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Abstract— In this paper, we study a multi-robot planning
problem where a team of robots visit locations in an environ-
ment to collect a specified amount of reward in the minimum
possible time. Each location has a weight associated with it that
represents the value or amount of reward that can be collected
by visiting that location. The problem is to design tours for the
robots to collect at least D units of reward while minimizing the
length of the longest robot tour. The single robot unweighted
version of this problem is called the k-STROLL problem. We
provide a 3-approximation algorithm for the multiple robot
version of the k-STROLL problem. This leads to an algorithm
for the weighted problem that collects at least (1− ε)D reward
with tour lengths of at most 3 times the optimal tour length.
The analysis of the approximation algorithm is then extended
to provide bi-criterion approximations to two variations of
the problem. We provide an application of the approximation
algorithm for planning UAV tours with gimballed cameras for
monitoring an urban environment.

I. INTRODUCTION

In search and rescue applications, a fleet of robots are
deployed to assess the risks and map the environment be-
fore deploying the rescuers. For instance, in the Fukushima
nuclear disaster, a group of drones were deployed to scout
the reactors and measure the intensity of radiation in the
environment [1]. There is an inherent trade-off between the
time required to map the scene and total information that
is possible to be collected in that time. A key aspect in
such applications is to recognize the set of locations for
measurements that collectively provide enough information
to map the environment and construct tours for the robots to
visit the locations.

In this paper, we focus on the problem of deploying a set
of robots to gather reward from locations in an environment.
The robots’ motion in the environment is captured as a
roadmap (i.e., graph) with a reward φ(v) available on each
vertex v of the graph. A group of robots, starting from a
depot r, move on the common roadmap and collect reward
from its vertices by visiting the locations of the vertices.
The total reward collected is the cumulative reward available
on the vertices visited by the robots. Depending on the
application, the reward collection problem can be posed with
three different objectives: 1) minimize the time to collect at
least D reward with m robots, 2) minimize the number of
robots to collect at least D reward with fixed battery life (i.e.,
operation time), and 3) maximize the total reward collected
with m robots and fixed battery life.
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Related Work: The problem of maximal reward collection
from an environment has been the subject of extensive
research [2], [3], [4], [5] and appears in a variety of appli-
cations including 3D reconstruction of scenes [6] and ocean
monitoring [7], [8]. Some of the informative path planning
problems [9], [10] pose the problem as variations of an NP-
hard problem known as the orienteering problem (OP) [11].
The orienteering problem consists of constructing a tour
in a graph with weights on the vertices, representing the
reward of each vertex, and a fixed budget on the tour length
while maximizing the total reward of the vertices in the tour
(i.e., the single robot version of problem 3 posed above).
Among different solution approaches such as randomized
algorithms [10], branch-and-cut algorithms [12], [13], the
algorithm with strongest guarantee is a (2+ε)-approximation
algorithm by Chekuri et. al. [14]. For the version of the
OP where the rewards are submodular instead of additive, a
recursive greedy approximation algorithm is given in [15].

In [2], authors provide a constant factor approximation
algorithm for the extension of the OP problem to multi-
ple tours, also known as the team orienteering problem
(TOP). In [16], authors study an extension to the TOP in
which the weights on the vertices are not additive and the
reward obtained from a vertex in a tour depends on the
neighboring vertices of the vertex. A complete taxonomy
of the recent solution approaches on different variations of
the OP with benchmarking results is provided in [17]. The
aforementioned studies address the problem of maximizing
the reward collected while satisfying a bound on the total
mission time. In contrast, our main focus in this paper is
the problem where a bound is provided on the minimum
total information required to map an environment and the
objective is to minimize the mission time. The approximation
algorithm for the TOP in [2] leverages the submodular prop-
erty of the problem, whereas our problem does not possess
submodularity, and requires a different solution approach.

A closely related problem is the k minimum spanning
tree (k-MST) [18], [19] problem which is the problem of
constructing a minimum cost tree that covers at least k
vertices of the graph. A sequence of studies [18], [20], [21],
[19] improve the guarantees on the approximation algorithms
for the k-MST. The current best approximation ratio for the
k-MST problem is 2 due to a primal-dual algorithm [19].
An extension to the k-MST problem is the k-stroll problem
where the objective is to find the shortest path given a start
and goal location visiting at least k vertices. The authors
in [19] also provide a 2-approximation algorithm for the k-
STROLL problem. In contrast to the existing results on the
single k-STROLL, we consider the multi-robot and weighted



version of the problem, where instead of visiting k vertices,
the team of robots have to collect at least D reward from
the graph. To the best of our knowledge, we provide the first
approximation algorithm for this problem.

Contributions: The contributions of this paper are four-
fold. First, we formulate the problem of minimizing the time
to collect a fixed reward with multiple robots, namely the
MIN-MAX GUARANTEED REWARD COLLECTION (MM-
GRC) problem (Section II). Second, we convert the problem
to the unweighted version called the MIN-MAX k-STROLL
problem and provide a 3-approximation algorithm for this
problem, which leads to an algorithm for the weighted prob-
lem that collects at least (1−ε)D reward with tour lengths of
at most 3 times the optimal tour length (Section III). Third,
we extend the analysis of the approximation algorithm to give
bi-criterion approximations for the problems of minimizing
the number of robots required to collect a fixed reward and
the TOP (Section IV). Finally, we provide an application
for the MMGRC problem in an urban monitoring scenario
(Section V). Table I shows the summary of our results.

II. PROBLEM FORMULATION

Consider a team of m sensor-equipped homogeneous
robots that have to visit locations in an environment to collect
reward. This reward, among other things, can represent the
information available at different locations in the environ-
ment. The environment can be represented as a metric and
undirected graph G = (V,E, `) where the set of vertices
represent the locations of interest in the environment. For
each edge e ∈ E, the edge weight `(e) represents the time
it takes to traverse that edge and for each vertex v ∈ V ,
the vertex weight φ(v) represents the value or amount of the
reward collected from that vertex.

All the robots start their tour from a common vertex r
called the depot. Let Ti be the tour of robot i covering
vertices Vi ⊆ V . With slight abuse of notation, we denote
the length of the tour Ti by `(Ti). The total reward collected
from the environment is the sum of the rewards collected
by individual robots on their tours, i.e.,

∑
v∈∪m

i=1Vi
φ(v).

Note that once a robot collects reward from a location,
subsequent visits to that location by any other robot will
not contribute to the total reward collected. Also, to capture
the time required to collect reward from a vertex, we add
half of the reward collection time to all incident edges of
that vertex which results in an equivalent metric graph with
zero reward collection times. Hence, for the rest of the paper,
we assume that no time is spent on reward collection.

In certain practical applications, the user has a requirement
on the amount of information that must be gathered about
the environment. For example, planning tours for imag-
ing a scene for 3D reconstruction purposes may require a
minimum amount of information necessary for an accurate
3D reconstruction. Therefore, we consider the problem of
planning tours for the team of robots that collects at least
D reward from the environment while minimizing the time
required to collect that reward.
Problem II.1 (MIN-MAX GUARANTEED REWARD COL-
LECTION). Given a metric graph G = (V,E, `) with edge

lengths `(e), e ∈ E and vertex weights φ(v), v ∈ V , along
with m robots and a bound D ∈ R+, find a set of m tours
{T1, . . . , Tm} rooted at depot r such that

∑
v∈∪m

i=1Vi
φ(v) ≥

D and the objective function maxi∈[m] `(Ti) is minimized.
Observe that by setting m = 1 and φ(v) = 1,∀v ∈ V in

Problem II.1 we obtain the k-STROLL problem [19], which
is known to be NP-hard by reduction from the travelling
salesperson problem.

In the following section we present an approximation
algorithm for Problem II.1. We will then extend the anal-
ysis of the approximation algorithm to provide bi-criteria
approximation algorithms for two related problems.

III. APPROXIMATION ALGORITHM

We start by constructing an unweighted version of Prob-
lem II.1 with no weights on the vertices. Then we show
that solving the unweighted problem will result in tours that
collect at least (1− ε)D reward for some ε ∈ (0, 1).

A. Conversion to an unweighted problem

In this section, we convert the Problem II.1 of collecting
at least D reward to the problem of visiting at least k
vertices using a scaling method. The idea is similar to the
scaling method used in the polynomial time approximation
scheme for the knapsack problem in [22]. Given an instance
of Problem II.1 with graph G = (V,E, `), weight function
φ : V → R+, m robots, depot r ∈ V and some ε ∈ (0, 1),
we construct a graph G′ = (V ′, E′, `′) as follows:
• Add r to V ′ and for each v ∈ V \ {r} add a set Fv of
bφ(v)|V |εD c vertices to V ′.

• For all u,w ∈ Fv let `′(u,w) = 0.
• For all v, z ∈ V , u ∈ Fv and w ∈ Fz let `′(u,w) =
`(v, z).

Observe that the constructed graph G′ is complete and the
edge costs satisfy triangle inequality. Therefore, the problem
of finding a set of m tours that collect at least D reward, i.e.,
Problem II.1 on graph G becomes the following problem on
graph G′:
Problem III.1 (MIN-MAX k-STROLL). Given G′, the num-
ber of robots m and a depot r, find a set of m tours, starting
at r and covering at least k = |V |(1/ε − 1) vertices such
that the length of the longest tour is minimized.

Note that the size of G′ is polynomial in |V | and 1/ε. We
now give the following result relating Problems III.1 and II.1
Lemma III.2. Given an ε ∈ (0, 1), there exists a set of m
tours in G = (V,E, `) that collects at least (1− ε)D reward
such that the length of the longest tour is λ, if and only if
there exists a set of m tours in G′ = (V ′, E′, `′) that visit
at least |V |(1/ε − 1) vertices with maximum tour length of
at most λ.

Proof. Let T ∗i = 〈r, v1, . . . , vn〉 be the tour of robot i in
a solution of Problem II.1, then we construct a tour in G′

with length at most `(T ∗i ) in G′. With the same sequence
of vertices in T ∗i , for each vj ∈ T ∗i , we add the vertices in
Fv to the tour in G′. If the set Fv is empty, we remove it
from the tour which results in a shorter tour by the metric



property of G′. By constructing tours for each i ∈ [m], the
total number of vertices visited in G′ is∑

i∈[m]

∑
v∈T∗i

bφ(v)|V |
εD

c ≥
∑
i∈[m]

∑
v∈T∗i

φ(v)|V |
εD

− 1

≥ |V |(1/ε− 1),

where the second inequality is due to∑
i∈[m]

∑
v∈T∗i

φ(v) ≥ D.

Now for a given feasible set of m tours for Problem III.1
visiting at least |V |(1/ε− 1) in G′, we construct a set of m
tours of the same cost in G that collect at least (1 − ε)D
reward. Without loss of generality, we assume that if a tour
in G′ enters a set Fv then the tour visits all the vertices of Fv .
Then given a tour Ti = 〈r, v1, . . . , vn〉 in G′, we construct
a tour T ′i in G as follows: for each vj ∈ Ti we add vertex
v ∈ V to the tour T ′i such that vj ∈ Fv . Therefore, the total
collected reward in the constructed tours is

m∑
i=1

∑
v∈T ′i

φv ≥
εD

|V |
∑
i∈[m]

∑
v∈T ′i

bφ(v)|V |
εD

c ≥ (1− ε)D,

where the second inequality is due to∑
i∈[m]

∑
v∈T ′i
bφ(v)|V |εD c ≥ (1/ε− 1)|V |.

Observe that due to Lemma III.2, a solution to Prob-
lem III.1 that covers at least k vertices in G′ can be converted
to a tour in G collecting at least (1− ε)D reward instead of
D for Problem II.1.

B. Algorithm for MIN-MAX k-STROLL

The main challenge in this problem is to not only construct
the tours minimizing the maximum length, but also to select
the subset of vertices to visit. A naı̈ve method would be
constructing the minimum cost tree rooted at r that spans
at least k vertices, then constructing a tour by doubling the
edges of the tree and splitting the tour into m tours, one
for each robot. However, this will not result in a constant
factor approximation as illustrated in the example below.
Figure 1 shows a graph with 2mq+ 1 vertices. The vertices
are connected to their neighboring vertices with unit length
edges, with the exception of r, which is connected by edges
of length 1 + δ. Now consider the MIN-MAX k-STROLL
problem on this graph with m robots visiting at least k = mq
vertices. Observe that the branch on the right-hand side of
r is the minimum cost tree rooted at r and spanning mq
vertices. With any tour construction and splitting method,
the cost of the longest tour is at least 2mq. However, the
length of the longest tour in the optimal solution is 2(q+ δ)
with each tour covering q vertices on a branch of the root
node. For an arbitrarily small δ, this naive approach is an
Ω(m) approximation algorithm.

The proposed approximation algorithm consists of a binary
search on the length of the longest tour in the optimal
solution, where at each step we construct a set of tours
collectively covering at least k vertices. Algorithm 1 shows
an iteration of the binary search and Algorithm 2 shows

Fig. 1: An instance of the MIN-MAX k-STROLL problem with m
robots visiting at least k = mq vertices.

the complete approximation algorithm. Let λ be a guess
on the length of the longest tour in the optimal solution.
Then Algorithm 1 finds the induced subgraph of G where the
vertices are within at most λ/2 distance from the depot. The
function k-STROLL(G′, r) in Line 3 of the algorithm utilizes
an η-approximation algorithm for the k-STROLL problem to
find a tour including r in G′ that visits at least k vertices.
The current best approximation ratio is η = 2 due to [19].

The SPLIT-TOUR subroutine splits the constructed tour T
into tours of length at most (1 + η)λ. Let the tour T be
〈r, v1, v2, . . . , vk〉 visiting k vertices. For i ∈ [m], let s(i)
and t(i) be indices with s(i) ≤ t(i) such that the length of
the tour Ti = 〈r, vs(i), . . . , vt(i)〉 is at most (1 + η)λ and
the length of the tour 〈r, vs(i), . . . , vt(i), vt(i)+1〉 is greater
than (1 + η)λ. This tour splitting method is similar to the
one used in [23] where a fixed number of tours is found
to minimize the length of the largest tour. If the number of
constructed tours are greater than the number of robots, then
we increase λ and execute the same procedure with new λ.
We can find the optimal λ using a binary search between 0
and 2kmaxe∈E `(e) as the length of the longest tour in the
optimal solution is at most 2kmaxe∈E `(e).

Algorithm 1
1: function k-STROLLSPLIT(G, k, λ, r, α)
2: G′ ← remove vertices v such that for the depot r,

we have `(r, v) > λ/2
3: T ← k−STROLL(G′, r)
4: T ← SPLIT-TOUR(T, αλ, r)
5: return T
6: end function

Algorithm 2
1: function MIN-MAX k-STROLL(G,m, k, λ, r)
2: Do a binary search in [0, 2kmaxe∈E `(e)]

to find the smallest value of λ such that k-
STROLLSPLIT(G, k, λ, r, 1 + η) returns m tours

3: return Return the tours obtained from k-
STROLLSPLIT(G, k, λ, r, 1 + η)

4: end function

C. Analysis

Let T ∗1 , . . . , T
∗
m be the tours of m robots in the optimal

solution and let λ∗ be the length of the longest tour in the



Fig. 2: Constructed tour on G′ for k = 4

optimal solution. The following result provides the worst-
case performance of the proposed algorithm.

Proposition III.3 (Approximation factor). Suppose there
exists an η-approximation algorithm for the k-STROLL prob-
lem, then the length of the longest tour obtained from the
proposed algorithm is at most (1 + η)λ∗.

Prior to proof of the proposition, we provide the following
observation on the vertices in the optimal solution.

Observation III.4. For any vertex v in ∪mi=1T
∗
i , the distance

of the vertex from the depot is `(r, v) ≤ λ∗/2.

Proof. For any i ∈ [m] and v ∈ T ∗i , by the triangle
inequality, we have 2`(r, v) ≤ `(T ∗i ) ≤ λ∗.

With this observation, we limit the set of candidate ver-
tices by removing vertices farther that λ/2 from the depot.
Observe that the SPLIT-TOUR subroutine divides tour T into
tours of length at most (1+η)λ. Since connecting each vertex
to the root adds at most λ/2 to the cost, each tour in T can
cover at least ηλ of T .

Proof of Proposition III.3. We claim that for a λ, if |T | >
m, then λ∗ > λ. Suppose that the opposite is correct, i.e.,
λ∗ ≤ λ. The length of the constructed tour T , using the k-
stroll algorithm in [19], is `(T ) ≤ η

∑m
i=1 `(T

∗
i ) ≤ ηmλ∗.

The SPLIT-TOUR method divides T into tours of length at
most (1+η)λ. Each tour can cover at least ηλ of T , therefore,

|T | ≤
⌈
`(T )

ηλ

⌉
≤
⌈
ηmλ∗

ηλ

⌉
≤ m.

This is a contradiction.

Using the 2-approximation algorithm for k-STROLL
from [19], we get a 3-approximation algorithm for MIN-
MAX k-STROLL. Thus, to construct an approximation al-
gorithm for the MMGRC, we first construct an instance of
MIN-MAX k-STROLL as described in Section III.A. Then
using Algorithm 2, we obtain a set of tours and construct a
solution for MMGRC with the following guarantees.

Theorem III.5. For any ε ∈ (0, 1), the tours constructed
for MMGRC using the 3-approximation for MIN-MAX k-
STROLL problem collect at least (1− ε)D reward such that
the length of the longest tour is at most 3 times the length
of the longest tour in the optimal solution to MMGRC.

The following remark gives the runtime of the proposed
algorithm for MMGRC.
Remark III.6. (Runtime) Since the number of iterations in
the binary search on λ is at most O(log(kmaxe∈E `(e))),

and assuming that the runtime of the approximation al-
gorithm for k-STROLL is Q(n) on a graph of n ver-
tices, the runtime of Algorithm 2 on G = (V,E, `) is
O
(
Q(|V |/ε) log (kmaxe∈E `(e))

)
, which is polynomial in

the size of input to the problem for a fixed ε.
The main result of this section is summarized in Table I.

IV. VARIATIONS OF MMGRC

In this section, we extend the analysis of the approxima-
tion algorithm for Problem II.1 to provide some theoretical
results for related problems. If the constraints on the number
of robots and the minimum reward to be collected are not
strict, which may be the case in real world applications,
the trade-offs between different quantities of interest can be
studied to come up with different solutions.

A. Minimize Number of Robots

If the number of robots is not fixed, we can consider a
variation of MMGRC where the objective is minimizing the
number of robots that collect the reward in a given time.
Problem IV.1 (Minimize Number of Robots). Given a
positive number D and the maximum tour length λ, find
the minimum number of tours collecting at least D reward.

From our main result, given a β ∈ Z+, we can construct a
set of βm∗ tours of length at most (1 + 2/β)λ collecting at
least (1 − ε)D reward, where m∗ is the optimal number of
robots in Problem IV.1. Given an instance of Problem IV.1,
construct the unweighted instance of the problem as ex-
plained in Section III.A, then for a β, construct a set of tours
using Algorithm 1 with α = 1 + 2/β and k = |V |(1/ε− 1).
Finally, construct the set of tours {T1, . . . , Tp} in graph G
with the following guarantees.
Corollary IV.2. The set {T1, . . . , Tp} consists of p ≤ βm∗

tours of length at most (1 + 2/β)λ, β ∈ Z+, and collect at
least (1− ε)D reward.

Proof. The proof follows directly from the fact that the
length of the tour constructed by k-STROLL(G′, r) is at most
2m∗λ [19]. By splitting the tour to tours of length at most
(1 + 2/β)λ, each tour in the set T can cover at least length
(2/β)λ of T . Therefore,

|T | ≤ d`(T )
2
βλ
e ≤ d2m

∗λ
2
βλ
e ≤ βm∗,

where the last inequality is due to integrality of β.

B. Team Orienteering Problem

In the team orienteering problem, the objective is to
maximize the reward collected in a given amount of time.
The problem is formally defined below.
Problem IV.3 (Team Orienteering). Given the number of
robots m and the maximum tour length λ, find a set of m
tours that maximizes the total reward collected.

An approximation algorithm for the problem is given
in [2]. Here we provide two alternate solution approaches,
that may be useful if the constraints are not hard and the
increase in number of robots or maximum tour length may



be tolerated for the benefit of additional reward collected.
We also note that none of the approximation guarantees we
provide and the approximation algorithm in [2] are strictly
better than the other as they provide a trade-off between
different constraints and the objective.

Proposition IV.4. There exists an algorithm for Problem IV.3
that collects at least (1− ε) times the optimal reward using
βm tours of length at most (1 + 2/β)λ, for β ∈ Z+.

Proof. We use binary search to find the maximum reward
that can be collected by βm tours of length at most (1 +
2/β)λ, where at each iteration of the binary search we use
the result in Corollary IV.2. The reward collected is at least
(1− ε)D∗ where D∗ is the reward collected by the optimal
solution of Problem IV.3.

We can also use an approximation algorithm for the single
robot orienteering problem to get a bicriterion approximation
algorithm for Problem IV.3. Let D∗ be the reward obtained
by the optimal solution to Problem IV.3 and let G′ be
the graph obtained by removing the vertices v ∈ V such
that `(r, v) > λ/2. Then we can extend the idea from
Section III.B to get the following result.

Proposition IV.5. A γ-approximation algorithm for the
single robot orienteering problem implies an algorithm that
constructs m tours rooted at r with a length of at most 2λ
collecting at least D∗/γ reward.

Proof. By Observation III.4, vertices in the optimal solution
belong to G′. Moreover, given m optimal tours of length at
most λ, we can construct one tour of length at most mλ that
covers all the vertices in the optimal tour. Hence, running the
γ approximation algorithm for the single robot orienteering
with tour length mλ on the graph will give a tour that collects
at least D∗/γ reward. Now, we can split the tour of length
≤ mλ into m tours rooted at r, each of length at most 2λ
using the SPLIT-TOUR function.

Using the (2+ε) approximation algorithm for single robot
orienteering from [14], we get m tours of length at most 2λ
that collect at least D∗/(2+ ε) reward for ε > 0. The results
presented in this section are summarized in Table I.

V. SIMULATION RESULTS

In this section, first we evaluate the performance of
Algorithm 2 both in time and solution quality on TOP
instances [24], [25], then we provide an application of
MMGRC to scene reconstruction. While MMGRC and TOP
have different objectives, they have the same inputs, and
thus we use the TOP library of instances for evaluation.
Since the implementation of the approximation algorithm
for single k-STROLL is not provided in [19], in this section
we use an integer linear program (ILP) instead of the
approximation algorithm to solve single robot k-STROLL
in Line 3 of Algorithm 1. Observe that with an ILP solver
for the single k-STROLL, we are able to solve the single k-
STROLL optimally, making η = 1, and from Proposition III.3
this results in a 2-approximation for MMGRC.

TOP instances: Next, we evaluate the performance of
proposed algorithm for MMGRC by comparing it with an
ILP implementation of MMGRC on TOP instances [24],
[25] with less than 100 vertices. The ILP used is a natural
extension to the ILP for the OP in [26]. Table II shows the
percentage difference between the longest tour length in the
solution of our algorithm and the solution obtained from ILP
for MMGRC with a 5 minute time limit. The time ratio
represents the ratio of the ILP runtime to the runtime of the
proposed algorithm. The number of vertices and the number
of robots in each instance is given by n and m, respectively.
In each instance, we set the first vertex to be the depot and
the reward collected to be at least half of the total reward on
the vertices of the instance, i.e., D = 0.5

∑
v∈V φ(v).

The length of the longest tour in the solution obtained
from the proposed algorithm is within 27.2% of the solution
obtained from ILP for MMGRC with 5 minutes of time
limit. In the highlighted instances, the proposed algorithm
provides a solution where the length of the longest tour is
shorter than that of the ILP solution. As expected, in all the
TOP instances, the proposed algorithm shows a significant
improvement in the runtime compared to solving the full ILP.

Increasing the number of robots significantly increases
the size of the ILP for MMGRC, therefore, the solution
provided by the ILP within the 5 minute time limit might
be sub-optimal. However, increasing the number of robots
in the approximation algorithm changes the SPLIT-TOUR
procedure, which is linear in the number of robots. Observe
that with increasing the number of robots in the instance
of the same size, the solution provided by the proposed
algorithm improves with respect to the solution of ILP.

3D scene reconstruction: One application of the problem
discussed in the paper is to plan paths for a team of UAVs to
gather information from a certain scene in the environment
for 3D reconstruction purposes. We demonstrate this by
planning tours in an urban environment as shown in the
Figure 3. The problem instance is created using a method
similar to [6], where viewpoints are generated in a grid
above the scene to be monitored. The scene represents
buildings in the downtown of the city of Dallas, TX and
is taken from [27]. For each of the viewpoints on the
grid, 10 camera angles were randomly generated. The best
angle was picked for each viewpoint using a score that was
calculated assuming a square footprint of the camera, and
then projecting rays onto the scene within that footprint and
calculating each ray’s score based on the distance and the
angle of incidence. This scoring method encourages fronto-
parallel viewing angles. Each ray’s score is multiplied by
the importance factor ζ of the building it is incident on. The
color of the buildings in Figure 3 represents their importance
factor. Since the information gathered from the environment
is not additive, i.e., if two viewpoints are viewing the same
part of the scene, the reward contribution due to that part
should not be counted from both of those viewpoints. Hence,
using a greedy approach, each plane in the scene contributes
to the reward for only one viewpoint that views it best, i.e.,
has the highest score for that plane. The problem instance



TABLE I: Summary of results

Problem Reward collected Number of robots Maximum tour length

MIN-MAX GUARANTEED REWARD COLLECTION (Problem II.1)

Constraints and objective ≥ D ≤ m λ∗ (objective)
Theorem III.5 ≥ D(1− ε) ≤ m ≤ 3λ∗

MINIMIZE NUMBER OF ROBOTS (Problem IV.1)

Constraints and objective ≥ D m∗ (objective) ≤ λ
Corollary IV.2 ≥ D(1− ε) ≤ βm∗ ≤ (1 + 2

β
)λ, β ∈ Z+

TEAM ORIENTEERING PROBLEM (Problem IV.3)

Constraints and objective D∗ (objective) ≤ m ≤ λ
Proposition IV.4 ≥ D∗(1− ε) ≤ βm ≤ (1 + 2

β
)λ, β ∈ Z+

Proposition IV.5 ≥ D∗/(2 + ε) ≤ m ≤ 2λ

TABLE II: Performance of the proposed algorithm on TOP in-
stances. n is the number of vertices and m is the number of robots.
* shows the optimally-solved instances by the ILP for MMGRC.

Problem m % diff. in length Time ratio

n = 32

p.1.2.a 2 13.6 57
p.1.3.a 3 19.0 255
p.1.4.a 4 15.5 206
n = 21

p.2.2.a* 2 5.6 347
p.2.3.a 3 14.5 2272
p.2.4.a 4 1.1 1948
n = 33

p.3.2.a 2 23.4 739
p.3.3.a 3 11.0 652
p.3.4.a 4 2.6 911
n = 66

p.5.2.a 2 -5.9 1
p.5.3.a 3 -5.5 17
p.5.4.a 4 -46.8 15
n = 64

p.6.2.a 2 27.2 51
p.6.3.a 3 -2.3 53
p.6.4.a 4 -5.6 53

created using the method described above had 110 vertices
with non-zero rewards, and another vertex was added on
the ground to act as the depot for the UAVs. The MMGRC
problem instance was to collect at least 80% of the reward
from the environment using a team of 3 UAVs. The paths
planned using our algorithm are shown in Figure 3. Notice
that the blue and red UAVs do not visit some vertices with
low rewards while on their way to higher reward vertices.

Figure 4 shows the reconstructed scene from the pictures
taken by the UAVs. The average ray score incident on each
face of the scene is represented by the gray intensity of that
face. The darker shades of gray represent the faces that are
reconstructed with higher detail. Note that the buildings with
higher importance factors are reconstructed with more detail.

Fig. 3: Tours of three aerial robots taking pictures of the Dallas
skyline for 3D reconstruction of the environment. The importance
factors are ζgrey = 1, ζblue = 1.5, ζyellow = 2, ζred = 2.5.

Fig. 4: Reconstructed scene using the tours in Figure 3.

VI. CONCLUSION AND FUTURE WORK

This paper considered the problem of multi-robot reward
collection. A constant factor approximation algorithm was
proposed for the problem of minimizing the time to collect
a guaranteed amount of reward. Then we proposed bi-
criterion approximation algorithms to two related problems.
The experiments on the TOP instances show significant
improvement in the time to obtain near-optimal solutions.
For future work, we hope to extend the results to capture
multiple depots.
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