
Learning a Lattice Planner Control Set for Autonomous Vehicles

Ryan De Iaco, Stephen L. Smith, and Krzysztof Czarnecki

Abstract— This paper introduces a method to compute a
sparse lattice planner control set that is suited to a particular
task by learning from a representative dataset of vehicle paths.
To do this, we use a scoring measure similar to the Fréchet
distance and propose an algorithm for evaluating a given control
set according to the scoring measure. Control actions are then
selected from a dense control set according to an objective
function that rewards improvements in matching the dataset
while also encouraging sparsity. This method is evaluated across
several experiments involving real and synthetic datasets, and
it is shown to generate smaller control sets when compared
to the previous state-of-the-art lattice control set computation
technique, with these smaller control sets maintaining a high
degree of manoeuvrability in the required task. This results
in a planning time speedup of up to 4.31x when using the
learned control set over the state-of-the-art computed control
set. In addition, we show the learned control sets are better
able to capture the driving style of the dataset in terms of path
curvature.

I. INTRODUCTION

A crucial portion of autonomous vehicle navigation is
path planning. It is important for autonomous vehicles to
be able to quickly generate a collision-free, kinematically
feasible path towards their goal that minimizes the total cost
of the path. An algorithm commonly used in path planning
is the lattice planner [1]. The lattice planner is a graph-
based approach to the path planning problem that reduces
the search space into a uniform discretization of vertices
corresponding to positions and headings. Each vertex in the
discretization is connected to other points by kinematically
feasible motion primitives, known as control actions [2]. The
lattice planner thus reduces the path planning problem into
a graph-search problem, which can be solved with A* or
any other appropriate graph search algorithm [3]–[6]. An
example of a lattice graph is shown in Figure 1.

A. Contributions

This work focuses on the task of leveraging data gathered
from a particular task to optimize a sparse set of motion
primitives, known as a control set, by removing control
actions that are less important for planning paths similar to
those in the dataset. This sparse control set should be selected
such that it is specialized with respect to a given dataset;
that is, it can reproduce a dataset of paths of an autonomous
vehicle generated from human operation or demonstration.
The sparsity of the learned control set reduces the number
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Fig. 1: An example of a lattice graph, with labelled vertices. The
control set is given by C, and each control action is labelled by
the number of path points (excluding the origin point). An example
control set from a different initial heading is given in orange at
vertex k. The dataset path, Pd, is given in red.

of edges in the search graph, and thus allows for faster online
path computation. In addition, the learned control set should
capture some characteristics of the driving style present in
the dataset, and the learned control set should not sacrifice
path quality or manoeuvrability. To learn such a control set,
we require a way to measure how closely we can match
paths from the dataset using a lattice planner with the given
control set, as well as a way to select a sparse subset.

In this work, the first contribution is a novel algorithm for
finding the closest path in a lattice graph to a given path
according to a modified version of the Fréchet distance. The
second contribution is a method to select a sparse subset of
a given control set that still retains the ability to execute
paths in a given dataset, while also capturing the driving
style present in the dataset. These algorithms are tested on
both real human-driven data as well as synthetic data, and
compared to the state-of-the-art lattice control set reduction
technique [7].

B. Related Work

In previous work, data-driven motion planning has often
focused on learning search heuristics or policies for the
motion planner rather than learning the underlying structure
of the planner itself. Ichter et al. developed a method for
learning a sampling distribution for RRT* motion planning
[8]. Imitation learning can also be used to learn a search
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heuristic based on previously planned optimal paths [9], [10].
Paden et al. have developed a method for optimizing search
heuristics for a given kinodynamic planning problem [11].
Xu et al. used reinforcement learning to learn a control policy
for quadcopters by training on MPC outputs [12].

For work involving lattice planner control set optimization,
Pivtoraiko et al. have developed a D*-like (DL) algorithm
for finding a subset of a lattice control set that spans the
same reachability of the original control set, but does so
within a multiplicative factor of each original control action’s
arc length [7]. This algorithm does not rely on data, but
instead relies on the structure of the original control set
to find redundancy. In contrast, our method attempts to
leverage data for a particular application to optimize the
control set. This paper uses the DL algorithm as the state-of-
the-art comparison for the quality of the presented learning
algorithm.

To optimize a planner, we require a measure of similarity
between two paths. This has been discussed in the field of
path clustering [13], where measures such as the pointwise
Euclidean distance, Hausdorff distance [14], the Longest
Common Sub-Sequence, and the Fréchet distance [15] are
commonly used.

The work most closely related to the process of matching
a specific path in a graph is the map-matching problem
[16], [17]. The problem entails finding a path in a planar
graph embedded in Euclidean space that best matches a given
polygonal curve according to the Fréchet distance. However,
unlike our work, their algorithm requires the full graph to
be defined beforehand, and cannot be used if the graph is
implicitly defined in terms of the lattice control set. Another
similar problem is that of following a path in the workspace
for a redundant manipulator [18], [19].

In terms of driving style, Macadam gives a broad overview
of the driving task [20]. This paper focuses on the properties
of paths and not trajectories. For the driving style of a given
path, one of the most intuitive indicators is the vehicle’s
steering function, which under the commonly used bicycle
model [21], is directly related to path curvature. As such,
curvature serves as a natural measure for comparing the
driving styles of different paths. A path with points of
high curvature corresponds to a a more aggressive steering
function, and vice versa.

II. SPARSE CONTROL SET PROBLEM FORMULATION

A. Lattice Planner Preliminaries

In this work, the robot navigates lattice points (x, y, θ)
within a subset W ⊂ SE(2), discretized with x and y
resolution ∆x and ∆y, respectively, and with heading set Θ
[3]. Navigation between lattice points in W is done according
to control actions present in a control set C. For a given
control set C, each heading θ̄ ∈ Θ has an associated control
subset Cθ̄ ⊆ C, and the control actions in that set can be
applied at any lattice point (x, y, θ̄). This action results in
a transition to a point (x′, y′, θ′) where the relative position
(x′ − x, y′ − y, θ′ − θ̄) is fixed for that action. Thus, the
action connects all identically arranged pairs of lattice points

[22]. These connections define edges E, and these lattice
points define vertices V in a lattice graph G. An example
of a lattice graph is given in Figure 1. Each control action
in C has a corresponding path, and the path formed by
the concatenation of control actions in the lattice graph is
denoted as Pl.

B. Problem Formulation

Our main goal is to learn a sparse control set for a
lattice planner that retains the driving style that is present
in a dataset. We start with a dense control set and then
incrementally generate a subset by selecting the control
actions that best improve the ability of the lattice planner
to execute the paths present in the dataset. In essence, we
would like the dataset paths to become approximate subpaths
of lattice paths formed using our learned control set, as in
Figure 2. While optimizing in this way, however, we also
want to encourage sparsity, since larger control sets result in
longer planning times. We can formally state the high-level
problem.

High-Level Problem. Given a dense set of control actions
C, and a dataset of representative paths D, compute a
minimal subset Ĉ ⊂ C that allows a lattice planner to
execute the paths present in D.

We split the high-level problem into two sub-problems.
The first is measuring how well control sets match the
dataset, and the second is optimizing the control set accord-
ingly.

Subproblem 1. Given a path Pd and a set of control
actions Ĉ, compute how well Ĉ executes Pd according to a
scoring measure d.

Subproblem 2. Given a scoring measure d, a dataset of
paths D, and a dense set of control actions C, select as
small a subset of C, Ĉ, as possible that best executes D in
aggregate according to a scoring measure d.

Subproblem 1 is discussed in Sections III-A and III-B, and
Subproblem 2 is discussed in Sections III-C and III-D.

III. SPARSE CONTROL SET GENERATION

A. Scoring Measure

To find the closest path generated by a lattice planner, Pl,
to a path in the dataset, Pd, we first need a scoring measure
d to evaluate the similarity of two paths. For two paths
parameterized by t ∈ [0, 1], and two monotonic increasing
onto functions α, β : [0, 1] → [0, 1], the Fréchet distance is
given by

df (Pd, Pl) = inf
α,β

max
t∈[0,1]

||Pd(α(t))− Pl(β(t))||.

However, we would like a scoring measure that rewards Pl
for matching Pd closely at each point along the path, where
points of comparison are at equal arc lengths along each
path. This means that rather than allowing any monotonic
increasing traversal of the paths during distance computation
as in the Fréchet distance, the paths should be traversed at the
same rate. In other words, if both paths were traversed at a
constant velocity, then the scoring measure should compare



points that are reached at the same time. When traversing
both paths at the same rate, path pairs with a low score are
likely to have similar driving styles along the entire path.

We therefore modify the Fréchet distance as follows. For
a given path to match Pd with arc length T , a matching path
Pl that is at least as long as Pd, and where t is an arc length
parameterization of both paths, then our scoring measure,
denoted as d, is

d(Pd, Pl) = max
t∈[0,T ]

||Pd(t)− Pl(t)||. (1)

Fig. 2: An example of the closest path found (blue) by Algorithm 1
with the red path as input.

An advantage of using this measure instead of the Fréchet
distance is that its simplicity allows for faster computation
than the discrete Fréchet distance in a graph [23]. Note that
this scoring measure is no longer a distance metric, as it is
asymmetrical. The fact that we perform a comparison only
along the arc length of Pd (and no further) is motivated
as follows: rather than forcing the lattice path Pl to be the
same length as Pd, we can plan Pl to be arbitrarily longer
and then truncate to the arc length of Pd. This opens up a
greater number of terminal lattice vertices when computing
Pl, which we have found results in closer matching paths and
faster runtime. The generation of Pl is discussed in further
detail in Section III-B.

Let us now assume that we are calculating d for two
discrete paths, sampled with respect to arc length with
segments of equal length δ. In Appendix B, we include
implementation details, including how to handle paths with
length not integer-divisible by δ. Let Pd contain K sampled
path points, {0, ...,K−1}, where the 0th point is the origin.
Let Pd(k), Pl(k) denote the kth path point of each respective
path. Then Equation (1) simplifies to

d(Pd, Pl) = max
k∈{0,...,K−1}

||Pd(k)− Pl(k)||. (2)

Equation (2) can be evaluated in O(K) time.
Finally, for the algorithm discussed in the section below,

we will need to calculate d between a control action c ∈ C
and a sub-path of an input path, where the sub-path starts at
path point k1 and ends at path point k2 of Pd. In this case,
both c and the sub-path have k2−k1 segments between path
points. This is denoted by

d(Pd, c, k1, k2) = max
k∈{k1,...,k2}

||Pd(k)− c(k − k1)||. (3)

B. Closest Path Algorithm

In lattice planning, one typically searches for the shortest
path in the lattice graph to some goal point or region, where
the lattice graph is constructed according to a particular
control set. However, to address Subproblem 1 of Section II-
B, we instead wish to compute the path Pl in the lattice

graph with minimum distance d to a given dataset path Pd.
We assume both paths start at the origin O.

We propose Algorithm 1 to solve this problem. To explain
it, we first describe the input of a given problem instance.
We then discuss how we generate a search graph, followed
by the searching process. Finally, we analyze our proposed
algorithm.

1) Algorithm Input: Figure 1 illustrates example input to
our algorithm. Here we have a dataset path Pd overlaid on
top of a lattice graph constructed from an input control set
C. The labelled vertices correspond to particular positions
and headings in space. We show a single heading across all
vertices for visual clarity, except at vertex k, which contains
a control set for an alternative initial heading in orange.
The edges correspond to the underlying paths of the control
actions that join points in space according to C. The set C is
illustrated adjacent to the lattice graph. The underlying paths
of each control action are uniformly sampled with arc length
δ, and the corresponding number of path points along each
control action’s path (excluding the origin point) are given
as labels.

Each path is represented by a sequence of discrete path
points, and as a result, our scoring measure requires that the
kth point along Pl be compared with the kth point along
Pd during computation. To handle this, when generating the
search graph we augment the lattice vertex with the number
of discrete path points k along the path used to reach said
lattice vertex.

2) Search Graph: We now describe the construction of
the search graph. As shown in Figure 1, there are multiple
ways to reach vertex l in the lattice graph, some of which
have different numbers of path points used along the way.
If Pd contains K path points, our search graph contains up
to K copies of each vertex in the lattice graph to compute
d. Each copy is differentiated by the number of path points
required to reach it.

These copies are illustrated in Figure 3. Revisiting vertex
l, we can see that there are now three copies of l in the
search graph, each of which have a different value for the
number of path points required to reach it. The copies all
correspond to the same point is space, but with a different
number of path points.

To illustrate why the search graph is useful, suppose
we want to compute the d scoring measure of the control
action from (g, 7) to (l, 10), as in Equation (3). This is
shown in Figure 4a. The path points along this edge must
be compared to the path points 7 to 10 of Pd. This is shown
by the dark green line segments between both paths. The
scoring measure of the control action from (g, 7) to (l, 10)
is then the length of the longest dark green line. However,
if instead we wish to compute the d scoring measure of
the control action from (h, 10) to (l, 15), we instead must
compare to the path points 10 to 15 of Pd. This comparison
is given by the light green lines between the paths.



Fig. 3: The search graph derived from Figure 1. Overlapping
vertices correspond to the same point in space, but reached with
a different number of path points. Some vertices are omitted for
visual clarity.

Algorithm 1 CLOSESTPATH(Pd, C,O,B)
1: bestEnd← O
2: costs, predecessors← HashTable()
3: K = length(Pd)
4: V = Array(HashTable(),K)
5: V [0][O] = O
6: costs[O, 0] = 0
7: for all i ∈ 0, ...,K − 1 do
8: for all u ∈ V [i] do
9: for all c ∈ Cu.θ do

10: (v, j)← applyControlAction(u, c, i)
11: du,v ← d(Pd, c, i, j)
12: if du,v > B then
13: continue
14: V [j][v] = v
15: if max(costs[u, i], du,v) < costs[v, j] then
16: predecessors[v]← u
17: costs[v, j]← max(costs[u, i], du,v)
18: if costs[v, j] < B and j ≥ K then
19: bestEnd← v
20: B ← costs[v, j]
21: return (bestEnd, predecessors)

3) Search Process: Recall in Equation (2) that we are
solving for the maximum pointwise distance between Pd and
Pl. During our search, we seek to minimize this distance,
i.e., find the closest path to Pd in the search graph. As
we explore the search graph, we need to keep track of the
maximum pointwise distance computed along the closest
path that reaches each search graph vertex.

To solve this search problem, let us first denote the set
of search graph vertices that require k path points to reach
them as Vk, and the collection of all Vk as V as shown
in Line 4 of Algorithm 1. All edges entering a vertex in
Vk come from some vertex in Vk′ such that k′ < k. This
then gives the vertices in the search graph a topological
ordering we can exploit, which we iterate through in Lines
7-20. Through each iteration, successor vertices are found

through applyControlAction(), which takes in a lattice vertex,
a control action, and the path point i of that vertex, and
outputs the successor lattice vertex as well as the resulting
path point j after applying the control action. We can then
apply a dynamic programming update for each search graph
vertex in every Vk in increasing order of k that computes the
closest scoring measure across all paths to each search graph
vertex. If costs[] stores the best d measure found so far for
each vertex, U is the set of all predecessors of vertex (v, j),
and du,v is computed for the control action linking (u, i) to
(v, j) according to Equation (3), then the update is given by

costs[v, j] = min
u∈U

max(costs[u, i], du,v).

This update is shown in Lines 15 to 17.

(a) (b)

Fig. 4: (a) An example scoring measure computation to vertex l. The
light green line segments correspond to comparisons for the control
action coming out of (h, 10), and the dark green lines represent
comparisons for the control action coming out of (g, 7). (b) An
illustration of a particular Vk based on the greedy bound on the
scoring measure.

To reduce the number of vertices searched, we compute an
upper bound on the optimal d scoring measure by greedily
selecting control actions that minimize the d of the appropri-
ate section of Pl. This bound, which we denote as B, restricts
the size of each Vk. This is illustrated in Figure 4b. Only
points within the shaded green circle can meet the scoring
measure threshold B given by the greedy path. This means
that (g, 7) belongs to V7, but (e, 7) does not, as it is too
distant. As a result, outgoing control actions that reach (e, 7)
can be safely ignored, as any path that passes through them
is not as “close” to Pd as the greedily selected path. This is
shown on Lines 12-13. Recall the lattice resolution is given
by ∆x and ∆y. If we take A = ∆x∆y, the cardinality of
each set Vk is bounded by d B∆xed

B
∆y e|Θ| ∈ O(B

2

A |Θ|).
Figure 2 gives an example solution using this method. The

algorithm takes in a path to follow, Pd, a control set, C, the
origin of the lattice, O, and the greedy bound, B, as input.
We start at the origin, iterate through each Vk and apply the



dynamic programming update described above. The Vk are
populated during the graph search by successively applying
control actions. The best scoring measure for each search
graph vertex (as well as the associated predecessor vertex)
is stored as the search progresses. This continues until all
viable vertices have been searched, at which point we have
found the closest path to Pd in the lattice graph.

4) Algorithm Analysis: We now analyze the correctness
and runtime of Algorithm 1. In the algorithm, an empty entry
in the costs hash table corresponds to infinite cost. To show
the algorithm is correct, we show that when each vertex is
processed in topological order, the cost for said vertex is
the minimum across all incoming paths. We then discuss its
runtime. Recall that B is the greedy bound, A = ∆x∆y, K
is the number of points in Pd. In addition, we denote the
maximum number of path points across all control actions
as N . The proof of the following result is contained in
Appendix A.

Theorem 1. Algorithm 1 is correct, and has runtime
O(N B2

A K|C|).

The runtime is heavily dependent on the quality of the
bound B provided, as a tight bound results in far fewer
vertices to search. The N factor is generally small relative
to K|C|, so for a tight bound the runtime of the algorithm
approaches O(K|C|). This would be ideal, as it corresponds
to searching the control set at each point along the path.

C. Control Set Optimization

Now we present a method for optimizing the control set
structure such that it is best able to reproduce a given dataset.
This is required to address Subproblem 2 in Section II-B.
Recall that our objective is to select as small of a subset as
possible, Ĉ, of an original dense control set C, while still
maintaining the ability to execute the paths in a given dataset.
To accomplish this our objective function should trade off
between the sparsity of Ĉ and the ability of Ĉ to match the
dataset. Recall that the scoring measure in Equation (2) is
denoted as d, the dataset of paths as D, the initial dense
control set as C, and the optimized control set as Ĉ. Define
the set of all potential paths in the lattice as P(Ĉ), and
the parameter that trades off between sparsity and dataset
matching as λ. Then, our objective formulation is

min
Ĉ⊂C

1

|D|
∑
Pd∈D

min
Pl∈P(Ĉ)

d(Pd, Pl) + λ
|Ĉ|
|C|

. (4)

For each Pd, we are computing d between Pd and the
closest path in the lattice graph constructed from Ĉ, and
summing over the entire dataset. We normalize this value
by the size of the dataset, to ensure consistency between
different dataset sizes. The second term penalizes the size
of the learned control set to encourage sparsity, and is
normalized by the size of the initial dense control set. The
λ term is what trades off between sparsity and dataset
matching; a larger λ results in a sparser control set, whereas
a smaller λ allows the control set to fit the data more
closely. In this sense, the λ term acts as a regularizer in the

objective function. Occam’s Razor objective functions that
encourage simplicity are commonly used for tasks such as
model selection or learning, one of which is the Bayesian
Information Criterion (BIC) [24].

To perform the optimization, we start with a small control
set Ĉ. We then greedily add the control action that results
in the largest decrease in Equation (4), and repeat until
no control action can be added to further decrease the
objective. We use Algorithm 1 when computing the closest
path according to d as required by Equation (4).

D. Clustering
The optimization method above requires us to evaluate

the objective function for each available control action not
yet within Ĉ across all dataset paths to determine which
control action is best to add. However, this is computationally
expensive. In addition, real world data often contains many
similar paths. This is because there are often a limited
number of ways to navigate a given scenario, and certain
ways are more common than others. To alleviate these issues,
we first cluster the dataset using the K-means algorithm [24].
To measure the distance between paths, we use the pointwise
Euclidean norm [14]. An example of a clustering result is
shown in Figure 5.

After clustering, we bias our search process based on how
well our learned control set is currently matching each path
cluster. Initially, each cluster has a large, equal weight. Our
optimization algorithm proceeds as follows:
Control Set Optimization

1) Select a path cluster according to the selection weights,
and randomly sample a subset of the path cluster and
a subset of control actions.

2) Compute the optimization objective for these subsets,
adding each control action individually to Ĉ and call-
ing Algorithm 1 for each path in the cluster subset.

3) Add the control action that decreases the objective the
most to Ĉ permanently. Terminate if no control action
improved the objective.

4) Update the cluster selection weights with the resulting
value of the optimization objective. Return to 1).

This method focuses our optimization on clusters that are
poorly matched. Through this process, the optimization runs
faster, and is more likely to match all types of paths present
in the dataset, rather than the most common ones.

Fig. 5: An example of the K-means clustering on a roundabout path
dataset. Each cluster of paths has a different assigned colour, and
the dotted line represents each cluster’s mean path.



IV. RESULTS

To evaluate our method, we devised three experiments.
The first two used data from human-driven trajectories
around a roundabout, and the third used synthetic paths
created through randomly generated scenarios. In all three
experiments, we performed an 85-15 split of the dataset
between the training and test sets. The algorithms were
written in Julia. The source code for the experiments can be
seen at https://github.com/rdeiaco/learning_
lattice_planner. For all experiments, the dense initial
control set was a set of cubic spirals [25] arranged in a cone,
generated for all θ ∈ Θ. The endpoints of the control actions
in the cone had a range of x values between 0.4m and 4.0m,
a range of y values between -2.0m to 2.0m, and θ values
within [0, tan−1( 1

3 ), tan−1( 1
2 ), π

4 , tan−1(2), tan−1(3)].
These angles were chosen because they encourage straight
line traversal between vertices in the lattice graph, which
improves path quality [1]. The initial dense control set is
shown in Figure 6a.

In each experiment we compared the performance of our
learning algorithm to the state-of-the-art lattice computation
algorithm [7]. The learning algorithm was run with λ1 =
0.311 and λ2 = 0.0311. These values were determined by
logarithmically spaced grid search. Values of λ larger than
this were found to generate control sets that were too sparse
with poor manoeuvrability. Swath-based collision checking
was performed using a rectangular vehicle footprint of length
4.5m and width 1.7m. Since the goal was not necessarily
reachable in the lattice graph, the lattice planner instead
searched for goal points that minimized the distance and
heading difference from this goal.

(a) (b)

(c) (d)

Fig. 6: Comparison of the dense (a), DL [7] (b), λ1 (c), λ2 (d)
control sets generated in Experiment 2. Each colour corresponds
to a different Cθ̄ .

A. Experimental Setups

a) Experiment 1: Roundabout Scenario: The first
experiment involved taking 213 paths in a roundabout
dataset1and sampling them at a constant arc length step size.

The roundabout is illustrated in Figure 7a. The training por-
tion of the dataset was then sliced into 10m arc length slices
using a sliding window with a 1m step size. These slices
were then taken as input to the clustering and optimization
algorithms. This slicing method allows us to extract as much
information as possible from the dataset [26]. To evaluate
our learned control sets, we then took the test portion of
our dataset and constructed scenarios from each path. To do
this, we took the test set path as the lane centerline, with
lateral offsets from the path forming the lane boundaries in
an occupancy grid. Finally, we used the endpoint of the test
set path as the goal, as well as the occupancy grid, and ran a
lattice planner using each generated control set to compare
the quality of each control set’s planned paths.

(a)

(b)

Fig. 7: (a) The roundabout the dataset was extracted from for
Experiments 1 and 2. (b) The synthetic dataset generated using
the Autonomoose planner.

b) Experiment 2: Roundabout Lane Change Scenario:
The second experiment also involved the same training paths
from the roundabout dataset, except this time we added a
second lane to the test set by extending the lateral offset
forming the lane boundaries. Rather than the goal being to
travel to the end of the original lane, the goal was changed
to be the end of the adjacent lane. This meant that the
planner was required to perform a lane change, in order
to demonstrate that the learned control set could generalize
to a situation not explicitly present in the training set. The
direction of the lane change was equally distributed between
a left and right lane change. Otherwise, scenario generation
was the same as in Experiment 1.

c) Experiment 3: Synthetic Double Swerve Scenario:
For the third experiment, we generated 100 different lane
structures by randomly sampling clothoids of varying length

1Dataset obtained with permission from DataFromSky. The paths were
extracted from cars driving through a European roundabout. The paths
ranged in length from 27.6 to 87.4m.

https://github.com/rdeiaco/learning_lattice_planner
https://github.com/rdeiaco/learning_lattice_planner
www.datafromsky.com


and curvature connected to straightaways of varying length.
Next, a second lane was then added, along with an obstacle
in the first lane. The goal of this experiment was for the
planner to perform a double swerve manoeuvre to avoid the
obstacle. We then used the motion planner currently used
on the University of Waterloo Autonomoose self-driving car
[27] to generate the training set of synthetic paths. This
dataset is shown in Figure 7b.

TABLE I: Planning Runtime Results

Experiment 1 Dense DL [7] λ1 λ2

Control Set Size 311 194 64 109
Planning Speedup Ratio 1.00 1.82 6.40 3.49
Matching Differential (31 Scenarios) - -1 +9 +11

Experiment 2

Control Set Size 311 194 65 109
Planning Speedup Ratio 1.00 1.73 7.46 3.83
Matching Differential (31 Scenarios) - +7 +13 +23

Experiment 3

Control Set Size 311 194 57 83
Planning Speedup Ratio 1.00 1.90 7.73 4.70
Matching Differential (15 Scenarios) - +5 +11 +13

B. Experimental Results
The results of all 3 experiments are shown in Table I.

Here we can see that the learned control sets are significantly
smaller than both the dense control set as well as the control
set formed after performing the DL [7] lattice computation
algorithm, illustrated in Figure 6. Notably, this results in up
to an approximately 7.5x planning speedup over the dense
set and up to a 4.31x planning speedup over the DL [7] set
when executing the test set.

To measure how well each control set matched the dataset
in terms of driving style, we computed the curvature at
each point along each planned path and dataset path as a
proxy for the steering function, as discussed in Section I-B.
Next, we computed the maximum difference in curvature
between each path point along the planned path and the
dataset path. We call this the curvature matching score.
Afterwards, we compare these curvature matching scores
across the planned paths for each control set. The value in the
table reports the number of times a planned path had a lower
maximum curvature deviation than the dense set’s planned
path; a positive number denotes the control set was better
at matching more often than the dense set, and negative the
opposite. A sample comparison between the DL control set
and the λ2 control set is given in Figure 8.

From this, we can see that the learned control sets match
the driving style (measured by curvature) of the dataset
more closely than both the dense and DL [7] control sets,
while also offering faster planning times. In addition, we can
see that as λ gets smaller, the planned paths more closely
match the data, at the cost of a larger control set and slower
planning times.

Figure 9 shows a sample planning run from Experiment 3,
comparing all 4 control sets. The red box denotes the obstacle

Fig. 8: An example comparison of the curvature values between
planned paths using the DL [7] and λ2 control sets. Each datapoint
corresponds to a test scenario; below the straight line means that
the λ2 control set performed better.

for the scenario. We can see that all 4 planners were able to
complete a plan to the goal state equally well, which shows
that the learned planners had no loss of manoeuvrability.

Fig. 9: Comparison of the lattice planner paths for the dense, DL
[7], λ1, and λ2 control sets for one of the scenarios in Experiment
3.

V. CONCLUSIONS

This work presents a novel method for learning a lattice
planner control set from a dataset of paths for a particular ap-
plication. We demonstrated its efficacy through experiments
involving real and synthetic data. The learned control sets are
able to plan more quickly than the state of the art control
set generation technique, and they better capture the driving
style of the dataset during the planning process. In the future,
we would like to explore combining learning the structure
of a lattice planner with learning the lattice planner’s search
heuristic, to see if lattice planner performance can be im-
proved even further for specific applications. We would also
like to extend this algorithm to handle trajectories rather than
paths.

APPENDIX

A. Proof of Theorem 1

We begin by proving correctness. To do this, we use
induction on the vertices processed from V , as well as the
fact that the vertices are processed in topological order.

Induction Assumption. For each vertex u ∈ Vk processed
from each Vk ∈ V , we have that the cost assigned to u is the



minimal d possible on any path from the origin to u, when
comparing said path to u to the subpath Pd(0 : k).

Base Case. The origin is the first processed vertex, and
since Pd starts at the origin, d is zero, which is the correct
distance.

Induction. Now, assume every processed vertex satisfies
the induction assumption. Suppose vertex v is the current
vertex to be processed. Since the algorithm processes vertices
in topological order, all potential predecessors of v have
already been processed, and therefore satisfy the induction
assumption. By the dynamic programming update, taking U
to be the set of predecessors of v, we then have that

costs[v] = min
u∈U

max(costs[u], du,v).

Now, let u′ in V0:k−1 denote the optimal predecessor of v.
By the update, we have that

costs[v] ≤ max(costs[u′], du′,v),

thus the induction assumption holds for v.
For runtime, Algorithm 1 iterates through a topological

ordering of the search graph, which can be thought of as
K groups of at most B2

A vertices. For each vertex in the
topological ordering, we perform a dynamic programming
update for each control action available to it. Across all
headings, the total number of control actions available to
any particular vertex is |Cθ̄|, which in aggregate gives us∑
θ̄∈Θ |Cθ̄| = |C|. Each dynamic programming update

calculates d for an edge, which takes O(N) time. Combining,
this gives us a computational complexity of O(N B2

A K|C|).

B. Practical Considerations

Arc Length Relaxation. Since the lattice control actions
connect vertices in the lattice graph, a realistic application
of this method would require a small line segment length
δ, which would in turn increase the size of K required in
each path matching calculation. To remedy this, we relax the
requirement that each control action has an arc length that
is integer-divisible by δ. This potentially results in a leftover
portion of each control action that would be left out of the
closest path calculation. We overcome this by checking if the
leftover portion of the control action is greater than or equal
to half of δ. If it is, then we treat it as a full line segment for
d computation. Otherwise, we ignore it. In practice, using a
δ that is a 1

4 of min(∆x,∆y) allows for good results.
Optimization Initialization. Finally, we initialize the

learned control set with a single short, straight action for
each possible initial direction, to ensure that the closest path
algorithm can make forward progress when it encounters a
point with any particular heading.
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Proceedings of the Thirteenth Workshop on Algorithm Engineering
and Experiments (ALENEX), pp. 75–83, 2011.

[18] G. Oriolo, M. Ottavi, and M. Vendittelli, “Probabilistic motion plan-
ning for redundant robots along given end-effector paths,” IEEE/RSJ
IROS, 2002.

[19] R. M. Holladay and S. S. Srinivasa, “Distance metrics and algorithms
for task space path optimization,” IEEE/RSJ IROS, 2016.

[20] C. C. Macadam, “Understanding and modeling the human driver,”
Vehicle System Dynamics, vol. 40, no. 1-3, pp. 101–134, Jan 2003.

[21] P. Polack, F. Altche, B. Dandrea-Novel, and A. D. L. Fortelle, “The
kinematic bicycle model: A consistent model for planning feasible
trajectories for autonomous vehicles?” IEEE Intelligent Vehicles Sym-
posium, 2017.

[22] M. N. Pivtoraiko, “Differentially constrained motion planning with
state lattice motion primitives,” Ph.D. dissertation, Carnegie Mellon
University, 2012.

[23] C. Wenk, R. Salas, and D. Pfoser, “Addressing the need for map-
matching speed: Localizing global curve-matching algorithms,” 18th
International Conference on Scientific and Statistical Database Man-
agement, 2006.

[24] K. P. Murphy, Machine learning: a probabilistic perspective. MIT
Press, 2012.

[25] A. Kelly and B. Nagy, “Reactive nonholonomic trajectory generation
via parametric optimal control,” The International Journal of Robotics
Research, vol. 22, no. 7, pp. 583–601, Jan 2003.

[26] F. Altche and A. D. L. Fortelle, “An LSTM network for highway
trajectory prediction,” IEEE ITSC, 2017.

[27] Y. Zhang, H. Chen, S. L. Waslander, T. Yang, S. Zhang, G. Xiong, and
K. Liu, “Toward a more complete, flexible, and safer speed planning
for autonomous driving via convex optimization,” Sensors, 2018.

http://arxiv.org/abs/1707.03034

	Introduction
	Contributions
	Related Work

	Sparse Control Set Problem Formulation
	Lattice Planner Preliminaries
	Problem Formulation

	Sparse Control Set Generation
	Scoring Measure
	Closest Path Algorithm
	Algorithm Input
	Search Graph
	Search Process
	Algorithm Analysis

	Control Set Optimization
	Clustering

	Results
	Experimental Setups
	Experimental Results

	Conclusions
	Appendix
	Proof of Theorem 1
	Practical Considerations

	References

