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Abstract— In this paper we investigate the problem of using a
UAV to provide current map information of the environment in
front of a moving ground vehicle. We propose a simple coverage
plan called a conformal lawn mower plan that enables a UAV to
scan the route ahead of the ground vehicle. The plan requires
only limited knowledge of the ground vehicle’s future path.
For a class of curvature-constrained ground vehicle paths, we
show that the proposed plan requires a UAV velocity that is
no more than twice the velocity required to cover the optimal
plan. We also establish necessary and sufficient UAV velocities,
relative to the ground vehicle velocity, required to successfully
cover any path in the curvature restricted set. In simulation, we
validate the proposed plan, showing that the required velocity
to provide coverage is strongly related to the curvature of the
ground vehicle’s path. Our results also illustrate the relationship
between mapping requirements and the relative velocities of the
UAV and ground vehicle.

I. INTRODUCTION

Cooperative mapping using a ground vehicle and one
or more unmanned aerial vehicles (UAVs) is an extremely
active area of research, with applications in search and
rescue, agriculture, military reconnaissance, mapping and
inspection [1]. Working together, an autonomous UAV and a
ground vehicle can explore [2], inspect [3], monitor [4], and
track [5]. Collaborative applications take advantage of the
strengths of both vehicles: the UAV provides a higher vantage
point, wider field of view, and faster movement [6], [7],
[2], while the ground vehicle gives more detailed imagery,
improved location management and can carry supplies to
extend the range of the UAV [8].

In the mapping domain, studies have investigated using a
collaborative team of UAVs and ground vehicles to explore
unknown terrain [9], [10]. However these studies generally
employ a UAV in a stationary eye in the sky position above
the ground vehicle [10], creating a high vantage point, but
providing only a limited view of the area ahead. Others
have investigated using the UAV’s faster velocity and easier
navigation to map a region quickly, allowing a ground vehicle
to plan a safe route through difficult terrain while visiting
locations of interest [11], [2]; in these studies though, the
region to be mapped is fixed, and not restricted by the motion
or capabilities of the ground vehicle. In another example,
machine learning techniques [12] are used to plan the ground
vehicle’s route, but not predict it. Still other mapping studies
use UAVs to explore points of interest while the ground
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vehicle acts simply as a mobile supply depot, providing
support and resources to keep the UAVs flying [13], [8].

When planning coverage paths, policies typically use a
Boustrophedon path, otherwise known as a lawn mower pat-
tern [14], [15]. Used where the environment is known, these
policies first decompose the space into convex polygons,
then build a plan to provide complete coverage. Building
on this approach, other studies such as [16] find the shortest
coverage path by minimizing the number of turns on the
path.

A related topic is persistent monitoring, where the envi-
ronment is constantly changing within a fixed area. Agents
must repeatedly cover terrain that is changing over time [17],
[18]. Unlike persistent monitoring, the mappable area in our
scenario has an effective expiry time – the UAV must cover
locations before the ground vehicle comes within a specified
“lookahead distance”. This is further complicated in that the
rate of expiry is not consistent, changing depending on the
curvature of the ground vehicle’s path.

In this paper we consider a path planning problem where
a moving ground vehicle is dependent upon a UAV for
advance information regarding the upcoming route. As the
ground vehicle travels, no terrain is allowed to come within
a specified distance without first being mapped/covered by
the UAV. The UAV has access to a limited window of the
ground vehicle’s upcoming path, and must build and execute
an appropriate coverage plan based on that knowledge. Due
to the short-term nature of the path information, the UAV
must continuously update its mapping plan as the ground
vehicle advances and supplies updated directions. We adapt
the common lawn mower plan to take advantage of the
limited information, and then characterize the efficiency of
our approach by establishing lower and upper bounds on the
UAV’s velocity.

Contributions: The primary contributions of this paper
are threefold. First, we introduce the problem of providing
continuous coverage of the path ahead of a moving ground
vehicle. Second, we present a plan capable of providing
coverage with only limited knowledge. We further establish
upper and lower bounds on the length of this plan and, based
on that distance, estimate the required UAV velocities. Third,
we prove that when the curvature of the ground vehicle path
is limited, our plan provides a UAV path that requires no
more than twice the velocity of that required to cover the
optimal path.

Organization: The paper is structured as follows. In
Section II we formally introduce the coverage problem
and the assumptions on the ground and aerial vehicles. In
Section III we present the Conformal Lawn Mower coverage



Fig. 1. Ground Vehicle Path and the Coverage Corridor.

plan. In Section IV, the efficiency of the algorithm is
developed and we present the solution to the main problem
posed in this paper. In Section V we discuss our simulation
results. Finally, Section VI contains concluding remarks and
notes on possible future work.

An expanded version of this work is available at https:
//arxiv.org/abs/1909.03304.

II. PROBLEM STATEMENT

Consider a ground vehicle moving through an environment
in R2 following a smooth path P (t) at a constant velocity
vgv for t ∈ [0, tmax].

A distance, dmap, ahead of the ground vehicle, defines the
length of the coverage area. The width of the coverage area
w is specified by the operator as a path parameter. As the
ground vehicle moves along the path, this dmap×w coverage
area moves ahead of it, generating a mapping demand. We
generally expect that the total length of the path to be much
greater than w.

The leading edge of this coverage area is the deadline. If
we define tmap as the time required for the ground vehicle
to traverse the map distance, dmap

vgv
, then given a unit normal,

−→n , at point P (t+ tmap), we can define the leading edge of
the coverage area, D(t), as

D(t) =

{
x ∈ R2|x = P (t+ tmap) + α~n, α ∈

[
− w

2
,
w

2

]}
.

We assume all ground vehicle paths, P (t), are members
of the set

P =

[
P (t)

∣∣∣∣c(t) ≤ 2

w
, t ∈ [0, tmax]

]
,

where c(t) is the curvature of P (t) at time t. This curvature
constraint ensures that as the vehicle progresses along the
path P(t), the endpoints of the deadline D(t) always make
non-negative progress along the boundary of the coverage
area.

From this we can more formally define coverage area A(t)
to be the union of points found by sweeping D(tdl) along
P (tdl) for tdl ∈ [0, t+ tmap], expressed as

A(t) = ∪t+tmap
tdl=0 D(tdl).

A UAV is deployed to provide mapping imagery, using
a monocular vision system to capture terrain data. Similar
to [19], we model the UAV motion using single integrator
dynamics and focus on the high level planning problem. The
UAV’s camera has a fixed-size square optical footprint with
sides of length f , where f < w. If f ≥ w, then the solution
is to simply fly the UAV along the ground vehicle path at the
same velocity, vuav = vgv. The total area of the map covered
by the UAV over the interval [0, t] is denoted M(t) ⊂ R2.

The UAV is unable to create an optimal mapping plan as it
only has a limited window of the ground vehicle’s upcoming
path.

Figure 1 shows an example path with the ground vehicle
located at P (ti). The coverage area starts at P (0), is centered
on P (t), and continues to a point dmap units ahead of the
ground vehicle at P (t+ tmap). The environment is assumed
to be free of obstacles that affect the UAV. There may be
obstacles that limit the possible trajectories of the ground
vehicle; however, we assume that the UAV does not have
access to this information.

For all points in x ∈ A(t), the expiry time texp(x) is
defined as the time at which x intersects with the deadline
D(t′) for the first time t′ ≤ t. If a point is not in M(t)
before expiring, then it is considered a coverage failure.

At time t = 0, we assume the UAV is positioned at the
beginning of its first pass on one side of the path, ready
to start mapping. The deadline is located at P (0), with the
ground vehicle not yet on the path. After a delay of ∆t = f

vgv
,

enough time for the UAV to map the first pass of the path,
the ground vehicle and the deadline begin to move forward.

Given this background, the problem may be formally
stated.

Main Problem II.1 (Complete Coverage). Consider a
ground vehicle traveling through an environment following a
path, P (t) ∈ P, creating a coverage demand of A(t). A UAV
travels ahead of the ground vehicle producing a coverage area
of M(t). Assume the UAV has knowledge of an upcoming
window of the ground vehicle’s path, P (t̄), t̄ ∈ [t, t + ∆t].
Determine a plan for the UAV that guarantees

A(t) ⊆M(t),∀t ∈ [0, tmax]. (1)

We seek to characterize the coverage plan’s efficiency as
follows.

Main Problem II.2 (Proof Of Efficiency). Given the plan
determined by (1), what is the efficiency relative to the
optimal coverage plan for the same path, P (t)?

III. THE CONFORMAL LAWN MOWER PATH

It is well established that a simple, non-overlapping lawn-
mower path is an optimal method for covering a rectangular
area [14]. We propose that for the ground vehicle path, P (t),
we can define a Conformal Lawn Mower path such that the
lines of a regular lawn mower may no longer be parallel.
Instead, the angle between any two adjacent lines is allowed
to range from parallel up to a maximum value defined by
the curvature of the path and the UAV’s optical footprint, f .



Fig. 2. Conformal Lawn Mower plan with a limited window.

Refer to Figure 2 where the UAV coverage plan (red dashed
line) is overlaid on the ground vehicle path.

Definition III.1 (Traversal). A Traversal is a line segment
of length w perpendicular to and centered on the path. To
guarantee complete coverage, the distance between any two
traversal lines has an upper bound of f .

Definition III.2 (Transit). A transit is defined as the section
of the UAV’s coverage plan that connects the ends of two
adjacent traversals. Transits are assumed to follow the profile
of the path edge (i.e., an arc when the path is curved).

Definition III.3 (Period). A period for a conformal lawn
mower plan is a grouping of the movements required to
cover a section of the path and return to the same position,
but shifted forward along the path. A period consists of the
following movements: traversal, transit, traversal, transit.

The conformed plan is a sequence of alternating traversals
and transits that allow the UAV to completely map A(t). The
procedure for constructing a conformal lawn mower path is
shown in Algorithm 1.

Algorithm 1 Conformal Lawn Mower Plan
1) Add an initial traversal at P (0) to the plan.
2) Find the first point on the path P (t) such that a

traversal centred at P (t) has an endpoint at distance f
from its corresponding endpoint on the last traversal.

3) Add a transit to this traversal at P (t) and the traversal
to the plan, where successive transits alternate sides.

4) If the ground vehicle has stopped, add a final transit
and traversal to the plan and exit.

5) Otherwise, when there is new path information, repeat
from step 2.

The UAV uses the provided path information to map the
initially known A(t) following the conformal plan. As the
ground vehicle moves forward and additional path informa-
tion comes available, the UAV plan is extended, allowing the
UAV to map the new territory.

Theorem III.1 (Complete Coverage). The Conformal Lawn
Mower plan in Algorithm 1 provides complete coverage of
path P (t).

Proof. From Algorithm 1, the ground vehicle path is sam-
pled, placing a new traversal where necessary to maintain
the maximum separation. We start by placing a traversal at
t = 0. Then, travelling the path, we calculate the distance
between the endpoints of the last traversal added to the path,
and a prospective one at the current location of P. When the

Fig. 3. An optimal coverage plan for a straight path.

distance of either endpoint from the previous traversal is f ,
the algorithm places a transit, locating it on the opposite side
from the previous one, then places the prospective traversal.
By enforcing the distance between traversals to be f , the
algorithm ensures we have complete coverage. This process
repeats until the end of the path has been reached.

No two traversals are ever separated by more than f , so
that two sequential passes of the UAV, one on each traversal,
captures all of the area of A(t) between those traversals in
M(t). Since all of P (t) is sampled by traversals, and A(t)
is defined by P (t), then

A(t) ⊆M(t). (2)

Therefore, the Conformal Lawn Mower completely covers
the swept area, A(t), defined by the path, P (t).

IV. COVERAGE EFFICIENCY

We begin by proving the performance of the conformal
lawn mower plan. Using this result, we present our solution
to Problem II.1. Finally, we demonstrate the suboptimality of
the conformal plan, by presenting a handcrafted alternative.

A. Proof of Efficiency

The UAV has perfect knowledge of the ground vehicle’s
intended path for a limited window – the UAV is given the
ground vehicle’s path for the range [ti, ti + ∆t]. The UAV
must create a coverage plan that ensures all of P (t), t ∈
[ti, ti + ∆t] is covered prior to expiry.

We will demonstrate a worst case scenario that minimizes
the distance the ground vehicle travels relative to the UAV.
Based on this, we can establish a sufficient relative velocity
for the UAV to successfully cover any ground vehicle path
within the curvature constrained set P.

Theorem IV.1 (Efficiency). For any path P(t) in the set P,
the conformal lawn mower plan has a length that is no more
than two times the optimal coverage plan.

To prove this result we require a few preliminary lemmas.

Lemma IV.2 (The Optimal Straight Path Ratio). For a
straight path P (t) (Figure 3), the ratio of the distance
travelled by the UAV to that of the ground vehicle is w

f .

Proof. The ground vehicle travels down the centre of the
path, moving a distance of d. Therefore the total coverage
demand is wd. The ratio of the ground vehicle velocity to
the UAV is determined by

d

vgv
≥ wd

fvuav
.



Since the velocity of both vehicles is fixed, we can eliminate
the time component on both sides and state this in terms of
distance. Therefore, the ratio of the vehicle distances is

duav

dgv
≥ vuav

vgv
≥ w

f
. (3)

Remark (Optimality of the Lawn Mower Coverage Plan).
The lawn mower coverage plan, illustrated in Figure 3, is an
optimal plan for the straight path. Each traversal is w − f
in length and spaced f apart, meaning that for one complete
period of two traversals and two movements of f , the ratio
of UAV distance to ground vehicle distances is

duav

dgv
≥ 2(w − f) + 2f

2f
=
w

f
.

•

The length of the UAV coverage plan for any arbitrary
path can not be any shorter than the optimal coverage plan
for the straight path.

Lemma IV.3 (Arbitrary Paths have the Same Area). An
arbitrary path in P of length d has an optimal coverage plan
at least as long as the optimal coverage plan for a straight
path of the same length.

Proof. We first prove an arbitrary path in P has the same
area as an equivalent straight path with the same centre-
line length. The comparison of optimal coverage path lengths
flows directly from this fact.

Let S be an arbitrary path in P of length d and width
w. The arbitrary path can be decomposed into a set of n
curve sections, {s1, s2, . . . , sn}, where each section has a
centre-line length ∆d such that

d =

n∑
i=1

∆d.

We then approximate each segment si by a segment s′i,
which has length ∆d and a constant curvature equal to
the maximum curvature of si. The concatenation of these
segments s′1, . . . , s

′
n creates a curve Sn. Notice that by the

smoothness of paths in P, we have Sn → S as n→∞ and
thus ∆d→ 0.

The total area of Sn is the sum of the areas of all n of its
sections,

area(Sn) =

n∑
i=1

area(s′i).

For each section, s′i, the area is calculated in one of two
ways. If the section si is straight, its area is ∆dw. Otherwise,
letting r be one over the curvature of the section, the area
of curved section s′i is

area(s′i) =
θ

2π

(
(π(r +

w

2
)2 − (π(r +

w

2
)2

)
= θ (rw) .

Fig. 4. A path minimizing dgv with respect to duav.

But we also know that θ = ∆d
r . Substituting into our equation

gives us

area(s′i) =
∆d

r
rw = ∆dw.

Therefore the area of S is

area(S) = lim
∆d→0

n∑
i=1

∆dw = dw.

This is exactly the area of a straight path of length d and
width w.

From Lemma IV.2, the UAV must travel at least w/f
times as far as the ground vehicle when covering a straight
path. Since the arbitrary path has exactly the same area
as the straight path, it must generate exactly the same
coverage demand. The UAV’s ability to satisfy the coverage
demand remains the same, governed by the size of its optical
footprint, f . Therefore, the optimal coverage plan for the
arbitrary path in P must be at least as long as the optimal
coverage plan for the equivalent straight path.

Remark (The need for a curvature constraint). Our analysis
is restricted to paths in P with curvature of at most 2/w. If
a path contains a curve with curvature greater than 2/w, the
deadline endpoint on the inside of the curve moves in the
opposite direction of the ground vehicle motion, reducing
the swept area A(t). In this scenario Lemma IV.2 no longer
holds, and thus the analysis does not follow through. •

Based on Lemma IV.2 and Lemma IV.3, we can now prove
Theorem IV.1.

Proof of Theorem IV.1. Consider a straight ground vehicle
path of width w with a UAV providing mapping coverage
using an optical footprint of size f . If we consider the
UAV path as a series of traversals and transits, that path is
maximized if the transits are all of length f , as illustrated in
Figure 4. Since the maximum separation between traversals
is fixed at f , to find the worst case distance ratio between the
ground vehicle and the UAV, we must minimize the ground
vehicle distance.

Starting with parallel traversals, we increase the angle
between them. As the angle is increased, the curvature of the
path increases, and the length of the path segment between
the traversals decreases. Since each traversal must cross the
path at right angles, the path must be a series of alternating
circular arcs, with a curvature directly dictated by the angle
between the traversals. We can express the length of the



ground vehicle’s path segment between two traversals as

dgv = rθ = r
f

w
2 + r

, r ≥ w

2
. (4)

Note that the distance in (4) is minimized when r = w
2 .

The UAV travels the length of one traversal, followed by
a transit to the next traversal. Therefore, the distance that the
UAV must travel is

duav = (w − f) + (
w − f

2
+ r)θ ≤ w

since the traversals are separated by not more than f .
Therefore, the ratio can be calculated

duav

dgv
≤ w

r f
w
2 +r

≤ 2
w

f
, if r =

w

2
. (5)

The upper bound on the ratio of the velocity the UAV
requires relative to the ground vehicle velocity on a arbitrary
path is then given by

vuav

vgv
=
duav

dgv
≤ 2

w

f
.

We know from Lemma IV.3 and (3) that the ratio of the
length of the coverage plan to the ground vehicle distance
for any arbitrary path must be at least w

f . Therefore for any
arbitrary path in P, following a conformal lawn mower plan
can require no more than twice the velocity necessary for
the optimal coverage plan on the same path.

B. The Correctness of the Conformal Lawn Mower Plan

With Theorem III.1 and Theorem IV.1 we have shown
both complete coverage of the path P (t) and the sufficient
velocity the UAV requires for any path in P. We can now
state our main result.

Theorem IV.4 (Correctness of Conformal Lawn Mower
Plan). Consider a ground vehicle, travelling at velocity vgv,
with initial condition at the start of path P (t), t = 0. The path
P (t) has a coverage width of w and a maximum curvature
2
w . Then, a UAV, with velocity ≥ 2w

f vgv and following the
conformal lawn mower path solves problem II.1.

Proof. For complete coverage of P (t), the region A(t) swept
out by D(t), t ∈ [0, tmax], must be entirely within the
mapped area M(t) before expiry. Based on Theorem III.1,
we can assert that M(t) contains all of A(t). We must now
prove that no elements of A(t) expired before they were
included within M(t).

From the initial conditions, the UAV starts ahead of
the deadline with at least one completed traversal already
mapped before the ground vehicle starts moving. For all
remaining elements of A(t) to be mapped correctly, we need
to show that the UAV maintains or extends its position ahead
of the ground vehicle. If the UAV uses a velocity of at least
2w
f , where w is the width of the path and f the UAV’s optical

footprint, then Theorem (IV.1) asserts this is true.
Therefore, all of A(t) is successfully mapped, and Problem

II.1 is solved.

TABLE I
A COMPARISON OF CONFORMAL VS. HANDCRAFTED PLANS.

UAV Conformal Handcrafted
Velocity Distance %Coverage Distance %Coverage

21 8400 23 8400 89
23 9200 35 9027 100
25 10000 53 9040 100
27 10800 89 9042 100
29 11588 100 9038 100

(a) Handcrafted (b) Conformal

Fig. 5. Two Coverage plans over a path with width 400m, curvature 1
200

.

C. Suboptimality of the Conformal Lawn Mower Plan

We have shown that the conformal lawn mower plan
is within a factor of two of the optimal plan. For some
paths in P there may be more efficient coverage solution
that minimizes the ratio vuav

vgv
. With full path knowledge, a

coverage plan may be proposed that reduces the scanning
overlap, and requires a lower sufficient velocity from the
UAV as a result. Consider a path P (t) with coverage width
w = 400 and a maximum curvature of 1

200 . A handcrafted
coverage plan for P (t) is presented in Figure 5a, with the
equivalent conformal plan in Figure 5b. Simulation results of
both plans are presented in Table I. From these results, the
handcrafted path, while not necessarily optimal, is clearly
much better.

We note that finding the optimal path appears to be an NP
hard problem. According to [20], the lawn mowing problems
are NP hard in general; however, whether our formulation
with the additional constraints is NP hard is the subject of
further investigation.

V. SIMULATION RESULTS

We performed simulations in two scenarios, varying the
UAV velocity on different types of ground vehicle paths
(straight, decreasing curvature, and randomly generated),
and using a single velocity while progressively decreasing
the curvature. For all simulations, the fixed parameters are:
vgv = 5 m/s, w = 400 m, f = 100 m. The control case, a
straight path as shown in Figure 6a-6e, reaches full coverage
between 20 and 21 m/s, as expected if we allow for slight
rounding errors in the simulation. Simulations were run for
a random path with minimum curvature of 1/200, as well
as curvatures ranging from 1/200 to 1/1000. Illustrations of
some of the test paths can be seen in Figure 6.

In all cases, the UAV and the ground vehicle start on the
left side of the path, with the dark grey areas indicating
successful mapping. Areas that are light grey expired before



(a) 20 m/s (b) 22 m/s (c) 22 m/s (d) 26 m/s

(e) 21 m/s (f) 25 m/s (g) 25 m/s (h) 29 m/s

Fig. 6. Increasing UAV velocity over various path configurations.

(a) r200 m (b) r400 m

Fig. 7. Coverage Results at 25 m/s – dark grey is successful coverage,
light grey expired.

coverage occurred. As expected, all of the paths show in-
creasing degrees of success as the UAV velocity is increased.
These tests also illustrate the relation between the curvature
of the path and the success rate. As illustrated in figures 7a-
7b, as the curvature of the path decreases, the success rate
at mapping increases, matching with our expectations.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we defined the problem of providing path
planning coverage for a moving ground vehicle. We de-
veloped some minimum performance requirements on the
part of the UAV to provide current coverage of the path
immediately ahead of ground vehicle as it travels through
the environment. The plan we developed, a variation of the
classic lawn mower plan, ensures complete path coverage
without prior knowledge of the entire plan. We have shown
that the conformal lawn mower path can be no longer than
twice the length of the optimal plan, and therefore require
no more than twice the UAV velocity, for any path with
maximum curvature constrained less than 2/w.

One observation from this work is that large UAV ve-
locities are needed to successfully map a region given a
reasonable ground vehicle velocity. For our simulations, we
limited the velocity of the ground vehicle to just 5 m/s (or
about 20 km/h), and yet, the minimum required velocity
for the UAV to be successful was 20 m/s, well in excess
of the capability of most rotor-based UAVs, particularly for
sustained flight.

For paths with a high curvature, it may be appropriate
to use a plan that minimizes mapping overlap given the
available information. Future investigations may include
proving any algorithm that finds the optimal plan under these
constraints is likely to be NP hard [20].
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navigation of heterogeneous MAV–UGV formations localized by a
hawk-eye-like approach under a model predictive control scheme,”
The International Journal of Robotics Research, vol. 33, no. 10, pp.
1393–1412, 2014.

[8] N. Mathew, S. L. Smith, and S. L. Waslander, “Multirobot rendezvous
planning for recharging in persistent tasks,” IEEE Transactions on
Robotics, vol. 31, no. 1, pp. 128–142, 2015.

[9] J. H. Kim, J.-W. Kwon, and J. Seo, “Multi-UAV-based stereo vision
system without GPS for ground obstacle mapping to assist path
planning of UGV,” Electronics Letters, vol. 50, no. 20, pp. 1431–
1432, 2014.

[10] S. Hood, K. Benson, P. Hamod, D. Madison, J. M. O’Kane, and
I. Rekleitis, “Bird’s eye view: Cooperative exploration by UGV and
UAV,” in Unmanned Aircraft Systems (ICUAS), 2017 International
Conference on. IEEE, 2017, pp. 247–255.

[11] T. Lazna, P. Gabrlik, T. Jilek, and L. Zalud, “Cooperation between an
unmanned aerial vehicle and an unmanned ground vehicle in highly
accurate localization of gamma radiation hotspots,” International Jour-
nal of Advanced Robotic Systems, vol. 15, no. 1, 2018.

[12] G. Christie, A. Shoemaker, K. Kochersberger, P. Tokekar, L. McLean,
and A. Leonessa, “Radiation search operations using scene under-
standing with autonomous UAV and UGV,” Journal of Field Robotics,
vol. 34, no. 8, pp. 1450–1468, 2017.

[13] S. Ren, Y. Chen, L. Xiong, Z. Chen, and M. Chen, “Path planning
for the marsupial double-UAVs system in air-ground collaborative
application,” in Chinese Control Conference (CCC). IEEE, 2018,
pp. 5420–5425.

[14] H. Choset, “Coverage of known spaces: The boustrophedon cellular
decomposition,” Autonomous Robots, vol. 9, no. 3, pp. 247–253, 2000.

[15] E. Galceran and M. Carreras, “A survey on coverage path planning
for robotics,” Robotics and Autonomous systems, vol. 61, no. 12, pp.
1258–1276, 2013.

[16] S. Bochkarev and S. L. Smith, “On minimizing turns in robot coverage
path planning,” in Automation Science and Engineering (CASE), 2016
IEEE International Conference on. IEEE, 2016, pp. 1237–1242.

[17] M. Ahmadi and P. Stone, “Continuous area sweeping: A task defi-
nition and initial approach,” in Advanced Robotics, 2005. ICAR’05.
Proceedings., 12th International Conference on. IEEE, 2005, pp.
316–323.

[18] S. L. Smith, M. Schwager, and D. Rus, “Persistent robotic tasks: Mon-
itoring and sweeping in changing environments,” IEEE Transactions
on Robotics, vol. 28, no. 2, pp. 410–426, 2012.

[19] Y. Xu, L. Di, and Y. Chen, “Consensus based formation control of
multiple small rotary-wing uavs,” in ASME 2011 International Design
Engineering Technical Conferences and Computers and Information in
Engineering Conference. American Society of Mechanical Engineers,
2011, pp. 909–916.

[20] E. M. Arkin, S. P. Fekete, and J. S. Mitchell, “Approximation al-
gorithms for lawn mowing and milling,” Computational Geometry,
vol. 17, no. 1-2, pp. 25–50, 2000.


