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Abstract— In this paper we study a multi-robot path planning
problem for persistent monitoring of an environment. We
represent the areas to be monitored as the vertices of a weighted
graph. For each vertex, there is a constraint on the maximum
time spent by the robots between visits to that vertex, called
the latency, and the objective is to find the minimum number of
robots that can satisfy these latency constraints. The decision
version of this problem is known to be PSPACE-complete. We
present a O(log ρ) approximation algorithm for the problem
where ρ is the ratio of the maximum and the minimum latency
constraints. We also present an orienteering based heuristic
to solve the problem and show through simulations that in
most of the cases the heuristic algorithm gives better solutions
than the approximation algorithm. We evaluate our algorithms
on large problem instances in a patrolling scenario and in a
persistent scene reconstruction application. We also compare
the algorithms with an existing solver on benchmark instances.

I. INTRODUCTION

With the rapid development in field robotics, teams of
robots can now perform long term monitoring tasks. Ex-
amples of such tasks include infrastructure inspection [1]
to detect presence of anomalies or failures; patrolling for
surveillance [2], [3] to detect threats in the environment; 3D
reconstruction of scenes [4], [5] in changing environments;
and informative path planning [6]. In such persistent mon-
itoring scenarios, locations in an environment need to be
visited repeatedly by a team of robots. Since the duration of
the events, or the rate of change of the properties to be mon-
itored, can be different for different locations, each location
will have a different latency constraint, which specifies the
maximum time allowed between consecutive visits to that
location. We study the problem of finding a set of paths
that continually visit a set of locations while collectively
satisfying the latency constraints on each location.

Related Work: Persistent monitoring problems have been
extensively studied in the literature [7], [8]. In [9], persistent
coverage using multiple robots in a continuous environment
is considered. The problem of determining a visit sequence
for a set of locations along with the time spent at each
location to gather information is considered in [10], [11].
For the problem with latency constraints, the authors in [12]
use incomplete greedy heuristics to find if a single robot can
satisfy the constraints on all vertices of a graph. They show
that if a solution exists, then a periodic solution also exists.
In this paper, we consider the multi-robot problem and our
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objective is to minimize the number of robots that can satisfy
the latency constraints on the given graph. This problem
has been considered in [13], [14], where it is called Cyclic
Routing of Unmanned Aerial Vehicles. The decision version
of the problem for a single robot is shown to be PSPACE-
complete in [14]. The authors also show that the length
of even one period of a feasible walk can be exponential
in the size of the problem instance. In [13], the authors
propose a solver based on Satisfiability Modulo Theories
(SMT). To apply an SMT solver, they impose an upper bound
on the length of the period of the solution. Since an upper
bound is not known a priori, the solver will not return the
optimal solution if the true optimal period exceeds the bound.
The authors generate a library of test instances, but since
their algorithm scales exponentially with the problem size,
they solve instances up to only 7 vertices. We compare our
algorithms with their solver and show that our algorithms
run over 500 times faster on average and return solutions
with the same number of robots on 98% of the benchmark
instances provided by [13].

A related single robot problem is studied in [15] where
each vertex has a weight associated with it and the objective
is to minimize the maximum weighted latency (time between
consecutive visits) for an infinite walk. The authors provide
an approximation algorithm for this problem. The authors
in [2] study the single robot problem for a security applica-
tion where the length of attack on each vertex of the graph
is given. To intercept all possible attacks, they design an
algorithm to repeatedly patrol all vertices with the maximum
revisit time to each vertex less than its length of attack.

Several vehicle routing problems are closely related to
persistent monitoring with latency constraints. In the ve-
hicle routing problem with time windows [16], customers
have to be served within their time windows by several
vehicles with limited capacity. Since the problem does not
require repeated visits, the length of the resulting tour is
polynomially bounded, and thus the problem is in NP. In the
deadline-TSP [17], the vertices have deadlines for first visits.
The main difference between these problems and the cyclic
routing problem with latency constraints is that the latency
constraints need to be satisfied indefinitely which makes it
harder than these problems.

Contributions: We present a O(log ρ) approximation al-
gorithm for the problem where ρ is the ratio of the maxi-
mum and the minimum latency constraints (Section IV). We
present a heuristic algorithm to solve the problem (Section V)
and show through simulations that the heuristic algorithm
gives better solutions than the approximation algorithm. We
evaluate the performance of the algorithms on large problem
instances and compare our algorithms against an existing



solver on benchmark instances (Section VI).

II. BACKGROUND AND NOTATION

Given a directed graph G = (V,E) with edge lengths
l(e) for each e ∈ E, a walk in graph G is defined as a
sequence of vertices (v1, v2, . . . , vk) such that (vi, vi+1) ∈ E
for each 1 ≤ i < k. An infinite walk is a sequence of vertices
(v1, v2, . . .) such that (vi, vi+1) ∈ E for each i ∈ N. Given
walks W1 and W2, [W1,W2] represents the concatenation of
the walks. Given a finite walk W , an infinite periodic walk
∆(W ) is constructed by concatenating infinite copies of W
together. A cycle is a walk that starts and ends at the same
vertex with no other vertex appearing more than once.

In general, a walk can stay for some time at a vertex
before traversing the edge towards the next vertex. Therefore
we define a timed walk W in graph G as a sequence
(o1, o2, . . . , ok), where oi = (vi, ti) is an ordered pair that
represents the holding time ti that the walk W spends at
vertex vi, such that (vi, vi+1) ∈ E for each 1 ≤ i < k.
The definitions of infinite walk and periodic walk can be
extended to infinite timed walk and periodic timed walk. A
walk with ordered pairs of the form (vi, 0) becomes a simple
walk. The vertices traversed by walk W are given by V (W )
and the length of walk W = ((v1, t1), (v2, t2), . . . , (vk, tk))
is given by l(W ) =

∑k−1
i=1 l(vi, vi+1) +

∑k
i=1 tk. Since

we are considering a multi-robot problem, synchronization
between the walks is important. Given a set of walks W =
{W1,W2, . . . ,Wk} on graph G, we assume that at time 0,
each robot i is at the first vertex vi1 of its walk Wi, and will
spend the holding time ti1 at that vertex before moving to vi2.

Given a graph G and length λ, the MINIMUM CYCLE
COVER PROBLEM (MCCP) is to find minimum number of
cycles that cover the whole graph such that the length of the
longest cycle is at most λ. This problem is NP-hard and a
14/3-approximation algorithm for MCCP is given in [18].

Given a graph G = (V,E) with vertex weights ψi for
i ∈ V , vertices s, t ∈ V , and length λ, the ORIENTEERING
problem is to find a path from vertex s to t of length at
most λ such that the sum of the weights on the vertices in
the path is maximized. This problem is also NP-hard and a
(2 + ε)-approximation is given in [19].

III. PROBLEM STATEMENT

Let G = (V,E) be a directed weighted graph with edge
lengths l(e) for each e ∈ E. The edge lengths are metric and
represent the time taken by the robot to travel between the
vertices. The latency constraint for each vertex v is denoted
by r(v) and represents the maximum time allowed between
consecutive visits to v. The time taken by the robots to
inspect a vertex can be added to the length of the incoming
edges of that vertex to get an equivalent metric graph with
zero inspection times and modified latency constraints [13].
Hence, we assume that the time required by the robots to
inspect a vertex is zero. We formally define the problem
statement after the following definition.
Definition III.1 (Latency). Given a set of infinite walks
W = {W1,W2, . . . ,Wk} on a graph G, let avi represent

Fig. 1: A graph with three vertices and the walk (a, b, a, c). The length of
shown edges is one. Equally placing two robots on this walk does not halve
the latencies.

the ith arrival time for the walks to vertex v. Similarly, let
dvi represent the ith departure time from vertex v. Then the
latency L(W, v) of vertex v on walks W is defined as the
maximum time spent away from vertex v by the walks, i.e.,
L(W, v) = supi (avi+1 − dvi ).

Problem III.2 (Minimizing Robots with Latency Con-
straints). Given the latency constraints r(v),∀v ∈ V , the
optimization problem is to find a set of walks W with
minimum cardinality such that L(W, v) ≤ r(v),∀v ∈ V .

The decision version of the problem is to deter-
mine whether there exists a set of R walks W =
{W1,W2, . . . ,WR} such that L(W, v) ≤ r(v) for all v ∈ V .
Note that a general solution to Problem III.2 will be a set of
timed walks with possibly non-zero holding times.

In this problem definition, the graph and its edge lengths
capture the robot motion in the environment. This graph
can be generated from a probabilistic roadmap, or any other
environment decomposition method. The latency constraints
provide the maximum allowable time between visits to a
vertex. For example, in dynamic scene reconstruction, each
vertex corresponds to a viewpoint [4]. The latency constraints
may encode the maximum staleness of information that can
be tolerated for the voxels captured at that viewpoint.

A. Multiple Robots on the Same Walk

In multi-robot problems that involve finding cycles in a
graph, equally placing n robots on a cycle reduces the cost
of that tour by a factor of n [20]. That is not true for
Problem III.2: if a periodic walk W gives latency L(W, v) on
vertex v, equally spacing more robots on one period of that
walk does not necessarily reduce the latency for that vertex.
Figure 1 gives an example of such a walk. The latencies
of vertices a, b and c on the walk (a, b, a, c) are 2, 4 and 4
respectively. The length of one period of the walk is 4. If
we place another robot following the first robot with a lag
of 2 units, the latency of vertex a remains the same. If we
place the second robot at a lag of 1 unit, the latency will
reduce to 1 for vertex a and 3 for vertices b and c. Hence
we need more sophisticated algorithms than finding a walk
for a single robot and adding more robots on that walk until
the constraints are satisfied, unless that walk is a cycle.

IV. APPROXIMATION ALGORITHM

Since Problem III.2 is PSPACE-complete, we resort to
finding approximate and heuristic solutions to the problem.
An approximation algorithm is presented in this section.

A. O(log ρ) Approximation

We first mention a simple approach to the problem and
then improve it incrementally to get the approximation



Algorithm 1: APPROXIMATIONALGORITHM

Input: Graph G = (V,E), latency constraints r(v), ∀v
Output: A set of walks W , such that L(W, v) ≤ r(v)

1: Let rmax = maxv r(v), rmin = minv r(v), ρ = rmax
rmin

2: if rmax/rmin is an exact power of 2 then ρ = rmax
rmin

+ 1

3: W = {}
4: Let Vi be the set of vertices v such that rmin2i−1 ≤ r(v) <
rmin2

i for 1 ≤ i ≤ dlog2 ρe
5: for i = 1 to dlog2 ρe do
6: C = MCCP(Vi, rmin2

i+1)
7: for C in C do
8: Equally place dl(C)/minv∈V (C) r(v)e robots on

cycle C to get walks W ′
9: W = {W,W ′}

algorithm. One naive solution is to find a TSP tour of the
graph and equally place robots on that tour to satisfy all
the latency constraints. However, a single vertex with a
very small r(v) can result in a solution with the number
of robots proportional to 1/r(v). To solve this issue, we can
partition the vertices of the graph such that the latencies in
one partition are close to each other, and then place robots
on the TSP tour of each partition. If more than one robot
is required for a partition V ′, then another approach is to
solve the MCCP for that partition. The benefit of using
the MCCP is that if all the vertices in V ′ had the same
latency requirement, then we have a guarantee on the number
of cycles required for that partition. However, a general
solution to the problem might not consist of simple cycles.
Lemma IV.2 relates solutions consisting of cycles to general
solutions and shows that a solution consisting of cycles will
have latencies no more than twice that of any general solution
with same number of robots. Therefore, if we solve the
MCCP on a partition with its latency constraints multiplied
by two, we have a guarantee on the number of cycles. We
can then place multiple robots on each cycle to satisfy the
latency constraints.

The approximation algorithm is given in Algorithm 1.
The first four lines of the algorithm partition the vertices
according to their latency constraints. For each of those
partitions, the function MCCP(V, λ) called in line 6 uses
an approximation algorithm for the minimum cycle cover
problem from [18]. Then, the appropriate number of robots
are placed on each cycle returned by the MCCP function
to satisfy the latency constraints. We will need the fol-
lowing definition to establish the approximation ratio of
Algorithm 1. A similar relaxation technique was used in [15].

Definition IV.1. Let rmin = minv r(v). The latency con-
straints of the problem are said to be relaxed if for any
vertex v, its latency constraint is updated from r(v) to
r̄(v) = rmin2x such that x is the smallest integer for which
r(v) < rmin2x.

We will also need the following lemma that follows from
Lemma 2 in [20] and we omit the proof for brevity.

Lemma IV.2. For any set of walks W on an undirected

metric graph with vertices V , there exists a set of walks W ′
on V with |W| = |W ′|, such that each walk Wi ∈ W ′ is a
cycle of vertices Vj ⊆ V , and the sets Vj partition V , and
maxv L(W ′, v) ≤ 2 maxv L(W, v).

Proposition IV.3. Given an undirected metric graph G =
(V,E) with latency constraints r(v) for v ∈ V , Algorithm 1
constructs R walks W = {W1,W2, . . . ,WR} such that
L(W, v) ≤ r(v) for all v ∈ V and R ≤ 4αdlog(ρ)eROPT,
where ROPT is the minimum number of robots required to
satisfy the latency constraints and α is the approximation
factor of MCCP.

Proof. Given that ROPT robots will satisfy the latency con-
straints r(v), they will also satisfy the relaxed constraints
r̄(v) since r̄(v) > r(v). Therefore, there exists a set of at
most ROPT walks W∗ such that for v ∈ Vi, L(W∗, v) ≤
rmin2i.

Using Lemma IV.2, given the set W∗, ROPT cycles can
be constructed in Vi such that the latency of each vertex in
Vi is at most rmin2i+1. Hence, running an α approximation
algorithm for Minimum Cycle Cover Problem (MCCP) on
the subgraph with vertices Vi and with maximum cycle
length rmin2i+1 will not return more than αROPT cycles.

Since MCCP returns cycles, equally placing k robots on
each cycle will reduce the latency of each vertex on that cycle
by a factor of k. As r(v) ≥ rmin2i+1/4 for each v ∈ Vi, we
will need to place at most 4 robots on each cycle.

Finally, since there are at most dlog ρe partitions Vi, the
algorithm will return R ≤ 4αdlog(ρ)eROPT walks.

Runtime: Since we run the approximation algorithm for
MCCP on partitions of the graph, the runtime of Algorithm 1
is the same as that of the approximation algorithm of MCCP.
That is because the runtime of MCCP is superlinear, so if∑
|Vi| = |V |, then

∑
|Vi|p ≤ |V |p for p ≥ 1.

V. HEURISTIC ALGORITHMS

The approximation algorithm presented in Section IV is
guaranteed to provide a solution within a fixed factor of the
optimal solution. In this section, we propose a heuristic algo-
rithm based on the orienteering problem, which in practice
provides high-quality solutions.

A. Partitioned Solutions

In general, walks in a solution of the problem may share
some vertices. However, sharing the vertices by multiple
robots requires coordination and communication among the
robots. Such strategies may also require the robots to hold at
certain vertices for some time before traversing the next edge,
in order to maintain synchronization. This is not possible
for vehicles that must maintain forward motion, such as
fixed-wing aircraft. The following example illustrates that
if vertices are shared, lack of coordination or perturbation in
edge weights can lead to large errors in latencies.
Example: Consider the problem instance shown in Fig-
ure 2. An optimal set of walks for this problem is given
by {W1,W2,W3} where W1 = ((a, 1), (b, 1)), W2 =
((b, 0), (c, 0)) and W3 = ((c, 0), (d, 1), (c, 1)). Note that



Fig. 2: A problem instance with an optimal set of walks that share
vertices. The latency constraints for each vertex are written inside that
vertex. The edge lengths are labeled with the edges. The optimal walks
are {W1,W2,W3} where W1 = ((a, 1), (b, 1)), W2 = ((b, 0), (c, 0))
and W3 = ((c, 0), (d, 1), (c, 1)).

walk W1 starts by staying on vertex a, while W2 leaves
vertex b and W3 leaves vertex c. Also note that any parti-
tioned solution will need 4 robots. Moreover, if the length
of edge {b, c} changes from 3 to 3 − ε, (e.g., if the robot’s
speed increases slightly) the latencies of vertices b and c will
keep changing with time and will go up to 5. Hence, a small
deviation in robot speed can result in a large impact on the
monitoring objective.

Since the above mentioned issues will not occur if the
robots do not share the vertices of the graph, we focus on
finding partitioned walks in this section. The general greedy
approach used in this section is to find a single walk that
satisfies latency constraints on a subset of vertices V ′ ⊆ V .
Note that we do not know V ′ beforehand, but a feasible walk
on a subset of vertices will determine V ′. We then repeat this
process of finding feasible walks on the remaining vertices
of the graph until the whole graph is covered.

B. Greedy Algorithm

We now consider the problem of finding a single walk on
the graph G = (V,E) that satisfies the latency constraints
on the vertices in V ′ ⊆ V . Given a robot walking on a
graph, let p(k) represent the vertex occupied by the robot
after traversing k edges (after k steps) of the walk. Also,
at step k, let the maximum time left until a vertex i has
to be visited by the robot for its latency to be satisfied be
represented by si(k). If that vertex is not visited by the robot
within that time, we say that the vertex expired. Hence, the
vector s(k) = [s1(k), . . . , s|V ′|(k)]T represents the time to
expiry for each vertex. At the start of the walk, si(0) = r(i),
and si(k) evolves according to the following equation:

si(k) =

{
r(i) if p(k) = i

si(k − 1)− l(p(k − 1), p(k)) otherwise.
(1)

We will use the notation si without the step k if it is
clear that we are talking about the current time to expiry.
An incomplete greedy heuristic for the decision version of
the problem with R = 1 is presented in [12]. The heuristic
is to pick the vertex with minimum value of si(k) as the
next vertex to be visited by the robot. This heuristic does
not ensure that all the vertices on the walk will have their
latency constraints satisfied since the distance to a vertex
i to be visited might get larger than si(k). To overcome
this, we propose a modification to the heuristic to apply
it to our problem. Given a walk W on graph G, the
function PERIODICFEASIBILITY(W,G) determines whether
the periodic walk ∆(W ) is feasible on the vertices that
are visited by W . This can be done simply in O(|W |)

by traversing the walk [W,W ] and checking if the time
to expiry for any of the visited vertices becomes negative.
Given this function, the simple greedy algorithm is to pick
the vertex i = arg min{sj} subject to the constraint that
PERIODICFEASIBILITY([W, i], G) returns true, where W is
the walk traversed so far. The algorithm terminates when all
the vertices are either expired, or covered by the walk.

C. Orienteering Based Greedy Algorithm
Algorithm 2 also finds partitioned walks by finding a

feasible walk on a subset of vertices and then considering
the remaining subgraph. The idea is to visit more vertices
on the way to the greedily picked vertex. From the current
vertex x, the target vertex y is picked greedily as described
in Section V-B. Then the time d is calculated in line 10
which is the maximum time to go from x to y for which
the periodic walk remains feasible. In line 15, ORIENTEER-
ING(V −Vexp, x, y, d, ψ) finds a path in the vertices V −Vexp
from x to y of length at most d maximizing the sum of the
weights ψ on the vertices of the path. The set Vexp represents
the expired vertices whose latencies cannot be satisfied by
the current walk, and they will be considered by the next
robot. The vertices with less time to expiry are given more
importance in the path by setting weight ψi = 1/si for
vertex i. The vertices that are already in the walk will remain
feasible, and so their weight is discounted by a small number
m to encourage the path to explore unvisited vertices.

Algorithm 2: ORIENTEERINGGREEDY

Input: Graph G = (V,E), latency constraints r(v),∀v
Output: A set of walks W , such that L(W, v) ≤ r(v)

1: j = 1, W = {}
2: while V is not empty do
3: Vexp = {}
4: si = r(i) for all i ∈ V
5: Wj = pick vertex a randomly from V
6: while V − V (Wj)− Vexp is not empty do
7: x = last vertex in Wj

8: for y ∈ V − Vexp in increasing order of s do
9: if PERIODICFEASIBILITY([Wj , y], G) then

10: Use binary search between l(x, y) and sy
to get d (time to go from x to y) such that
[Wj , y] remains feasible

11: for z in V − (Vexp ∪ V (Wj)) do
12: if sz < d+ l(y, a) then Vexp = Vexp ∪ z
13: ψi = 1/si for all non expired vertices i
14: ψi = mψi for i in V (Wj)
15: Wj = [Wj ,ORIENTEERING(V −

Vexp, x, y, d, ψ)]
16: Update s using Equation (1)
17: else
18: Vexp = Vexp ∪ y
19: W = {W,Wj}, j = j + 1
20: V = V − V (Wj)

Lemma V.1. Algorithm 2 returns a feasible solution, i.e., for
the set of walksW returned by Algorithm 2, L(W, v) ≤ r(v),
for all v ∈ V .

The proof [21] is omitted due to space considerations. An
approximation algorithm for ORIENTEERING can be used in



Fig. 3: The environment used for generation of random instances. The red
dots represent the vertices to be monitored and the green dots represent the
vertices in the PRM used to find shortest paths between red vertices.

line 15 of Algorithm 2. In our implementation, we used an
ILP formulation to solve ORIENTEERING. To improve the
runtime in practice, we pre-process the graph before calling
the ORIENTEERING solver to consider only the vertices z
such that l(x, z) + l(z, y) ≤ d. We show in the next section
that although the runtime of Algorithm 2 is more than that
of Algorithm 1, it can still solve instances with up to 90
vertices in a reasonable time, and it finds better solutions.

VI. SIMULATION RESULTS

We now present the performance of the algorithms pre-
sented in the paper. For Algorithm 1, we used the LKH
implementation [22] to find the TSP of the graphs instead of
the Christofides approximation algorithm [23]. This results in
the loss of approximation guarantee but gives better results in
practice. The orienteering paths in Algorithm 2 were found
using the ILP formulation from [24] and the ILP’s were
solved using the Gurobi solver [25].

A. Patrolling an Environment

The graphs for the problem instances were generated ran-
domly in a real world environment. The scenario represents a
ground robot monitoring the University of Waterloo campus.
Vertices around the campus buildings represent the locations
to be monitored and a complete weighted graph was created
by generating a probabilistic road-map to find paths between
those vertices. Figure 3 shows the patrolling environment.
To generate random problem instances of different sizes,
n random vertices were chosen from the original graph.
The latency constraints were generated uniformly randomly
between TSP/k and kTSP where k was chosen randomly
between 4 and 8 for each instance. Here TSP represents the
TSP length of the graph found using LKH.

For each graph size, 10 random instances were created.
The average run times of the algorithms are presented in
Figure 4a. As expected, Algorithm 2 is considerably slower
than the approximation and simple greedy algorithms due
to multiple calls to the ILP solver. However, as shown in
Figure 4b, Algorithm 2 also gives the minimum number of
robots for most of these instances.

B. Persistent 3D Scene Reconstruction

Another application of our algorithms is in capturing
images for 3D reconstruction of a scene. Since existing
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Fig. 4: Average run times of the algorithms (a), and number of robots
returned by each algorithm (b). The line plot shows the mean over 10
random instances for each graph size. The error bars in (b) show the
minimum and maximum number of robots required for a graph size.

algorithms focus on computing robot paths to map a static
scene [5], [4], our algorithms could be applied to persistently
monitor and thus maintain an up-to-date reconstruction of
a scene that changes over time. To demonstrate this, we
create problem instances using a method similar to [4]. The
viewpoints were generated on a grid around the building
to be monitored. For each viewpoint, five camera angles
were randomly generated, and best angle was selected for
each viewpoint based on a view score that was calculated
assuming a square footprint for the camera. For each camera
angle, equally placed rays were projected onto the building
within the footprint and a score was calculated based on the
distance and incidence angle of the ray. This calculation is
similar to that in [4], although they used a more detailed
hemisphere coverage model.

After selecting the viewing angles, the final score of a
camera pose was evaluated as in [4] by greedily picking
the best viewpoint first and evaluating the marginal score of
other viewpoints. The resulting graph had 109 vertices. The
latencies were set such that the most informative viewpoint
is visited every 8 minutes and on average each viewpoint is
visited every 50 minutes. Algorithm 2 found a solution in
150 seconds using two walks, as shown in Figure 5. Note
that Algorithm 1 returned a solution with 3 robots.

C. Comparison with Existing Algorithms in Literature

In [26], [13] the authors propose an SMT (Satisfiability
Modulo Theory) based approach using Z3 solver [27] to
solve the decision version of the problem. The idea is to fix
an upper bound on the period of the solution and model the
problem as a constraint program. The authors also provide
benchmark instances for the decision version of the problem.
We tested our algorithms on those benchmark instances and
compare the results to the SMT based solver [13].



Fig. 5: The walks returned by Algorithm 2 to continually monitor the
mausoleum of the Taj Mahal. The cones at each viewpoint show the camera
angle. Note that the walk on the left is not a tour, as it visits the vertex with
least latency twice within a period. The walk on the right is a tour and it
visits the vertices that the first robot was unable to cover.

Out of 300 benchmark instances, given a time limit of 10
minutes, the Z3 solver returned 182 instances as satisfiable
with the given number of robots. We ran our algorithms
for each instance and checked if the number of robots
returned are less than or equal to the number of robots
in the instance. The approximation algorithm satisfied 170
instances whereas Algorithm 2 satisfied 178 instances. The
four satisfiable instances that Algorithm 2 was unable to
satisfy had optimal solutions where the walks share the
vertices, and Algorithm 2 returned one more robot than
the optimal in all those instances. The drawback of the
constraint program is the scalability. It spent an average of
3.76 seconds on satisfiable instances whereas Algorithm 2
spent 3 ms on those instances on average. Moreover, on one
such instance where Algorithm 2 returned one more robot
than the Z3 solver, Z3 solver spent 194 seconds as compared
to ∼ 5 ms for Algorithm 2. Note that these differences
are for benchmark instances having up to 7 vertices. As
shown above, Algorithm 2 takes ∼ 100 seconds for 90 vertex
instances whereas we were unable to solve instances with
even 15 vertices within an hour using the Z3 solver.

VII. CONCLUSION AND FUTURE WORK

We presented and analyzed an approximation and a heuris-
tic algorithm for the problem of finding the minimum number
of robots that can satisfy the latency constraints for the
vertices in a graph. We demonstrated the performance of
the algorithms through simulations. Finding the relation be-
tween the partitioned optimal solution and a general optimal
solution is an interesting direction for future work.
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