note that if N approaches infinity, then the problem becomes
a discounted factor infinite horizon problem with v € [0,1).

For small values of 8 and ~, the problem corresponds to
the case where minimizing the transition cost between the
configurations is dominant. For instance, with 3 = 0 the
optimal policy at each stage is Q); = (;—1. In the case of
large 8 and v = 0, the optimal policy at stage ¢ approaches
the k-median solution [9], i.e., ming,eo D, cy Pud(Qi, ).

The well-known k-median problem is a special case of
the single-stage problem, therefore, the single-stage problem
is NP-hard [11], which in turn implies that Problem (1) is
NP-hard.

In the next section, we provide a policy for the single robot
case, and in Section IV we discuss multiple robots problem.

III. OPTIMAL POLICY FOR SINGLE ROBOT

In this section, we provide the optimal policy for the single
robot case. The greedy approach to the problem for a single
robot is to plan for a single stage without considering future
arrivals. Let IT; (Q;—1) be the greedy policy at configuration
Q;—1, which returns the minimizer of the single stage, i.e.,

I(Q;-1) = argming, c o Assgn(Qi—1, Qs)
+8Y pud(Qi, ). )
ueV
In Lemma III.1, we show that the greedy policy is optimal.
Lemma IIL.1. Given a single robot, the greedy policy in (2)
is optimal.

Proof. Observe that the @);, of Problem 1 in the single
robot case is {u} regardless of the choice of @Q;, therefore,
Vi+1(Qi,,) is independent of @); at step ¢ and only depends
on the probability distribution. Therefore, the optimal policy
for Problem (1) with single robot is the minimizer of

argming, c o Assgn(Qi—1,Q:) + 8 Y pud(Qi, u).
ueV
This is the greedy policy in (2). O



(a) Configuration Q;_1,,, ser-
viced task 7 — 1 at v and transi-
tioning to the new waiting con-
figuration.

(b) Configuration @;, waiting
for task arrival.

Fig. 1: Demonstrating a single stage of the problem. (a) Configuration
of the robots for the new task arrival (c) Task arrival and the closest

robots for the next arrival.

(a) (b)

Fig. 2: Example of different solutions of single-stage optimal and
infinite horizon optimal solutions. The dark vertices are occupied
with the robots. (a) shows the initial configuration and the optimal
solution of single-stage. (b) shows the optimal policy for the given
initial configuration in infinite horizon.

Complexity of greedy policy: The greedy policy considers
all the vertices in V. The Assgn(Q;_1, Q;) function is O(1)
and ), oy, pud(Qi,u) is O(|V]). Therefore, the total run-
time of the greedy policy at each stage is O(|V]?).

IV. MULTIPLE ROBOTS

In this section, we investigate the optimal policy for the
multiple robots. In Section III, the optimal policy at each
arrival is independent of the previous choices of the con-
figurations, and thus the greedy policy is optimal. However,
this is not the case for the multiple robots.

Example IV.1. Consider an instance of the problem
with two robots on a graph with vertices located at
{(0,0),(0,2),(2,0),(2,2),(1,1)} in the Euclidean space
(see Figure 2a). Let 5 = 5, v = 0.9 and equal probability on
the vertices, then for any configuration that does not contain
the mid-vertex, the single stage optimal policy is to stay at
the configuration, however, the optimal policy for infinite
horizon is to move one of the robots to the mid-point (see
Figure 2b).

The infinite horizon problem, namely Problem (1) is a
stationary problem, i.e. optimal policy at each configuration
is equal for every stage ¢. Thus, the problem can be written
as a dynamic program as follows:

V(Q) = min {Assgn(Q,Q) +8)_pud(Q'u)  (3)
ueV
) PV(QY YQEQ
ucV
The dynamic program (DP) is optimally solved via several
well-known approaches such as policy iteration, value itera-
tion, or linear programming. Observe that for an instance of

(c) Task ¢ arrives at u, transition
to configuration Q; .

(d) New waiting configuration

Qit1

of the robots after servicing task ¢;—; at v (b) New waiting location
robot deployed to service the task (d) New waiting location of the

k robots and n tasks locations, there exist (Z) configurations

— exponential in the number of robots. The main drawback
of the dynamic programming approaches is that finding the
optimal policy for a single configuration requires solving
DP (3) for all the configurations, which is not computation-
ally tractable for large instances.

In this section, we propose two simple policies and we
provide some results on the performance of them. First we
provide bounds on the optimal value of V', which is essential
in the performance analysis of the two policies.

A. Bounding the value function

In this section, we provide bounds on the optimal value
function V' of configurations for the infinite horizon problem.
These bounds are essential in our analysis of the simple
policies. For simplicity we define the following notations:

D(Q) = 3 pud(Q.w); and

uey

c(Q1,Q2) = Assgn(Q1,Q2) + BD(Q2).

The term D(Q) is the expected response time of the robots
at configuration @, and ¢(Q1,Q2) is the stage cost for
redeployment from @ to Q-.

The following results provide an upper-bound on the
optimal value for a given configuration.

Lemma IV.2 (Upper-bound). The cost of the optimal policy
for Q € Q is upper-bounded by

V(@) < in (¢(@.@) + 11 D(@)),

Proof. For any Q' € Q we have,

V(Q) <e(@QQ)+7)_ pV(Q,). )

veY

Therefore, we need to upper-bound V(Q!) for all v € V.
Note that V(Q!) is the cost of the optimal policy for the
configuration @Q’. Then we have,

V(Q,) (@, Q) + 7> puV(QL).

uey



Note that Assgn(Q),Q) = d(Q,v), thus we have,
V(Q,) <d(Q',v) + B8 pud(Q0) +7 > puV(Q,)-
uey ueV

By taking expectation on V' (Q), we obtain

> P V(@) < (B+1)D pud(@Q,0) +7 Y puV(QL)-

veY veY veY
Finally we have,

S V(@) S% S pd@v) G

veEV veEV
The result follows directly from Equations (4) and (5). [

Let I} : © — Q be the optimal policy for the single stage
problem, i.e.,

I17(Q) = argmin Assgn(Q, H) + 8 Z pud(H,u) (6)
HeQ uey

and let J be the minimizer of the k-median problem, i.e,
J =argmin;co >, cp Pud(J, u).

Let Q" be the configuration associated with the optimal
policy at @, i.e., @* = II*(Q), then we establish following
lower-bound on the optimal value.

Lemma IV.3 (Lower-bound). The cost of the optimal policy
for Q € Q is lower-bounded by

V(@) 2 Q@)+ 3 )

u€y

Proof. Since moving to Q* is the optimal action in (), then
we have,

V(Q) =c(@,Q) +7 ) pV(Q}) (7)
veVY

By the definition of 1T}, we have, ¢(Q, 113 (Q)) < ¢(Q, Q*).
Then to prove the result, it suffices to show that

S pV(Q) = % S pud(,u).

veY (%

Let IT*(Q) be the function takes a configuration as input
and returns the optimal configuration to visit. Then IT*(Q),,
is configuration where the closest robot at IT*(Q) to u has
moved to u. Thus we have,

V(Qp) =B pud(Jou) +7 Y puVIT*(Q))u)-
uey uey
For the simplicity of the notation, let M = II*(Q3), then
we can write similar inequalities for each M,, as follows:
V(M) > B pud(J,w) +7 > poV (AT (My)).
weV weV
Therefore, we have,

V(@)= B pud(J,u) +48 ) pud(J,w)

u€V weV
+97) pu Y PV (T (My)).
u€V weV

Observe that we can repeatedly write the similar inequalities
for each stage, then we have,

V(Q) =B pudJu)(1+v+"+...)

uey

B
-1 > pud(J, ). (8)

uey

Finally, the result is immediate by Equations (7) and (8).
O

In the rest of this section, we provide our two simple
policies for deployment of a system of multiple robots.

B. Policy I: Approximation Algorithm for TWO-STAGE-
HORIZON

First, from the problem definition in Section II, given a
configuration ();_1. the two-stage problem is to minimize:

min ¢(Qi—1,Qi) +7 Y Puc(Qi: I (Qin))  (9)

QicQ uey

where I1; is a policy defined on IT; : Q@ — Q. With a simple
observation, we can show that II; is II]. Our algorithm for
the two-stage problem is built on the existent algorithms for
the single-stage problem with multiple robots. We provide
the algorithm for TWO-STAGE-HORIZON in Algorithm 1,
and we prove approximation results in Theorem IV.4.

Built on the approximation algorithms for the single-stage
problem in [11], our algorithm for the two-stage problem
consists of three single stage-problems. The algorithm eval-
uates the solutions to the single-stage problems in Line 7 and
returns the better solution. Function SINGLE-STAGE(, Q) in
Algorithm 1 returns the solution to the single-stage problem,
i.e., Equation (6). The run-time of the algorithm is dictated
by the existent single-stage algorithm [11].

In Section V, we show on an extensive set of experi-
ments that the TWO-STAGE-HORIZON policy outperforms
the SINGLE-STAGE policy in a wide range of 5 and ~y values.

Algorithm 1
1: function TWO-STAGE-HORIZON(G, 3,7, Q)
2: if 8 < 1 then

Hy + SINGLE-STAGE(S + v + 87,Q)
Evaluate Hy and H, for Problem (9) and return
the minimally-valued configuration.
8: end if
9: end function

3: return SINGLE-STAGE(2703, Q)
4: else

5: Hy + SINGLE-STAGE({*2, Q)
6:

7:

Now we establish the following result on the problem.

Theorem IV.4. Suppose there exists an «-approximation
algorithm for the single-stage problem, then Algorithm 1 is
a ba-approximation algorithm for the two-stage problem.

To prove the theorem, we are required four intermediate
results, and the proof of each is in the Appendix.



We divide our analysis into two cases i) § < 1 and ii)
B > 1. First we establish the following observation on the
single-stage problem with 5 < 1.

Observation IV.5. If 5 < 1, then IT; (Q) = Q forall Q € Q.

According to Observation IV.5, the optimal policy for
the single-stage problem with 5 < 1 is to stay at the
configuration and wait for the next task arrival.

Under Observation IV.5, the two stage problem becomes

i i-1, Qi v D(Qiw)- 10
in o(Qi1,Q:) + 78 Y poD(Qi) (10)
veV
Now consider the following single-stage problem:
min C(Qv 1an) +275D(Q ) (11)

Qi€

Observe that Problem (11) is the single-stage problem in
Line 3 of Algorithm 1. Now we provide the following result
on the quality of the solution obtained from Problem (11) as
a solution for Problem (10).

Lemma IV.6. Suppose there exists an a-approximation algo-
rithm for the single-stage problem, then the solution obtained
from Problem (11) provides an a(1 + 27y)-approximation for
Problem (10).

Hence, Algorithm 1 is a 3a-approximation for the two-
stage problem with 8 < 1. Consider the following problem:

o in_ e(@i1, Qi) +yD(Qi) +9¢(@i, Th (). (12)

Now we establish the following result on Problem (12).

Lemma IV.7. Suppose there exists an n-approximation al-
gorithm for Problem (12), then there exist (1 + 2v/0)n-
approximation algorithm for Problem (9).

Note that Problem (12) is not a single-stage problem, and
similar to the previous analysis, we will define two alterna-
tive problems to Problem (12), and then we will evaluate
the quality of the solutions of the problems. Consider the
following two problems:

min Assgn(Qi-1, Qi) + (B +7+67)D(Q:)  (13)
min Assgn(Qi-1,Q0) + f%D(Qi) (14)

1+ c(Qi—1,111(Qi-1))

Observe that in Problem (14), the first two terms and
the third term are two independent single-stage problems,
therefore, it can be approximately solved under assumption
of Theorem IV.4 with two independent calls to the single-
stage approximation algorithm.

Lemma IV.8. Suppose there exists an «-approximation
algorithm for single-stage problem, then
(i) a solution to Problem (13) provides
approximation for Problem (12); and

an af-

(ii) a solution to Problem (14) provides an «o(1 + 27)-
approximation for Problem (12).

With these results we now prove Theorem IV.4.

Proof of Theorem IV.4. Algorithm 1 evaluates the solution
for the two problems in Line 7 and returns the better solution.
An immediate result of Lemmas IV.7 and IV.8, is that the
approximation factor for Algorithm 1 with 5 > 1 is

min{af, a(l+2v)}(1 + 2%) <a(l+4y) <ba. O

A 3+0(1)- approximation algorithm for single-stage prob-
lem and k-median is provided in [11]. Hence, Algorithm 1
is a 9+ o(1) approximation algorithm for the TWO-STAGE-
HORIZON with § < 1 and 15+ o(1) with 5 > 1.

C. Policy 1I: Move to k-median

An intuitive policy for Problem (1) is to move the robots
to the k-median solution in between the arrivals. In fact
it is shown to be the optimal policy in the light load if
the transition cost between the configurations is negligible
compared to the service cost [18]. Let Il edian denote this
policy, and Viedian(@) be the value function under this
policy. Then we establish the following result.

Lemma IV.9. Suppose an a-approximation algorithm for k-
median returns Q, then the value function under Il edian is
at most (1 + ~/B) times the optimal, i.e.,

Vinedian (Q) < a1+ %)V(Q)-

Proof. First observe that the value function under this policy,
namely Viedian (@), is as follows:

Vmedian(Q) = C(Qa Q) + Z puVmedian(Qu)-

uey

Also notice that the Vijedian(Qw) is bounded as follows,
where the equality is ensured if () is the only k-median.

Vmedian(Qu) S C(Qu7 Q) + Y Z vamedian(Qv)~
veY
Therefore, With the same stages in the proof of Lemma IV.2,
we have Visedian(Q) <7 ﬁ—H Zuev Pud(Q,u).
Also  from Lemma V3 we have, V(Q) >
% > wey Pud(J,u), where J is the actual k-median.
Since @ is an a-approximation for the k-median,

Vinedian (Q) < a1+ %)V(Q)- O

In fact, the bound shows that the value for this policy
approaches the optimal for large . In other words, there
exists a 3 such that for all 3 > 3 this policy is optimal. This
result captures the optimal policy results for DVR in [18].
However, the policy can be arbitrarily sub-optimal for small
values of 3. For instance, consider a problem with g = 0
and v > 0. In this case V(Q) = 0 while Viedian(Q) > 0
due to the transitions to the k-median between task arrivals.

The policy does not provide desired behavior for small
values of 3. In the next section, we provide simulation results
for two policies in the infinite horizon setting and evaluate
their performance for different values of v and 5.
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plan contains 62 task locations (circles and squares) and 15 potential
waiting locations for the robots (squares).
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Fig. 4: Two stages of the TWO-STAGE-HORIZON performing two
tasks and two redeployments. The circles represent the task arrivals
and diamonds are the waiting locations.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the two
policies in Section IV in random environments and a sample
work place (see Figure 3). To simulate the real-world ap-
plications, we also evaluate the performance of the policies
in environments with unknown probability distribution and
high task arrival rates.

In all the experiments we consider the infinite horizon
problem, and the expected cost at each @ for policy II is
obtained by solving the following set of equations, known
as policy evaluation:

V(Q) = ¢(@QT(Q) +7 Y V(I(Q)w)

uey

vQ € Q.

Figure 4 shows two stages of the TWO-STAGE-HORIZON
policy in a part of the work-place floor plan with 5 = 5 and
v = 0.9. The circles represent the tasks and the diamonds are
the waiting locations. The numbers at each location represent
the sequence of the robot movements. In stage 1 the red robot
services a task and to redeploy, the red robot returns to its
location and the green robot moves to diamond 1. In stage 2,

the blue robot services a task and then returns to its waiting
location while the green robot moves to diamond 2.

Random Environment: In this experiment, we compare the
average expected cost of all configurations obtained from
different policies to the optimal value from DP in random
environments. In each instance, 4 robots are servicing a set
of 20 tasks randomly generated in the Euclidean space of
size 10 x 10. Recall that the proposed policies in Section IV
are polynomial in the input, on the other hand, the exact
DP problem grows exponentially in the number of robots
which limits the size of experiments. The probability of a
task arriving in each location is independent and identically
distributed. Figure 5 shows the average error percentage (i.e.,
average of (value function — optimal value) /optimal value
over all configurations) of three policies for different values
of 8 and v = 0.9. For each (3, a set of 2000 random instances
are generated and each box depicts the median, first quartile
and third quartile. The DP is solved via the policy iteration
method with an average time of 894.4 seconds on an Intel
Coreib @3.6Ghz processor. The average computation time
of the TWO-STAGE-HORIZON policy and the MOVE-TO-
MEDIAN policy for a single configuration are 0.0078 seconds
and 0.0027 seconds, respectively.

Figure 5a illustrates the asymptotic improvement in the
performance of the MOVE-TO-MEDIAN policy as [ in-
creases. In contrast, the greedy SINGLE-STAGE policy per-
forms almost optimally when the deployment cost and
response time are equally weighted. However, the Two-
STAGE-HORIZON policy provides a solution within 5% of
the optimal for all 3, out-performing MOVE-TO-MEDIAN
policy at 3 = 2 and single stage policy at 3 = 5 by 18.1%
and 10.1% on average, respectively.

We observed the similar behavior of the three policies
when varying ~. For small ~, the single-stage policy pro-
vides near-optimal solutions. As ~ increases, the MOVE-TO-
MEDIAN policy improves in quality. Similar to the previous
experiment, the TWO-STAGE-HORIZON policy provides bet-
ter solutions in for a large range of ~ values.

Unknown Probability Distribution: In this experiment, the
spatial probability distribution of the tasks is unknown to
the robots. The robots, starting with a uniform Dirichlet
prior (with all parameters equal to 2), update their estimate
of the distribution according to the maximum a posteriori
estimator [19]:

number of arrivals at u + 1
number of arrivals + number of task locations

DPu =

The environment is a floor plan with 62 task locations
and 5 robots. In some applications, e.g. hospital setting,
the robots cannot stay at the task locations, therefore, the
potential waiting location of the robots are limited to 15
locations marked with squares in Figure 3. The probability
distribution is drawn from a Dirichlet distribution where the
task locations are weighted with their x-coordinates, i.e. the
probability of a task is higher for vertices on the right side.

We compare performance to a policy that has access to
the true distribution over 80 task arrivals. Figure 6 shows
the average total stage costs for 5 = 5 and 10 over 15000
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Fig. 6: TWO-STAGE-HORIZON with unknown probability distribu-
tion.

instances. Observe that a poor estimation of the probability
distribution in the first few arrivals propagates proportionally
with the value of 3. The MOVE-TO-MEDIAN policy is
equivalent to the two-stage policy for sufficiently large /5.
Therefore, the MOVE-TO-MEDIAN is more vulnerable to
error in the estimate.

Different Arrival Times: In Section II, we assumed that
the time between arrivals is sufficient for the robots to
reconfigure. Now we repeat the experiment with 8 = 5 and
v = 0.9 on the environment given in Figure 3 for different
task arrival rates. The time to service a task at u is the
difference between the arrival time and the time that a robot
visits the task location. We perform 15,000 simulations, each
containing a sequence of 80 tasks arrivals according to the
Poisson process with parameter A, where \ represents the
number of tasks arrive in a time unit. The time unit on the z-
axis is the expected time to service a task from the k-median
and return, i.e. D(.J). Figure 7 shows the ratio of the average
stage cost of the two policies to the average stage cost of
the TWO-STAGE-HORIZON policy with A ~ (. The stage
cost increases exponentially with A. Notice that when there
are approximately 1.6 arrivals per time unit, and thus new
tasks frequently arrival while the robots are redeploying, the
average stage cost increases by a factor of 2 from the cost
for A = 0 (i.e., the regime where our assumption holds).

VI. CONCLUSION

This paper considers the problem of deploying a set of
robots to efficiently service tasks that arrive sequentially in
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Fig. 7: Stage cost of TWO-STAGE-HORIZON and MOVE-TO-
MEDIAN policies as a function of task arrival rate.

an environment over time. The presented policies provide a
close to an optimal solution and show significant improve-
ment in the run-time compared to DP. Also, various experi-
ments show the robust behavior of the policies in application.
In addition, the results for the experiment with unknown
distribution and high arrival rate provides a direction for
analyzing the performance of the policies in these scenarios.

APPENDIX

Proof of Observation IV.5. The statement II5(Q) = @
is equivalent to £ ., pud(Q,u) < Assgn(Q,F) +
B ey Pud(F,u), for all Q,F € Q. Now consider a
task at u and the closest robot to w in configuration @,
namely og(u) , then d(u,oq(u)) < d(u,v), Vv € Q.Let
v € @ be the vertex matched with op(u) in the assignment
Assgn(F, Q). Therefore, we have,

d(u,00(u)) < d(u,v) <d(v,op(w)) + d(u,or(u)), (15)

where the last inequality is due to the triangle inequality.
Taking the expectation on both sides of Equation (15) gives

> pud(u, Q) < Assgn(Q, F) + Y pud(u, F).
uey ueV

Therefore, the result follows immediately from 5 < 1. O

Proof of Lemma IV.6. Let (Q; be the solution of the a-
approximation algorithm to Problem (11), and @)} be the



optimal solution to Problem (10), then we have,

c(Qi—1,Q;) +2v6D(Q;) < a(c(Qi—1,Q;) + 2vB8D(Q7)).
(16)

By the triangle inequality we have }_ ,,p,D(Qi») <
2v8D(Q;), then by Equation (16) the following holds,

c(Qi-1,Qi) +7B8 > poD(Qin) <

veY
(1 +27)(c(Qi—1,Q}) + 8 Z puD(Q7 ). O
ueVY

Proof of Lemma 1V.7. Consider @Q;,Q;+1 as the configura-
tions returned by the approximation algorithm for Prob-
lem (12) and @ be the optimal configuration for Prob-
lem (9). By the assumption of the Lemma, we have,

(Qi—1, Qi) +YD(Q:) +7 Y puc(Qi, Th(Q:)) < (17)

ucV
1(c(Qi-1, Q) +vD(Q)) +7 Y puc(Q}, T} (@2)))-
ueV
And also observe that by the triangle inequality we have,

c(Qi-1,Q7) +¥D(Qf,w) +7 Y puc(QF, T} (Qi))

u€ey

< (Qi-1,Q7) +29D(Q7,u) + ZPuC(QZu, 5 (Qiu)).

uey
(18)
Finally by Equations (17) and (18) we have,
(Qi-1, Qi) +vD(Qi) + Z Puc(Qi, 111 (Qs)) <
u€y
2
10+ ) (EQim1, @1 + 7 3 puc(Q7 T (@1)))- O
uey

Proof of Lemma IV.8. (i) Suppose (Q; be the solution ob-
tained from the single-stage approximation algorithm for
Problem (13). By the triangle inequality we have,

c(Qi—1,Qi) +vD(Qs) + ve(Q4, 111 (Q4))

< Assgn(Qi—1, Qi) + (B + 7+ By)D(Q:). (19)
Also observe that by the triangle inequality we have,
Assgn(Q;_1, Q) + (B+7+ B7)D(Q7)
< e(Qi—1,Q7) +vD(Q7) + Bre(QF I11(Qi)).  (20)

Finally, by applying the «-approximation factor of single-
stage algorithm to Equations (19) and (20) we have,
c(Qi—1,Q:) +vD(Qs) + ve(Qi, 11 (Q1))
< aB(e(@i1, Q1) +7D(Q]) +1¢(Q] T (@)))).
(ii) Suppose @; and II;(Q;—1) be the solutions obtained
from the single-stage approximation algorithm for the two

independent single-stage problems in Problem (14). By tri-
angle inequality, we have

c(Qi—1, Qi) +vD(Q:) + ve(Qi, 11 (Qy))
< (14 7)Assgn(Qi—1,Qs) + (B +7)D(Q:)

+ve(Qi—1, 111 (Qi-1))- (20

Observe that by the triangle inequality we have,
(1+7)Assgn(Q7_1,Q7) + (B +7)D(Q7)
+7e(Qi_1, T1(Q_1)) < ¢(Qi-1,QF) +vD(Q7)
+7¢(Q7, T (Qi)) + 27 Assgn(Qi—1, Q7).

Finally, by applying the a-approximation factor of single-
stage algorithm to Equations (21) and (22) we have,

c(Qi—1, Qi) +vD(Qi) + ve(Qi, 111 (Q4))
< a1+ 29)(e(Qi-1,QF) +vD(QF) + 7e(QF, 1T (Q1)))-
O

(22)
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