
Learning Motion Planning Policies in Uncertain Environments
through Repeated Task Executions

Florence Tsang, Ryan A. Macdonald, and Stephen L. Smith

Abstract— The ability to navigate uncertain environments
from a start to a goal location is a necessity in many applica-
tions. While there are many reactive algorithms for online re-
planning, there has not been much investigation in leveraging
past executions of the same navigation task to improve future
executions. In this work, we first formalize this problem by
introducing the Learned Reactive Planning Problem (LRPP).
Second, we propose a method to capture these past executions
and from that determine a motion policy to handle obstacles
that the robot has seen before. Third, we show from our
experiments that using this policy can significantly reduce the
execution cost over just using reactive algorithms.

I. INTRODUCTION

In settings ranging from warehouses to restaurants, many
tasks, such as pickup and delivery and material transport
are highly repetitive and ripe for automation using robots.
However, the environment typically contains uncertainty,
which poses difficulties for repeated start-to-goal task exe-
cutions. During one instance of a task, a robot can generate
a map of the environment (e.g., using SLAM [1], [2]) to
navigate and complete the task. However, the environmental
uncertainty makes it difficult to harness this map to complete
a future task; resulting in the robot re-mapping during each
task execution, or using only the most recent map along
with heuristics to navigate around unexpected obstacles.
In [3], the authors proposed an alternative solution to this
problem, calling it the Reactive Planning Problem (RPP).
The idea was to generate a motion policy, that balanced the
competing tasks of identifying which environment configu-
ration (or map) the robot was operating in, and efficiently
navigating to the goal. However, their solution required the
robot to be given the full set of possible configurations of
the environment, and their relative likelihoods a priori. In
practice this information is difficult to obtain and likely to
be inaccurate. As a result, their proposed approach lacked
robustness in that it cannot adapt to new or unexpected
environments. This work builds on the RPP and proposes
a new solution in which only one initial map is required a
priori, and instead the robot learns about the environment
configurations and incrementally builds a motion policy
through repeated executions of a start-to-goal task.

This research is partially supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

The authors are with the Department of Electrical and Com-
puter Engineering, University of Waterloo, Waterloo ON, N2L 3G1
Canada (f4tsang@uwaterloo.ca; r25macdo@uwaterloo.ca;
stephen.smith@uwaterloo.ca)

Related Work: Traveling between positions or con-
figurations is a fundamental problem in mobile robotics.
The typical approach is to encode the environment into
a map before running a planning algorithm to generate
trajectories. To this end, there is a plethora of mapping
algorithms for different applications, ranging from complex
3D surroundings [4] to highly dynamic environments [5].
Given a map along with robot dynamics, the task of selecting
desirable robot actions prior to task execution can be
a computationally complex task [6]. To address this, [7]
considers obstacle correlations only between neighboring
regions dependent on the direction from which the robot
enters. The computational burden is further reduced by
allowing the robot to re-plan during execution as its map
changes. Algorithms like D∗ Lite [8] and lifelong planning
A∗ [9] provide fast re-planning in order to approach real-
time reaction to obstacles. In this work, the mapping objec-
tive is to capture only regions of the environment critical
to task completion. We discuss conditions to encourage the
robot to map only regions that may benefit future tasks.

The topic of reinforcement learning in robotics, reviewed
in [10], presents a method to iteratively improve perfor-
mance of difficult tasks. Q-Learning has been used to solve
similar reinforcement learning problems [11], [12]. More
recent work has combined these concepts with deep learning
called deep reinforcement learning [13]–[15]. For example,
[16] uses a deep reinforcement learning strategy to improve
the exploration of office buildings. In contrast, our work
does not require extensive training data.

Our work is focused on minimizing the total cost for a
given number of repetitions of a task (or episodes). For this
problem, there is an explicit reward/cost for an action in
the current task, but there is also an implicit reward/cost
for an action in the current task that will influence future
tasks. This is further complicated as the interaction between
the current and future tasks may become less important as
the robot approaches the final task. Several works discuss
the inverse reinforcement learning problem (IRL), which
builds a model of the reward function [17]–[19]. Much of
this work requires expert examples to learn the underlying
reward function [20]. For our work, this is unavailable to the
robot. Instead, we focus on predicting the implicit reward
of an action on future tasks.

Contributions: The contributions of this paper are three
fold. First, we introduce the Learned Reactive Planning
Problem. Second, we present an algorithm that condenses
past experiences into what we call super maps in order to

generate and update a motion policy between tasks. Lastly,
we present simulation results showing the strengths and
weaknesses of using this approach.

II. NOTATION

A weighted directed graph G is defined by the pair
G = (V, E) with the cost c : E → R≥0 for traversing
each edge e ∈ E . A path P in a graph is defined by a
sequence of vertices v1, . . . , vk that satisfies (vi, vi+1) ∈
E for all i ∈ Nk−1 with cost of traversal defined by
c(P) =

∑k−1
i=1 c(vi, vi+1). With some abuse of notation for

vi, vj ∈ V , we let c(v, u) denote the minimum cost of a
path from v to u. Given a graph G = (V, E), the subgraph
GE = (V,E) is induced by E ⊆ E with V ⊆ V given by
the endpoints of E. An edge e = (v, u) ∈ E is said to be
incident with vertices v and u. As the graph is directed, e is
outgoing at v and incoming at u. Therefore, e is incident-in
to u and is incident-out to v with the set of edges incident-
out to v, Iv ⊆ E .

III. PROBLEM SETUP

Consider a single robot that must repeatedly navigate
from a start to a goal location in a partially known static
environment. It must perform this task T ≥ 1 times, and
obstacles may be added or removed from the environment
in between tasks. Our goal is to minimize the total cost
to complete these T tasks. In the following subsections we
define the environment, robot model, and its motion policy
before formalizing the problem.

A. Environment Model

Given a graph G, there are r = 2|E| edge subsets of E . The
robot functions within a graph drawn from the set of sub-
graphs of G labelled G = {G1, . . . , Gr}, with a probability
mass function (pmf) capturing the likelihood a given graph
will be drawn. Contrary to the RPP [3], the robot does not
know the pmf over G. The robot experiences a sequence
of T random graphs GX1

, . . . , GXT
, where X1, . . . , XT

are independent and identically distributed (i.i.d) random
variables according to the pmf over Nr (i.e., P(Xt = i) = pi
for i ∈ Nr and t ∈ NT where p1, . . . , pr is the pmf). We
drop the index when referring to the underlying pmf and
use random variable X . The robot executes task t in the
realization Gxt

of GXt
without knowing Gxt

.
We are interested in applications where a small (cardinal-

ity much less than r) subset of G dominates the pmf. Thus
graphs in this subset are much more likely to be drawn. For
cases where each graph is equally likely, namely P(X =
i) = 1

r for any i ∈ Nr, our approach will operate similarly
to existing online reactive algorithms. From a practical point
of view, we are interested in structured environments (even
though that structure is unknown at first), and for which
that structure has occasional unexpected modifications. This
captures environments where certain areas are often blocked
or unblocked (e.g., a doorway) but others are expected to
be in a given state (e.g., it is unlikely a wall will suddenly
be absent). Our work still reacts to the unexpected case, but

we wish to speed up reaction time for the most probable
cases.

B. Robot Model

Suppose for some task t the robot functions within the
realization Gxt

= (V,Ext
). If the robot occupies v ∈ V , it

may sense an edge (v, u) ∈ E to check if it is blocked
and thus not traversable. Formally, the sensing action is
defined by the mapping γv : Iv → {blocked, unblocked}
where γv(e) = unblocked for e ∈ Ext and γv(e) = blocked
otherwise, this is the edge’s state. If the robot, positioned at
v ∈ V , wishes to traverse e = (v, u) ∈ E , it first senses the
edge e. If γv(e) = unblocked, then the robot will proceed
to traverse e and arrive at u, incurring the transition cost
c(e). For simplicity, we assume there is no cost to sense the
state of e and that the robot is capable of sensing whether
e is blocked or not. Although we assume no sensing cost,
it can be added without significant changes to the problem
or solution.

After the robot performs n actions within the environ-
ment, let Et,n ⊆ E denote the set of edges for which the
robot knows the state. We define the robot’s understanding,
or map, of Gxt

, after its nth action, as the tuple Mt,n =
(Eb

t,n, E
u
t,n) for known blocked edges Eb

t,n = {e ∈ Et,n|e 6∈
Ext} and known unblocked Eu

t,n = {e ∈ Et,n|e ∈ Ext}.
Note that Eb

t,n and Eu
t,n form a partition of Et,n. When

the task is finished, the robot stores the map in the list
Mt = [M1, . . . ,Mt] for t ∈ NT , where n is removed to
indicate the task is completed.

C. Complete Policy

Consider a single task t ∈ NT , and to reduce notational
complexity in what follows, we drop the index t. The robot
state space is defined as V × 2E × 2E where v ∈ V is the
robot’s position, Eb ∈ 2E is the set of known blocked edges
and Eu ∈ 2E is the set of known unblocked edges. At a
given state (v,Eb, Eu), the robot selects an action defined
by an outgoing edge e ∈ Iv , and a command from the set
C. The most primitive commands being {move, terminate},
but in later sections we add an observe and call reactive
algorithm command. Formally, a policy maps the robot state
space to the set of actions, π : V × 2E × 2E → IV ×C. The
move command updates Eu if e ∈ Ex and modifies v since
the robot has moved or it only updates the set of blocked
edges Eb if e /∈ Ex. The terminate command ends task
execution and should only be used when the robot is in a
terminal state. Given a start and a goal vs, vg ∈ V , a state
(v,Eb, Eu) is said to be terminal if v = vg or the graph
G = (V, E \Eb) has no path from vs to vg . We now define
a complete policy.

Definition III.1 (Complete Policy). A policy π is complete
for a graph G if it produces a finite sequence of actions
that ends in a terminal state for any subgraph in the set
G = {G1, . . . , Gr}.

Given a graph Gj with j ∈ Nr, consider the sequence of
actions AGj

= a1, . . . , az produced by π for some z ∈ N.

Each action a has a cost, which is the sum of all edges
travelled during the action; we denote this set of edges as
Ea. The total cost of AGj

would be given by cost(AGj
) =∑z

i=1

∑
e∈Ea

c(e). Therefore, the expected cost to complete
a task is

EX [cost(π)] =
∑
j∈Nr

P(X = j)cost(AGj) . (1)

For a complete policy to exist it is sufficient that the
component containing vs is strongly connected for each
graph in G that has non-zero probability. This holds as long
as the robot can exit each region that it can enter.

D. Learned Reactive Planning Problem (LRPP)

We consider a sequence of T tasks where the robot wishes
to minimize the summed cost of completing each task. When
considering a sequence of T tasks, note that all prior tasks
affect the way in which the robot completes the current task.
Therefore, the policy for task t may use the information
collected during all prior tasks. Formally, we define this as
the Learned Reactive Planning Problem.

Problem 1 (Learned Reactive Planning Problem (LRPP)).
Given a graph G with unknown pmf over all subgraphs
G, a start and goal vs, vg ∈ V and number of tasks T ,
find a sequence of T complete policies, π1, . . . , πT , that
minimizes

∑T
t=1 EXt

(cost(πt)), where πt may depend on
the observations made in tasks 1, . . . , t− 1.

We now characterize the complexity of this problem for the
special case when the pmf over subgraphs is completely
known, which occurs as T →∞.

Proposition 1. Even if the pmf over subgraphs G is known,
the Learned Reactive Planning Problem is PSPACE-hard.

Proof. Consider an instance of the stochastic Canadian
Travelers problem (CTP). This consists of a graph GCTP =
(V,E), a cost on each edge cCTP : E → R>0, and a
probability for each edge p : E → [0, 1], giving the
probability p(e) that the edge e ∈ E is unblocked. The
goal is to find a policy that minimizes the expected cost
from start to goal. To reduce this problem to LRPP with a
known pmf, we create the following instance of the LRPP:
We set G = GCTP , c = cCTP, and for each subgraph
Gi = (V,Ei) ∈ G, we define its probability P(Xt = i) = pi
as

pi =
∏
e∈Ei

p(e)
∏

e∈E\Ei

(
1− p(e)

)
.

An optimal policy for this instance of LRPP then minimizes
the expected cost of completing a task. This policy then
is also optimal for the CTP. Since the CTP is PSPACE-
hard [21], the LRPP with a known pmf is also PSPACE-
hard.

Remark 1. Notice that in the first task t = 1, the pmf is
completely unknown, and thus minimizing the expected cost
with an unknown distribution is equivalent to minimizing
the worst-case cost. Thus, the first task is an instance

of the non-stochastic version of the Canadian Travelers
problem [22]. In this problem, the goal is to compute a
policy that minimizes the competitive ratio, defined as the
worst-case ratio over all subgraphs between the cost to
navigate from start to goal using the policy, and the cost
of the optimal path from start to goal in the subgraph. This
problem is also known to be PSPACE-complete [22].

IV. SOLUTION APPROACH

There are three key challenges to address when con-
sidering the approach in [3] to solve the LRPP. First, the
subgraph set G and its pmf is unavailable to the robot for
planning. We propose a Map Memory Filter in Section IV-A
to estimate G and its pmf by efficiently storing the robot’s
map Mt,n for every task t into Mt. Second, we need a
method for the robot to reach the goal when it encounters
an environment it has not experienced before. In Section IV-
B we introduce the idea of calling a reactive algorithm
to handle such environments, and adding this command to
the set C that can be used in a policy. Third, the robot
needs to be able to update its navigation strategy from vs
to vg as its estimate of G and its pmf changes between
task executions. In Section IV-E we explain how the policy
generating algorithm proposed by [3] can be utilized to
generate and update a complete policy π that can react to
all the realizations it has experienced before. This approach
also introduces the command observe to set C.

A. Map Memory Filter

After the nth action during task t, the robot’s knowl-
edge is defined by the tuple (Rt,n,Mt−1) where Rt,n =
(vt,n, E

b
t,n, E

u
t,n) is the robot state after the nth action. The

robot would only need to store map Mt,n = (Eb
t,n, E

u
t,n)

if it did not agree with a map stored from a previous task.
This is known as map agreement.

Definition IV.1 (Map Agreement). Given maps M1 and M2,
we say M2 agrees with M1 if Eb

2∩Eu
1 = ∅ and Eu

2∩Eb
1 = ∅.

1

2

3

(a)

1

2

3

(b)

1

2

3

(c)

Fig. 1: Map examples
Consider the graph examples in Fig. 1 where the solid

lines are unblocked edges, dashed lines are unknown edges,
and the lack of a line indicates a blocked edge. Map (a)
agrees with map (c), but not map (b) because edge (1,2) is
missing. Note that the robot does not need to know all of
the environment to accomplish its task and can leave regions
unmapped, which may result in different realizations that
seem identical to the robot.

Thus, the robot only needs to keep track of one map which
we call a super map, formally defined below.

Definition IV.2 (Super Maps). A map Mj with j ∈ Nt is
a super map if all Mi for j 6= i ∈ Nt that agree with Mj

satisfy Eb
i ⊆ Eb

j and Eu
i ⊆ Eu

j .

Then, to reduce storage and search space, we redefineMt

as the set of super maps at the end of task t. The problem
of computing a minimal set of supermaps can be formalized
as follows.

Problem 2 (Map Merging Problem). Given a set of col-
lected maps from each task,MT = [M1,M2, . . . ,MT], find
a minimum partition of MT such that every map in each
subset agree with each other.

Note that merging the maps in a subset forms a super map,
and thus the solution to the Map Merging Problem provides
a compressed representation of the robot’s past experiences.
We can show that the Map Merging Problem is NP-Hard
through a reduction from the minimum clique cover (MCC)
problem to the Map Merging Problem. Consider an instance
of the MCC problem: Given a graph G, find the minimum
number of cliques to cover every vertex. Given an instance
of map merging, let each map Mt be a vertex, and let there
be an edge between every two maps that agree with each
other. This graph is called an agreement graph. Set G to be
the agreement graph, and then the MCC of G provides a
minimal partition of the maps in MT .

The agreement graph is built over time as the robot
completes each task, so map merging is a form of online
MCC. The MCC of a graph is equivalent to the minimum
graph coloring of the complement of the graph [23]. The
map merging method proposed in Algorithm 1 is a greedy
approach that immediately adds a map to a subset via
merging (lines 3 and 4) if it agrees with an existing super
map. It is analogous to the First Fit approach to the online
graph coloring problem, which, while not an approximation
algorithm [24], provides good performance in practice.

Algorithm 1: mapFilter
Input: Mt, Mt−1
Output: Mt

1 for each (Eb
j , E

u
j) ∈Mt−1 do

2 if Eu
t ⊆ Eu

j AND Eb
t ⊆ Eb

j then
3 return Mt−1;

4 if Eu
t ∩ Eb

j = ∅ AND Eb
t ∩ Eu

j = ∅ then
5 Update Mj = (Eu

j ∪ Eu
t , E

b
j ∪ Eb

t);
6 return Mt−1;

7 return Mt−1 ∪Mt;

Using this method of storage, we can simplify the ex-
pected cost estimate (1) to,

EX [cost(πt)] =
∑

Mj∈Mt

(
nj
t

)
costπt(Mj) , (2)

where nj is the number of maps the robot has experienced
by task t that agree with super map Mj . Thus the estimated
probability of encountering Mj in the next task is p̂Mj

=

nj/t. Let P̂ = [p̂M0
, p̂M1

, . . . , p̂Mt
], and together with the

set Mt, forms our estimate of the pmf of G. Note that
M0 = {(∅, E)} and initialize n0 = 1, leading to the robot’s
initial assumption of p̂e = 1 ∀e ∈ E , i.e., all edges in G
are unblocked.

B. Calling A Reactive Algorithm

Start
t

Policy
πt

Online
λ

End
t

call λ

Fig. 2: Integrating a reactive algorithm λ with a policy.
Consider the composite approach displayed in Fig. 2

for executing task t. The number of possible realizations
for GXt may be exponential in the number of edges;
therefore, our approach is to plan paths for only a subset
of environments and use a reactive algorithm λ for the
remaining, adding a call λ command to C.

Definition IV.3 (Reactive Algorithm λ). A reactive algo-
rithm λ computes online a sequence of move commands to
lead the robot to a terminal state. Such an algorithm must
guarantee that it can find a path from vs to vg if one exists.

The reactive algorithm λ allows the robot to handle
unexpected environments as they are encountered. Meaning
the robot will always enter a terminal state (in some finite
number of moves) after it calls λ. An example reactive
algorithm is D∗ Lite [8].

For a given task t, the robot starts by following the
preplanned paths in the policy πt until either 1) an obstacle
prevents the robot from continuing (in which case the robot
is in a new map) or 2) all super maps that are consistent
with the robots observations have no path to the goal vg .
In either case, πt calls λ to finish the task. This satisfies
the complete policy requirement, and the policy is updated
each time a new task is completed. The preplanned paths
are expected to be more efficient at reaching vg than λ, and
as such we wish to minimize the probability of the robot
calling λ.

Remark 2. The dashed edge in Fig. 2 is not considered
within this work as returning from λ may result in a large
number of states that the policy must map to actions.

C. Policy Structure

A policy for task t can be efficiently encoded into a binary
tree π = (N,L). The nodes N of the tree are given by tuples
(Y, v, e) for belief Y = {i ∈ Mt−1|Mi agrees with Mt,n}
at vertex v ∈ V . The edge e is an observation at vertex
v. For each node, the set L contains two paths, one to
each child node, corresponding to each outcome of e. Thus,

Policy
Update

Policy πt

Map Memory

Policy
πt+1

Fig. 3: Overview of the policy update.

there are two outcomes, one corresponding to e ∈ Ext

and the other e 6∈ Ext
. If e = ∅, then either v = vg

or there is no path to goal in any of the agreeing super
maps and λ must be called. To match our robot model
and to facilitate understanding, we will limit e ∈ Iv . Then
in this work, we can now define the full command set
C = {move, observe, call λ, terminate}.

Remark 3. From the RPP [3], the policy definition can
be extended to more general sensor models. Nodes become
(Y, v,O) where O is a set of edges, but the policy tree will
no longer be binary. Due to space constraints we leave this
extension for future work.

D. Build Policy

The key step in our approach is the update shown in
Fig. 3 that occurs between tasks and builds a policy as more
tasks are completed. After completing task t, we have our
estimate of the set of subgraphs Mt and the pmf P̂ based
on all prior experience. With some modifications, we can
solve the RPP problem from [3] using these estimates as
parameters, resulting in a policy π which has the structure
from Section IV-C. Note that the call λ command must be
explicitly added to every node that has no path to goal.

Since each super map in Mt is only a partial repre-
sentation of a realization, it is necessary to make some
assumptions to fill in missing information. If the state of an
edge in super map Mj is unknown (i.e., e /∈ Eb and e /∈ Eu),
we assume it to be unblocked. This choice encourages the
robot to explore, as it will attempt to traverse an unknown
edge if it is on a shortest path.

(a) (b)

Fig. 4: (a) shows a realization for task t, and (b) is the
collected Mt. The green line in (a) is the path determined
by the policy πt, in (b) by the policy πt+1. The blue squares
are the path that the robot actually took, the grey squares
are unknown.

Consider the simple example in Fig. 4, assuming the robot
only has an empty grid for M0 inMt, it attempts to execute
the task in (a) using the green path. However, it must call
the reactive algorithm, and at the end of the task, the robot
stores the map in (a) as M1, the state of the grey squares
are unknown. When building the policy, an observation for
the edge ((1,1),(2,2)) will be selected, and in the case this

edge is blocked, a path will be calculated from s to g in
M1 since no other maps exist. If only the partial map M1

was available, the blue shaded path would be used in the
policy. However, since we are assuming the grey squares
are unblocked, the algorithm will select the green path in
(b). Even if that assumption was proven wrong during task
execution, it will result in more knowledge of the realization,
and the next time the policy is built, the algorithm will not
repeat the same path for that particular super map.

E. Policy Update

Finally, we present our entire solution in Algorithm 2,
which covers task execution and policy building. In Line 1,
we initialize the set of super maps M with E as a set
of unblocked edges. In other words, the robot is aware
of all edges that it could potentially move across. Such
information could come from a floor plan of the environ-
ment, containing all permanent obstacles. The robot initially
assumes that p̂e = 1∀e ∈ E . This assumption ensures that
the reactive algorithm λ will always initially attempt the
shortest possible path to vg . In Lines 4-6, the robot executes
the task by following the policy until it reaches a terminal
state, updating its set of super maps and policy in Line 11
and 3 respectively, before executing the task again.

Algorithm 2: Sequential Task Completion
Input: E ,vs,vg

1 M0 = [(E , ∅)];
2 for t = 1, . . . , T do
3 πt =buildPolicy(Mt−1,vs,vg);
4 initialize state Rt,n = (vs, ∅, ∅) for n = 0;
5 do
6 execute πt(Rt,n); // if λ is called

wait until it terminates
7 update Rt,n;
8 increment n;
9 while Rt,n not terminal;

10 Mt = (Eb
t,n, E

u
t,n) from Rt,n;

11 Mt = mapFilter(Mt,Mt−1);

V. SIMULATION RESULTS

In this section, we describe the simulations we conducted
with Algorithm 2 and compare the results with only using
a reactive algorithm. Of particular interest is the average
cost of the path taken across all tasks given T . The reactive
algorithm used in our simulation calls A∗ to replan when it
encounters an unexpected obstacle.

A. Test Environment

Our tests were conducted on the environment in Fig. 5.
A floor plan with the black obstacles is given to the robot.
The red square is the goal and the green squares are
possible starting locations. The grey and striped obstacles
are unknown to the robot, and the probability of them being
present in a given task t is as shown in the table in Fig. 5.

Obstacle Probability
A 0.5
B 0.4
C 0.6
D 0.8
E 0.5
F 0.2

Fig. 5: Base map and obstacle distribution of the environ-
ment. The green and red squares are starting and ending
points respectively.

Fig. 6: Average cost savings compared to using only the
reactive algorithm.

Each letter corresponds to the grey obstacles in that area.
The exceptions are: A includes the closest striped obstacle to
the right, and F is every striped obstacle in the environment.
This map is given as a 20×20 8-direction grid, resulting in
a graph with 400 vertices, 1654 edges, and 64 realizations.

B. Simulation Results

Fig. 6 shows the average cost savings over t task ex-
ecutions using the online policy update (LRPP) and the
policy generated by using the hidden environment data
(RPP) compared to running only the reactive algorithm. The
data points are an average over 10 trials. The savings are
generally greater than 20%, and none of the averages were
greater than A∗. Simulations for the blue lines were run on
the map in Fig. 5, with location 1 as the start. Simulations
for the red lines were run on the same map, with location
2 as the start where there is a probability of 20% for the
robot to be in a realization with no possible path to the goal.
The larger gap in performance between LRPP and RPP is
because in LRPP, the policy must call the reactive algorithm
when it thinks there is no path to goal, since it is always
possible that the robot is in a new environment. On the other
hand, RPP knows all possible maps, and depending on the
pmf, it may be able to determine no path to goal exists
without exhaustively searching the environment. Notice that
in both cases, there is an overall logarithmic increase in
savings as T increases. This was a surprising result for

(a) task 5: LRPP policy (b) task 5: Reactive Planner

(c) task 8: LRPP policy (d) task 5 and 8: RPP policy

Fig. 7: Paths taken in the same realization at t1 = 5 and
t2 = 8

the LRPP-20% no goal trials due to how expensive the
exhaustive search can be.

Fig. 7 shows the robot navigating the same map at task t1
and t2, where t1 < t2, and you can see the updated policy is
able to avoid unnecessary backtracking and dead ends after
just a few task executions. Fig. 6 shows that these savings
can be quite significant.

Since the order of the realizations encountered affects the
LRPP policy, it is possible for the robot to not take a shorter
route if the estimated likelihood of backtracking and its cost
is too high, which is a reason why the percent savings of
LRPP does not converge to RPP, even in the 0% no goal
case. This is a trade-off of not having a priori knowledge of
the subgraphs and their pmf.

The runtime between tasks to update the policy increases
as the number of super maps stored by the algorithm
increases. In the experiments, the runtime increased by a
factor of five with 15 super maps collected. However, for
T = 100, the average number of super maps was 8.3 and
16.9 for the 0% no goal and 20% no goal trials respectively,
while there are 64 different realizations of the environment.

VI. CONCLUSIONS

We defined the LRPP and proved it is a PSPACE-hard
problem. We then proposed a solution that combines a
constant time motion policy with a reactive algorithm which
is able to consistently complete a set of tasks with a lower
average cost than using just the reactive algorithm. Future
work includes modifying the algorithm to update the policy
incrementally rather than rebuilding it at the beginning of
each task, improving the current solution to the map merging
problem, and to integrate different types of observations
such as landmarks rather than limiting observations to only
edges.

REFERENCES

[1] F. Blochliger, M. Fehr, M. Dymczyk, T. Schneider, and R. Siegwart,
“Topomap: Topological mapping and navigation based on visual slam
maps,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA), May 2018, pp. 1–9.

[2] R. Valencia and J. Andrade-Cetto, “Active pose SLAM,” in Mapping,
Planning and Exploration with Pose SLAM. Springer, 2018, pp. 89–
108.

[3] R. A. MacDonald and S. L. Smith, “Active sensing for motion
planning in uncertain environments via mutual information policies,”
The International Journal of Robotics Research, pp. 1–16, 2018.

[4] A. Souza and L. M. G. Goncalves, “Occupancy-elevation grid: an
alternative approach for robotic mapping and navigation,” Robotica,
vol. 34, pp. 2592–2609, 2016.

[5] N. C. Mitsou and C. S. Tzafestas, “Temporal occupancy grid for mo-
bile robot dynamic environment mapping,” in Control & Automation,
2007. MED’07. Mediterranean Conference on. IEEE, 2007, pp. 1–8.

[6] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[7] T. Kucner, J. Saarinen, M. Magnusson, and A. J. Lilienthal, “Con-
ditional transition maps: Learning motion patterns in dynamic envi-
ronments,” in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on. IEEE, 2013, pp. 1196–1201.

[8] S. Koenig and M. Likhachev, “Fast replanning for navigation in
unknown terrain,” IEEE Transactions on Robotics, vol. 21, no. 3,
pp. 354–363, 2005.

[9] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A*,”
Artificial Intelligence, vol. 155, no. 1-2, pp. 93–146, 2004.

[10] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[11] A. Konar, I. G. Chakraborty, S. J. Singh, L. C. Jain, and A. K.
Nagar, “A deterministic improved q-learning for path planning of a
mobile robot,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 43, no. 5, pp. 1141–1153, 2013.

[12] J.-J. Park, J.-H. Kim, and J.-B. Song, “Path planning for a robot ma-
nipulator based on probabilistic roadmap and reinforcement learning,”
International Journal of Control, Automation, and Systems, vol. 5,
no. 6, pp. 674–680, 2007.

[13] T. Lei and L. Ming, “A robot exploration strategy based on Q-
learning network,” in 2016 IEEE International Conference on Real-
time Computing and Robotics (RCAR), June 2016, pp. 57–62.

[14] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA), May 2017, pp. 3357–3364.

[15] G. Brunner, O. Richter, Y. Wang, and R. Wattenhofer, “Teaching a
Machine to Read Maps with Deep Reinforcement Learning,” 32nd
AAAI Conference on Artificial Intelligence, vol. abs/1711.07479,
2017.

[16] D. Zhu, T. Li, D. Ho, C. Wang, and M. Q. Meng, “Deep Reinforce-
ment Learning Supervised Autonomous Exploration in Office Envi-
ronments,” Proceedings of the 2018 IEEE Conference on Robotics
and Automation (ICRA), pp. 7548–7555, 2018.

[17] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially
compliant mobile robot navigation via inverse reinforcement learn-
ing,” The International Journal of Robotics Research, vol. 35, no. 11,
pp. 1289–1307, 2016.

[18] M. Kalakrishnan, P. Pastor, L. Righetti, and S. Schaal, “Learning
objective functions for manipulation,” in Robotics and Automation
(ICRA), 2013 IEEE International Conference on. IEEE, 2013, pp.
1331–1336.

[19] G. Neu and C. Szepesvári, “Apprenticeship learning using inverse
reinforcement learning and gradient methods,” in Proceedings of the
Twenty-Third Conference on Uncertainty in Artificial Intelligence,
2007, pp. 295–302.

[20] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous
systems, vol. 57, no. 5, pp. 469–483, 2009.

[21] D. Fried, S. E. Shimony, A. Benbassat, and C. Wenner, “Complexity
of Canadian traveler problem variants,” Theoretical Computer Sci-
ence, vol. 487, pp. 1–16, 2013.

[22] C. H. Papadimitriou and M. Yannakakis, “Shortest paths without a
map,” Theoretical Computer Science, vol. 84, no. 1, pp. 127–150,
1991.

[23] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier, “Data
reduction and exact algorithms for clique cover,” Journal of
Experimental Algorithmics, vol. 13, p. 2.2, 2009. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1412228.1412236

[24] S. Vishwanathan, “Randomized Online Graph Coloring,” Journal of
Algorithms, vol. 669, pp. 464–469, 1992.

