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Abstract— This paper focuses on the problem of deploying
a set of autonomous robots to efficiently monitor multiple
types of events in an environment. There is a density function
over the environment for each event type representing the
weighted likelihood of the event at each location. The robots
are heterogeneous in that each robot is equipped with a set
of sensors and it is capable of sensing a subset of event types.
The objective is to deploy the robots in the environment to
minimize a linear combination of the total sensing quality of
the events. We propose a new formulation for the problem
which is a natural extension of the homogeneous problem. We
propose distributed algorithms that drive the robots to locally
optimal positions in both continuous environments that are
obstacle-free, and in discrete environments that may contain
obstacles. In both cases we prove convergence to locally optimal
positions. We provide extension to the case where the density
functions are unknown prior to the deployment in continuous
environments. Finally, we present benchmarking results and
physical experiments to characterize the solution quality.

I. INTRODUCTION

In this paper, we focus on the problem of deploying
multiple heterogeneous robots to cover an environment with
different event types. Each event type has a different spatial
distribution in the environment and can be sensed only with
a specific type of sensor. The robots are heterogeneous
in that each of the robots is equipped with a subset of
sensors. Thus, each robot is capable of measuring a subset
of event types. The quality of sensing for an event at a
location is a decreasing function of the distance of the sensor
from the location. The objective is to deploy the robots
to maximize the total coverage quality of the events of
different types. This appears in several applications including
reconnaissance, surveillance [1] and monitoring [2], as well
as in the deployment of vehicles with different capacities
and/or capabilities in urban transportation systems [3], [4].

In convex environments, Cortes et al. [5] propose a
distributed algorithm for homogeneous robots that utilizes
Voronoi partitioning and the Lloyd descent algorithm. The
proposed control law allows the robots to converge to a local
maximum sensing quality over the events in the environ-
ment and requires communication only between neighboring
robots in the Voronoi partition.

Several studies address different types of heterogeneity in
the robots. In [6], the authors consider the problem of sensing
an event where the sensors have different functions governing
their sensing quality. The approach defines a generalized
Voronoi partition based on the sensing functions and provides
a Lloyd descent type algorithm for controlling each robot.
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Other types of heterogeneities for mobile sensors addressed
in the literature include the sensors with different sensing
ranges [7], [8], [9] and different additive weights on the
sensing quality of robots [10]. In [7], the authors address the
coverage problem for circular sensors with different radii.
In [9], authors provide a gradient descent algorithm for the
distributed control of circular sensors with different radii in
a non-convex environment.

All the aforementioned studies consider the coverage
control for a single event type. In [11], the authors introduced
the coverage control problem for multiple event types, each
with a different density function. An event of a certain
type can be sensed by a robot if the robot is equipped
with the required sensor. The proposed approach considers
a Voronoi partition generated by all the robots, and the
objective function is a convex combination of the sensing
quality of each robot for the events inside its Voronoi cell and
the sensing quality over the whole environment. In this paper,
we consider the same heterogeneous problem, but we pose a
different objective function, and thus distributed control law.
As such, we compare our approach to [11] in detail, and
demonstrate its advantages in simulation. In our approach,
we define a Voronoi partition of the environment for each
event type, each generated by the robots with the suitable
sensors. With these partitions, we are able to ensure that
each event is sensed by the closest robot with the required
sensor. Moreover, our formulation captures the case where
sensors for different events have different sensing functions.

Several studies considered the coverage control in an
environment where the event density is unknown prior to
deployment [12], [13]. In [12], the authors assume a basis
function approximation for the event density with adaptive
weights for each robot and propose a decentralized algorithm
that updates the weights estimating the true density. The
authors in [13] provide a simple stochastic gradient descent
algorithm without estimating the real event density and prove
convergence to a locally optimal solution. Built on the results
in [13], we extend our analysis to environments with multiple
events types each with an unknown density.

In a discrete environment represented by a graph, the ob-
jective of the coverage problem is to sense events occurring
on the vertices of the graph. A closely related problem is the
p-median problem [14], [15] where a set of service units are
located on the vertices of a graph servicing demands arriving
on the vertices with the objective of minimizing the total
service time. In [16], a distributed algorithm is proposed for
partitioning and coverage of a non-convex environment. Yun
and Rus [17] presented a distributed vertex swap algorithm
for the robots that converges to locally optimal solutions
with two-hop communication. To the best of our knowledge,
the existing literature on the distributed coverage control on



graphs is limited to homogeneous robots sensing a single
event type. In contrary, we consider multiple event types
with heterogeneous robots both in the sensing capability and
quality.

Contributions: The contributions of this paper are three-
fold. First, we propose a new formulation for the problem
of coverage control for heterogeneous mobile robots, which
is a natural extension of the homogeneous formulation.
Second, we provide a distributed algorithm for maximizing
the sensing quality with the new formulation. Third and
finally, we extend the results to discrete environments with
different event types.

II. PROBLEM FORMULATION

In this section, we formulate the coverage problem for
continuous and discrete environments. We consider a set of
m robots in an environment with k different event types.
Each event type is measured with a different sensor in S,
and a robot i is equipped with a subset of these sensors,
i.e., Si ⊆ S . The objective is to position the robots in the
environment maximizing the total sensing quality of k event
types.

A. Continuous Environments

Consider a convex environment D ⊂ R2. Let [k] denote
the set {1, . . . , k}. The density function of an event type j
is φj : D → R+, j ∈ [k], which represents the measure of
information or the probability of an event type occurring over
D. Let pi ∈ D be the position of robot i in the environment
and P = {p1, . . . , pm}. The sensing quality of a sensor j,
denoted by f j , is a decreasing function of the distance of
the robot to the measured point. Thus, robot i is assigned to
measure the events of type j ∈ Si at the points closest to pi,
i.e., for each event type j ∈ Si robot i measures the events
in the Voronoi cell

V j
i = {q ∈ D| ||q−pi|| ≤ ||q−pr||, j ∈ Si∩Sr,∀r ∈ [m]}.

For simplicity we let V denote the set of all the Voronoi
cells. Now we define the heterogeneous deployment problem
in continuous environments as follows:
Problem II.1 (Coverage in Continuous Environments).
Given a set of m robots with dynamics ṗi = ui ∀i ∈
[m] where ui is the control input, find a set of locations
P = {p1, . . . , pm} that maximizes the total sensing quality
function, i.e.,

H(P, V ) =

m∑
i=1

∑
j∈Si

∫
V j
i

f j(||q − pi||)φj(q)dq. (1)

The sensing quality measure H(P, V ) is the total sensing
quality of k event types over the environment by the robots
located at P . Contrary to the formulation in [11], by defining
k Voronoi partitions for the environment, we ensure that
an event of type j at location q is sensed by the closest
robot with the required sensor. Moreover, the definition
of H(P, V ) captures different sensing quality function f j

for each event type j. Observe that with k = 1, the
quality measure H(P, V ) becomes the sensing quality for

homogeneous robots as proposed in [5]. Figure 1 illustrates
an instance of the coverage problem with two event types.

In [11], the authors considered the same heterogeneous
coverage problem, but with the objective

Hhet(P) = σ
∑
i∈[m]

∫
Vi

||q − pi||2φSi
dq

+ (1− σ)
∑
i∈[m]

∫
D
||q − pi||2φSidq

where σ ∈ (0, 1], Vi is the Voronoi partition generated by
the positions of all robots and φSi

=
∑

j∈Si
φji . To illustrate

the differences with the proposed objective in Equation (1),
Figure 2 shows a coverage problem on a line with three
event types. Each robot senses the event type of the same
color. The colored polygons represent the density function of
each event type. As shown in Figure 2a, the objective in [11]
has locally optimal configurations in which one event type is
covered sub-optimally. This is in contrast to the configuration
shown in Figure 2b, where a partition is generated for each
event type.

B. Discrete Environments
In the discrete case, the environment is represented by an

undirected graph G = (V, E, c). The graph could represent
a roadmap of an environment with obstacles. Let V be the
set of vertices, and let E be the edge set, which represents
the paths between vertices. The cost function c : E → R+

assigns a cost c(e) for traversing each edge e ∈ E. The
events occur on the vertices of the graph, and the function
φju gives the mass of event type j at vertex u ∈ V . Let
d(u, v) be the length of the shortest path from u to v on
graph G. The goal is to deploy robots to a set of vertices of
the graph. We do not consider deployments in which robots
are located on the edges of the graph, and this is motivated
by the result on the properties of locating robots on vertices
given in Lemma IV.1.

An event of type j is assigned to the closest robot among
the robots that are equipped with the sensor type j. If there
exists an even with two equally close robots i, j ∈ [m], we
assign the event to robot i if i > j and robot j otherwise.
The subset W j

i (P) is the set of vertices assigned to robot
i to sense events of type j ∈ Si on those vertices. Observe
that W j

i is the discrete analogue of V j
i .

For simplicity, we let W denote the set of all the subsets
W j

i . Now we define the heterogeneous deployment problem
in discrete environments as follows:
Problem II.2 (Coverage in Discrete Environments). Given
a set of m robots find a set of locations on the graph P =
{p1, . . . , pm} such that maximizes the total sensing quality
function, i.e.,

H(P,W ) =

m∑
i=1

∑
j∈Si

∑
v∈W j

i

f j(d(pi, v))φjv. (2)

Observe that the objective functions is the adaptation of
the objective function (1) to discrete environments. Also note
that with k = 1, the quality measure H(P,W ) becomes the
sensing quality for homogeneous robots as proposed in [17].
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(a) Event density of event type 1, i.e., φ1. The sensor capable of sensing
this event is shown with a circle on the robots.
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(b) Event density of event type 2. The sensor capable of sensing this event
is shown with a triangle on the robots.

Fig. 1: The Voronoi partitions of an environment for each event type. A robot considered in a Voronoi partition if it is equipped with the
required sensor for the event type.

(a) Locally optimal configuration for [11] with σ < 1 shown on top and
σ = 1 shown below.

(b) Locally optimal configuration for Equation (1)

Fig. 2: Instance of coverage of three event types on a line. Triangles
(resp. rectangle) show the density function for event type 1(resp.
2 and 3). Robots are capable of sensing the event types with the
same color.

III. GRADIENT ASCENT ALGORITHM FOR CONTINUOUS
ENVIRONMENTS

In this section, we provide a distributed control law for
robots with a proof of convergence to a local maximum of
H(P, V ) in Problem II.1.

A well-known approach to maximize the sensing quality
for each robot to ascend the gradient of H. Let δV j

i be the
boundary of the Voronoi cell V j

i , and let δV j
ik be the common

boundary of the Voronoi cells V j
i and V j

k . Let nj
ik(q) be

the unit normal to δV j
ik at q in the outward direction of

V j
i . Finally, we define the neighbors of a robot i in Voronoi

partition j as N j
i = {l ∈ [n]|δV j

i ∩ δV
j
l 6= ∅}.

Then we establish the results on the derivative of H with
respect to the position of robots in Lemma III.1. The results
in Lemma III.1 is an extension to the homogeneous case
in [5] and the proof follows closely.

Lemma III.1. For differentiable sensing functions f j , the
derivative of H with respect to the position of robot i is

∂H
∂pi

=

m∑
i=1

∑
j∈Si

∫
V j
i

∂f j(||q − pi||)
∂pi

φj(q)dq.

Proof. By the Leibnitz theorem [18] we have,

∂H
∂pi

=

m∑
i=1

∑
j∈Si

( ∫
V j
i

∂f j(||q − pi||)
∂pi

φj(q)dq

+
∑
l∈N j

i

∫
V j
i

f j(||q − pi||)nj
il(q)

∂(δV j
ik)

∂pi
(q)φj(q)dq

+
∑
l∈N j

i

∫
V j
i

f j(||q − pi||)nj
li(q)

∂(δV j
ik)

∂pi
(q)φj(q)dq

)
.

Observe that nj
il = −nj

li for all l ∈ N j
i . Then the result

follows immediately.

An interesting observation from this is that unlike the
homogeneous version of the coverage problem, two robots
can share a location in D if they do not have sensors in
common, i.e., the derivative is defined for any P ∈ Dm\Qm

where Qm is the set of points in which robots with common
sensor type overlap, i.e.,

Qm = {{p1, . . . , pm} ∈ Dm|∃i, j ∈ [m] pi = pj ,

i 6= j, Si ∩ Sj 6= ∅}.

To derive a distributed control law, we first rewrite the
derivative of H in the following form.

∂H
∂pi

= 2
∑
j∈Si

∫
V j
i

(pi − q)
df j(x)

d(x2)
|||q−pi||φj(q)dq. (3)

Let the mass and centroid of a Voronoi cell respectively be

MVi =

∫
Vi

df

d(x2)
|||pi−q||φ(q)dq,

CVi
=

1

MVi

∫
Vi

q
df

d(x2)
|||pi−q||φ(q)dq.

Then we have ∂H
∂pi

= 2
∑

j∈Si
MV j

i
(pi−CV j

i
). Now consider

the following simple control law

ui = −ci
1∑

j∈Si
MV j

i

∑
j∈Si

MV j
i

(pi − CV j
i

) ∀i ∈ [n], (4)

where ci is a positive gain such that pi + ui remains in
the convex set ∩j∈Si

V j
i . Robot i is the generator of a cell

in each of the Voronoi partitions of the events in Si, and
the control law ui moves the robot i to the average of the



centroids of its Voronoi cells. Observe that computing this
control law only requires the communication between robot
i and its neighbors in each Voronoi partition. We assume
that the communication range is sufficient for the robots to
communicate with their neighboring robots.

The following shows the result on the convergence of the
proposed distributed control law in Equation (4).
Proposition III.2 (Continuous-time Lloyd Ascent). Under
control law (4), the robots converge to the union of Qm and
the set of critical points of H.

Proof. Under control law (4), if ci of robot i at some time
instance becomes zero then robot i is on the boundary of
∩j∈Si

V j
i and coinciding with another robot. Therefore, the

robots have converged to Qm. Otherwise, the robots starting
from a collision free configuration in Dm\Qm remain inside
Dm \ Qm at any time instance, then the set Dm \ Qm is a
positively invariant set under control law (4). The derivative
of H with respect to time is

d

dt
H(P(t), V ) =

m∑
i=1

∂H
∂pi

ṗi = −
m∑
i=1

2ci∑
j∈Si

MV j
i

(
∂H
∂pi

)2.

Therefore, observe that the direction of control law (4)
coincides with the gradient of H. The rest of the proof
follows from the proof of Proposition 3.1 in [19], which
uses LaSalle’s Invariance Principle to show at each step of
the algorithm H monotonically increases and converges to
the largest invariant set contained in

Cm ={P ∈ Dm|(∂H(P)

∂pi
)2 = 0 ∀i ∈ [n]}

Although control law (4) converges to a set consisting of
Qm, simulation results in Section V show that by resolving
collisions with local a controller, the system remains in Dm\
Qm and converges to the set of critical points of H.
Remark III.3 (Unknown Density Functions). Consider the
scenario where the robots do not have access to the density
functions of the event types and they only observe events of
different types arriving over time. A control law is proposed
in [13] for the homogeneous case which drives the closest
robot to the observed event and converge to a locally optimal
positions. In the heterogeneous case, each observed event
Z = [zd, zc] is a random vector consisting of a discrete
component zd ∈ [k], denoting the observed event type, and
a continuous component zc ∈ D representing the location
of the event. The events of different types arrive with equal
frequencies and according to their spatial density functions.
We assume that the relative importance of the event types,
denoted by Φj =

∫
D φi(q)dq is known. By extending the

results in [13], the control law become

pi,t+1 = (5){
pi,t − γtΦj

dfj

dx2 |||zc
t−pi,t||(z

c
t − pi,t) if zdt ∈ Si, z

c
t ∈ V

zd
t

i

pi,t otherwise.

Observe that the expected value of the direction
dfj

dx2 |x=||zc
t−pi,t||(z

c
t − pi,t) coincides with the direction

of the derivative of H with respect to pi in Equation (3).

The control law (5) drives the closest robot with the required
equipment towards the observed event. The convergence of
the control law to locally optimal positions arrive from the
proof of Theorem 3 in [13]. •

IV. GRADIENT ASCENT ALGORITHM FOR DISCRETE
ENVIRONMENTS

In this section, we discuss the coverage problem for
heterogeneous robots in a discrete environment with multiple
event types (Problem II.2 in Section II). Given a graph, the
goal is to position the robots on the vertices of the graph
such that the total sensing function H is maximized.

We define two configurations of the robots on the graph.
The first configuration Q ⊂ V is a subset of size m of the
vertices of the graph which represents positioning the robots
on the vertices. The second configuration D ⊂ E × [0, 1]
represents the placement of the robots on the edges. For a
placement of robot i on edge (u, v), i.e., pi = ((u, v), γ)
(see Figure 3), parameter γ is the fraction of the path from
pi to v along the edge (u, v). The distance of robot i from
vertex w ∈ V is d′(pi, w) = min{γc(u, v) + d(u,w), (1 −
γ)c(u, v) + d(v, w)}.

For a configuration D, each event is assigned to the closest
robot with required equipment. Then total sensing function
for configuration D and partition W (D) is

H′(D,W (D)) =

m∑
i=1

∑
j∈Si

∑
v∈W j

i

f j(d′(pi, v))φjv. (6)

We provide a gradient ascent control law to position the
robots in the graph maximizing Equation (2). To motivate
the approach, first, we provide the following result on the
optimal solution of the discrete problem.
Lemma IV.1. For any placement of the robots in the graph
D, there exists another placement of the robots on the
vertices Q such that

H′(D,W (D)) ≤ H(Q,W (Q)).

Proof. For any placement of the robots in the graph, if there
exists a robot located on the edge of the graph, we create an-
other placement without decreasing the total sensing quality.
Figure 3 illustrates an instance in which a robot i is located
on the edge (u, v). For each event type j ∈ Si, we partition
the vertices in W j

i into two subset where the first subset W j
i,u

consists of the vertices in W j
i such that the shortest path from

pi contains u and similarly the second subset W j
i,v consists

of the vertices in W j
i such that the shortest path for the robot

to reach the vertex passes through v. The total event mass
on the first subset is

∑
j∈Si

∑
w∈W j

i,u
φjw and similarly for

the second subset is
∑

j∈Si

∑
w∈W j

i,v
φjw. Then we move the

robot to the vertex with a larger total event mass. Observe
that moving the robot to the vertex with a larger total event
mass can only increase the total sensing quality.

This result motivates us to consider the cases where the
robots are located on the vertices of the graph. The set of ad-
missible controls for robot i, Ui, is limited to ∪j∈SiW

j
i (Pt)



Fig. 3: Robot located on an edge of a graph.

to ensure that the robots are required to communicate with
only their neighboring robots. The robots i, k are called
neighbors if there exists j such that the sets W j

i , W j
k share

in edge on graph G. Observe that the control set Ui is a non-
empty set since it contains the current location of the robot.
We say the robots are in a locally optimal configuration if
there is no robot can take a control input in its control set
to improve the sensing quality unilaterally.

Now we provide the control law on the graph as follows:

pi,t+1 = arg max
u∈Ui

∑
j∈Si

∑
w∈W j

i (Pt)

f j(d(u,w))φjw. (7)

Control law (7) drives the robots to a configuration on
the graph maximizing the total sensing quality of the events
in the partitions dominated by the robot. This resembles the
control law in Equation (4). The following lemma provides
the results on the convergence of the control law (7).
Lemma IV.2. Under the control law (7), the robots converge
to a set of locally optimal locations for the total sensing
problem in discrete environments.

Proof. By the definition of the control law in Equation (7)
we move robot i to the new position such that it maximizes
the sensing quality for the vertices in the partitions of robot
i, i.e., W j

i (Pt), j ∈ Si. Considering a fixed partition, by
any robot relocating on the graph, the total sensing quality
improves, i.e., H(Pt,W (Pt)) ≤ H(Pt+1,W (Pt)).

Observe that the sensing quality is maximized when each
event is assigned to the closest robot. Then by updating the
partition for the new positions of the robots we have

H(Pt+1,W (Pt))) ≤ H(Pt+1,W (Pt+1)).

Therefore, the quality improves with each step of the control
law and the algorithm converges to a locally optimal solution
of the discrete total sensing quality problem.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the control
laws for both continuous and discrete environments.

A. Continuous Environment

The performance of the proposed control law for contin-
uous environments is evaluated with four experiments. Each
experiment consists of 8 GRITSBots [20] with different sens-
ing capabilities. The proposed control law is implemented
on the Robotarium [21] using both simulation and physical
experiments. The density function for each event type j is
given by a bivariate normal distribution, i.e.,

φj(q) =
βj

2π
√
|Σ|

exp
(
− 1

2
(q − ζj)T Σ−1(q − ζj)

)
,

βj S
Exp. 1 βj = 1 j ∈ [k] S1 = S7 = {3, 4}, S2 = {2, 4},

S3 = {1, 2, 3}, S4 = {1, 3}, S8 = {4}
S5 = {1, 2, 3, 4}, S6 = {1, 2}

Exp. 2 βj = 1 j ∈ [k] Si = {1, 2} i ≤ 4, Si = {3, 4} i ≥ 5
Exp. 3 βj = 1 j ∈ [k] Si = {j ∈ [k]|j <= i}
Exp. 4 βj = j j ∈ [k] Si = [k]

TABLE I: Parameters of the experiments.
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Fig. 4: Performance of the proposed control law for Experiment 3

where ζj is the mean and Σ = [0.1, 0; 0, 0.1] is the covariance
matrix. The parameter βj is a scaling factor to represent the
importance of each event type. The sensing function is for
all event types f j(x) = −x2, j ∈ [k]. Table I shows the
parameters of each experiment.

In Figure 4, the sensing quality of the proposed control law
is compared to that of the Heterogeneous Lloyd’s algorithm
proposed in [11]. The results are the average of 100 instances
of Experiment 3 with different uniformly random initial
locations for the robots. The mean values ζj , j ∈ [k] of
density functions for each instance are generated randomly
in a 1× 1 environment. The dashed lines represent the total
sensing quality in Equation (1) for both algorithms. The solid
lines in Figure 4 show the significant improvement of the
sensing quality for each event type with respect to the Het-
erogeneous Lloyd’s algorithm. The percentage improvement
is the ratio of the difference between the total sensing quality
of the Heterogeneous Lloyds algorithm to the total sensing
quality of the proposed algorithm. The comparison of the two
algorithms on different experiments are given in Table II. The
proposed control law outperforms the existing algorithm in
total sensing quality and in the sensing quality of each event
type. Figure 5 illustrates the final configuration of the robots
in the physical implementation of the proposed algorithm in
the Robotarium with 8 robots for an instance of Experiment
1. In the experiment, the proposed algorithm improved the
total sensing quality by 87.7% in 1 minute.

B. Discrete Environment

In the discrete environment, we evaluate the performance
of the proposed control law in a deployment problem moti-
vated by transportation applications. Figure 6 shows 100 ran-
domly generated pick-up locations in Manhattan. Requests
for rides arrive at the pick-up locations. Each request has
a capacity requirement in {2, 3, 4, 5}, giving the size of the



Event 1 Event 2 Event 3 Event 4 Total Sensing

Avg. σ Avg. σ Avg. σ Avg. σ Avg. σ

Exp. 1 57.3 7.1 56.3 8.6 56.3 7.9 42.2 6.5 55.3 5.0
Exp. 2 57.8 4.3 57.1 3.9 57.8 4.3 57.9 4.4 58.1 2.1
Exp. 3 47.9 5.5 58.2 4.4 46.3 5.0 41.5 7.3 46.3 3.2
Exp. 4 54.8 5.0 55.5 4.5 57.6 4.2 56.0 3.2 56.6 1.8

TABLE II: Average percentage improvement of the sensing quality for the proposed algorithm compared to Heterogeneous Lloyd’s
algorithm over 100 instances for each experiment. The mean deviation from average is denoted by σ.

(a) Event type 1 (b) Event type 2 (c) Event type 3 (d) Event type 4

Fig. 5: Eight robots with different sensing capabilities in the Robotarium with the environment size of 2×3.2 meters. The density functions
of each event type are shown via contours. The colored circles next to the robots show the generators of each Voronoi partition.

group seeking a ride. There are 5 vehicles of each capacity
{2, 3, 4, 5} requirement. There are then four event types, one
for events with each capacity requirement. Observe that a
vehicle with capacity i can serve any request with a group
size of k ≤ i. The objective is to position the vehicles in the
environment to minimize the time to respond to a request.
Note, here we are considering only the initial deployment
problem, which is to place the vehicles at locations to best
respond to an initial request.

Figure 7 shows the improvement in the total service quality
for different event types and the total service quality. The
results are the average of 1000 randomly generated mass
functions. The lines show the mean value and the shaded
area represent the first and third quartiles of each data set.
Notice that the event type with capacity 2 is serviced by all
the vehicles, and the algorithm shows the best improvement
for this event type.

VI. CONCLUSION

This paper considers the problem of coverage control of
multiple robots with heterogeneous sensing capabilities in
continuous and discrete environments. A new formulation
is introduced for measuring the coverage of multiple event
types with different event distributions, and a distributed
control law is presented for maximizing the coverage of the
robots in the environment, which only requires communica-
tion between neighboring robots. The extensive results show
significant improvement in the sensing quality of the events
compared to the existing studies. For future work, we plan to
extend the analysis to capture different sensing functions for
the same event type on different robots, and more complex
event types such as pick-up-and-delivery tasks in ride-sharing
applications.

Fig. 6: Pick-up locations in Manhattan N.Y.
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